
Analysing the CHR Implementation of
Union-Find

Tom Schrijvers⋆ and Thom Frühwirth

1 Department of Computer Science, K.U.Leuven, Belgium
www.cs.kuleuven.ac.be/˜toms/

2 Faculty of Computer Science, University of Ulm, Germany
www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/

Abstract. CHR (Constraint Handling Rules) is a committed-choice rule-
based language that was originally intended for writing constraint solv-
ers. Over time, CHR is used more and more as a general-purpose pro-
gramming language. In companion paper [12] we show that it is possible
to write the classic union-find algorithm and variants in CHR with best-
known time complexity, which is believed impossible in Prolog. In this
paper, using CHR analysis techniques, we study logical correctness and
confluence of these programs. We observe the essential destructive up-
date of the algorithm which makes it non-logical.

1 Introduction

When a new programming language is introduced, sooner or later the question
arises whether classical algorithms can be implemented in an efficient and elegant
way. For example, one often hears the argument that in Prolog some graph
algorithms cannot be implemented with best known complexity because Prolog
lacks destructive assignment that is needed for efficient update of the graph
data structures. In particular, it is not clear if the union-find algorithm can be
implemented with best-known complexity in pure (i.e. side-effect-free) Prolog
[10].

We give a positive answer for the Constraint Handling Rule (CHR) program-
ming language. There is an CHR implementation with the optimal worst case
and amortized time complexity known for the classical union-find algorithm with
path compression for find and union-by-rank. This is particularly remarkable,
since originally, CHR was intended for implementing constraint solvers only.

CHR is a concurrent committed-choice constraint logic programming lan-
guage consisting of guarded rules that transform multi-sets of constraints (atomic
formulae) into simpler ones until they are solved. In CHR, one distinguishes
two main kinds of rules: Simplification rules replace constraints by simpler con-
straints while preserving logical equivalence, e.g. X≥Y ∧ Y≥X ⇔ X=Y. Propaga-
tion rules add new constraints, which are logically redundant, but may cause

⋆ Research Assistant of the fund for Scientific Research - Flanders (Belgium)(F.W.O.
- Vlaanderen). Part of this work was performed while visiting the University of Ulm
in November 2004.



further simplification, e.g. X≥Y∧Y≥Z ⇒ X≥Z. The combination of propagation
and multi-set transformation of logical formulae in a rule-based language that
is concurrent, guarded and constraint-based make CHR a rather unique and
powerful declarative programming language.

Closest to our work is the presentation of a logical algorithm for the union-
find problem in [10]. In a hypothetical bottom-up inference rule programming
system with permanent deletions and rule priorities, a set of rules for union-find
is given. The direct efficient implementation of these inference rule system seems
not feasible. It is also not clear if the rules given in [10] describe the standard
union-find algorithm as can be found in text books such as [4]. The authors
remark that giving a rule set with optimal amortized complexity is complicated.

In contrast, we give an executable and efficient implementation that dir-
ectly follows the pseudo-code presentations found in text books and that has
also optimal amortized time complexity. Moreover, we do not need to rely on
rule priorities. Here we analyse confluence and logical reading as well as logical
correctness of our union-find program.

This paper is an revised extract of our technical report [13]. A program-
ming pearl describing the implementation and giving a proof for the optimal
time complexity is under submission [12]. This paper is structured as follows.
In the next Section, we review the classical union-find algorithms. Constraint
Handling Rules (CHR) are briefly introduced in Section 3. Then, in Section 4
we present the first basic implementation of the classical union-find algorithm
in CHR. Relying on established analysis techniques for CHR, we investiagte the
logical meaning of the program. The logical reading shows that there is an in-
herent destructive update in the union-find algorithm. In Section 6, the detailed
confluence analysis helps to understand under which conditions the algorithm
works as expected. It also shows in which way the results of the algorithm de-
pend on the order of its operations. An improved version of the implementation,
featuring path compression and union-by-rank, is presented and analysed next
in Section 7. Finally, Section 8 concludes.

