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Abstract. Program transformation and in particular partial evaluation
are appealing techniques for declarative programs to improve not only
their performance. This paper presents the first step towards developing
program transformation techniques for a concurrent constraint program-
ming language where guarded rules rewrite and augment multi-sets of
atomic formulae, called Constraint Handling Rules (CHR).
We study the specialization of rules with regard to a given goal (query).
We show the correctness of this program transformation: Adding and
removing specialized rules in a program does not change the program’s
operational semantics. Furthermore termination and confluence of the
program are shown to be preserved.

1 Introduction

Program transformation [PP96] is understood as a sequence of program text
transformations that preserves semantic equivalence but at the same time im-
proves the run-time, space-consumption or other aspects of the given program.
Partial evaluation [MS97] is a popular instance of program transformation and
of program specialization, which optimizes a given program for known values of
the input.

Program transformation goes especially well with declarative (functional,
logic, constraint) programming languages due to their clean semantics (avoidance
of side-effects).

In the rule-based CHR language, we are interested in program specialization
with regard to a given goal (query). We consider the rules that are applicable
to the goal in any possible context (state of computation). We would like to
specialize these rules for the given goal.

Our work is motivated by a renewed (and as we think, increasing) interest in
program transformation and by the unique combination of features that the CHR
language offers, in particular the multi-set programming style and the so-called
propagation rules that add information without removing any. On one hand,
these features mean that we have to adopt existing program transformation
techniques for them or even come up with new ones, and on the other hand, there
is hope that they make certain program transformations more straightforward.

We now discuss the appeal of program transformation and the special features
of the CHR language in more detail.



Appeal of Program Transformation. Program transformation, and in particular
rule specialization, have potential applications in the following areas:

– Using the specialized rules at run-time should increase time and space effi-
ciency.

– In concurrent languages like CHR, we also can eliminate communication
channels, synchronization points and don’t care nondeterminism [EGM01].

– Verification and model checking can be done by program transforma-
tion [DP99,FPP01,RKRR04].

– Agent can be specialized to a specific context (Example in [EGM01]).
– Constraint solving can be improved, since particular classes of optimization

problems like scheduling typically have a certain structure [Wal03].
– A complete set of specialized rules can be regarded as conditional or qualified

answer for the user.
– Agent communication can be improved by exchanging conditional an-

swers [PGGS98].

Constraint Handling Rules (CHR). In constraint solving, efficient special-
purpose algorithms are employed to solve sub-problems involving distinguished
relations referred to as constraints. CHR [Frü98] is a concurrent committed-
choice constraint logic programming language consisting of guarded rules that
transform multi-sets of constraints into simpler ones until they are solved.

In CHR, one distinguishes two kinds of rules: Simplification rules replace
constraints by simpler constraints while preserving logical equivalence, e.g.
X≥Y∧Y≥X⇔ X=Y. Propagation rules add new constraints, which are logically
redundant, but may cause further simplification, e.g. X≥Y∧Y≥Z⇒ X≥Z. The
combination of propagation and multi-set transformation of logical formulae in
a rule-based language that is concurrent, guarded and constraint-based make
CHR a rather unique declarative programming language.

Typically, CHR programs are well-behaved, i.e. terminating and confluent.
Confluence means that the result of a computation is independent from the or-
der in which rules are applied to the constraints. Once termination has been
established [Frü02], there is a decidable, sufficient and necessary test for conflu-
ence [Abd97,AFM99].

Related Work. Since CHR can be seen as an extension of concurrent constraint
programming (CCP) [SR90] by multiple heads (multi-sets) and propagation
rules, literature on program transformation for concurrent constraint and logic-
based programming languages is relevant: [EGM01] deals with transformations
of concurrent constraint logic programs, [FPP04] deals with constraint logic pro-
grams (CLP), and [UF88] deals with a guarded concurrent logic programming
language called GHC.

Due to propagation rules and the multi-set character of CHR, the above
results are not directly applicable. For example, multiple heads mean that unlike
CCP, constraints are usually defined by several rules, and that unlike CCP and
GHC, different constraints can be defined in one rule by their interaction. GHC



lacks built-in constraints and thus does not feature guard checking by logical
implication. CLP among other things lacks concurrency. Moreover, these related
works are not concerned directly with rule specialization, but with unfold/fold
transformations.

