
Constraint Handling Rules -
Getting started

Prof. Dr. Thom Frühwirth | 2009 | University of Ulm, Germany

Page 2 Getting started

Table of Contents

Getting started
How CHR works
CHR programs and their execution

Page 3 Getting started

Overview

I Basic introduction to CHR using examples

I Rule types and their behavior

I Logical variables and built-in constraints

I Concrete syntax

I Informal description of rule execution in CHR

Page 4 Getting started | How CHR works

CHR implementations

I Most recent and advanced implementation: K.U. Leuven
(recommended)

I Programs also executable with minor changes in other Prolog
implementations of CHR

I K.U. Leuven JCHR: CHR implementation in Java

I K.U. Leuven CHR library for C

I CHR code (declarations and rules) and host language
statements mixed in programs

Page 5 Getting started | How CHR works | Propositional rules

Declarations

Declarations introduce CHR constraints we will define by rules

Example (Declarations)
:- module(weather, [rain/0]).

:- use_module(library(chr)).

:- chr_constraint rain/0, wet/0, umbrella/0.

I Functor notation c/n: name c, number of arguments n of
constraint c(t1, . . . , tn)

I First line: optional Prolog module declaration: declares module
weather, where only constraint rain/0 is exported.

I Second line: loading CHR library
I Third line: Defines CHR constraints rain, wet, and umbrella

I At least name and arity must be given

Page 6 Getting started | How CHR works | Propositional rules

Rules (I)

I Parts of a rule:
I Optional name
I Left-hand side (l.h.s.) called head, with optional guard
I Right-hand side (r.h.s) called body

I Head, guard, and body consist of constraints

I Three different kind of rules

Page 7 Getting started | How CHR works | Propositional rules

Rules (II)

Example (Rules)
rain ==> wet.

rain ==> umbrella.

I First rule: “If it rains, then it is wet”

I Second rule: “If it rains, we need an umbrella”

I Head of both rules is rain

I Bodies: wet and umbrella

I No guards
I Also called propagation rules (==>)

I Do not remove constraints, only add new ones

Page 8 Getting started | How CHR works | Propositional rules

Queries

I Posing query initiates computations

I Rules applied to query until exhaustion (no more changes
happen)

I Rule applications manipulate query by removing and adding
constraints

I Result (called answer) consists of remaining constraints

Example (Query)
rain ==> wet.

rain ==> umbrella.

Posing query rain results in rain, wet, umbrella
(not necessarily in this order)

Page 9 Getting started | How CHR works | Propositional rules

Top-down execution

I Rules applied in textual order

I In general: If more than one rule applicable, one rule is chosen

I Rule applications cannot be undone like in Prolog
⇒ CHR is a committed-choice language

Example (Top-down execution)

Two simplification rules

rain <=> wet.

rain <=> umbrella.

I Application of first rule removes rain

I Second rule never applied

Page 10 Getting started | How CHR works | Propositional rules

Simplification rules

I Propagation rules
I Drawing conclusions from existing information

I Simplification rules
I Simplify things
I Express state change
I Dynamic behavior

Page 11 Getting started | How CHR works | Propositional rules

Example

Example (Walk)
I Walk expressed by movements east, west, south, north

I Multiplicity of steps matters, order does not matter for walk

I Simplification rules express that steps can cancel out each other
(i.e. east and west)

east, west <=> true.

south, north <=> true.

I Rules simplify walk to one with minimal number of steps

I Query east, south, west, west, south, south,

north, east, east

yields answer east, south, south

Page 12 Getting started | How CHR works | Logical variables

Logical variables

Logical variables

I Featured in declarative languages like CHR

I Similar to mathematical unknowns and variables in logic

I Can be unbound or bound

I Bound variables indistinguishable from value they are bound to

I Bound variables cannot be overridden

I Languages with such variables called single-assignment
languages

I Other languages like C and Java feature destructive (multiple)
assignments

Page 13 Getting started | How CHR works | Logical variables

Example

Example
I Two constraints with one argument representing men (e.g.
male(joe)) and women (e.g. female(sue))

I Assigning men and woman for dancing with simplification rule

male(X), female(Y) <=> pair(X,Y).

I Variables X, Y placeholders for values of constraints matching
rule head

I Scope of variable is rule it appears in

I Given query with several men and women, rule pairs them until
only people of one sex left

Page 14 Getting started | How CHR works | Logical variables

Types of rules

Example (Propagation rule)
I Computing all possible pairs with propagation rule

(keeps male and female constraints)

male(X), female(Y) ==> pair(X,Y).

