
Constraint Handling Rules -
Program analysis

Prof. Dr. Thom Frühwirth | 2009 | University of Ulm, Germany

Page 2 Program analysis

Table of Contents

Program analysis
Termination
Confluence
Completion
Modularity of termination and confluence
Operational equivalence
Worst-case time complexity

Page 3 Program analysis

Overview (I)

I Advantage of declarative languages: Ease of formally sound
program analysis

I Confluence and program equivalence decidable for terminating
CHR programs

I Following results apply to (very) abstract semantics
I Not all results carry over to refined semantics

Page 4 Program analysis

Overview (II)

I Termination in CHR is undecidable (Turing completeness)
I Confluence

I Nondeterminism does not matter for result
I Relation between initial and final state is function
I Test for confluence for terminating programs
I Logical correctness is implied by confluence
I Soundness and completeness improved
I Parallelization without change of program

I Program equivalence
I Decidable test for operational equivalence
I No other practical language known with such a test

Page 5 Program analysis | Termination

Termination

Each rule head is larger than rule body in well-founded termination
order

Definition (Well-foundedness)
I Order� is well-founded if no infinite descending chains

t1 � t2 � . . .� . . . exist

I (CHR) termination order is well-founded order on CHR states

Page 6 Program analysis | Termination

Termination for simplification rules

I Relation > on natural numbers used as basis of termination order
I Rankings

I Mapping of logical expressions to natural numbers
I Give also upper bounds for worst-case derivation lengths

Page 7 Program analysis | Termination | Rankings

Rankings

I Arithmetic function mapping terms and formulas to integers
I Inductively defined on function, constraint symbols and logical

connectives

I Resulting order on formulas is total
I Order is well-founded if smallest value exists

I Linear polynomials as ranking functions
I Rank of expression defined by linear positive combination of

argument ranks

Page 8 Program analysis | Termination | Rankings

Definition

Definition (Ranking)

Formula B: rank(B) ≥ 0 required
Built-in C: rank(C) = 0 required
Conjunction: rank((A ∧ B)) = rank(A) + rank(B)
Function/constraint symbol f with arguments ti (af

i ∈ N):

rank(f (t1, . . . , tn)) = af
0 + af

1 ∗ rank(t1) + . . . + af
n ∗ rank(tn)

rank(s) > rank(t) is order constraint

Page 9 Program analysis | Termination | Rankings

Syntactic size

Definition (Syntactic size)

Syntactic size of term can be expressed as the ranking

size(f (t1, . . . , tn)) = 1 + size(t1) + . . . + size(tn)

Example
I size(f(a,g(b,c))) = 5

I size(f(a,X)) = 2 + size(X) where size(X) ≥ 0

I size(f(g(X),X)) ≥ size(a,X) because
2 + 2 ∗ size(X) ≥ 2 + size(X)

Page 10 Program analysis | Termination | Rankings

Rankings of constraints and conjunctions

I Rankings of CHR and built-in constraints
I Built-in has rank 0 (termination established)
I Built-in may imply order constraints on arguments (e.g.

s = t→ rank(s) = rank(t))

I Rankings of conjunctions using conjuncts:
I Sum properly reflects worst case derivation length
I Takes properties of conjunction into account (associativity,

commutativity, not impotence)

Page 11 Program analysis | Termination | Rankings

Ranking of simplification rule

Definition (Ranking of simplification rule)

Ranking (condition) of simplification rule H ⇔ G B is

∀ (C→ rank(H) > rank(B))

(C conjunction of rule’s built-ins, rank CHR ranking function)

I Idea: built-ins imply order constraints helping to show
rank(H) > rank(B)

I Built-ins in guard do not hold: rule not applicable

I Built-ins in body do not hold: inconsistent, thus final state

Page 12 Program analysis | Termination | Rankings

Example

Example
even(s(N))⇔ N=s(M)∧even(M).

I even(N) and even(0) delay

I even(s(N)) results in N=s(M), even(M)

I even(s(0)) fails since 0=s(M)

Suitable polynomial interpretation

rank(even(N)) = size(N)

Resulting ranking condition (holds) for rule

N = s(M)→ rank(s(N))>rank(M)

Page 13 Program analysis | Termination | Program termination

Program termination

Definition (Bounded goal)

Goal G bounded if rank of any instance of G bounded above by
constant

I Rank of ground term always bounded

I In bounded goals variable appear only in positions which are
ignored by ranking

I Not bounded query might lead to nontermination (e.g.
even(n),even(s(N))

Page 14 Program analysis | Termination | Program termination

Bounded goals and termination

Idea: Rank of removed constraints is higher than rank of added
constraints

Theorem
If P consist only of simplification rules and ranking condition holds for
each rule in program P, then P is terminating for every bounded goal

Suitable ranking with suitable order constraints cannot be found
automatically (termination undecidable)

Page 15 Program analysis | Termination | Derivation lengths

Derivation lengths

I Rank of query gives upper bound on number of rule applications
(derivation length)

I In previous example: argument of even decreases by 2 with
every rule application

Theorem
If ranking condition holds for each rule in P, containing only
simplification rules, then the worst-case derivation length D for
bounded goal G in P is bounded by rank of G:

D(G) ≤ rank(G)

Page 16 Program analysis | Confluence

Confluence

I Confluence guaranties that any computation for a goal results in
same final state

I Independent from order of rule applications
I Independent from order of rules in program and constraints in goal

I Decidable, sufficient, and necessary test for confluence in CHR
I Returns conflicting rule applications

Page 17 Program analysis | Confluence | Minimal states

Minimal states (I)

I Each rule has most general state it is applicable to

I Removing any constraint from this minimal state would make rule
inapplicable

I Rule still applicable when adding constraints (monotonicity)

Definition (Minimal state)

Minimal state of a rule is the conjunction of its head and guard

I Decidable program analysis: consider minimal states instead of
infinitely many

Page 18 Program analysis | Confluence | Minimal states

Minimal states (II)

Theorem (Containing minimal states)

If H′1 ∧ H′2 ∧ C is minimal state of rule r and r is applicable to state S
then there exists goal G′ such that H′1 ∧ H′2 ∧ C ∧ G′ ≡ S (S contains
minimal state)

I All states to which rule is applicable contain minimal state

I Logical reading of these states imply logical reading of minimal
state

Page 19 Program analysis | Confluence | Joinability

Joinability

I Defines what it means for two derivations to lead to the same
result

I Applies to every transition system

Definition (Joinability)

States S1, S2 joinable if there are states S′1, S′2 such that S1 7→∗ S′1 and
S2 7→∗ S′2 and S′1 ≡ S′2

Page 20 Program analysis | Confluence | Joinability

Confluence diagram

Definition (Confluence, well-behavedness)
I CHR program is confluent if for all state S, S1, S2

If S 7→∗ S1, S 7→∗ S2 then S1 and S2 are joinable.

