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Abstract. Various methods for solving non-linear algebraic systems ex-
ist, as this question is amongst the most popular in both the realm of
mathematics and computation. As most of these methods use approx-
imations, this work focuses on finding and directly solving a tractable
subset. Bivariate binomial systems of non-linear polynomial equations
were chosen and solved by simulating the by hand method, using the
declarative logic programming language Constraint Handling Rules. Sub-
stitution methods and different equation notations are used to extend the
solvability of the subset.
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1 Introduction

The world we live in is to the most part non-linear. Thus, it is natural that non-
linear systems reoccur everywhere around us. Diverse fields of science and life,
such as mechanics, robotics, chemistry and economics require solving non-linear
systems for their basic applications. The special case of polynomial systems
occurs even more frequently in the real world and has the advantage of being
simpler than random non-linear systems and easier to visualize.

Solving non-linear algebraic systems of equations, polynomial and non-poly-
nomial, is a very important subfield of mathematics, as non-linear systems of
equations can not be solved quantitatively but to the most part only through
approximations. Over the years many different methods for solving non-linear
polynomial and non-polynomial systems of equations have been developed. The
most common approaches for dealing with non-linear equations are either numer-
ical or symbolic [18, 11, 12], continuation [16], reduction [19, 20] or iterative and
interval methods [17, 14, 5, 9, 13], and sometimes even a combination of them,
for example in most computer algebra tools [26] and [4]. But only one of these
algorithms is based on the logic programming paradigm using the rule based pro-
gramming language Constraint Handling Rules, namely INCLP(R) [6], which is
also based on approximating results of a non-linear system.

The aim of this work and the conducted research is finding a tractable sub-
set of non-linear systems of equations, for which exact roots can be efficiently
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and non-aproximatively calculated and providing a Constraint Handling Rules
(CHR) solver for said subset. The subset chosen is that of binomial bivariate
equation sets and polynomial equations of degrees up to four. The method de-
rived for solving this subset, is one that simulates one of the possible approaches
of humans when met with such problem sets. The implemented solver artificially
reanimates what humans would do by hand, always baring in mind the most ef-
ficient approach given the problem set and the advantages provided by CHR. It
basically uses isolation and substitution methods for solving the bivariate system
of non-linear equations.

The majority of the various pre-existing methods for solving non-linear polyno-
mial equation sets, especially those in the context of constraint programming,
are based on interval and approximation methods. This work focuses on trying
to find the largest subset that can be solved exactly and thus having the highest
precision possible.

The problem field is narrowed down to cover non-linear polynomial equations.
Starting from bivariate systems, alongside univariate equations with degrees less
than five, accuracy and solvability could be ensured. As proof of concept, the
solver algorithm was tested for the binomial case.

2 Concepts

2.1 Algebra

Properties of Equations Univariate equations are ones with one variable,
while bivariate equations have two variables. We distinguish between univariate
and multivariate polynomials, meaning polynomials with only one variable and
multiple variables respectively.

Non-linear System of Equations and its Roots A non-linear system of
equations is a set of n equations, containing at least one non-linear equation;
meaning an equation with degree not equal to one. Finding the roots of the
system of equations, means finding a vector x = (x1, ..., xn) that simultaneously
solves all equations within the systems [25]. Non-linear systems of equations
can either have a finite number of solutions, infinite solutions (consistent) or no
solutions at all (inconsistent). Under-defined systems of equations are ones with
more variables than equations, while an over-defined system has more equations
than variables.

Polynomials A polynomial is a finite sum of terms with non-negative degrees.
A polynomial consisting of one term is called monomial and that of two terms
is called binomial. The standard form of polynomial equations is P (x) = cnxn+
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cn−1xn−1 + ... + c0, where ci ∈ Q, n ∈ Z, cn �= 0 and n �= 0. According to the
fundamental theorem of algebra, any polynomial equation can be expressed as
P (x) = cn(x−r1)(x−r2)...(x−rn), where ri ∈ C are the roots of the polynomial.
Such roots can be directly determined for univariate polynomial equations with
degrees up to four, for which solution formulae exist [21, 15]. It was however
proven that no such formulae could exist for polynomial equation with higher
degrees [22–24].