Outline of the Paper. In Section 2, we define the CHR programming language.
Section 3 introduces rule specialization. The next section shows correctness by
considering specialized rules as redundant rules. The section also shows preser-
vation of well-behavedness. Before we conclude, Section 5 gives some more ex-
amples.

2 The CHR Language

In this section we give an overview of syntax and semantics for constraint han-
dling rules (CHR) [Frü98,FA03]. Readers familiar with CHR can skip this section
(except for the introduction of the running example max maybe).

2.1 Syntax of CHR

We use two disjoint sets of predicate symbols for two different kinds of con-
straints: built-in constraint symbols and CHR constraint symbols (user-defined
symbols).

Built-in constraints are handled by a given, predefined constraint solver. We
assume that these solvers are well-behaved (terminating and confluent). Built-in
constraints include =, true, and false. The semantics of the built-in constraints
is defined by a consistent first-order constraint theory CT. In particular, CT
defines = as the syntactic equality over finite terms.

CHR (user-defined) constraints are defined by a CHR program.

Definition 1. A CHR program is a finite set of rules. There are two kinds of
rules:

A simplification rule is of the form

Name @ H ⇔ C B.

A propagation rule is of the form

Name @ H ⇒ C B,

where Name is an optional, unique identifier of a rule, the head H is a non-
empty conjunction of CHR constraints, the guard C is a conjunction of built-in
constraints, and the body B is a goal. A goal is a conjunction of built-in and
CHR constraints. A trivial guard “true” can be omitted together with “”.

A CHR symbol is defined in a CHR program if it occurs in the head of a rule
in the program.



Example 1. Let ≤ and < be built-in constraint symbols with the usual meaning.
We define a CHR symbol max, where max(X,Y,Z) means that Z is the maximum
of X and Y:

max(X,Y,Z)⇔ X≤Y Z=Y.
max(X,Y,Z)⇔ Y≤X Z=X.
max(X,Y,Z)⇒ X≤Z ∧ Y≤Z.

The first rule states that max(X,Y,Z) is logically equivalent Z=Y if X≤Y. Analo-
gously for the second rule. The third rule states that max(X,Y,Z) unconditionally
implies X≤Z ∧ Y≤Z.

Note that max will be our running example throughout this text.

2.2 Operational Semantics of CHR

The operational semantics of CHR is given by a transition system.
Let P be a CHR program. We define the transition relation 7→P by intro-

ducing two computation steps (transitions), one for each kind of CHR rule (cf.
Figure 1). Since the two computation steps (transitions) are structurally very
similar, we first describe their common behavior and then explain the difference.

In the figure, all meta-variables stand for (possibly empty) conjunctions of
constraints. C and D stand for built-in constraints only, H and H ′ for CHR
constraints only.

Simplify

If (H ⇔ C B) is a fresh variant of a rule in P with variables x̄
and CT |= ∀ (D → ∃x̄(H=H ′ ∧ C))

then (H ′ ∧G ∧D) 7→Simplify
P (G ∧D ∧B ∧ C ∧H=H ′)

Propagate

If (H ⇒ C B) is a fresh variant of a rule in P with variables x̄
and CT |= ∀ (D → ∃x̄(H=H ′ ∧ C))

then (H ′ ∧G ∧D) 7→Propagate
P (H ′ ∧G ∧D ∧B ∧ C ∧H=H ′)

Fig. 1. Computation Steps of Constraint Handling Rules

A state is simply a goal, i.e. a conjunction of built-in and CHR constraints.
Conjunctions are considered as multi-sets of conjuncts (conjuncts can be per-
muted). We will usually partition a state into subconjunctions of specific kinds
of constraints. For example, any state can be written as (H ′ ∧ G ∧ D), where
H ′ contains only CHR constraints, D only built-in constraints, and G arbitrary
constraints. Each of the subconjunctions may be empty (equivalent to true).

A (fresh variant of a) rule is applicable to a state (H ′ ∧G∧D) if H ′ matches
its head H and its guard C hold when the built-in constraints D of the state



hold. A fresh variant of a rule is obtained by renaming its variables to fresh
variables, x̄.

Matching (one-sided unification) succeeds if H ′ is an instance of H, i.e. it is
only allowed to instantiate (bind) variables of H but not variables of H ′. Match-
ing is logically expressed by equating H ′ and H but existentially quantifying all
variables from the rule, x̄. This equation H ′=H is shorthand for pairwise equat-
ing the arguments of the constraints in H ′ and H, provided their constraint
symbols are equal.