I CHR program is well-behaved if terminating and confluent

S

∗||yy
yy

yy
yy

y

∗""EE
EE

EE
EE

E

S1

∗""DD
DD

DD
DD

S2

∗||zz
zz

zz
zz

S′1≡S′2

Page 21 Program analysis | Confluence | Confluence test

Confluence test

I Analyzing joinability of infinitely many states impossible

I But: analysis of only finite number of most general states
(overlaps) required for terminating programs

I Overlaps
I States where more than one rule is applicable
I Consists of minimal states (heads and guards) of rules
I Can be extended to arbitrary states by adding constraints

Page 22 Program analysis | Confluence | Confluence test

Overlaps

Definition (Overlap)

R1 simplification or simpagation rule, R2 rule (renamed apart),
Hi ∧ Ai conjunction of head constraints, Ci guard, Bi body.
A (nontrivial) overlap S of rule R1 and R2 is

S = (H1 ∧ A1 ∧ H2 ∧ (A1=A2) ∧ C1 ∧ C2)

if A1 and A2 nonempty and CT |= ∃((A1=A2) ∧ C1 ∧ C2)

Page 23 Program analysis | Confluence | Confluence test

Critical pairs

Definition (Critical pair)

S1=(B1 ∧H2 ∧ (A1=A2)∧C1 ∧C2) and S2=(H1 ∧B2 ∧ (A1=A2)∧C1 ∧C2)
Then the tuple (S1, S2) is a critical pair (c.p.) of R1 and R2.
Critical pair (S1, S2) is joinable, if S1 and S2 joinable.

I Critical pair results from applying rule to overlap
I S 7→ S1 using R1

I S 7→ S2 using R2

Page 24 Program analysis | Confluence | Confluence test

Joinability

I Joinability of critical pairs necessary condition for confluence

I Joinability destroyed only if one rule inhibits application of others
(removing head constraints matched by other)

I Critical pairs of propagation rules always joinable

I To destroy joinability one rule must not be propagation rule and
rules must overlap

I Nonjoinable critical pair is counterexample for confluence

Page 25 Program analysis | Confluence | Confluence test

Joinability for confluence (I)

Definition (Local confluence)

CHR program locally confluent if for all state S, S1, S2

If S 7→ S1, S 7→ S2 then S1 and S2 are joinable

Theorem (Newman’s Lemma)

Terminating reduction system is confluent iff it is locally confluent

Theorem (Confluence)

Terminating CHR program is confluent iff all its critical pairs are
joinable

Page 26 Program analysis | Confluence | Confluence test

Joinability for confluence (II)

I Theorem gives decidable, sufficient, and necessary condition for
confluence

I Joinability of critical pairs not only necessary but also sufficient
condition for confluence of terminating programs

I Joinability of c.p. is decidable because program terminating and
only finitely many c.p.

Page 27 Program analysis | Confluence | Confluence test

Examples(I)

Example
p ⇔ q.

p ⇔ false.

I One overlap p

I Critical pair (q, false): final and different, thus nonjoinable final
states

Example (Coin throw)
throw(Coin) ⇔ Coin = head.

throw(Coin) ⇔ Coin = tail.

I One overlap (after simplifying) throw(Coin)

I Critical pair (Coin=head,Coin=tail): nonjoinable states

Page 28 Program analysis | Confluence | Confluence test

Examples (II)

Example
p(X) ∧ q(Y) ⇔ true.

I Overlap of rule with itself: p(X) ∧ q(Y1) ∧ q(Y2)

I Critical pair (q(Y1), q(Y2)), Y1 and Y2 different variables from
overlap

I Analogous situation for overlap p(X1) ∧ p(X2) ∧ q(Y)

I Nonjoinability does not arise for rule

p(X) ∧ q(Y) ⇔ X=Y true.

Page 29 Program analysis | Confluence | Confluence test

Examples(III)

Example (Destructive assignment)
assign(Var,New), cell(Var,Old) <=> cell(Var,New).

I Nonjoinable overlap assign(Var,New1),

assign(Var,New2), cell(Var,Old)

I Results in either cell(Var,New1) or cell(Var,New2)

Page 30 Program analysis | Confluence | Confluence test

Examples (IV)

Example (Maximum)

max(X,Y,Z) ⇔ X ≤ Y Y = Z.

max(X,Y,Z) ⇔ Y ≤ X X = Z.

I Only overlap: max(X,Y,Z) ∧ X ≤ Y ∧ Y ≤ X

I Critical pair: (Y=Z ∧ X ≤ Y ∧ Y ≤ X, X=Z ∧ X ≤ Y ∧ Y ≤ X)

I Joinable: both states equivalent to X=Y ∧ Y=Z

Page 31 Program analysis | Confluence | Confluence test

Examples (V)

Example (Merge (I))
merge([],L2,L3)⇔ L2=L3.

merge(L1,[],L3)⇔ L1=L3.

I Eight critical pairs, some joinable, some not

I Critical pair from first two rules:

([]=L1 ∧ L2=[] ∧ L2=L3, []=L1 ∧ L2=[] ∧ L1=L3)

I Joinable: Both states equivalent to L1=[]∧L2=[]∧L3=[]

Page 32 Program analysis | Confluence | Confluence test

Examples (V)

Example (Merge (II))
merge([X|R1],L2,L3)⇔ L3=[X|R3] ∧ merge(R1,L2,R3).

merge(L1,[Y|R2],L3)⇔ L3=[Y|R3] ∧ merge(L1,R2,R3).

I Critical pair from third and forth rule:
(L1=[X|R1] ∧ L2=[Y|R2] ∧ L3=[X|R3] ∧

merge(R1,L2,R3),

L1=[X|R1] ∧ L2=[Y|R2] ∧ L3=[Y|R3] ∧
merge(L1,R2,R3))

I E.g. query merge([a],[b],L) can result in two lists L

⇒ not confluent (order of elements in list L not determined)

Page 33 Program analysis | Confluence | Confluence test

Examples (VI)

Example (Partial order constraint (I))
reflexivity @ X≤X ⇔ true.
antisymmetry @ X≤Y ∧ Y≤X ⇔ X=Y.

I Overlap of reflexivity and antisymmetry

A≤A ∧ A≤A
reflexivity

yyrrrrrrrrrr antisymmetry

%%LLLLLLLLLL

A≤A

reflexivity &&LLLLLLLLLL A=A

≡
xxrrrrrrrrrr

true

I Critical pair joinable (multiplicity matters in CHR)

Page 34 Program analysis | Confluence | Confluence test

Examples (VII)

Example (Partial order constraint (II))
duplicate @ X≤Y ∧ X≤Y ⇔ X≤Y.
antisymmetry @ X≤Y ∧ Y≤X ⇔ X=Y.
transitivity @ X≤Y ∧ Y≤Z ⇒ X≤Z.