2.2 Constraint Handling Rules

Constraint Handling Rules (CHR) is a high-level, constraint-based, declarative
logic programming language, invented by Prof. Thom Frühwirth in 1991. CHR
adapts the basic concepts of mathematical logic representation and is thus highly
and easily applicable to various problems. CHR is a committed-choice, single-
assignment language, with multi-headed rules and conditional rule application
through guards. Having simplification, propagation and simpagation (a mixture
of the afore mentioned rules) as the only operators that can deal with constraints,
CHR is well suited for representing mathematical problems and solving them
straightforwardly. The properties of CHR enable the user to design anytime,
online, confluent and concurrent algorithms, depending on the semantics used.
More detailed explanations of CHR, its properties and advanced examples, can
be found in [7].

3 Solution Algorithm

The chosen methodology for solving an input system of equations, is based on
the usual thought procedure most humans would follow. The implemented solver
gives a numeric solution for a non-linear input system. Given a set of two equa-
tions, the solver basically first tries to turn one of them into a univariate equation,
by isolating one of the system variables. Then, this univariate equation is solved
and its solutions renders the second equation univariate, in which case it can in
turn be solved. This can be achieved for equations in one of the two solvable
cases: an already univariate equation, or an equation with a singly occurring
variable that either stands alone or is part of a term. The subset of univariate
equations with solution formulae can be directly solved, the remainder is sim-
plified. Should this not be directly applicable, then some substitutions are to be
done to transform the equation set into one that can be solved by the above
mentioned method. Figure 1 gives the flow diagram of this solving algorithm.

The equations’ terms are ordered before the check for equations in the directly
solvable cases is made, to be sure that the leading term is always the simplest
term, when needing to isolate it or to take it as a reference point for subsitutions.
The order of a term depends on the powers of its variables and the second term
variable is taken as the reference point to give the priority in isolation to the
variable x, thus colexicographic ordering is used. The colexicographic ordering
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Fig. 1. Flow diagram of the solver algorithm

of two pairs xn1ym1 and xn2ym2 is defined as follows:

colex : xn1ym1 ≤ xn2ym2 ⇔ m1 < m2 ∨ (m1 = m2 ∧ n1 ≤ n2). (1)

order_eq_exchange @ order_eq([H1,H2] eq C) <=> lex(H2,H1)
| [H2,H1] eq C.

The helper predicate lex(H1,H2) is true if H1 is colexicographically less than H2.
If univariate equations are found they are transformed into the standard form,
else the most optimal system variable is isolated in one equation and used to
render the other equation univariate. If the set is not in a directly solvable state
then the in 3.2 explained substitution is applied before the set is sent back to the
initial solving state. All univariate equations in standard form with degrees less
than five are solved and their solution produces a second univariate equation to
be solved, possibly with the help of the substitution equation. An example for
the realization of part of the quartic formula [15] is:

A*X^4+B*X^4-E ueq 0 ==> C=0, D=0, F is C-(3*B**2/8), G is (D+(B**3/8))-(B*C/2),

H is (E-(3*B**4/256))+((B**2*C/16)-(B*D/4)),
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I is F/2, J is (F**2-4*H)/16, K is (-G**2)/64,

1*Z^3+I*Z^2+J*Z^1+K ueq 0.

A*X^3+B*X^2+C*X^1+D ueq 0 <=> F is (((3*C)/(A))-(B**2/A**2))/3,

G is ((2*B**3/A**3)-(9*B*C/A**2)+((27*D)/(A)))/27,

H is (G**2/4)+(F**3/27), H > 0

| R is (-G/2)+(H**(1/2)), cubic_root(R,S),

T is (-G/2)-(H**(1/2)), cubic_root(T,U),

X1 is (-((S+U)/2)-(B/3*A)),

XI1 is ((S-U)*(3**(1/2))/2),

XI2 is (-((S-U)*(3**(1/2))/2)),

solved_img(X1,XI1,X1,XI2).

solved_img(Y1,YI1,Y1,YI2),A*X^4+B*X^3-E ueq 0 <=>

C=0, D=0, G is (D+(B**3/8))-(B*C/2),

img_sqrt(Y1,YI1,PR,PI), S is (B)/(4*A),

R is (-G)/(8*(PR**2+PI**2)), X1 is (PR+PR)+(R-S),

X2 is (R-S)-(PR+PR), (X=X1;X=X2), solved(X).