2 The Union-Find Algorithm

The classical union-find (also: disjoint set union) algorithm was introduced by
Tarjan in the seventies [14]. A classic survey on the topic is [9]. The algorithm
solves the problem of maintaining a collection of disjoint sets under the operation
of union. Each set is represented by a rooted tree, whose nodes are the elements
of the set. The root is called the representative of the set. The representative
may change when the tree is updated by a union operation. With the algorithm
come three operations on the sets:

– make(X): create a new set with the single element X.
– find(X): return the representative of the set in which X is contained.
– union(X,Y): join the two sets that contain X and Y, respectively (possibly

destroying the old sets and changing the representative).



In the naive algorithm, these three operations are implemented as follows.

– make(X): generate a new tree with the only node X, i.e. X is the root.
– find(X): follow the path from the node X to the root of the tree by repeatedly

going to the parent node of the current node until the root is reached. Return
the root as representative.

– union(X,Y): find the representatives of X and Y, respectively. To join the
two trees, it suffices to link them by making one root point to the other
root.

The naive algorithm requires O(N) time per find (and union) in the worst
case, where N is the number of elements (make operations). With two inde-
pendent optimizations that keep the tree shallow and balanced, one can achieve
quasi-constant (i.e. almost constant) amortized running time per operation.

The first optimization is path compression for find. It moves nodes closer
to the root after a find. After find(X) returned the root of the tree, we make
every node on the path from X to the root point directly to the root. The second
optimization is union-by-rank. It keeps the tree shallow by pointing the root of
the smaller tree to the root of the larger tree. Rank refers to an upper bound of
the tree depth. If the two trees have the same rank, either direction of pointing
is chosen but the rank is increased by one.

For each optimization alone and for using both of them together, the worst
case time complexity for a single find or union operation is O(log(N)). For
a sequence of M operations on N elements, the worst complexity is O(M +
Nlog(N)). When both optimizations are used, the amortized complexity is quasi-
linear, O(M + Nα(N)), where α(N) is an inverse of the Ackermann function
and is less than 5 for all practical N (see e.g. [4]).

The union-find algorithm has applications in graph theory (e.g. efficient com-
putation of spanning trees). We can also view the sets as equivalence classes with
the union operation as equivalence. When the union-find algorithm is extended to
deal with nested terms to perform congruence closure, the algorithm can be used
for term unification in theorem provers and in Prolog. The WAM [3], Prolog’s
traditional abstract machine, uses the basic version of union-find for variable
aliasing. While variable shunting, a limited form of path compression, is used in
some Prolog implementations [11], we do not know of any implementation of the
optimized union-find that keeps track of ranks or other weights.

3 Constraint Handling Rules (CHR)

In this section we give an overview of syntax and semantics for constraint hand-
ling rules (CHR) [6, 8, 5] and about termination and confluence analysis.

3.1 Syntax of CHR

We use two disjoint sets of predicate symbols for two different kinds of con-
straints: built-in (pre-defined) constraint symbols which are solved by a given



constraint solver, and CHR (user-defined) constraint symbols which are defined
by the rules in a CHR program. There are three kinds of rules:

Simplification rule: Name @ H ⇔ C B,

Propagation rule: Name @ H ⇒ C B,

Simpagation rule: Name @ H \ H ′ ⇔ C B,

where Name is an optional, unique identifier of a rule, the head H, H ′ is a
non-empty comma-separated conjunction of CHR constraints, the guard C is a
conjunction of built-in constraints, and the body B is a goal. A goal (query) is a
conjunction of built-in and CHR constraints. A trivial guard expression “true
|” can be omitted from a rule. Simpagation rules abbreviate a simplification
rules of the form Name @ H,H ′ ⇔ C H,B.

3.2 Operational Semantics of CHR

Given a query, the rules of the program are applied to exhaustion. A rule is
applicable, if its head constraints are matched by constraints in the current goal
one-by-one and if, under this matching, the guard of the rule is implied by the
built-in constraints in the goal. Any of the applicable rules can be applied, and
the application cannot be undone, it is committed-choice (in contrast to Prolog).
When a simplification rule is applied, the matched constraints in the current goal
are replaced by the body of the rule, when a propagation rule is applied, the
body of the rule is added to the goal without removing any constraints. When
a simpagation rule is applied, all constraints to the right of the backslash are
replaced by the body of the rule.

This high-level description of the operational semantics of CHR leaves two
main sources of non-determinism: the order in which constraints of a query are
processed and the order in which rules are applied. As in Prolog, almost all CHR
implementations execute queries from left to right and apply rules top-down in
the textual order of the program 3. This behavior has been formalized in the
so-called refined semantics that was also proven to be a concretization of the
standard operational semantics [5].