If an applicable rule is applied, the equation H=H ′, its guard C and its body
B are added to the resulting state. Any of the applicable rule can be applied
(don’t care non-determinism). A rule application cannot be undone (CHR is a
committed-choice language without backtracking).

When a simplification rule is applied in the transition Simplify, the matching
CHR constraints H ′ are removed from the state.

The Propagate transition is like the Simplify transition, except that it
keeps the constraints H ′ in the resulting state. Trivial non-termination caused
by applying the same propagation rule again and again is avoided by applying
it at most once to the same constraints [Abd97].

A computation of a goal G in a program P is a sequence S0, S1, . . . of states
with Si 7→P Si+1 beginning with the initial state S0 = G and ending in a final
state or diverging. 7→∗

P denotes the reflexive and transitive closure of 7→P . A
final state is one where either no computation step is possible anymore or where
the built-in constraints are inconsistent (unsatisfiable). When it is clear from the
context, we will drop the reference to the program P .

Example 2. Recall the program for max from Example 1. The first two rules are
simplification rules, that replace max(X,Y,Z) by simpler constraints provided a
guard holds. The third rule propagates constraints. Operationally, we add the
body of the rule as redundant constraints, the max constraint is kept.

To the goal max(1,2,M) the first rule is applicable:

max(1, 2, M) 7→Simplify M=2.

To the goal max(A,B,M) ∧ A<B the first rule is applicable:

max(A,B,M) ∧ A<B 7→Simplify M=B ∧ A<B.

To the goal max(A,A,M) both simplification rules are applicable. In both cases
the result is M=A.

max(A, A, M) 7→Simplify M=A.

Redundancy from the propagation rule is useful, as the goal max(A,3,3) shows.
Only the propagation rule is applicable, and then the first rule:

max(A, 3, 3) 7→Propagate max(A,3,3) ∧ A≤3 7→Simplify A≤3.

(The constraint 3=3 is simplified away by the built-in constraint solver.)



2.3 Well-Behavedness: Termination and Confluence

A CHR program is well-behaved if it is terminating and confluent.

Definition 2. A CHR program is called terminating, if there are no infinite
computations.

For many existing CHR programs simple well-founded orderings are sufficient to
prove termination [Frü02]. Problems arise with non-trivial interactions between
simplification and propagation rules.

The confluence property of a program guarantees that any computation for
a goal results in the same final state no matter which of the applicable rules are
applied.

Definition 3. A CHR program is confluent if for all states S, S1, S2: If S 7→∗

S1 and S 7→∗ S2 then there exist states T1 and T2 such that S1 7→∗ T1 and
S2 7→∗ T2 and T1 and T2 are identical up to renaming of local variables and
logical equivalence of built-in constraints.

The papers [Abd97,AFM99] give a decidable, sufficient and necessary condition
for confluence for terminating CHR programs.

Example 3. The program for max from Example 1 is well-behaved. It is trivially
terminating, since the bodies of the rules do not contain any CHR constraints.
Thus confluence is decidable and can be shown to hold.

For example, to the state max(X,Y,Z) ∧ X=Y all three rules are applicable,
but in all cases, the final state is a built-in constraint logically equivalent to
X = Y ∧ Y = Z.

3 Rule Specialization

We are interested in any rule whose head could match (a part of) the given goal,
taking into account any possible context. Therefore we consider all rules that
have an overlap with the given goal. For an overlap, the head of the rule and
the goal must have at least one CHR constraint in common. This is achieved by
equating one or more constraints of the head and the goal.

We assume without loss of generality that rules (and goals) have disjoint
sets of variables (if necessary, their variables have been renamed apart), unless
otherwise noted.

In the following, meta-variables stand for (possibly empty) conjunctions of
constraints. Unless otherwise noted, the letters C and D stand for built-in con-
straints, H for CHR constraints of the head of a rule, B for arbitrary constraints
of the body of a rule, G for constraints in general.

We first specialize simplification rules.

Definition 4. Let G be a goal. Without loss of generality (w.l.o.g.), G can be
written as

G1 ∧G2 ∧D,



where G1 and G2 are CHR constraints and D are built-in constraints.
Let R be a simplification rule

H1 ∧H2 ⇔ C B.

Then a specialization of the simplification rule R with regard to the goal G is the
simplification rule

H1 ∧H2 ∧G2 ⇔ H1=G1 ∧ C ∧D B ∧G2,

provided G1 and H1 are non-empty conjunctions and CT |= ∃(H1=G1∧C ∧D).

