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Report CW624, September 2012

Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)



CHR 2012 — Proceedings of the

9th International Workshop on

Constraint Handling Rules

Jon Sneyers Thom Frühwirth
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Preface

This volume contains the papers presented at CHR 2012, the 9th International
Workshop on Constraint Handling Rules held on September 4th, 2012 in Bu-
dapest, at the occasion of ICLP 2012.

There were 8 submissions. Each submission was reviewed by at least 3, and
on the average 3.8, program committee members. The committee decided to
accept 7 papers.

This workshop was the ninth in a series of annual CHR workshops. It means
to bring together in an informal setting, people involved in research on all matters
involving CHR, in order to promote the exchange of ideas and feedback on recent
developments. Previous workshops on Constraint Handling Rules were organized
in 2004 in Ulm (Germany), in 2005 in Sitges (Spain) at ICLP, in 2006 in Venice
(Italy) at ICALP, in 2007 in Porto (Portgual) at ICLP, in 2008 in Hagenberg
(Austria) at RTA, in 2009 in Pasadena (California, USA) at ICLP, in 2010 in
Edinburgh (Scotland) at ICLP, and in 2011 in Cairo (Egypt) at the second CHR
summer school.

More information about CHR is available on the CHR website1. The papers
from all previous editions of the CHR workshop (as well as many other CHR-
related papers) are also available for download from the CHR website2.

We are grateful to all the authors of the submitted papers, the program
committee members, and the reviewers for their time and efforts. We would also
like to thank the ICLP general chair, Péter Szeredi, and the ICLP workshop
chair, Mats Carlsson, for the excellent organization.

August 2012 Jon Sneyers and Thom
Frühwirth

1 CHR website: http://dtai.cs.kuleuven.be/CHR
2 CHR bibliography: http://dtai.cs.kuleuven.be/CHR/biblio.shtml
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An adaptation of Constraint Handling Rules
for Interactive and Intelligent Installations

Henning Christiansen

Research group PLIS: Programming, Logic and Intelligent Systems
Department of Communication, Business and Information Technologies

Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark
E-mail: henning@ruc.dk. Home page: www.ruc.dk/~henning

Abstract. Constraint Handling Rules, CHR, have proved to be effec-
tive for a large range of reasoning tasks, which makes it interesting in
different sorts of interactive installations. Typically, such an installation
involves a large number of cooperating software components that need
to refer to a common knowledge. Using CHR’s constraint stores as a
knowledge representation may be appealing from a theoretical point of
view, but suffers from the inherent limitation of CHR, that a constraint
store disappears immediately after a query has been evaluated.

An extension to CHR is proposed, which allows different processes to
reason over and maintain a common knowledge base represented as text
files containing constraints. Constraints are automatically read from and
written to the files before and after a query has been executed, which
means that the intended style of programming deviates only very little
from traditional CHR programming.

1 Introduction

Constraint Handling Rules [1, 2], CHR for short, were created as a declarative
language for defining constraint solvers to be used from Prolog, typically for
standard domains such as real, integer or rational numbers. However, it was
soon realized that CHR is a powerful language for knowledge representation
and reasoning, as documented among others by [2, 3]. In such applications, the
constraint store may be seen as a knowledge base, but in that respect, CHR has a
deficiency as the constraint store disappears immediately after a query has been
evaluated. In order to qualify fully as a knowledge representation formalism, it
should be possible also to run several queries in the same constraint store as well
as using CHR rules for updating the knowledge base represented as a constraint
store.

We are here interested in extending the range of applications for CHR to
include interactive installations involving some sort of knowledge assimilation or
adaptive properties over time. This may be relevant, e.g., for collecting knowl-
edge about different users, analyzing their behaviour and so on. We also want to
promote experiments using CHR for analyzing streams of sensor data, that also
can be considered as constraints, constantly updated by an external process. We
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also need to take into account the fact that any nontrivial interactive installation
typically includes many different software components written in many different
languages and incorporates a variety of prefabricated drivers for special hard-
ware. Thus we need a common knowledge representation format, which is easily
accessible from CHR (that we intend be dominating for reasoning tasks) as well
as other languages used. Our aim is to provide facilities that allow programmers
to write their CHR programs in a way as close as possible to the way they do
for standard one-query-at-a-time applications.