In this refined semantics of actual implementations, a CHR constraint in a
query can be understood as a procedure that goes efficiently through the rules
of the program in the order they are written, and when it matches a head
constraint of a rule, it will look for the other, partner constraints of the head
in the constraint store and check the guard until an applicable rule is found.
We consider such a constraint to be active. If the active constraint has not been
removed after trying all rules, it will be put into the constraint store. Constraints
from the store will be reconsidered (woken) if newly added built-in constraints
constrain variables of the constraint, because then rules may become applicable
since their guards are now implied. Obviously, ground constraints need never to
be considered for waking.

3 Nondeterminism due to wake-up order of delayed constraints and multiple matches
for a rule are not relevant for our union-find programs [12].



3.3 Well-Behavedness: Termination and Confluence

For many existing CHR programs simple well-founded orderings are sufficient
to prove termination [7]. Problems arise with non-trivial interactions between
simplification and propagation rules.

Confluence of a CHR program guarantees that the result of a terminating
computation for a given query is independent from the order in which rules
are applied. This also implies that the order of constraints in a goal does not
matter. The papers [1, 2] give a decidable, sufficient and necessary condition
for confluence for terminating CHR programs. (It is also shown that confluent
CHR programs have a consistent logical reading.) The condition can be readily
implemented by an algorithm that is described informally in the following.

For checking confluence, one takes copies (with fresh variables) of two rules
(not necessarily different) from a terminating CHR program. The heads of the
rules are overlapped by equating at least one head constraint from each rule. For
each overlap, we consider the two states resulting from applying one or the other
rule. These two states form a so-called critical pair. One tries to join the states
in the critical pair by finding two computations starting from the states that
reach a common state. If the critical pair is not joinable, we have found a non-
confluence. In any consistent state that contains the overlap of a non-joinable
critical pair, the application of the two rules to the overlap will usually lead to
different results.

4 Implementing Union-Find in CHR

The following CHR program in concrete ASCII syntax implements the operations
and data structures of the basic union-find algorithm without optimizations.

ufd basic

make @ make(A) <=> root(A).

union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).

findRoot @ root(A) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.

link @ link(A,B), root(A), root(B) <=> B ~> A, root(A).

The constraints make/1, union/2, find/2 and link/2 define the operations.
link/2 is an auxiliary relation for performing union. The constraints root/2

and ~>/2 represent the tree data structure.
Remark. The use of the built-in constraint = in the rule findRoot is restric-

ted to returning the element A in the parameter X, in particular no full unification
is ever performed (that could rely on union-find itself).



Remark. The rule link can be interpreted as performing abduction. If the
the nodes A and B are not equivalent, introduce the minimal assumption B ~> A

so that they are equivalent (i.e. performing union afterwards leads to application
of rule linkEq).

As usual in union-find, we will allow the following queries:

– An allowed query consists of make/1, union/2 and find/2 constraints only.
We call these the external operations (constraints). The other constraints
(including those for the data structure) are generated and used internally by
the program only.

– The elements we use are constants. A new constant must be introduced
exactly once with make/1 before being subject to union/2 and find/2.

– The arguments of all constraints are constants, with exception of the second
argument of find/2 that must be a variable that will be bound to a constant,
and the second argument of root/2, that must be an integer.

5 Logical Properties

The logical reading of our ufd basic union-find CHR program is as follows:

make make(A) ⇔ root(A)

union union(A,B) ⇔ ∃XY (find(A,X) ∧ find(B, Y ) ∧ link(X,Y ))

findNode find(A,X) ∧ A→B ⇔ find(B,X) ∧ A→B

findRoot root(A) ∧ find(A,X) ⇔ root(A) ∧ X=A

linkEq link(A,A) ⇔ true

link link(A,B) ∧ root(A) ∧ root(B) ⇔ B→A ∧ root(A)

From the logical reading of the rule link it follows that B→A ∧ root(A) ⇒
root(B), i.e. root holds for every node in the tree, not only for root nodes. Indeed,
we cannot adequately model the update from a root node to a non-root node in
first order logic, since first order logic is monotonic, formulas that hold cannot
cease to hold. In other words, the link step is where the union-find algorithm is
non-logical since it requires an update which is destructive in order to make the
algorithm efficient.