H1=G1 defines the overlap of the goal with the head of the rule. (G1 and
H1 are non-empty conjunctions, so that trivial overlaps are avoided.) G2, the
remainder of the goal G, occurs in both head and body of the specialized rule,
since it will not be changed by the rule. The condition CT |= ∃(H1=G1∧C∧D)
ensures that the specialized rule is not trivial. (With an unsatisfiable guard a
rule is never applicable).

Example 4. Let G be the goal

max(A, B, C) ∧ A ≥ B

Of course, this goal can be unfolded with the second rule of the program defining
max (from Example 1), but for the sake of a simple example, let us specialize the
first rule with it. Let R be the rule

max(X, Y, Z) ⇔ X ≤ Y Z=Y

We have a complete overlap with max, i.e.

G1 = max(A, B, C), G2 = true, D = (A ≥ B),
H1 = max(X, Y, Z),H2 = true, C = (X ≤ Y), B = (Z=Y).

The resulting specialized rule is:

max(X, Y, Z) ∧ true ∧ true ⇔ max(X, Y, Z)=max(A, B, C) ∧ X ≤ Y ∧ A ≥ B
Z=Y ∧ true

After removal of redundant true constraints and after propagation and simpli-
fication of variable equalities and other built-in constraints, the above rule can
be written as:

max(X, Y, Z) ⇔ X=Y Z=Y.

The conditional answer that we get from this rule reads as:

Given G, if A=B then C=B.

We now specialize propagation rules.



Definition 5. Let G be a goal of the form

G1 ∧G2 ∧D,

where G1 and G2 are CHR constraints and D are built-in constraints.
Let R be a propagation rule

H1 ∧H2 ⇒ C B.

Then a specialization of the propagation rule R with regard to the goal G is the
propagation rule

H1 ∧H2 ∧G2 ⇒ H1=G1 ∧ C ∧D B,

provided G1 and H1 are non-empty conjunctions and CT |= ∃(H1=G1∧C ∧D).

In the propagation rule, we do not have to add the remainder G2 of the goal to
the body as in the case of a simplification rule, since it will not be removed from
the head.

Example 5. Let G be the goal

max(A, B, C) ∧ A ≥ B.

Let R be the propagation rule

max(X, Y, Z) ⇒ X ≤ Z ∧ Y ≤ Z.

The complete overlap with max is

G1 = max(A, B, C), G2 = true, D = (A ≥ B),
H1 = max(X, Y, Z),H2 = true, C = true, B = (X ≤ Z ∧ Y ≤ Z).

The specialized rule is

max(X, Y, Z) ∧ true ∧ true ⇒ max(X, Y, Z)=max(A, B, C) ∧ true ∧ A ≥ B
X ≤ Z ∧ Y ≤ Z ∧ true

After simplification of built-in constraints, the rule can be written as

max(X, Y, Z) ⇒ Y ≤ X X ≤ Z.

In practice, we may introduce a new definition for the goal G, say gmax, and
thus write the above rule as

gmax(A, B, C) ⇒ A ≤ C.

More examples can be found in Section 5.



Remarks. If a goal is not specializable with any rule of the program, a program-
ming error is likely. (The CHR constraints of the goal are either not defined or
too specific.)

There are some interesting special cases of the above transformation: If we
know that at run-time, the goal will not occur in any context with additional
(CHR) constraints, we let H2 be the empty conjunction. If in addition, G2 is
empty, we only specialize with rules whose heads overlap completely with the
given goal.

A most general goal G = c(X1, . . . , Xn), where Xi (0 ≤ i ≤ n) are pairwise
distinct variables, will return all rules that contain the constraint symbol c with
arity n in their heads as a result of specialization.

4 Redundant Rules for Correctness

We show that the transformed rules are redundant in the program from which
they derive. Hence they cannot change the operational semantics of the program.
This result will establish correctness of the rule specialization transformation.
We use a strict notion of correctness, where the observables are complete states
(not only built-in constraints as usual in CC languages). We also show that
specialized rules preserve termination and confluence (well-behavedness).

In this paper, we do not address the question whether original rules can be
removed from the program once specialized rules are added. At the current state
of research, we would like to refer to the papers [AF04] in which techniques to
detect redundant rules in a program is described.