I Overlap of antisymmetry and transitivity (left-most head
constraint): X≤Y ∧ Y≤Z ∧ Y≤X

I Critical pair: (X≤Y ∧ Y≤X ∧ Y≤Z ∧ X≤Z,X=Y ∧ X≤Z)

I Joinable (first state leads to second state):
X≤Y ∧ Y≤X ∧ Y≤Z ∧ X≤Z 7→apply antisymmetry

Y≤Z ∧ X≤Z ∧ X=Y 7→apply duplicate

X≤Z ∧ X=Y

Page 35 Program analysis | Confluence | Confluence test for abstract semantics

Confluence test for abstract semantics (I)

Example (Joinable states)

r1 @ p ⇒ q.

r2 @ r∧q ⇔ true.
r3 @ r∧p∧q ⇔ s.

r4 @ s ⇔ p∧q.

r ∧ p ∧ q

r2zzuuuuuuuuu

r3$$IIIIIIIII

p

r1
$$IIIIIIIII s

r4
zzuuuuuuuuu

p ∧ q
Computation leads to final state p ∧ q no matter which rule applied

Page 36 Program analysis | Confluence | Confluence test for abstract semantics

Confluence test for abstract semantics (II)

Example (Nonjoinable states)

r1 @ p ⇒ q.

r2 @ r∧q ⇔ true.
r3 @ r∧p∧q ⇔ s.

r4 @ s ⇔ p∧q.

r ∧ p

r1��
r ∧ p ∧ q

r2zzuuuuuuuuu

r3%%LLLLLLLLLLL

p s

r4��
p ∧ q

I No reapplication of r1 possible to remove p in left branch

I r1 can be applied to p ∧ q (but q cannot be removed)

Page 37 Program analysis | Confluence | Confluence test for abstract semantics

Confluence test for abstract semantics (III)

I Consider propagation history for abstract semantics
I Propagation history is chosen in states of c.p. such that

I Application of propagation rules only involving already present
constraints not allowed

I Motived by minimality of states
I Covers case where all propagation rules already applied before

overlap is reached

Page 38 Program analysis | Confluence | Confluence test for abstract semantics

Confluence test for abstract semantics (IV)

I Associate overlap S ∧ B with ωt state 〈∅, S′, B, prop(S′)〉Vn
I S′: numbered CHR constraints such that S = chr(S′),
I V: all variables of overlap
I prop(S′) returns propagation history containing entry for each

propagation rule with each valid combination of constraints in S′

Page 39 Program analysis | Confluence | Confluence test for abstract semantics

Detecting nonconfluence

Example (Detecting nonconfluence)
I Overlap r ∧ p ∧ q

I Associated ωt state 〈∅, {r#1, p#2, q#3}, true, ∅〉∅4
I Resulting c.p. (〈{true}, {p#2}, true, T}〉∅4 , 〈{s}, ∅, true, T}〉∅4)

I with prop({r#1, p#2, q#3}) = {(r1, [2]) = T)

I First state leads to final state 〈∅, {p#2}, true, T〉∅4
(Propagation history inhibits application of r1)

I All derivations from second state lead to 〈∅, {p#5, q#6}, true, T〉∅7
(No state consisting of p can be reached from here)

Page 40 Program analysis | Confluence | Properties of confluent programs

Consistency

Theorem (Consistency)

If P range-restricted, confluent program, then P, CT consistent

I Does not mean logical meaning is intended meaning

I p<=>true, p<=>false not confluent, inconsistent logical
reading

I p<=>q, p<=>false not confluent, consistent logical reading

I p<=>q, q<=>false confluent, consistent logical reading

Page 41 Program analysis | Confluence | Properties of confluent programs

Soundness and completeness

Theorem (Strong soundness and completeness)

P a well-behaved program, C, C′, C′′, G goals.
Then the following statements are equivalent

a) P, CT |= ∀ (C↔ G).

b) G has a computation with answer C′ such that
P, CT |= ∀ (C↔ C′).

c) Every computation of G has an answer C′′ such that C′≡C′′ and
P, CT |= ∀ (C↔ C′′).

I Restriction to terminating: every computation finite

I Restriction to confluence: All computations for one goal lead to
equivalent states

Page 42 Program analysis | Confluence | Properties of confluent programs

Soundness and completeness of failure

Theorem
P a well-behaved program, G a data-sufficient goal.
Then the following statements are equivalent

a) P, CT |= ¬∃G

b) G has a failed computation.

c) Every computation of G is failed.

Page 43 Program analysis | Confluence | Properties of confluent programs

Example (I)

Example
p<=>q.

p<=>false.

q<=>false.

I Program is well-behaved (terminating, confluent)

I Goal p is data-sufficient

I P, CT |= ¬∃p and every computation of p is failed

Page 44 Program analysis | Confluence | Properties of confluent programs

Example (II)

Example
p<=>q.

p<=>false.

I Program is terminating, but not confluent

I Goal p is data-sufficient
I P, CT |= ¬∃p but not every computation of p is finitely failed

I First rule gives successful answer q

Page 45 Program analysis | Confluence | Properties of confluent programs

Example (III)

Example
p<=>p.

p<=>false.

I Program is not terminating, but confluent

I Goal p is data-sufficient
I P, CT |= ¬∃p but not every computation of p is finitely failed

I With only first rule computation is nonterminating

Page 46 Program analysis | Completion

Completion

I Completion: adding rules until program becomes confluent

I Generate rules from critical pairs

I Generally propagation and simplification rule needed
I Completion not always possible

I Newly added rule may introduce new critical pairs
I Can lead to nonterminating process

Page 47 Program analysis | Completion | Completion algorithm

Completion algorithm (I)

I Algorithm specified by set of inference rules

I Function orient generates propagation and simplification rule for
critical pair (based on given termination order)

I Function orient is partial (does not apply if rules cannot be
generated)

Page 48 Program analysis | Completion | Completion algorithm

Completion algorithm (II)

Definition (orient function)

� termination order, (Ei ∧ Ci , Ej ∧ Cj) non-joinable critical pair, Ei, Ej

CHR constraints and Ci, Cj built-in constraints.