We present a suggestion for such a framework, which forms an extended ver-
sion of CHR, dubbed iiCHR to hint a relationship to interactive installations.
As a common format for knowledge storage and exchange, we use text files con-
taining ground constraints written as Prolog facts instead of involving additional
technologies such as database management systems. This provides a straightfor-
ward and transparent format, that is easily read and written also by external
processes written in other programming languages.

Synchronization has been of less concern in the present work and, at least
until we have gained more practical experience with iiCHR, we expect the devel-
opers to handle this using facilities of the operating system and hosting Prolog
implementation. This paper is not about the semantics of CHR and its deriva-
tives, and we leave any such considerations to the developer; here we provide a
new environment that adapts an existing technology to a new range of appli-
cations. Application programs such as those we have in mind, may have clean
parts that rely on a first-order semantics and good properties such as conflu-
ence. For the knowledge base management parts, we need to consider CHR as a
nonmonotonic language in which procedural properties such as the order of rule
applications do matter.

In the following section 2, we discuss our motivating applications and the
design goals that we have emphasized, and section 3 describes the details of our
iiCHR system. Heuristics and coding principles for using iiCHR are discussed
in section 4, and section 5 demonstrates a small application that may serve as
a first prototype for an art museum with four different programs cooperating
around a common knowledge base. Finally, we review related work in section 7
and provide a concluding discussion, including a first evaluation and suggestions
for future work, in section 8.

2 Motivation and design considerations

This work is motivated by a project developed at Roskilde’s University’s De-
partment of Communication, Business and Information Technologies called the
Experience Cylinder [4]. It is an installation with a 360◦ circular screen equipped
with a number of synchronized projectors plus a Kinect device mounted above
the installation to trace the visitors’ movements. The first application has been
developed together with the Viking Ship Museum of Roskilde, Denmark, to ex-
hibit information about a journey made with a full size copy of a viking longship
from Roskilde to Dublin and back. During the travel, all sorts of physical data
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were logged and lots of photos, videos and written accounts – all timestamped –
have been recorded.1 Here the circle represents a time line as well as a geograph-
ical circuit (the trip to Dublin went North of Scotland and the trip back south of
Wales and England). When a visitor moves closer to the screen, appetizers will
pop up corresponding to the indicated time point (alias geographical position),
and he or she may require further details by simple gestures such as pointing.

The software platform used in the Experience Cylinder is currently being
developed into a more generic form so that active components can be added
without interface programming, and this is where our CHR-based components
may come in. The current installation does not recognize the visitors nor take
into account their current focus of interest (e.g., one visitor may be interested
in the food onboard and another in the weather conditions), and here relevant
“intelligent” components written in CHR may become interesting. Adding “intel-
ligent”, animated characters that interact with users, is also under consideration.

In our previous work, we have investigated and developed methods using
CHR for especially abductive reasoning [5–7], including for language analy-
sis [8–10]. This, together with other work, see, e.g., [2, 11], has demonstrated
that CHR is highly suited for a large variety of reasoning task. A main goal with
the present work is to make reasoning with CHR available for developers of in-
teractive and intelligent installations. By mentioning “intelligent” here, we mean
that an installation should appear as a knowledgeable, cooperative and perhaps
even sympathetic partner, that helps to improve the experience for the user.
Abductive reasoning and language processing are very concise metaphors in this
context, as the task for the reasoner involves coming up with best explanations
of what is actually going on inside or around the installation, e.g., figuring out
users’ intentions or focus of interest. These judgements need to be made from
the ongoing discourse of sensor signals (or higher level signals extracted from
sensor data by other software components).

In our choice of facilities, we have in mind developers who are motivated for
trying out CHR for the applications and reasons mentioned. We hope to address
both designers or artist, who care mainly about interaction and contents, and
experienced technicians who can program, adapt and tie together the variety of
software and hardware components involved. This calls for preserving the (rela-
tive) simplicity and transparency of CHR, adding as little additional complexity
as possible, and reducing the need for learning yet another hybrid programming
language. Our choice of plain text files of Prolog facts as the interlingua between
software components avoids mixing in other conceptual frameworks, as would
the use of relational databases or XML-based technology. Furthermore, this for-
mat is easily accessible also for developers with no experience in CHR and/or no
interest in the knowledge intensive parts of an installation. We discuss possible
consequences of this decision in section 8.