In the union-find algorithm, by definition of set operations, a union operator
working on representatives of sets is an equivalence relation observing the usual
axioms:

reflexivity union(A,A) ⇔ true

symmetry union(A,B) ⇔ union(B,A)
transitivity union(A,B) ∧ union(B,C) ⇒ union(A,C)

To show that these axioms hold for the logical reading of the program, we
can use the following obervations: Since the unary constraints make and root



must hold for any node in the logical reading, we can drop them. By the rule
findRoot, the constraint find must be an equivalence. Hence its occurrences
can be replaced by =. Now union is defined in terms of link, which is reflexive
by rule linkEq and logically equivalent to ~> by rule link. But ~> must be
syntactic equivalence like find because of rule findNode. Hence all binary con-
straints define syntactic equivalence. After renaming the constraints accordingly,
we arrive at the following theory:

union A=B ⇔ ∃XY (A=X ∧ B=Y ∧ X=Y )

findNode A=X ∧ A=B ⇔ B=X ∧ A=B

findRoot A=X ⇔ X=A

linkEq A=A ⇔ true

link A=B ⇔ B=A

It is easy to see that these formulas are logically equivalent to the axioms for
equality, hence the program is logically correct.

6 Confluence

We have analysed confluence of the union-find implementation with a small con-
fluence checker written in Prolog and CHR. For the union-find implementation
ufd basic, we have found 8 non-joinable critical pairs. Two non-joinable critical
pairs stem from overlapping the rules for find. Four non-joinable critical pairs
stem from overlapping the rules for link. The remaining two critical pairs are
overlaps between find and link.

We found one non-joinable critical pair that is unavoidable (and inherent
in the union-find algorithm), three critical pairs that feature incompatible tree
constraints (that cannot occur when computing allowed queries), and four crit-
ical pairs that feature pending link constraints (that cannot occur for allowed
queries in the standard left-to-right execution order). In the technical report [13]
associated with this paper, we also add rules by completion and by hand to make
the critical pairs joinable.

The Unavoidable Non-Joinable Critical Pair The non-joinable critical pair
between the rule findRoot and link exhibits that the relative order of find and
link operations matters.

Overlap find(B,A),root(B),root(C),link(C,B)

findRoot root(C),B~>C,A=B

link root(C),B~>C,A=C

It is not surprising that a find after a link operation has a different outcome
if linking updated the root. As remarked in Section 5, this update is unavoidable
and inherent in the union-find algorithm.



Incompatible Tree Constraints Cannot Occur The two non-joinable crit-
ical pairs for find correspond to queries where a find operation is confronted
with two tree constraints to which it could apply. Also the non-joinable critical
pair involving the rule linkEq features incompatible tree constraints.

Overlap A~>B,A~>D,find(A,C)

findNode A~>B,A~>D,find(B,C)

findNode A~>B,A~>D,find(D,C)

Overlap root(A),A~>B,find(A,C)

findNode root(A),A~>B,find(B,C)

findRoot root(A),A~>B,A=C

Overlap root(A),root(A),link(A,A)

linkEq root(A),root(A)

link root(A),A~>A

The conjunctions (A~>B, A~>D), (root(A), A~>B), (root(A), A~>A) and
(root(A), root(A)) that can be found in the overlaps (and non-joinable critical
pairs) correspond to the cases that violate the definition of a tree: a node with
two parents, a root with a parent, a root node that is its own parent, and a tree
with two identical roots, respectively. Clearly, these four conjunctions should
never occur during a run of the program.

We show now that the four dangerous conjunctions indeed cannot occur as
the result of running the program for an allowed query. We observe that the rule
make is the only one that produces a root, and the rule link is the only one
that produces a ~>. The rule link needs root(A) and root(B) to produce A ~>

B, and it will absorb root(A).

In order to produce one of the first three dangerous conjunctions, the link op-
eration(s) need duplicate root constraints (as in the fourth conjunction) to start
from. But only a query containing identical copies of make (e.g. make(A),make(A))
can produce the fourth dangerous conjunction. Since duplicate make operations
are not an allowed query, we cannot produce any of the dangerous conjunctions
(and non-joinable critical pairs) for allowed queries.