This shows how the quartic equation is reduced to a cubic one whose so-
lutions are then substituted back into the orginal quartic equation to solve it.
In case the helper cubic equation has two imaginary and one real solution, the
imaginary solutions are chosen and their real and imaginary parts are seperatly
forwarded to the quartic equation using the solved_img/4 constraint. The aux-
iliary img_sqrt/2 predicate, extracts the cubic root of a negative number, as
this option is not supported by Prolog.

The algorithm is characterized by its simplicity while covering a wide subset.
This is enabled by the different equation representations used and the substitu-
tion scheme.

3.1 Different Equation Representations

The simplicity and efficiency of the algorithm is ensured by using different repre-
sentations and notations for equations, to distinguish between types of equations
and phases of the algorithm. Equations are expressed as constraints to benefit
from the features of CHR. As the equations are notated differently depending
on the state they are in, the rules are fired voluntarily and no explicit iterations
need to be done. This ensures that any possible solutions are calculated and pos-
sible simplifications are done at any given point, exploiting the online property
of CHR. There are two notations for equations in this solver, and the different
equality constraints belong to different notations.

The standard equation notation A*X^P1*Y^P2+B*X^P3*Y^P4 eq C is where
the equation most resembles the normal mathematical form of equations. The
‘=’ sign is replaced by other constraints e.g. the eq constraint, depending on the
phase of execution of the algorithm. The ueq/2 constraint for example indicates
a univariate equation, while the req/2 constraint means an equation with an
isolated variable and the deq/2 indicates a not yet handled equation and that
the other equation has been already simplified or solved.
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X req W \ L eq C <=>

L = [C1*pot(X,P1)*pot(Y,P2), C2*pot(X,P3)*pot(Y,P4)]

| C1*W^P1*Y^P2+C2*W^P3*Y^P4-C ueq 0.

solved(X) \ C1*X^P1*Y^P2+C2*X^P3*Y^P4 deq C <=>

L1 is C1*X**P1, L2 is C2*X**P3,

L1*Y^P2+L2*Y^P4-C ueq 0.

While the standard notation is easier for users to understand, it does not
give full access to the components of the equation, which is why the pot/4 (po-
tency) constraints were introduced. Each pot(X,E,T,P) constraint comprises a
variable X, its power P and the equation and the term it originates from- E and
T respectively. A term consists of a constant and two or three pot constraints,
and an equation is represented as the following list of constraints
[A*pot(X,E,1,P1)*pot(Y,E,1,P2),B*pot(X,E,2,P3)*pot(Y,E,2,P4)] eq C,
mathematically equivalent to A∗XP1∗Y P2+B∗XP3∗Y P4 = C. At the beginning
of the solver’s run, the input equations are transformed into the pot notation
and the pot constraints are added to the constraint store. pot constraints give a
global insight wether there are univariate equations or singly occuring variables
by cross-referencing powers of variables and the term and equation they are in,
as each variable is directly accessible through its pot constraint. For example
having two pot constraints A*pot(X,1,1,1) and pot(Y,1,1,0) means that Y
occurs at most once in equation one, as the first term does not contain it. To
decide wether it stands alone or is embedded in a term, the second term needs
to be checked. The pot constraints are also used for realizing the substitutions
in 3.2. For readability, the term and equation identifiers will be removed for the
code samples demonstrated here.

[C1*pot(X,0)*pot(Y,P1),C2*pot(X,0)*pot(Y,P2)] eq C,

pot(X,0),pot(X,0) <=> C1*Y^P1+C2*Y^P2-C ueq 0.

[C1*pot(X,0)*pot(Y,P2), C2*pot(X,P3)*pot(Y,P4)] eq C <=>

X req ((C-C1*Y^P2)/(C2*Y^P4))^(1/P3).