We start with a slightly more general definition of specialized rules than the
ones derived in the previous section. Then we define redundant rules.

Definition 6. A rule R′ is special(ized) in a CHR program P iff P contains
another rule of the form

H � C B where � ∈ { ⇔ , ⇒ }.

and R′ is of the form

H ∧G� C ∧D B ∧G if �= ⇔ ,

H ∧G� C ∧D B if �= ⇒ ,

provided the variables in the added goals G and D are either new or occur in H.

In [AF04] rule redundancy is defined in terms of finite computations.

Definition 7. A rule R is redundant in a CHR program P iff for all states S:

If S 7→∗
P S1 then S 7→∗

P\{R} S2,

where S1 and S2 are final states and S1 and S2 are identical up to renaming of
local variables and logical equivalence of built-in constraints.



We need some statements about preservation of well-behavedness under ad-
dition and removal of redundant rules.

The addition of rules to a CHR program cannot inhibit computations.

Lemma 1. Given a CHR program P and a rule R. For all states S and S′: If
S 7→∗

P S′ then S 7→∗
P∪{R} S′.

Proof. This is a direct consequence of the operational semantics of CHR. In a
computation step, one may apply any of the applicable rules. So it suffices to
ignore the newly added rule R to reproduce all computations of the original
program without R.

The lemma also means that the removal of rules from a CHR program cannot
introduce new computations.

From the above Lemma 1 the following two corollaries are immediate conse-
quences.

Corollary 1. Removal of a redundant rule preserves termination and confluence
of the program.

Proof. The claim holds since all computations are finite in a terminating program
and since removal of a rule cannot introduce more computations.

Removal preserves confluence by definition of redundant rules, because a
redundant rule could have only introduced computations that are also possible
without it.

Corollary 2. Addition of a redundant rule preserves confluence, but may de-
stroy termination.

Proof. Addition of a redundant rule preserves confluence by definition, because
a redundant rule only has finite computations that are also possible without it.

For termination, a counterexample suffices. Consider adding p(X) ⇔ p(X)
to a program that defines p. Every finite computation with the new rule will be
redundant, but there are obviously also infinite computations possible with the
new rule.

In order to arrive at our desired correctness result, we show that special rules
are redundant rules. For the proof, we need the following three lemmata from
[AF99].

Lemma 2. A computation can be repeated in any larger context, i.e. with states
in which built-in and CHR constraints have been added.

If G 7→∗ G′ then (G ∧H) 7→∗ (G′ ∧H).

Lemma 3. A computation can be repeated in a state where redundant built-in
constraints have been removed. Let CT |= ∀ (D → C).

If (H ∧ C ∧D ∧G) 7→∗ S then (H ∧D ∧G) 7→∗ S.



Lemma 4. A computation can be repeated in a state where variables have been
instantiated. Let H ′ and H be CHR constraints without common variables.

If (H ∧H=H ′ ∧ C) 7→∗
P S then (H ′ ∧ C[H=H ′]) 7→∗

P S,

where C[H=H ′] denotes the substitution of the variables in C which also occur
in H as prescribed by the syntactic equality H=H ′.

We are now ready to prove that special rules are special redundant rules.

Theorem 1. Special rules are redundant rules.

Proof. By contradiction. We try to find a computation in a given CHR pro-
gram P that is possible with the special rule R′ but not possible without it
(the program P still contains R). W.l.o.g. we consider single computation steps
S′ 7→{R′} S′

1. We got to show that then S′ 7→{R} S1 is always possible and S′
1

and S1 are equivalent.
Consider the case where R′ and R are simplification rules. Let R of the form

H ⇔ C B

Let R′ be a special rule of R of the form

H ∧G ⇔ C ∧D B ∧G

(Note that H, C and B are identical in both rules.)
Consider any state S′ with S′ 7→{R′} S′

1. Since R′ is applicable, S′ must be
of the form

H ′ ∧G′ ∧G′′ ∧D′,

where CT |= ∀(D′ → H=H ′ ∧G=G′ ∧C ∧D), and S′
1 must be of the form

B ∧G ∧G′′ ∧H=H ′ ∧G=G′ ∧C ∧D ∧D′.

But then a very similar computation step is possible with R, since CT |=
∀(H=H ′ ∧ G=G′ ∧ C ∧ D) → H=H ′ ∧ C), the applicability condition CT |=
∀(D′ → H=H ′ ∧C) is fulfilled, and consequently S1 is of the form

B ∧G′ ∧G′′ ∧H=H ′ ∧C ∧D′.