While we take for granted the qualities of CHR with respect to reasoning, it
is less obvious how it works for updating of knowledge bases. This is evaluated
in our conclusions, based on our test application developed in section 5.

1 See http://www.vikingeskibsmuseet.dk/en/the-sea-stallion-past-and-present/.
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3 The proposal: iiCHR

In the following, we describe all facilities of the iiCHR language, where it differs
from or extends standard CHR. It is implemented on top of SWI Prolog [12] and
its CHR library and inherits their facilities. The implementation is available at
on the internet [13].

3.1 Declaration of constraints

Constraint predicates may be shared between different programs via a common
file, which requires a certain agreement between the declarations in each pro-
gram. Each program should declare the constraints it is using as described here.
Instead of using CHR’s standard way of declaring constraints, directives of the
following form are used.

:- iiCHR constraint Constraint-Decl, . . . , Constraint-Decl.

Each constraint declaration takes the following form.

Constraint-Predicate/Arity*[Options].

Predicates and arities have the usual meaning as in CHR, with a small deviation
when option time stamped is in use (explained below). The options and the
preceding asterisk may be left out, in which case the declaration is synonymous
with a standard CHR constraint declaration. The following options are currently
available.

file(Path)
The Path determines a file relative to the current working directory; the
file extension “.con” is automatically added. This file stores a collection of
constraints for the given constraint predicate in a textual format, and is
normally read into the initial constraint store before a query is executed.
Depending on how the query is posed and other options, the constraints in
the final constraint store for this predicate may or may not be written back
to the file. A given file must only be used for one constraint predicate.
Constraint predicates that are declared with an associated file are called
shared,2 all other constraint predicates private.

read only, write only, append
Only relevant for shared predicates, and at most one of them may be used
for the same constraint predicate. read only means that the constraints
are never written back to the file after a query has been executed (unless
option is overridden by the query predicate; below). write only is defined
analogously. append means that the file is not read in, and any constraints
produced for this constraint predicate are appended to file.

2 The term “shared” indicates that the given constraint may be potentially shared
between different programs that access the same file.



An adaptation of CHR for Interactive and Intelligent Installations 5

active

Only relevant for shared predicates. Normally, shared are made passive in
each rule head where they occur (the rationale for this is discussed in sec-
tions 3.2 below). This option overrides this convention, but exceptions can
be made in other ways as indicated below.

time stamped

An additional argument is added to each constraint but is invisibly in the
normal rule syntax. When a constraint of the given predicate is created, a
current time stamp is generated, corresponding to the current physical time.
This facility is intended, among other things, for (virtual) sensor signals.

locking, nowait
Only relevant for shared predicates. It affects the query predicates’ use of
the file; described below.

When more than one program refer to the same file via their iiCHR constraint
declarations, these are expected to agree on the associated predicate name, arity
and the time stamped option. Constraints of shared predicates must be ground
when attempted to be written or appended to a file; otherwise an exception is
generated from the query predicates explained in section 3.3 below.

3.2 Rules

The rules of iiCHR are similar to those of CHR, including the usual propagation,
simplification and simpagation rules, that we expect our reader to be familiar
with.

As indicated above, shared constraints are made passive in rules by default.
This prevents repeated applications of propagation and simpagation rules, that
must be expected to have been applied already, to a set of constraints read in
from a file. This way, we can expect linear time for loading of constraints from a
file and it anticipates an incremental processing of constraints accumulated over
time. The consequences for the programmer are discussed in section 4 below.
Consider as an example the following iiCHR rule appearing in a source file, with
s/1 being a shared and p/1 a private constraint.

p(X), s(Y) ==> Z is X+Y, s(Z).

It is compiled into the following CHR rule, using SWI Prolog’s syntax for passive
constraints.

p(X), s(Y)#passive ==> Z is X+Y, s(Z).

If needed, this can be overridden, either throughout the source file using the
option active in the constraint declaration, or specifically for a given occurrence
in the head of an iiCHR rule as follows.

p(X), s(Y)#active ==> Z is X+Y, s(Z).