I Number of pairs quadratic in number of people
⇒ Propagation rule can be expensive

Example (Simpagation rule)
I One man dances with several women expressed by simpagation

rule

male(X) \ female(Y) <=> pair(X,Y).

I Head constraints left of backslash \ kept,
head constraints right of backslash removed

Page 15 Getting started | How CHR works | Logical variables

Example

Example (Family relationships (I))
I Propagation rule named mm expresses grandmother relationship

mm @ mother(X,Y), mother(Y,Z) ==> grandmother(X,Z).

I Constraint grandmother(joe,sue) reads as “Grandmother of
Joe is Sue”

I Allows derivation of grandmother relationship from mother
relationship

I mother(joe,ann), mother(ann,sue) will propagate
grandmother(joe,sue) using rule mm

Page 16 Getting started | How CHR works | Built-in constraints

Built-in constraints

I Two kinds of constraints in CHR
I CHR constraints (user-defined constraints)

I Declared in current program and defined by CHR rules

I Built-in constraints (built-ins)
I Predefined in host language or imported CHR constraints from

other modules

I On left hand side CHR and built-ins constraints separated into
head and guard

I On right hand side freely mixed

Page 17 Getting started | How CHR works | Built-in constraints

Syntactic equality

Example (Family relationships (II))
I Mother of a person is unique, expressed by rule

dm @ mother(X,Y) \ mother(X,Z) <=> Y=Z.

I Syntactic equality: Mother relation is function, first argument
determines second

I Rule enforces this using built-in syntactic equality =
I Constraint Y=Z makes sure that both variables have the same value
I Occurrences of one variable are replaced by (value of) other

variable

I Query mother(joe,ann), mother(joe,ann) will lead to
mother(joe,ann)

I ann=ann simplified away, is always true

Page 18 Getting started | How CHR works | Built-in constraints

Failure

Example (Family relationship (III))
dm @ mother(X,Y) \ mother(X,Z) <=> Y=Z.

I Query mother(joe,ann), mother(joe,sue) fails (Joe
would have two different mothers)

I Rule dm will lead to ann=sue, which cannot be satisfied

I Built-in acts as test in this case

I Failure aborts computation

I Failure leads to answer no in most Prolog systems

Page 19 Getting started | How CHR works | Built-in constraints

Variables in queries and head matching

I Query can contain variables (matching successful as long as
they are not bound by matching)

Example (Family relationship (IV))
mm @ mother(X,Y), mother(Y,Z) ==> grandmother(X,Z).

I Answer grandmother(A,C) for query mother(A,B),
mother(B,C)

I No rule applicable to mother(A,B), mother(C,D)

I Answer grandmother(A,D) when built-in added to query:
mother(A,B), mother(C,D), B=C

I Adding A=D instead leads to grandmother(C,B)

I Adding A=C makes rule dm applicable,
leads to mother(A,B), A=C, B=D

Page 20 Getting started | How CHR works | Built-in constraints

Example (I)

Example (Mergers and acquisitions)
I CHR constraint company(Name,Value) represents company

with market value Value

I Larger company buys company with smaller value expressed by
rule

company(Name1,Value1), company(Name2,Value2) <=>

Value1>Value2 | company(Name1,Value1+Value2).

I Guard Value1>Value2 acts as precondition of rule applicability

I Only built-ins allowed in guard

Page 21 Getting started | How CHR works | Built-in constraints

Example (II)

Example (Mergers and acquisitions cont.)
I In line arithmetic expression Value1+Value2 works for host

language Java
I In Prolog is has to be used leading to rule

company(Name1,Value1), company(Name2,Value2) <=>

Value1>Value2 | Value is Value1+Value2,

company(Name1:Name2,Value).

I Rule is applicable to any pair of companies with different value

I After exhaustive only a few companies will remain (all with the
same value)

Page 22 Getting started | CHR programs and their execution | Concrete syntax

Concrete Syntax

I CHR-specific part of program consists of declarations and rules

I Declarations are implementation-specific
I In following EBNF grammar:

I Terminals in single quotes
I Expressions ins square brackets optional
I Alternatives separated by |

Page 23 Getting started | CHR programs and their execution | Concrete syntax

Rules

Rule --> [Name ’@’]

(SimplificationRule | PropagationRule | SimpagationRule) ’.’

