Constraint Handling Rules -
Getting started

Prof. Dr. Thom Friithwirth | 2009 | University of Ulm, Germany

Getting started

Table of Contents

Getting started
How CHR works
CHR programs and their execution

Getting started

Overview

v

Basic introduction to CHR using examples

v

Rule types and their behavior

v

Logical variables and built-in constraints

v

Concrete syntax

v

Informal description of rule execution in CHR

Getting started | How CHR works

CHR implementations

v

Most recent and advanced implementation: K.U. Leuven
(recommended)

v

Programs also executable with minor changes in other Prolog
implementations of CHR

v

K.U. Leuven JCHR: CHR implementation in Java
K.U. Leuven CHR library for C

CHR code (declarations and rules) and host language
statements mixed in programs

v

v

Getting started | How CHR works | Propositional rules

Declarations

Declarations introduce CHR constraints we will define by rules

Example (Declarations)

module (weather, [rain/0]).
use_module (library (chr)) .

chr_constraint rain/0, wet/0, umbrella/O0.

Functor notation c/n: name ¢, number of arguments n of
constraint c (#1,...,%,)

First line: optional Prolog module declaration: declares module
weather, where only constraint rain/0 is exported.
Second line: loading CHR library

Third line: Defines CHR constraints rain, wet, and umbrella
» At least name and arity must be given

Getting started | How CHR works | Propositional rules

Rules (l)

» Parts of a rule:

» Optional name
» Left-hand side (I.h.s.) called head, with optional guard
» Right-hand side (r.h.s) called body

» Head, guard, and body consist of constraints

» Three different kind of rules

Getting started | How CHR works | Propositional rules

Rules (Il)

Example (Rules)

rain ==> wet.

rain ==> umbrella.

» First rule: “If it rains, then it is wet”

v

Second rule: “If it rains, we need an umbrella”

Head of both rules is rain

v

v

Bodies: wet and umbrella

v

No guards

v

Also called propagation rules (==>)
» Do not remove constraints, only add new ones

Getting started | How CHR works | Propositional rules

Queries

v

Posing query initiates computations

v

Rules applied to query until exhaustion (no more changes
happen)

v

Rule applications manipulate query by removing and adding
constraints

S

Example (Query)

Result (called answer) consists of remaining constraints

rain ==> wet.

rain ==> umbrella.

Posing query rain results in rain, wet, umbrella
(not necessarily in this order)

Getting started | How CHR works | Propositional rules

Top-down execution

» Rules applied in textual order
» In general: If more than one rule applicable, one rule is chosen
» Rule applications cannot be undone like in Prolog

= CHR is a committed-choice language

Example (Top-down execution)
Two simplification rules

rain <=> wet.

rain <=> umbrella.

» Application of first rule removes rain
p

» Second rule never applied

Page 10 Getting started | How CHR works | Propositional rules

Simplification rules

» Propagation rules

» Drawing conclusions from existing information
» Simplification rules

» Simplify things

» Express state change

» Dynamic behavior

Page 11 Getting started | How CHR works | Propositional rules

Example

Example (Walk)
» Walk expressed by movements east, west, south, north

» Multiplicity of steps matters, order does not matter for walk

» Simplification rules express that steps can cancel out each other
(i.e. east and west)

east, west <=> true.

south, north <=> true.
» Rules simplify walk to one with minimal number of steps

» Query east, south, west, west, south, south,
north, east, east
yields answer east, south, south

Page 12 Getting started | How CHR works | Logical variables

Logical variables

Logical variables

>

>

| 4

Featured in declarative languages like CHR

Similar to mathematical unknowns and variables in logic

Can be unbound or bound

Bound variables indistinguishable from value they are bound to
Bound variables cannot be overridden

Languages with such variables called single-assignment
languages

Other languages like C and Java feature destructive (multiple)
assignments

Page 13 Getting started | How CHR works | Logical variables

Example

» Two constraints with one argument representing men (e.g.
male (joe)) and women (e.g. female (sue))

» Assigning men and woman for dancing with simplification rule
male (X), female(Y) <=> pair(X,Y).

» Variables X, Y placeholders for values of constraints matching
rule head

» Scope of variable is rule it appears in

» Given query with several men and women, rule pairs them until
only people of one sex left

Page 14 Getting started | How CHR works | Logical variables

Types of rules

Example (Propagation rule)
» Computing all possible pairs with propagation rule
(keeps male and female constraints)

male (X), female (Y) ==> pair (X,Y).