Partial function orient� applies to {E1 ∧ C1 , E2 ∧ C2} if

I E1 ∧ C1 � E2 ∧ C2 and

I E1 is a nonempty conjunction and

I E2 is a nonempty conjunction or CT |= C2 → C1

It returns rules

{E1 ⇔ C1 E2 ∧ C2, E2 ⇒ C2 C1}

where propagation rule generated only if CT 6|= C2 → C1

Page 49 Program analysis | Completion | Completion algorithm

Completion algorithm (III)

I Condition chosen so that no rules generated if
I states in c.p. cannot be ordered
I empty headed rules would be generated

I Propagation rule E2 ⇒ C2 C1 ensures built-ins of both states are
enforced

I No redundant propagation rules added (CT |= C2 → C1)

Page 50 Program analysis | Completion | Completion algorithm

Completion algorithm (IV)

I Completion algorithm maintains set of c.p. and set of rules

I Start with program, set of nonjoinable critical pairs (P, S)

I Apply inference rules to exhaustion

Definition (Completion algorithm (I))
Simplification:
If S1 7→ S′1 then (C ∪ {{S1, S2}}, P) 7−→ (C ∪ {{S′1, S2}}, P)

Deletion:

If S1 and S2 are joinable then (C ∪ {{S1, S2}}, P) 7−→ (C, P)

I Simplification: replace state in c.p. by successor (leads to
final states)

I Deletion: Removes joinable critical pairs

Page 51 Program analysis | Completion | Completion algorithm

Completion algorithm (V)

Definition (Completion algorithm (II))
Orientation:
If orient�({S1, S2}) = R then (C ∪ {{S1, S2}}, P) 7−→ (C, P ∪ R)

Introduction:

If (S1, S2) is a c.p. of P not in C then (C, P) 7−→ (C ∪ {{S1, S2}}, P)

I Orientation: removes nonjoinable critical pair, adds new rules
to P (if computed by orient)

I Introduction: Computes new critical pairs with new rules

Page 52 Program analysis | Completion | Completion algorithm

Completion algorithm (VI)

I Completion succeeds when final state (∅, P′) is reached
I Completion fails if nonjoinable c.p. cannot be oriented

I States cannot be ordered
I Termination order may be to blame

I States consist of different built-ins only
I Program has inconsistent logical reading

I Completion does not terminate if new rules always produce new
c.p.

Page 53 Program analysis | Completion | Completion algorithm

Examples (I)

Example
p ⇔ q.

p ⇔ false.

I p leads to the c.p. (q, false)

I Simplification and Deletion do not apply

I Orientation adds rule q⇔ false

I No propagation rule (CT |= false→ true)

I Introduce does not apply (no new overlaps)

I Completion succeeds, program confluent

Page 54 Program analysis | Completion | Completion algorithm

Examples (II)

Example (Partial order constraint extended (I))

Introduce < constraint by adding one rule for inconsistency:

(inconsistency) X≤Y ∧ Y<X ⇔ false

Program not confluent (overlap with antisymmetry)

A≤B ∧ B≤A ∧ B<A

antisymmetry
}}{{

{{
{{

{{

inconsistency
!!CC

CC
CC

CC

A=B ∧ B<A

≡ ��

B≤A ∧ false

≡��
A=B ∧ A<A false

Page 55 Program analysis | Completion | Completion algorithm

Examples (III)

Example (Partial order constraint extended (II))

Completion derives the rule

X<X ⇔ X=Y false,

which can be simplified to the rule

X<X ⇔ false,

⇒ Discovery of irreflexivity of <

Page 56 Program analysis | Completion | Completion algorithm

Examples (IV)

Example (Minimum and partial order constraint (I))
min1 @ min(X,X,Z) ⇔ X=Z.

min2 @ min(X,Y,X) ⇔ X leq Y.

min3 @ min(X,Y,Z) ∧ min(X,Y,Z1) ⇔ min(X,Y,Z) ∧ Z=Z1.

I Termination order where min� leq

I Overlap of rule min1 and min2:

min(X,X,Z)∧X=Y∧X=Z

I Critical pair:
(X leq X,X=X)

I Becomes joinable with rule r1 @ X leq X ⇔ true

Page 57 Program analysis | Completion | Completion algorithm

Examples (V)

Example (Minimum and partial order constraint (II))
min1 @ min(X,X,Z) ⇔ X=Z.

min2 @ min(X,Y,X) ⇔ X leq Y.

min3 @ min(X,Y,Z) ∧ min(X,Y,Z1) ⇔ min(X,Y,Z) ∧ Z=Z1.

I Critical pairs of overlap between min1 and min3 joinable

I Critical pair from min2 and first head constraint of min3:
(min(X,Y,X) ∧ X=Z,X leq Y ∧ min(X,Y,Z))

I Critical pair joined with rule r2:
r2 @ X leq Y ∧ min(X,Y,Z)⇔ X leq Y ∧ X=Z.

I Also joins c.p. from min2 and second head constraint of min3

Page 58 Program analysis | Completion | Completion algorithm

Examples (VI)

Example (Minimum and partial order constraint (III))
min2 @ min(X,Y,X) ⇔ X leq Y.

min3 @ min(X,Y,Z) ∧ min(X,Y,Z1) ⇔ min(X,Y,Z) ∧ Z=Z1.

r2 @ X leq Y ∧ min(X,Y,Z)⇔ X leq Y ∧ X=Z

I Critical pair of overlap between min2 and r2 joined by
r3 @ X leq Y ∧ X leq Y⇔ X leq Y.

I New rules r1, r2, r3 reveal properties of leq and min

I Program with rules min1, min2, min3 and r1, r2, r3 is
confluent and terminating

Page 59 Program analysis | Completion | Completion algorithm

Examples (VII)

Example

≥ and ≤ built-ins, p� r � q

r1 @ p(X,Y)⇔ X ≥ Y ∧ q(X,Y).

r2 @ p(X,Y)⇔ X ≤ Y ∧ r(X,Y).

I Critical pair from r1 and r2 not joinable

(X ≥ Y ∧ q(X,Y), X ≤ Y ∧ r(X,Y))

I Completion inserts two rules

r3 @ r(X,Y)⇔ X ≤ Y q(X,Y) ∧ X ≥ Y.

r4 @ q(X,Y)⇒ X ≥ Y X ≤ Y.

Page 60 Program analysis | Completion | Completion algorithm

Examples (VIII)

Computations show that propagation rule r4 is needed

Example computation (r2)

p(X,Y)
7→Apply r2 r(X,Y) ∧ X ≤ Y

7→Apply r3 q(X,Y) ∧ X = Y

7→Apply r4 q(X,Y) ∧ X = Y

Example computation (r1)

p(X,Y)
7→Apply r1 q(X,Y) ∧ X ≥ Y

7→Apply r4 q(X,Y) ∧ X = Y

Page 61 Program analysis | Completion | Completion algorithm

Examples (IX)

Example
r1 @ p(X,Y)⇔ X ≥ Y ∧ q(X,Y).

r2 @ p(X,Y)⇔ X ≤ Y ∧ q(Y,X).

I Program not confluent, c.p. from r1 and r2 not joinable:

(X ≥ Y ∧ q(X,Y), X ≤ Y ∧ q(Y,X))

I No termination order for this c.p., rule would be

rf @ q(Y,X)⇔ X ≤ Y q(X,Y) ∧ X ≥ Y.