SimplificationRule -->

Head ’<=>’ [Guard ’|’] Body

PropagationRule -->

Head ’==>’ [Guard ’|’] Body

SimpagationRule -->

Head ’\’ Head ’<=>’ [Guard ’|’] Body

I Three different types of rules in CHR

I ’|’ separates guard from body of rule

I ’\’ separates head of simpagation rule into two parts

Page 24 Getting started | CHR programs and their execution | Concrete syntax

Rules

Head --> CHRConstraints

Guard --> BuiltInConstraints

Body --> Goal

CHRConstraints --> CHRConstraint

| CHRConstraint ’,’ CHRConstraints

BuiltInConstraints --> BuiltIn

| BuiltIn ’,’ BuiltInConstraints

Goal --> CHRConstraint | BuiltIn | Goal ’,’ Goal

Query --> Goal

I Head of rule is sequence of CHR constraints

I Guard is a sequence of built-ins constraints

I Body is a sequence of built-ins and CHR constraints

Page 25 Getting started | CHR programs and their execution | Concrete syntax

Basic built-in constraints (I)

I Using set of predicates from host language Prolog

I Can be used for auxiliary computations in rule body

I Built-ins in guard of rule usually test (succeed or fail)

I Most basic built-ins
I true/0 always succeeds
I fail/0 never succeeds

I Testing if variables are bound
I var/1 tests if argument is unbound variable
I nonvar/1 tests if argument is bound variable

Page 26 Getting started | CHR programs and their execution | Concrete syntax

Basic built-in constraints (II)

I Syntactical identity of expressions (infix):
I =/2 makes arguments syntactically identical by binding variables

(fails if binding not possible)
I ==/2 tests if arguments syntactically identical
I \==/2 tests if arguments syntactically different

I Computing and comparing arithmetic expressions (infix):
I is/2 binds first argument to value of arithmetic expression in the

second argument (fails if not possible)
I </2,=</2,>/2,>=/2,=:=/2,=\=/2 test if arguments are

arithmetic expressions whose values satisfy comparison

Page 27 Getting started | CHR programs and their execution | Concrete syntax

Basic built-in constraints (III)

I =/2 and is/2 bind first argument
⇒ should never be used in guards

I Use ==/2 and =:=/2 instead

I But some compilers make silent replacement

Page 28 Getting started | CHR programs and their execution | Informal semantics

Informal semantics

I Description of current sequential implementation

I Based on so-called refined operational semantics

I Maybe different rule application in parallel, experimental and
future implementations

I Those implementations will still respect so-called abstract
operational semantics

Page 29 Getting started | CHR programs and their execution | Informal semantics

Constraints

I Constraint is active operation as well as passive data

I Constraints in goals processed from left to right
I When CHR constraint encountered:

I Evaluated like procedure call
I Checks applicability of rules it appears in
I Called active constraint

I Rules applied in textual order

I If no rule applicable to active constraint it becomes passive and
is put in constraint store

I Passive constraints become active again context changes (their
variables get bound)

Page 30 Getting started | CHR programs and their execution | Informal semantics

Head matching

I One head constraint of rule is matched against active constraint

I Matching succeeds if constraint serves pattern

I Matching may bind variables in head (not in active constraint)

I If matching succeeds and rule head consists of more than one
constraint, constraint store is searched for partner constraints to
match other head constraints

Page 31 Getting started | CHR programs and their execution | Informal semantics

I Head constraints searched from left to right
I Exception: simpagation rule

I Constraints to be removed searched for before constraints to be
kept are searched for

I If matching succeeds, guard is checked

I If several head constraints match active constraint, rule tried for
each matching

I If no successful matching exists, active constraint tries next rule

Page 32 Getting started | CHR programs and their execution | Informal semantics

Guard checking

I Guard is precondition on rule applicability

I Test that either succeeds or fails

I If guard succeeds, rule is applied

I If guard fails, active constraint tries next head matching

Page 33 Getting started | CHR programs and their execution | Informal semantics

Body execution

I When rule is applied, we say it fires

I Simplification rule: matching constraints removed, body executed

I Simpagation rule: similar to simplification rule but constraints
matching head part preceding \ kept.

I Propagation rule: Body executed without removing any
constraints

I Propagation rule will not fire with same constraint again

I According to rule type head constraints either called kept or
removed

I Next rule tried when active constraint not removed

	Getting started
	How CHR works
	CHR programs and their execution