Pending Links Cannot Occur The remaining four non-joinable critical pairs
stem from overlapping the rule for link with itself. They correspond to queries
where two link operations have at least one node in common such that when
one link is performed, at least one node in the other link operation is not a root
anymore. When we analyse these non-joinable critical pairs we see that the two
conjunctions (A~>C,link(A,B)) and (A~>C,link(B,A)) are dangerous.



Overlap root(A),root(B),link(B,A),link(A,B)

link root(B),A~>B,link(A,B)

link root(A),link(B,A),B~>A

Overlap root(A),root(B),root(C),link(B,A),link(C,B)

link root(C),A~>B,B~>C

link root(A),root(C),link(B,A),B~>C

Overlap root(A),root(B),root(C),link(B,A),link(A,C)

link root(B),root(C),A~>B,link(A,C)

link root(B),C~>A,A~>B

Overlap root(A),root(B),root(C),link(B,A),link(C,A)

link root(B),root(C),A~>B,link(C,A)

link root(B),root(C),link(B,A),A~>C

Once again, we argue now that the critical pairs can never arise in practice
in an allowed query. link is an internal operation, it can only be the result
of a union, which is an external operation. In the union, the link constraint
gets its arguments from find. In the standard left-to-right execution order of
most sequential CHR implementations [5], first the two find constraints will be
executed and when they have finished, the link constraint will be processed. In
addition, no other operations will be performed inbetween these operations. Then
the results from the find constraints will still be roots when the link constraint
receives them. Note that such an execution order is always possible, provided
make has been performed for the nodes that are subject to union (as is requiered
for allowed queries).

7 Optimized Union-Find

The following CHR program implements the optimized classical Union-Find Al-
gorithm, derived from the basic version by adding path compression for find and
union-by-rank [14].

ufd rank

make @ make(A) <=> root(A,0).

union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B, find(A,X) <=> find(B,X), A ~> X.

findRoot @ root(A,_) \ find(A,X) <=> X=A.

linkEq @ link(A,A) <=> true.

linkLeft @ link(A,B), root(A,N), root(B,M) <=> N>=M |

B ~> A, N1 is max(N,M+1), root(A,N1).

linkRight @ link(B,A), root(A,N), root(B,M) <=> N>=M |

B ~> A, N1 is max(N,M+1), root(A,N1).



When compared to the basic version ufd basic, we see that root has been
extended with a second argument that holds the rank of the root node. The rule
findNode has been extended for path compression already during the first pass
along the path to the root of the tree. This is achieved by the help of the logical
variable X that serves as a place holder for the result of the find operation. The
link rule has been split into two rules linkLeft and linkRight to reflect the
optimization of union-by-rank: The smaller ranked tree is added to the larger
ranked tree without changing its rank. When the ranks are the same, either tree
is chosen (both rules are applicable) and the rank is incremented by one.

Remark. Path compression (cf. rule findNode) can be interpreted as memo-
ization or tabling of all the (intermediate) results of the recursive find operation,
where the memoized find(A,X) is stored as A ~> X.

The results for logical reading and logical correctness of the optimized union-
find are analogous to the ones for ufd basic.

Confluence Revisited The non-joinable critical pairs (CPs) are in principle
analogous to the ones discussed for ufd basic in Section 6, but their numbers
significantly increases due to the optimizations of path compression and union-
by-rank that complicate the rules for the find and link operations.

Our confluence checker found 73 non-joinable critical pairs. The number of
critical pairs is dominated by those 68 of the link rules. Not surprisingly, each
critical pair involving linkLeft has a corresponding analogous critical pair in-
volving linkRight.