» Number of pairs quadratic in number of people
= Propagation rule can be expensive

Example (Simpagation rule)

» One man dances with several women expressed by simpagation
rule

male (X) \ female(Y) <=> pair(X,Y).

» Head constraints left of backslash \ kept,
head constraints right of backslash removed

Page 15 Getting started | How CHR works | Logical variables

Example

Example (Family relationships (1))
» Propagation rule named mm expresses grandmother relationship

mm @ mother (X,Y), mother(Y,Z) ==> grandmother (X,Z).

» Constraint grandmother (joe, sue) reads as “Grandmother of
Joe is Sue”

» Allows derivation of grandmother relationship from mother
relationship

» mother (joe,ann), mother (ann, sue) will propagate

grandmother (joe, sue) using rule mm

Page 16 Getting started | How CHR works | Built-in constraints

Built-in constraints

\ 4

Two kinds of constraints in CHR

v

CHR constraints (user-defined constraints)
» Declared in current program and defined by CHR rules

v

Built-in constraints (built-ins)

» Predefined in host language or imported CHR constraints from
other modules

v

On left hand side CHR and built-ins constraints separated into
head and guard

v

On right hand side freely mixed

Page 17 Getting started | How CHR works | Built-in constraints

Syntactic equality

Example (Family relationships (I1))

>

Mother of a person is unique, expressed by rule
dm @ mother (X,Y) \ mother(X,Z) <=> Y=7Z.
Syntactic equality: Mother relation is function, first argument
determines second
Rule enforces this using built-in syntactic equality =
» Constraint Y=2 makes sure that both variables have the same value

» Occurrences of one variable are replaced by (value of) other
variable

Query mother (joe, ann), mother (joe, ann) will lead to
mother (joe, ann)

» ann=ann simplified away, is always rrue

Page 18 Getting started | How CHR works | Built-in constraints

Failure

Example (Family relationship (l1I))
dm @ mother (X,Y) \ mother(X,Z) <=> Y=Z.

» Query mother (joe, ann), mother (joe, sue) fails (Joe
would have two different mothers)

v

Rule dm will lead to ann=sue, which cannot be satisfied

v

Built-in acts as test in this case

v

Failure aborts computation

v

Failure leads to answer no in most Prolog systems

Page 19 Getting started | How CHR works | Built-in constraints

Variables in queries and head matching

>

Example (Family relationship (1V))
mm @ mother (X,Y), mother(Y,Z) ==> grandmother (X,Z) .

>

Query can contain variables (matching successful as long as
they are not bound by matching)

Answer grandmother (A, C) for query mother (A, B),
mother (B, C)

No rule applicable to mother (A, B), mother (C,D)

Answer grandmother (A, D) when built-in added to query:
mother (A,B), mother (C,D), B=C

Adding 2=D instead leads to grandmother (C, B)

Adding 2=C makes rule dm applicable,
leads to mother (A,B), A=C, B=D

Page 20 Getting started | How CHR works | Built-in constraints

Example (1)

Example (Mergers and acquisitions)

>

CHR constraint company (Name, Value) represents company
with market value value

Larger company buys company with smaller value expressed by
rule

company (Namel,Valuel), company (Name2,Value2) <=>

Valuel>Value2 | company (Namel,Valuel+Value2) .

Guard valuel>Value?2 acts as precondition of rule applicability

Only built-ins allowed in guard

Page 21 Getting started | How CHR works | Built-in constraints

Example (II)

Example (Mergers and acquisitions cont.)

>

In line arithmetic expression Valuel+Vvalue2 works for host
language Java
In Prolog is has to be used leading to rule

company (Namel,Valuel), company (Name2,Value2) <=>
Valuel>Value2 | Value is Valuel+Value2,

company (Namel :Name2,Value) .
Rule is applicable to any pair of companies with different value

After exhaustive only a few companies will remain (all with the
same value)

Page 22 Getting started | CHR programs and their execution | Concrete syntax

Concrete Syntax

» CHR-specific part of program consists of declarations and rules
» Declarations are implementation-specific

» In following EBNF grammar:

» Terminals in single quotes
» Expressions ins square brackets optional
» Alternatives separated by |

Page 23 Getting started | CHR programs and their execution | Concrete syntax

Rules
Rule —--> [Name ’'@Q’]
(SimplificationRule PropagationRule | SimpagationRule) '
SimplificationRule —-->
Head '<=>’" [Guard ’'|’] Body
PropagationRule —-——>
Head '==>’ [Guard ' |’] Body
SimpagationRule ——>
Head '\’ Head ’<=>' [Guard ' |’'] Body