The latter rule compiles as expected into the following CHR rule.

p(X), s(Y) ==> Z is X+Y, s(Z).
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Both #active and #passive annotations can be used in the head of rules, how-
ever #active only for shared constraint predicates.

Constraints declared with the option time stamped and arity n can be used
in any rule as a constraint with n arguments, disregarding a hidden n + 1’th
argument holding a time stamp. If needed, the time stamp of a given constraint
can be accessed in the head of a rule using an annotation of the form #time(T)
where T is a Prolog variable. Whenever a call to a time stamped constraint
predicate is made in the body of a rule, a timestamp is added automatically and
invisibly, reflecting the actual physical time. We illustrate this by an example of a
constraint declaration with two rules, showing how they are compiled into CHR
and an auxiliary Prolog predicate. The iiCHR constraint bind/2 declared below
represents bindings from identifier to values. The first iiCHR rules implements a
preference to new bindings over old ones, and the second one applies for bindings
to a specific identifier, disregarding the time stamp.

:- iiCHR constraint bind/2*[time stamped].

bind(Key, )#time(T1) \ bind(Key,V0)#time(T0) <=> T1 > T0 | true.

bind(id,V) ==> write(’id bound to ’), write(V), nl.

This code fragment is compiled into the following CHR code, that includes an
auxiliary Prolog predicates that simulates to be the bind constraint within rule
bodies.

:- chr constraint bind/3.

bind(Key, ,T1) \ bind(Key, ,T0) <=> T1 > T0 | true.

bind(id,V, ) ==> write(’id bound to ’), write(V), nl.

bind(X,Y):- get time(T), bind(X,Y,T).

The get time predicate is an SWI Prolog built-in that produces the relevant
time stamp.

Finally we introduce a notation for a simple variant of so-called negation as
absence [14], which has turned out to be useful for the intended applications.
The notation not exists Pattern can be used in a guard or body of a rule
to test that there is no constraint matching Pattern in the current constraint
store. It obviously requires the programmer to have in mind which variables
are instantiated through the head of the rule, and it does not conform with a
first-order semantics; it is shown at work in section 5.3 below.

3.3 Queries

Queries can be posed using two alternative predicates called executeQuery and
executeUpdate. The names are inspired by the JDBC interface [15] and are used
for queries that either only read values or are expected to both read and write
values from/to files. In the following, the Query argument can be any query
referring to iiCHR constraints and additional Prolog predicates if needed. We
introduce these predicates in an overall way and explain later the conventions
used for accessing and locking files.
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executeQuery(Query)
The constraints for any shared predicates declared in this source file are
read in from the relevant files (unless declared as write only or append)
and entered into the constraint store by calling them. Then the Query is
executed in the usual way.

executeUpdate(Query)
It proceeds as executeQuery(Query), and – if this did not fail – extracts
from the final constraint store all constraints of shared predicates (except
those declared as read only). If these predicates are declared with the
append options, the constraints are appended to the file, otherwise written
to the file and replacing any previous content of the file.

The query predicates can take an optional argument which is a list of options of
the form

Constraint-Predicate/Arity*Modifier

where the Modifier is one of ignore, read only, write only, append, locking
and nowait. The first one, ignore, indicates that the files associated with the
given constraint is neither read in nor written to the associated file. The remain-
ing options make the query execute as if they had been given in the constraint
declarations. Alternatively, the modifiers can be given without a constraint pred-
icate, meaning that they go for all predicates. Modifiers locking, write only

and append are only relevant for executeUpdate.
When executeQuery or executeUpdate wants to read in a number of files,

it normally waits until it can access all the files. It does so in a way that it only
holds files when all files can be accessed, except from tiny moments used for
testing availability. When all files are available, they are locked for writing by
any other processes, the files are read in, and then released. However, in case
of executeUpdate, a lock is kept on any file covered by a locking option. The
nowait option will lead to an exception in case the first attempt to access all
files for reading does not succeed.

When executeUpdate has finished a query evaluation successfully, it will
wait until it can access all relevant files for writing (with the same precautions
as above), locks them temporarily, writes all files and finally releases all locks.