Page 62 Program analysis | Completion | Correctness

Correctness (I)

I When completion algorithm terminates successfully returned
program confluent and terminating

I Has same meaning as original program

I For proof of correctness
I Rules have no local variables (range-restrictedness)
I Completion could put existentially quantified variable in head of rule
I Variables in head usually universally quantified

Page 63 Program analysis | Completion | Correctness

Correctness (II)

Theorem
P a range-restricted CHR program terminating with respect to a
termination order�, C the set of non-joinable critical pairs of P.

If, for inputs (C, P) and�, completion succeeds with (∅, P′), then
program P′ is

a) terminating with respect to�,

b) confluent, and

c) logically equivalent to P.

Page 64 Program analysis | Completion | Correctness

Example

Example (Not range-restricted program)
p ⇔ q(X).

p ⇔ true.

I Assume q does not hold for all possible values.

I Critical pair (q(X), true)

I Only way of orienting results in rule q(X) ⇒ true

I Contradicts logical reading since q does not hold for all values

Page 65 Program analysis | Completion | Failing completion and inconsistency

Failing completion and inconsistency

Failing completion can exhibit inconsistency in program

Theorem
P a CHR program, CT a complete theory for the built-in constraints.
If completion fails and a remaining non-joinable critical pair consists
only of built-in constraints that are not logically equivalent, then the
logical meaning of P is inconsistent

I Most simple example {p ⇔ true, p ⇔ false}

Page 66 Program analysis | Completion | Failing completion and inconsistency

Examples (I)

Example
p(X) ⇔ q(X).

p(X) ⇔ true.
q(X) ⇔ X>0.

I Critical pair (X>0, true)

I Cannot be oriented (only different built-ins)

I Completion fails, theorem indicates program is inconsistent

Page 67 Program analysis | Completion | Failing completion and inconsistency

Examples (II)

Maximum program, has typo in second rule (Y should be Z)

Example (Maximum with typo)

r1 @ max(X,Y,Z)⇔ X ≤ Y Z = Y.

r2 @ max(X,Y,Z)⇔ Y ≤ X Y = X.

I Critical pair from r1, r2: not joinable and completion fails

(Z = Y ∧ X ≤ Y ∧ Y ≤ X, Y = X ∧ X ≤ Y ∧ Y ≤ X)

Page 68 Program analysis | Completion | Failing completion and inconsistency

Examples (III)

Example (Maximum with typo continued)

Logical meaning together with theory for ≤ and = is

∀ X,Y,Z (X ≤ Y → (max(X,Y,Z) ↔ Z = Y))

∀ X,Y,Z (Y ≤ X → (max(X,Y,Z) ↔ Y = X))

Not a consistent theory

I max(1,1,0) logically equivalent to 0=1 (first formula)

I max(1,1,0) also logically equivalent to 1=1 (second formula)

I Results in P, CT |= false↔ true

Page 69 Program analysis | Completion | Program specialization by completion

Program specialization by completion (I)

Using completion to specialize programs and constraints

Example (Defining <)

Defining < as special case of ≤ with usual rules, where 6= is built-in

r5 @ X ≤ Y ⇔ X 6= Y X < Y.

I Program loses confluence

I With termination order (≤)� (<) completion inserts

r6 @ X < Y ∧ Y < X ⇔ X 6= Y false.
r7 @ X < Y ∧ X < Y ⇔ X 6= Y X < Y.

Page 70 Program analysis | Completion | Program specialization by completion

Program specialization by completion (II)

Example (Defining < continued)
I Rule r6 from critical pair of r2 and r5

(X = Y ∧ X 6= Y, X < Y ∧ Y ≤ X ∧ X 6= Y).

I Rule r7 from critical pair of r4 and r5

(X ≤ Y ∧ X 6= Y, X < Y ∧ Y ≤ X ∧ X 6= Y).

I r6 implements antisymmetry of <

I r7 implements impotence of conjunction by duplicate removal

Page 71 Program analysis | Completion | Program specialization by completion

Program specialization by completion (III)

Example (Append)
r1 @ append([],L,L) ⇔ true.
r2 @ append([X|L1],Y,[X|L2]) ⇔ append(L1,Y,L2).

No critical pairs, program is confluent
Adding rule for special case makes program nonconfluent

r3 @ append(L1,[],L3) ⇔ new(L1,L3),

Completion generates program for new:

r4 @ new([],[]) ⇔ true.
r5 @ new([A|B],[A|C]) ⇔ new(B,C).

Page 72 Program analysis | Completion | Program specialization by completion

Program specialization by completion (IV)

Example (Member predicate)
r1 @ member(X,[])⇔ false.
r2 @ member(X,[H|T])⇔ X = H true.
r3 @ member(X,[H|T])⇔ X 6= H member(X,T).

I In CHR query member(X,[1,2,3]) delays

I Prolog computes answers X=1, X=2, X=3

Page 73 Program analysis | Completion | Program specialization by completion

Program specialization by completion (V)

Example (Member predicate continued)
I If rule added r4 added, program loses confluence

r4 @ member(X,[1,2,3])⇔ answer(X),

I Completion generates rules equivalent to Prolog answers

a1 @ answer(1)⇔ true.
a2 @ answer(2)⇔ true.
a3 @ answer(3)⇔ true.
a4 @ answer(X)⇔ X 6= 1 ∧ X 6= 2 ∧ X 6= 3 false.

Page 74 Program analysis | Completion | Program specialization by completion

Program specialization by completion (VI)

Example (Member predicate rule generation)

r4@member(A, [1,2,3])⇔ answer(A)

r4+r2rreeeeeeeeeeeeeeee
r4+r3��

a1@answer(1)⇔ true r5@member(A, [2,3])⇔ A 6= 1answer(A)

r5+r2rreeeeeeeeeeeeeeee
r5+r3��

a2@answer(2)⇔ true r6@member(A, [3])⇔ A 6= 1 ∧ A 6= 2answer(A)

r6+r2rreeeeeeeeeeeeeeee
r6+r3��

a3@answer(3)⇔ true a4@answer(A)⇔ A 6= 1 ∧ A 6= 2 ∧ A 6= 3false

Page 75 Program analysis | Completion | Program specialization by completion

Program specialization by completion (VII)

Example
I In append program query append(X,[b|Y],[a,b,c|Z])

delays
I Prolog generates infinitely many answers

X = [a], Y = [c|Z])

X = [a,b,c], Z = [b|Y]

X = [a,b,c,X1], Z = [X1,b|Y]

X = [a,b,c,X1,X2], Z = [X1,X2,b|Y] . . .

Page 76 Program analysis | Completion | Program specialization by completion

Program specialization by completion (VIII)

Example

Applying completion to two rules of append and

r3 @ append(X,[b|Y],[a,b,c|Z]) ⇔ answer(X,Y,Z).

results in

a1 @ answer([a],[c|Z],Z) ⇔ true.
a2 @ answer([a,b,c],Y,[b|Y]) ⇔ true.
a3 @ answer([a,b,c,H|L],Y,[H|L2])

⇔ answer([a,b,c|L],Y,L2).