» Three different types of rules in CHR
» /|’ separates guard from body of rule
» 7\’ separates head of simpagation rule into two parts

Page 24 Getting started | CHR programs and their execution | Concrete syntax

Rules
Head ——> CHRConstraints
Guard --> BuiltInConstraints
Body --> Goal
CHRConstraints —--> CHRConstraint
| CHRConstraint ’,’ CHRConstraints
BuiltInConstraints —-> BuiltIn
| BuiltIn ’,’ BuiltInConstraints
Goal ——> CHRConstraint | BuiltIn | Goal ’,’ Goal
Query --> Goal

» Head of rule is sequence of CHR constraints
» Guard is a sequence of built-ins constraints

» Body is a sequence of built-ins and CHR constraints

Page 25 Getting started | CHR programs and their execution | Concrete syntax

Basic built-in constraints (1)

v

Using set of predicates from host language Prolog
» Can be used for auxiliary computations in rule body

v

Built-ins in guard of rule usually test (succeed or fail)

Most basic built-ins

» true/0 always succeeds
» fail/0 never succeeds

v

v

Testing if variables are bound

» var/1 tests if argument is unbound variable
» nonvar/1 tests if argument is bound variable

Page 26 Getting started | CHR programs and their execution | Concrete syntax

Basic built-in constraints (11)

» Syntactical identity of expressions (infix):
» =/2 makes arguments syntactically identical by binding variables
(fails if binding not possible)
» ==/2 tests if arguments syntactically identical
» \==/2 tests if arguments syntactically different
» Computing and comparing arithmetic expressions (infix):
» 1s/2 binds first argument to value of arithmetic expression in the
second argument (fails if not possible)
> </2,=</2,>/2,>=/2,=:=/2,=\=/2 test if arguments are
arithmetic expressions whose values satisfy comparison

Page 27 Getting started | CHR programs and their execution | Concrete syntax

Basic built-in constraints (11l

» =/2 and is/2 bind first argument
= should never be used in guards

» Use ==/2 and =:=/2 instead

» But some compilers make silent replacement

Page 28 Getting started | CHR programs and their execution | Informal semantics

Informal semantics

v

Description of current sequential implementation
» Based on so-called refined operational semantics

v

Maybe different rule application in parallel, experimental and
future implementations

Those implementations will still respect so-called abstract
operational semantics

v

Page 29 Getting started | CHR programs and their execution | Informal semantics

Constraints

» Constraint is active operation as well as passive data
» Constraints in goals processed from left to right

» When CHR constraint encountered:

» Evaluated like procedure call
» Checks applicability of rules it appears in
» Called active constraint

» Rules applied in textual order

» If no rule applicable to active constraint it becomes passive and
is put in constraint store

» Passive constraints become active again context changes (their
variables get bound)

Page 30 Getting started | CHR programs and their execution | Informal semantics

Head matching

v

One head constraint of rule is matched against active constraint

v

Matching succeeds if constraint serves pattern

v

Matching may bind variables in head (not in active constraint)

v

If matching succeeds and rule head consists of more than one
constraint, constraint store is searched for partner constraints to
match other head constraints

Page 31 Getting started | CHR programs and their execution | Informal semantics

» Head constraints searched from left to right
» Exception: simpagation rule

» Constraints to be removed searched for before constraints to be
kept are searched for

» |f matching succeeds, guard is checked

v

If several head constraints match active constraint, rule tried for
each matching

v

If no successful matching exists, active constraint tries next rule

Page 32 Getting started | CHR programs and their execution | Informal semantics

Guard checking

v

Guard is precondition on rule applicability

v

Test that either succeeds or fails

v

If guard succeeds, rule is applied

v

If guard fails, active constraint tries next head matching

Page 33 Getting started | CHR programs and their execution | Informal semantics

Body execution

» When rule is applied, we say it fires
» Simplification rule: matching constraints removed, body executed

» Simpagation rule: similar to simplification rule but constraints
matching head part preceding \ kept.

» Propagation rule: Body executed without removing any
constraints

» Propagation rule will not fire with same constraint again

» According to rule type head constraints either called kept or
removed

» Next rule tried when active constraint not removed

	Getting started
	How CHR works
	CHR programs and their execution