If it is not possible to get access to a required set of files for reading or
writing within a system defined time limit, the given query predicate generates
an exception. This time limit can be changed by the programmer for each process
running iiCHR. A similar time limit is defined for the actual execution of a query,
i.e., in between the reading and writing of files.

4 Programming patterns

We expect programs written using iiCHR to have two main functions, namely
reasoning about knowledge and maintenance of knowledge. While CHR, and thus
iiCHR, is well-suited for a large variety of reasoning tasks, its use for maintenance
of knowledge bases may be less obvious and should be critically evaluated.
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In the simplest case of adding a new piece of data to a knowledge base, this
amounts to calling a shared constraint, which thus is added to the constraint
store and in turn to the corresponding file. In case we do not want an uncondi-
tional addition of the new data, but have it evaluated and perhaps transformed
in some way, we need to pay special attention, as shared constraints by default
are passive in rule heads, as explained above. Assuming such a predicate, say
c/1, it is often useful to introduce a private counterpart newc/1, to trigger the
desired analysis. One useful programming pattern is to write a series of rules
with newc/1 in their head, ended by an insertion rule as follows.

newc(X) <=> c(X).

Replacement of a data value, analogous to an UPDATE statement in SQL, can
be obtained by a rule based on the following pattern.

newc(New-Value) \ c(Old-Value) <=> c(New-Value).

Here the passive nature of c/1 combined with the active newc/1 is actually an
advantage, as it eliminates the danger of loops that otherwise requires attention
for CHR programs with rules of the form c(· · · ),. . . <=> c(· · · ),. . ..

As it appears, the iiCHR system gives only very rudimentary tools for syn-
chronization of processes depending on shared constraint predicates. This is a
design choice motivated by having the programmer spend as little effort on these
issues as possible. However, a classical problem of data loss may arise in case
two processes, say A and B, are triggered by the same event, so they start al-
most simultaneously, both read the file for the same shared constraint, say c/n,
process for a while, then A re-writes the file and then B. In this case, the data
produced by A is lost. Under such circumstances, and when preservation of all
data is essential, the problem can be avoided using the locking option. In some
cases, the append option may also do the job.

The other options related to reading and writing files serve mainly to suppress
unnecessary file operations and can be used with very little intellectual effort.

Deadlocks are effectively prevented by the built-in time limits explained
above. We expect these limits to be reached only in case of programming er-
rors or when other external processes interfere. In extremely rare cases, it is
possible to have two processes fighting to access the same file without finding a
winner, until one or both of them run into a time limit. If this (very unlikely)
turns out to be a problem, it can be avoided using pseudo-random numbers to
determine small waiting times when file access is requested.

5 Example: An interactive art museum

We consider an art museum that works as a large interactive installation keeping
track of the guests’ movements. The museum houses a collection of paintings,
each identified by painter and title. The museum’s curator may dynamically
remove paintings, include new ones and tag them with one or more themes.
Such themes may reflect periods in the history of art, they can refer to a genre
or elements depicted in the painting, or something completely different. There is
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a front desk that receives and says farewell to guest, and an automatic advisor
which, based on the themes of the paintings that each guest has seen recently,
may suggest him or her a possible next painting to look at. Such advice may be
given via a wireless headset or a smartphone.

To support the different tasks, the installation includes four different software
components written in iiCHR using five different data files. The following figure
shows these parts with lines to indicate which software components use which
files.

The guests.con file maintains a list of the guests currently in the museum.
Example:

guest(peter). guest(mary).

The collection.con file represents the exhibited paintings together with their
thematic tags. Examples:

painting(leonardo,monalisa,portrait).
painting(leonardo,monalisa,renaissance).
painting(leonardo,ladyWithEmine,animal).
painting(leonardo,ladyWithEmine,portrait).
painting(leonardo,ladyWithEmine,renaissance).

The themes.con file keeps a list of the themes currently in use in terms of a
constraint theme/1. The log.con file is a record of which guests saw which
paintings when, and is intended for statistic purposes that we do not consider
here, and to avoid recommending a guest to see a painting that he or she has
seen already. Example:

watchedPainting(peter,leonardo,ladyWithEmine,1341913905.404352).