The CPs between findRoot and a link rule are the unavoidable critical pairs
as in ufd basic. These show the expected behavior that the result of find will
differ if its executed before or after a link operation, for example:

Overlap find(B,A),root(B,C),link(E,B),root(E,D),D>=C

findRoot A=B,D>=C,N is max(D,C+1),root(E,N),B~>E

linkLeft A=E,D>=C,N is max(D,C+1),root(E,N),B~>E

Two findNode rule applications on the same node will interact, because one
will compress, and then the other cannot proceed until the first find operation
has finished:

Overlap find(B,A),B~>C,find(B,D)

findNode find(A,D),find(C,A),B~>D

findNode find(D,A),find(C,D),B~>A

We see that A and D are interchanged in the states of the critical pair. In the
first state, since the result of find(C,A) is A, the find(A,D) can eventually
only reduce to A=D. Analogously for the second state. But under A=D the two
states of the critical pair are identical. The other two critical pairs involving a
findNode rule correspond to impossible queries B~>C,B~>D and root(B,N),B~>C

as discussed for the confluence of ufd basic.
All critical pairs between link rules only, except those for linkEq, consist of

pairs of states that have the same constraints and variables, but that differ in



the tree that is represented. Just as in the case of ufd basic the problem of
pending links occurs without a left-to-right execution order. For more details
see [13].

8 Conclusion

We have analysed in this paper basic and optimal implementations of classical
union-find algorithms. We have used and adapted established reasoning tech-
niques for CHR to investigate the logical properties and confluence (rule applic-
ation order independence). The logical reading and the confluence check showed
the essential destructive update of the algorithm when trees are linked. Non-
confluence can be caused by incompatible tree constraints (that cannot occur
when computing with allowed queries), and due to competing link operations
(that cannot occur with allowed queries in the standard left-to-right execution
order).

Clearly, inspecting dozens of critical pairs is cumbersome and error-prone,
so a refined notion of confluence should be developed that takes into account
allowed queries and syntactical variations in the resulting answer.

At http://www.cs.kuleuven.ac.be/~toms/Research/CHR/UnionFind/ all
presented programs as well as related material are available for download. The
programs can be run with the proper time complexity in the latest release of
SWI-Prolog.

In future work we intend to investigate implementations for other variants
of the union-find algorithm. For a parallel version of the union-find algorithm
parallel operational semantics of CHR have to be investigated (confluence may
be helpful here). A dynamic version of the algorithm, e.g. where unions can be
undone, would presumably benefit from dynamic CHR constraints as defined in
[15].

Acknowledgements. We would like to thank the participants of the first
workshop on CHR for raising our interest in the subject. Marc Meister and
the students of the constraint programming course at the University of Ulm
in 2004 helped by implementing and discussing their versions of the union-find
algorithm.

References

1. S. Abdennadher. Operational semantics and confluence of constraint propagation
rules. In Third International Conference on Principles and Practice of Constraint
Programming, CP97, LNCS 1330. Springer, 1997.

2. S. Abdennadher, T. Frühwirth, and H. Meuss. Confluence and semantics of con-
straint simplification rules. Constraints Journal, 4(2), 1999.

3. H. Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press,
1991.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.



5. G. J. Duck, P. J. Stuckey, M. G. de la Banda, and C. Holzbaur. The refined
operational semantics of constraint handling rules. In B. Demoen and V. Lifschitz,
editors, Proceedings of the 20th International Conference on Logic Programming,
2004.

6. T. Frühwirth. Theory and practice of constraint handling rules, special issue on
constraint logic programming. Journal of Logic Programming, pages 95–138, Oc-
tober 1998.

7. T. Frühwirth. As time goes by: Automatic complexity analysis of simplification
rules. In 8th International Conference on Principles of Knowledge Representation
and Reasoning, Toulouse, France, 2002.

8. T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

9. Z. Galil and G. F. Italiano. Data structures and algorithms for disjoint set union
problems. ACM Comp. Surveys, 23(3):319ff, 1991.

10. H. Ganzinger and D. McAllester. A new meta-complexity theorem for bottom-up
logic programs. In International Joint Conference on Automated Reasoning, LNCS
2083, pages 514–528. Springer, 2001.

11. D. Sahlin and M. Carlsson. Variable Shunting for the WAM. Technical Report
SICS/R-91/9107, SICS, 1991.

12. T. Schrijvers and T. Fruehwirth. Optimal union-find in constraint handling rules.
Technical report, November 2004.

13. T. Schrijvers and T. Fruehwirth. Union-find in chr. Technical Report CW389,
Department of Computer Science, K.U.Leuven, Belgium, July 2004.

14. R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms. J.
ACM, 31(2):245–281, 1984.

15. A. Wolf. Adaptive constraint handling with chr in java. In 7th International
Conference on Principles and Practice of Constraint Programming (CP 2001),
LNCS 2239. Springer, 2001.