3.2 Substitution Scheme

The solvable subset is extended by introducing a substitution scheme that sim-
plifies the initial problem set to one of the solvable states. If there is no variable
x to solve for, without turning the function fi : Ai ∗Tj +Bi ∗Tj = Ci, i ∈ {1, 2},
j ∈ {1, 2, 3, 4} where Tj = xP1 ∗ yP2, into a more complicated one, then some
substitutions are applied to the equation terms until one of the solution cases is
applicable.

The substitution function s : F 2×F 2 → G3×G3 assigns each bivariate term
to an equivalent trivariate one, by introducing a substitution variable a. Substi-
tuting all terms within the initial system of equations (f1(x, y) = 0, f2(x, y) = 0)
results in a trivariate equation set (g1(x, y, a) = 0, g2(x, y, a) = 0), as given by
the function s. The function s is represented by the sub/2 constraint, where
the first attribute is the original bivariate term and the second the trivariate
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substitution term. The input equation set is transformed into the almost iden-
tical output set gi with Tj = aP1 ∗ xP2 ∗ yP3. The chosen substitution scheme
describes system terms in terms of each other while adding only one additional
variable to form the base substitution, to be eliminated later. This is efficient, as
it excludes the possibility of producing numerous new variables, that cause the
system of equations to be strongly under-defined. For the creation of the sub-
stitution keys, namely the sub constraints, there are four different substitution
cases, which should be checked in the order given below:

1. Direct substitution is applicable if there are two identical terms, except for
their respective coefficients: ∃i : Tj = Ti|i �= j, i, j ∈ {1, 2, 3, 4}.
sub(pot(X,P1)*pot(Y,P2),pot(Var,1)) \ pot(X,P1), pot(Y,P2) <=>

P1\=0, P2\=0 | pot(Var,1), pot(X,0), pot(Y,0),

sub(pot(X,P1)*pot(Y,P2), pot(Var,1)).

2. Multiples substitution is utilized if there exists a term that is the multiple
of another: ∃n ∈ Z : Tn

i = Tj , i �= j.

pot(X,P1),pot(Y,P2),pot(X,P3),pot(Y,P4) <=>

P1\=0,P2\=0,P3\=0,P4\=0,divides(P3,P1,Q1),

divides(P4,P2,Q2),Q1 == Q2

| pot(Var,1),pot(X,0),pot(Y,0),pot(Var,Q1),pot(X,0),

pot(Y,0),sub(pot(Y,P2)*pot(X,P1),pot(Var,1)),

sub(pot(Y,P4)*pot(X,P3),pot(Var,Q1)).

3. Product substitution can be applied, if one term can be expressed as the
product of two other terms: ∃i : ∃j : Tk = Tj ∗ Ti ∧ i �= j.

sub(pot(X,P3)*pot(Y,P4),pot(Var1,N1)*pot(Y,N2)*pot(X,N3)),

sub(pot(X,P5)*pot(Y,P6),pot(Var2,N4)*pot(Y,N5)*pot(X,N6)) \

pot(X,P1),pot(Y,P2) <=> Q1 is P3+P5,P1==Q1,Q2 is P4+P6,

P2==Q2,F1 is N1+N4,F2 is N2+N5,F3 is N3+N6

| sub(pot(X,P1)*pot(Y,P2),pot(Var1,F1)*pot(Y,F2)*pot(X,F3)),

pot(Var1,F1), pot(Y,F2),pot(X,F3).

4. If none of the above cases apply, the only unsubstituted terms remaining will
be those that could be expressed as the multiplication of a term with one of
the system variables: ∃i : Tj = Ti ∗ v, v ∈ {x, y}.
sub(pot(X,P1)*pot(Y,P4), pot(Var,N)) \

pot(X,P1),pot(Y,P2) <=> P1\=0, P2\=0,P2 > P4, Diff is P2-P4

| pot(Var,E1,T1,N),pot(X,E1,T1,0),pot(Y,E1,T1,Diff),

sub(pot(Y,P2)*pot(X,P1),pot(Var,N)*pot(Y,Diff)).