I Rule a1: answer X = [a], Y = [c|Z]

I Rule a2: second answer X = [a,b,c], Z = [b|Y]

I Rule a3: remaining infinitely many Prolog answers

Page 77 Program analysis | Modularity of termination and confluence

Modularity of termination and confluence

I Two ways of combining programs
I Merging, taking the union of all rules
I Hierarchically using modules, turning CHR constraints into built-ins

of other program

I In abstract semantics any computation possible in one program
also possible in merged program

I Modularity: property of program is preserved under union

I Union denoted by ∪

Page 78 Program analysis | Modularity of termination and confluence

Examples

Example

First program {a ⇔ b}, second program {b ⇔ a}
I Both programs terminating

I Union {a ⇔ b}, {b ⇔ a} not terminating

Example

First program {a ⇔ b}, second program {a ⇔ c}
I Both programs confluent

I Union {a ⇔ b}, {a ⇔ c} is terminating but not confluent

⇒Well-behavedness not preserved under union

Page 79 Program analysis | Modularity of termination and confluence

Modular classes of CHR programs (I)

Definition
P, P1, P2 CHR programs

I c is constraint of a program P if its constraint symbol defined in
P or if it is a built-in occurring in P (not CHR constraints only used
in P)

I P1, P2 nonoverlapping if they have no defined CHR constraints
in common

I P1, P2 circular if P1 defines CHR constraint used in P2 and vice
versa

I Given goal, variable P1, P2-shared if it occurs in constraints of P1

and constraints of P2

Page 80 Program analysis | Modularity of termination and confluence

Modular classes of CHR programs (II)

I Syntactic class of programs for preserving termination hard to
find

I Union of noncircular, terminating programs is terminating for
certain queries

I Union of noncircular, nonoverlapping programs is always
confluent

Page 81 Program analysis | Modularity of termination and confluence | Modularity of termination

Modularity of termination

I Termination nonmodular (circular definitions, shared variables)
I Common CHR symbols can be used by noncircular programs

(not defined and used by both programs)
I In at least one program all used CHR constraints are not defined in

other
I CHR constraint defined in both programs only defined recursively

in one

Page 82 Program analysis | Modularity of termination and confluence | Modularity of termination

Examples (I)

Example
P1: c(f(X))⇔ X=g(Y) ∧ c(Y).

P2: d(g(Y))⇔ Y=f(Z) ∧ d(Z).

I Any (finite) goal terminates in both programs

I Goal c(f(X)) ∧ d(X) does not terminate in union (shared
variables, common function symbols)
c(f(X)) ∧ d(X) 7→P1

X=g(Y) ∧ c(Y) ∧ d(g(Y)) 7→P2

X=g(f(W)) ∧ Y=f(W) ∧ c(f(W)) ∧ d(W) 7→P1 . . .

⇒ Even noncircular definitions can lead to nontermination

Page 83 Program analysis | Modularity of termination and confluence | Modularity of termination

Examples (II)

Example

Previous example, common function symbols replaced by built-ins

P1: c(FX)⇔ f1(FX,X) g1(X,Y) ∧ c(Y).

P2: d(GY)⇔ g2(GY,Y) f2(Y,Z) ∧ d(Z).

I f 1(X, Y) and f 2(X, Y) both defined as X = f (Y)

I g1(X, Y) and g2(X, Y) both defined as X = g(Y)

I c(FX) ∧ f1(FX,X) ∧ d(X) not terminating in union

I Built-in constraint from one program implies guard constraint
from other and vice versa (hard to rule out)

Page 84 Program analysis | Modularity of termination and confluence | Modularity of termination

Examples (III)

Example

P1: c(X,N)⇔ f(X,N) g(X,N) ∧ c(X,N+1).

P2: d(Y,N)⇔ g(Y,N) f(Y,N+1) ∧ d(Y,N+1).

I f (X, N) defined as X mod 2N=0 ∧ X>N ∧ N>0

I g(X, N) defined as X mod 3N=0 ∧ X>N ∧ N>0

I Constraints f and g never imply each other

I Goal c(X,N)∧ f(X,N)∧d(X,N) not terminating in union

⇒ Nontermination problem persists over P1,P2-shared variables

Page 85 Program analysis | Modularity of termination and confluence | Modularity of termination

Modularity of termination

I Common symbols influences termination of union
I Circularity in programs via shared variables

I Restricting domain of P1,P2-shared variables to be finite makes
termination modular for union of noncircular programs

Theorem
P1, P2 well-behaved programs. If P1, P2 noncircular and P1,P2-shared
variables in query defined over finite domains only then P1 ∪ P2 is
terminating

Page 86 Program analysis | Modularity of termination and confluence | Modularity of termination

Example (I)

Example

P1: c(X,N)⇔ f(X,N) g(X,N) ∧ c(X,N+1).

P2: d(Y,N)⇔ g(Y,N) f(Y,N+1) ∧ d(Y,N+1).

I f (X, N) defined as X mod 2N=0 ∧ X>N ∧ N>0

I g(X, N) defined as X mod 3N=0 ∧ X>N ∧ N>0

I Programs noncircular, X and N P1,P2-shared

I c(X,N)∧ f(X,N)∧d(X,N) not terminating

Page 87 Program analysis | Modularity of termination and confluence | Modularity of termination

Example (II)

Example (continued)

Finite domain constraint X in D: X takes values from given finite list
D

Adding finite domain constraints in query

X in [2,4,6,8]∧ N in [1,2] ∧ c(X,N)∧ f(X,N)∧d(X,N)

leads to state

X in [6] ∧ N in [1] ∧ g(X,N)∧f(X,N)∧d(X,N)∧c(X,N+1)

Next state contains f(X,N+1) but f(6,2) does not hold
⇒ computation fails

Page 88 Program analysis | Modularity of termination and confluence | Modularity of confluence

Modularity of confluence

Theorem
P1, P2 well-behaved and nonoverlapping, P1 ∪ P2 terminating,
then P1 ∪ P2 is confluent

Example

Union of well-behaved programs {a⇔ b}, {b⇔ c} is confluent
(programs nonoverlapping)

I If union terminating, confluence test can be used
I Only c.p. from rules in different programs interesting
I Confluence test can be made incremental

Example

Nonconfluent union {a ⇔ b, a⇔ c} (both defining a)

Page 89 Program analysis | Operational equivalence

Operational equivalence

I Operational equivalence fundamental question in programming
language semantics

I Correctness of program transformation needs notion of
equivalence

I In CHR: For combining constraints solvers

I Operational equivalence: For any given query, both programs
lead to same answer

I In CHR decidable, sufficient, and necessary condition for
well-behaved programs

Page 90 Program analysis | Operational equivalence | Operational equivalence of programs

Operational equivalence of programs (I)

Definition (Operational equivalence)

State S is P1,P2-joinable iff S 7→+
P1

S1 and S 7→+
P2

S2 such that S1 ≡ S2 or
S is final state in both programs.