We now show that the two states S′
1 and S1 are the equivalent up to re-

naming of local variables and equivalence of built-in constraints. More precisely,
we are interested in operational equivalence of states: Given the program P , all
computations with S′

1 as initial state are also possible with S1 as initial state
and vice versa.

Since S′
1 strictly contains S1, we know by Lemma 2 that all computations

with S1 are also possible with S′
1.

We still have to show that S′
1 does not admit more computations than S1.

We transform S′
1 into S1 while preserving logical and operational equivalence of

states.



Since CT |= ∀(D′ → D) as a consequence of the fulfilled rule applicability
condition, we can remove D from state S′

1 according to Lemma 3.
Finally, we apply Lemma 4 and compute S′

1[G=G′]. The substitution affects
the variables in G and their occurences in other subconjunctions of the state S′

1

that stem from the rule. Clearly, G[G=G′] = G′. Also, H ′, G′′ and D′ remain
unaffected, since they are subconjunctions from the goal that cannot have any
variables in common with the rule from which G stems. Finally, (H=H ′)[G=G′]
can be left as (H=H ′) since the fulfilled applicability condition of R′, CT |=
∀(D′ → H=H ′ ∧G=G′ ∧C ∧D), implies that a variable common to H and G
must be equated to the same term in both equations H=H ′ and G=G′. Since by
definition of special rules, if G contains variables from the rule, they must also
occur in H, the subconjunction C is not affected either. So the overall result is
the state:

B ∧G′ ∧G′′ ∧H=H ′ ∧C ∧D′.

We have successfully transformed S′
1 into S1. Hence there cannot exist a compu-

tation with R′ that is not possible with R, i.e. the special rule R′ is redundant
in the program P that contains the rule R.

The proof for propagation rules is analogous.

Corollary 3. The addition and removal of special rules to a program preserves
its confluence.

Proof. Obvious, since special rules are redundant rules by Theorem 1 and Corol-
laries 1 and 2 for redundant rules.

Theorem 2. The addition and removal of special rules to a program preserves
its termination.

Proof. Since special rules are redundant rules by Theorem 1, their removal pre-
serves termination by Corollary 1.

We show that the addition of special rules preserves termination by contradic-
tion. In an infinite computation, the special rule must be applied infinitely often,
since any sub-computation between the applications of the special rule must be
finite, since the program without addition of the special rule is terminating.

The proof of Theorem 1 showed, that each computation step, where the spe-
cial rules is applied, can be mimicked by exactly one computation steps without
the special rule. But then the complete computation can be mimicked by appli-
cations of rules of the original program. Since the program was terminating, this
computation cannot be infinite.

5 More Examples

In this section, we use the concrete syntax of CHR implementations in Prolog
instead of the abstract syntax presented so far. The reason for this is that we have
transformed the following programs in that setting with a first implementation
of rule specialization.

Recall the program for max(X,Y,Z) from Example 1.



max(X,Y,Z) <=> X=<Y | Z=Y.
max(X,Y,Z) <=> Y=<X | Z=X.
max(X,Y,Z) ==> X=<Z, Y=<Z.

Even though we did not adress unfolding of rules and simplification of built-
in constraints in rules in this paper for space reasons, we will use these program
manipulations in the following examples in a mild way in order to illustrate the
usefulness of rule specialization.

Unfolding basically means to replace the body of a rule by the result of a
computation starting with the guard and body of the rule. Note that in the case
of propagation rules, we also add the head of the rule to the initial state of the
computation (here the technical term “unfolding” turns into a misnomer). Since
we assume well-behaved programs, unfolding will terminate and it suffices to
consider any one computation because of confluence. Built-in constraint simpli-
fication basically replaces built-in constraints of the guard and body by simpler
ones.

In the examples, we will derive all specialized rules for a given goal. However,
we will not bother to derive specialized rules that are equivalent (up to reordering
of head constraints and variable renaming) to other already derived specialized
rules.

Example 6. Let the goal for specialization be:

max(X,Y,Z), max(Y,X,Z)

Specialization with the first conjunct of the goal, max(X,Y,Z) results in the
specialized rules:

max(X,Y,Z), max(Y,X,Z) <=> X=<Y | Z=Y, max(Y,X,Z).
max(X,Y,Z), max(Y,X,Z) <=> Y=<X | Z=X, max(Y,X,Z).
max(X,Y,Z), max(Y,X,Z) ==> X=<Z, Y=<Z.