Even though the equation set is three dimensional, the trivariate equation
set will then match one of the solvable cases, as each equation on its own is still
bivariate, which is ensured by the chosen substitution scheme. This matching has
to happen as one whole term must have been taken as a reference point by s and
fully substituted by the substitution variable a. After the sub constraints are cre-
ated, all equations are iterated over and the actual substitution is done. After one
of the variables has been solved, the equation A = XP1 ∗Y P2 from the base sub-
stitution sub(pot(X,P1)*pot(Y,P2), pot(A,1)*pot(X,0)*pot(Y,0)) is added,
to enable the solving of the remaining variables.
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3.3 Evaluation

This solver computes solutions to univariate polynomial equations of degrees
up to four and binomial bivariate equation sets without approximations and
relying only on substitution and direct methods. While various solvers, especially
computer algebra systems, for the chosen subset exist, no tools were found that
could solve binomial bivariate equations without adding approximative methods,
especially none using CHR.

Most of said computer algebra systems, in particular Mathematica [26, 27]
and Maple [28, 29], solve the whole set covered by the implemented CHR solver
and a vast amount of other mathematical problems, relying primarily on sym-
bolic evalutions of equations and approximative, iterative methods like the New-
ton method for calculating numeric results. Although the renowned computer
algebra tools cover a much wider solution set, the CHR solver is capable of
giving the numerical solutions of some systems of equations directly through
substitutions, while Mathematica or Maple for example would have yielded to
approximative methods instead. In case no solutions can be calculated, both the
CHR solver and computer algebra tools, symbolically simplify the equation set
the farthest possible.

The majority of the existing solvers for univariate polynomial equations and
computer algebra results, display all complex results, whereas the implemented
solver only gives the real results of a system of equations, as Prolog is currently
only defined in the domain of real numbers.

The method used in this solver is straightforward and thus does not have a
high complexity. Depending on the input set, one or at most two full iterations
are done and thus the results are achieved almost directly by firing the correct
rules. CHR enables the direct translation of the human-based solution method
into a program which facilitates the solving of the whole subset, which is not a
commonly used method in other non-linear equation solving tools The addition
of the substitution system renders otherwise non-solvable systems of equations
solvable without adding much complexity, thus extending the solvable subset.

4 Conclusion and Future Work

4.1 Conclusion

Deriving new ways to solve non-linear algebraic systems of equations or im-
proving existing ones is the concern of many fields in mathematical computing.
Most of these solution systems are based on approximation methods. This work
aimed at finding an exactly solvable, tractable subset of non-linear equation sets,
deriving a method to solve said subset and realizing this method using CHR.
After investigating different pre-existing solving mechanisms and the non-linear
subsets they solve, it was decided to constrict the solution field to bivariate poly-
nomial systems of equations. A substitution-based method for solving bivariate
equation sets was derived. The algorithm reduces one of the system equations
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into a solvable univariate one and then uses the solution to reduce the sec-
ond one. As proof of concept, the method was modeled for binomial equation
sets, as any extensions to multinomial sets, would follow analogously. The imple-
mented solver extends the solvability of the chosen subset through substitutions,
without resorting to approximative methods. The solver was implemented us-
ing K.U.Leuven’s CHR implementation with Prolog as the host language. The
roots for any consistent system of equations are obtained, given that the re-
sulting univariate equations are standardizable and quantifiable through finite
formulae. Otherwise the highest possible simplification is attained.

4.2 Future Work

There is a large scope of extensions for this solver, depending on the needed func-
tionalities, as this solver was intended to prove a concept based on a subset from
which multidirectional expansions are possible. The solver could be extended to
solve all consistent univariate systems of polynomial equations. Furthermore, the
scope of this work could be broadened to cover multinomial bivariate and over-
defined non-linear systems. Finally, the same concept of the solver could be a
basis for solving more complex types of non-linear equation sets, such as trivari-
ate polynomial equation sets or bivariate non-linear non-polynomial equation
sets, e.g. trigonometric functions for which transformative substitutions exist.
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