P1 and P2 operationally equivalent if all states are P1,P2-joinable.

Page 91 Program analysis | Operational equivalence | Operational equivalence of programs

Operational equivalence of programs (II)

I Test for operational equivalence of well-behaved programs:
I Execute minimal states as queries in both programs
I Programs operational equivalent if equivalent states reached

Theorem
Well-behaved programs P1, P2 operationally equivalent iff all minimal
states of rules in P1, P2 are P1,P2-joinable

Page 92 Program analysis | Operational equivalence | Operational equivalence of programs

Example

Example (Two programs for max)

max(X,Y,Z)⇔ X≤Y Z=Y.

max(X,Y,Z)⇔ Y<X Z=X.

max(X,Y,Z)⇔ X<Y Z=Y.

max(X,Y,Z)⇔ Y≤X Z=X.

I max(X,Y,Z)∧X≤Y shows operational nonequivalence

I Can reduce to Z = Y in first program, is final state in second
program

I Programs are logically equivalent

Page 93 Program analysis | Operational equivalence | Operational equivalence of constraints

Operational equivalence of constraints

I Notion of operational equivalence can be too strict

I Operational equivalence of constraints in different programs

I Decidable sufficient syntactic condition for well-behaved
programs

I Only sufficient but not necessary condition

Page 94 Program analysis | Operational equivalence | Operational equivalence of constraints

Definition

Definition (Operational c-equivalence)

c a CHR constraint symbol. A c-state is a state where all CHR
constraints have the symbol c.

c a CHR constraint defined in P1 and P2. P1 and P2 operationally
c-equivalent if all c-states P1,P2-joinable

Page 95 Program analysis | Operational equivalence | Operational equivalence of constraints

Example

Example

Let P1 be the program:

p(a)⇔ s.

p(b)⇔ r.

s∧r⇔ true.

Program P2 consists of only the first two rules.

I Considering only p, goals p(a), p(b) not sufficient for
operational p-equivalence

I in P1 p(a) ∧ p(b) leads to true, in P2 to s ∧ r
I Including minimal states for s and r (s ∧ r) leads to different

program behavior

Page 96 Program analysis | Operational equivalence | Operational equivalence of constraints

Dependency

Definition (Dependency)
I CHR constraint (symbol) c directly depends on d if there is a rule

defining c and using d

I Dependency relation is reflexive transitive closure of direct
dependency

I Given P1 an P2, c-dependent constraint is constraint depending
on c in P1 and P2

Page 97 Program analysis | Operational equivalence | Operational equivalence of constraints

Theorem for operational equivalence

Definition
c-minimal states are minimal states of programs P1, P2 that only
contain c-dependent CHR constraints

Theorem
c a CHR constraint defined in well-behaved programs P1, P2.
If all c-minimal states are P1,P2-joinable then P1, P2 are operationally
c-equivalent

Page 98 Program analysis | Operational equivalence | Operational equivalence of constraints

Examples (I)

Example (Sum)

sum(List,Sum) holds if Sum is the sum of elements in List

Program P1:

sum([],Sum)⇔ Sum=0.

sum([X|Xs],Sum)⇔ sum(Xs,Sum1) ∧ Sum=Sum1+X.

Program P2:

sum([],Sum)⇔ Sum=0.

sum([X|Xs],Sum)⇔ sum1(X,Xs,Sum).

sum1(X,[],Sum)⇔ Sum=X.

sum1(X,Xs,Sum)⇔ sum(Xs,Sum1) ∧ Sum=Sum1+X.

Page 99 Program analysis | Operational equivalence | Operational equivalence of constraints

Examples (II)

Example (Sum continued)

sum-minimal states are sum([],Sum) and sum([X|Xs],Sum)

I For sum([],Sum) final state Sum=0 in P1 and P2

I Computation for sum([X|Xs],Sum) in P1:
sum([X|Xs],Sum) 7→P1 sum(Xs,Sum1) ∧ Sum=Sum1+X

I Computation for sum([X|Xs],Sum) in P2:
sum([X|Xs],Sum) 7→P2 sum1(X,Xs,Sum) 7→P2

sum(Xs,Sum1) ∧ Sum=Sum1+X

All sum-minimal states P1,P2-joinable
⇒ P1 and P2 operationally sum-equivalent

Page 100 Program analysis | Operational equivalence | Operational equivalence of constraints

Examples (III)

Example

Program P1

p(X)⇔ X>0 q(X).

q(X)⇔ X<0 true.

Program P2

p(X)⇔ X>0 q(X).

q(X)⇔ X<0 false.

P1, P2 operationally p-equivalent, but p-minimal state q(X) ∧ X>0 is
not P1, P2-joinable

Shows reason why only sufficient but no necessary condition for
operational c-equivalence can be given

Page 101 Program analysis | Operational equivalence | Operational equivalence of constraints

Examples (IV)

Example

Program P1

p⇔ s.

s∧q⇔ true.

Program P2

p⇔ s.

s∧q⇔ false.

I s and p are p-dependent

I s is only s-dependent constraint, analogous for q

I All p-, s-, q-minimal states P1,P2-joinable but programs not
operationally equivalent

I If notion of c-equivalence extended to sets, p-, s-, q-minimal
states include indicative state s∧q

Page 102 Program analysis | Operational equivalence | Removal of redundant rules

Removal of redundant rules

I Union and completion may result in redundant rules

I Variation of operational equivalence to test redundancy

I Detects rules that can be removed without changing operational
semantics

Definition (Redundancy)

P\r denotes program P without rule r.
Rule r is redundant in P iff for all states S

if S 7→∗P S1 then S 7→∗P\r S2 such that S1 ≡ S2

Page 103 Program analysis | Operational equivalence | Removal of redundant rules

Example

Example (Union of max programs)

r1 @ max(X,Y,Z)⇔ X<Y Z=Y.
r2 @ max(X,Y,Z)⇔ X≥Y Z=X.
r3 @ max(X,Y,Z)⇔ X≤Y Z=Y.
r4 @ max(X,Y,Z)⇔ X>Y Z=X.

r3 can always be applied when r1 can be applied with same answer
(not vice versa)⇒ r1 is redundant, analogously r4

Page 104 Program analysis | Operational equivalence | Removal of redundant rules

Theorem for redundant rules

I Removing rule from well-behaved program can destroy
confluence

I Equivalence test not directly applicable

Theorem
P be a well-behaved program. Rule r is redundant with respect to P iff
P\r is well-behaved and all minimal states of P and P\r are
P, P\r-joinable

I Specialize equivalence test
I Check if computation due to candidate rule for removal can be

performed by P\r
I State in computation for minimal state of r must be reachable in P\r

Page 105 Program analysis | Operational equivalence | Removal of redundant rules

Examples (I)

Example (Union of max programs continued)

r1 @ max(X,Y,Z)⇔ X<Y Z=Y.

r2 @ max(X,Y,Z)⇔ X≥Y Z=X.

r3 @ max(X,Y,Z)⇔ X≤Y Z=Y.

r4 @ max(X,Y,Z)⇔ X>Y Z=X.