Unfolding of max(Y,X,Z) in each of the specialized rules:

max(X,Y,Z), max(Y,X,Z) <=> X=<Y | Z=Y, Z=Y.
max(X,Y,Z), max(Y,X,Z) <=> Y=<X | Z=X, Z=X.
max(X,Y,Z), max(Y,X,Z) ==> X=<Z, Y=<Z, Y=<Z, X=<Z.

Trivial simplification of built-in constraint in the rule bodies:

max(X,Y,Z), max(Y,X,Z) <=> X=<Y | Z=Y.
max(X,Y,Z), max(Y,X,Z) <=> Y=<X | Z=X.
max(X,Y,Z), max(Y,X,Z) ==> X=<Z, Y=<Z.

When specializing with the second conjunct max(Y,X,Z), the same rules are
derived (up to permutation of head constraints). These rules are obviously re-
dundant.

Comparing the original and the specialized rules, we see that one of the max
constraints in the goal is redundant, and, more generally, that max is commuta-
tive in its first two arguments. So an appropriate folding program transformation
would allow us to derive the rule:



max(X,Y,Z), max(Y,X,Z) <=> max(X,Y,Z).

Example 7. The goal to specialize is now:

max(X,Y,Z), max(X,Y,U)

Specialization with first conjunct max(X,Y,Z) of the goal:

max(X,Y,Z), max(X,Y,U) <=> X=<Y | Z=Y, max(X,Y,U).
max(X,Y,Z), max(X,Y,U) <=> Y=<X | Z=X, max(X,Y,U).
max(X,Y,Z), max(X,Y,U) ==> X=<Z, Y=<Z.

Specialization with the other conjunct of the goal leads to the same rules (up to
variable renaming). Unfolding of max(X,Y,U) in specialized rules:

max(X,Y,Z), max(X,Y,U) <=> X=<Y | Z=Y, U=Y.
max(X,Y,Z), max(X,Y,U) <=> Y=<X | Z=X, U=X.
max(X,Y,Z), max(X,Y,U) ==> X=<Z, Y=<Z, X=<U, Y=<U.

The built-in constraints in each simplification rules imply that Z=U. This reminds
us that the third argument of max is functionally dependent on the first two
arguments.

In the next example, we add a rule for functional dependency and specialize
it with regard to the goal of Example 6. Because the goal and the head of the
rule each have two constraints, there will be a more interesting overlap.

Example 8. The goal is:
max(X,Y,Z), max(Y,X,Z).
The functional dependency rule for max is:

max(X,Y,Z), max(X,Y,U) <=> max(X,Y,Z), Z=U.

Specialization with the functional dependency rule (again deriving the minimal
number of rules):

max(A,B,C), max(A,B,D), max(B,A,C) <=> max(A,B,C), C=D,max(B,A,C).
max(A,A,C), max(A,A,C) <=> max(A,A,C), C=C.

If the folded rule of Example 6 is available, we can also unfold and simplify the
first rule:

max(A,B,C), max(A,B,D), max(B,A,C) <=> C=D, max(A,B,C).
max(A,A,C), max(A,A,C) <=> A=C.

6 Conclusions

The current work is a first, small step into considering program transforma-
tion for the constraint handling rule (CHR) language. This line of research is
motivated by two working hypothesis (as explained in the introduction):



– New applications of program transformation to problems such as verification,
constraint solver optimization and agent specialization.

– The suitability of CHR as a declarative, concurrent constraint-based pro-
gramming language with multi-headed rules for powerful program transfor-
mation techniques.

Here we have studied the specialization of rules with regard to a given goal.
We have shown that the correctness of this program transformation: Adding
and removing such specialized rules in a program does not change the program’s
operational semantics. Furthermore well-behavedness, i.e. termination and con-
fluence, is preserved by these operations.

The additional examples in the previous section give some hints of what
should be next:

– Unfolding and folding as well as rule simplifying program transformations
for CHR.

– A methodology (strategies) how to employ these transformations to improve
the performance of a program. In general, these strategies depend on the
intended application of the programn transformation. A particular and basic
question is to clarify which derived rules one should add and which original
rules one should remove.

Finally, and not surprisingly, future work also concerns the practical aspects
of improving the current preliminary ad-hoc implementation for rule specializa-
tion and applying it to larger examples.
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