I Any subset of program still well-behaved
I Removal of rule r1 (min. state max(X,Y,Z)∧X<Y), run

P: max(X,Y,Z)∧X<Y 7→ X<Y∧Z=Y by rule r1

P\{r1}: max(X,Y,Z)∧X<Y 7→ X<Y ∧ Z=Y by rule r3

I r3 enables same computation⇒ r1 redundant

I Redundancy of r4 shown analogously

Page 106 Program analysis | Operational equivalence | Removal of redundant rules

Examples (II)

Example (Union of max programs continued)

r1 @ max(X,Y,Z)⇔ X<Y Z=Y.

r2 @ max(X,Y,Z)⇔ X≥Y Z=X.

r3 @ max(X,Y,Z)⇔ X≤Y Z=Y.

r4 @ max(X,Y,Z)⇔ X>Y Z=X.

I Rule r2 not redundant

P: max(X,Y,Z)∧X≥Y 7→ X≥Y ∧ Z=X by rule r2

P\{r2}: max(X,Y,Z)∧X≥Y 67→

I Program without redundant rules consists of r2 and r3

Page 107 Program analysis | Operational equivalence | Removal of redundant rules

Examples (III)

Example (Strict order relation)
duplicate @ X less Y \ X less Y⇔ true.
irreflexivity@ X less X⇔ false.
antisymmetry @ X less Y ∧ Y less X⇔ false.
transitivity @ X less Y ∧ Y less Z⇒ X less Z.

I antisymmetry is redundant (transitivity then
irreflexivity)

I Other rules not redundant

Page 108 Program analysis | Operational equivalence | Removal of redundant rules

Examples (IV)

Resulting program not necessarily unique

Example
r1 @ p⇔ q.

r2 @ p⇔ false.
r3 @ q⇔ false.

I Either r1 or r2 can be removed by redundancy removal

I Hence, program without redundant rules not unique

Page 109 Program analysis | Worst-case time complexity

Worst-case time complexity (I)

I Semi-automatic time complexity analysis based on semi-naive
implementations of CHR (abstract semantics)

I Better results through refined semantics and compiler
optimizations in particular indexing

I Usually head constraints connected through common variables
I Search for partner constraints only where variables shared
I Indexing on argument position of common variable
⇒ Partner constraints often found in constant time

Page 110 Program analysis | Worst-case time complexity

Worst-case time complexity (II)

I Run time based on number of rule applications and rule
application attempts

I Meta-theorem for wc time complexity of simplification rule
programs combines

I Derivation length
I Number and cost of rule tries
I Cost of rule application

I Number of potential rule applications known from program text
(given ranking)

Page 111 Program analysis | Worst-case time complexity

Example (I)

Example (Complexity of even constraint)
even(s(N))⇔ N=s(M)∧even(M).

I Time complexity of single even linear in derivation length (rank)

I Time complexity of several ground even constraints also linear
(where rank is sum of ranks of individual constraints)

Page 112 Program analysis | Worst-case time complexity

Example (II)

Example (Complexity of even constraint continued)
I Adding second rule

even(s(N))⇔ N=s(M)∧even(M).
even(s(X))∧even(X)⇔ false.

I New rule must be tried for all pairs of even constraints

I Must be tried after computation step with single even constraint

I Rule tries in derivation step at worst quadratic in number of
constraints in query

I Rank of query is bound on number of constraints

I Number of derivation steps also bounded by rank of query

I Overall: implementation is cubic in rank of query

Page 113 Program analysis | Worst-case time complexity | Simplification rules

Simplification rules

Computational phases when rule is applied:
I Head matching

I Find atomic CHR constraints in current state to match head of rule

I Guard checking
I Check if current built-in constraints imply guard of rule under found

matching

I Body handling
I According to rule type remove matched constraints
I Guard and body with built-in and CHR constraints added

Page 114 Program analysis | Worst-case time complexity | Simplification rules

Theorem for simplification rules

Theorem
r a simplification rule H ⇔ G C ∧ B
(H conjunction of n CHR constraints, C, B built-ins, B CHR
constraints)

A worst-case time complexity of applying r in state with c constraints
is:

O(cn(OH + OG) + (OC + OB)),

(Complexities:
OH: head matching, OG: guard checking, OC: adding C to state, OB

removing matched head and adding B to state)

Page 115 Program analysis | Worst-case time complexity | Programs

Theorem for programs

I Worst case complexity of rule application
I Largest number of CHR constraints of any state in derivation bound

by O(c + D)

I Most costly rule to be tried and applied

Theorem
P containing only simplification rules, D worst-case derivation length
of given query.

Then the worst-case time complexity of given query is

O(D
∑

i

((c + D)ni(OHi + OGi) + (OCi + OBi)))

(i ranges over rules in P)

Page 116 Program analysis | Worst-case time complexity | Programs

Complexity of programs

I Cost of rule tries dominates complexity of semi-naive
implementation of CHR

I Often sufficient to consider worst rule for computing complexity
measure

Page 117 Program analysis | Worst-case time complexity | Programs

Typical complexities (I)

I Cost of syntactic matching OH determined by syntactic size, thus
quasi-constant

I Cost OB (adding, removing) often constant

I Complexity of handling built-ins assumed not to depend on
constraints accumulated so far

I Constant time for arithmetics, quasi-constant time for matching
and unification assumed

Page 118 Program analysis | Worst-case time complexity | Programs

Typical complexities (II)

I Complexity of guard checking OG usually at most complexity of
adding respective constraints

I Complexity of adding built-ins OC often linear in their size

I In many cases D contains factor c⇒ c + D simplifies to D

⇒ simplified worst-case time complexity estimate

O(
∑

i

(Dni+1OGi + DOCi))

Page 119 Program analysis | Worst-case time complexity | Programs

Example

Example (One rule program with successor notation)
c(s(X)) ⇔ c(X) ∧ c(X).

I Removing successor doubles number of constraints
I Exponential ranking needed

I rank(c(t)) = 2size(t) − 1
I size(0) = 0
I size(s(N)) = 1 + size(N)

I Complexity exponential in size of argument of c (n = size(t)):

O(2n((1 + 2n)1(1 + 0) + (0 + 1)) = O(2n2n) = O(4n)

I O(2n) derivation steps, O(2n) constraints in each state

	Program analysis