Finally, the topicalities.con file holds measurements of the guests’ interests in
different themes, by adding a contribution for each theme of the recently watched
painting with a geometric decay to emphasize the recent ones. Examples:
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topicalityMeasure(peter,animal,0.10289999999999999).

topicalityMeasure(peter,portrait,0.8319300000000001).

topicalityMeasure(peter,renaissance,0.17492999999999997).

In the following, we go through the software components written in iiCHR. So
far, they have been tested by posing queries manually into terminal windows,
one such window for each component. However, the queries that we show below
could equally well have been triggered by the operating system or a waiting loop
implemented in Prolog.

5.1 The front desk program

Constraint declarations:

:- iiCHR constraint guest/1*[file(guests)].

:- iiCHR constraint topicalityMeasure/3*[file(topicalities)].

:- iiCHR constraint enter/1, exit/1.

The relevant queries for the front desk are of the following forms.

?- executeUpdate(enter(guest)) ?- executeUpdate(exit(guest))

The enter constraint inserts a guest constraint, exit removes it together with
all related topicalityMeasure constraints. The rules are as follows.

guest(Guest) \ enter(Guest) <=> write(’Guest already in museum’).

enter(Guest) <=> guest(Guest).

exit(Guest) \ topicalityMeasure(Guest, , ) <=> true.

exit(Guest), guest(Guest) <=> true.

Referring to the discussion of programming heuristics above, it appears that the
enter constraints serves as “new” version of guest, and exit is a trigger to start
the two clean-up rules.

5.2 The curator’s program

Constraint declarations:

:- iiCHR constraint painting/3*[file(collection)].

:- iiCHR constraint theme/1*[file(themes)].

:- iiCHR constraint newPainting/3, removePainting/2, removeIfNotUsed/1.

The last constraint removes themes no longer in use. Queries:

?- executeUpdate(newPainting(Painter, Title, theme)) and
?- executeUpdate(removePainting(Painter, Title))

Notice that newPainting can be used for including entirely new paintings as well
as adding new themes to an existing ones. The following rules serve to update
the two shared constraint predicates.

painting(Painter,Title,Theme) \ newPainting(Painter,Title,Theme) <=> true.
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theme(Theme) \ newPainting(Painter,Title,Theme)

<=> painting(Painter,Title,Theme).

newPainting(Painter,Title,Theme)

<=> theme(Theme), painting(Painter,Title,Theme).

removePainting(Painter,Title) \ painting(Painter,Title,Theme)

<=> removeIfNotUsed(Theme).

painting( , ,Theme) \ removeIfNotUsed(Theme) <=> true

removeIfNotUsed(Theme) \ topicalityMeasure( ,Theme, ) <=> true.

removeIfNotUsed(Theme), theme(Theme) <=> true.

The rules for removeIfNotUsed may be require a bit of explanation. One instance
of it is generated for each theme of a painting being removed. However, if the
theme is still in use, this instance is eliminated by a simpagation rule, otherwise
it triggers the clean-up rules for topicalityMeasure and theme constraints.

Obviously this program can only be understood by a procedural reading and
is not meaningfully considered in a first-order semantics.

5.3 The intelligent camera’s program

Our imaginary museum has equipment that tracks the different guests and gen-
erates a signal each time a guest has been watching a painting for more than, say,
one minute. With today’s technologies, such a facility can made relatively easily
and for small money, and there are available driver software that can be adapted
for this purposes. Which detailed technology is used is not of importance here,
and to give it a name, we refer to it as the intelligent camera, although the best
solution in practice may not need to involve cameras. The following program
executes the necessary updates whenever such a signal is reported.

Constraint declarations:

:- iiCHR constraint watchedPainting/3*[file(’log’),time stamped,append].

:- iiCHR constraint topicalityMeasure/3*[file(’topicalities’)].

:- iiCHR constraint painting/3*[file(collection),read only].

:- iiCHR constraint newWatchedPainting/3.

When a guest is reported to have watched a painting, his or her topicality mea-
sures are updated. We use (arbitrarily) a decay factor of 0.7 and an increment
of 0.3. When the sum of these two numbers is 1, the measure will be between 0
and 1, converging to 1 for a theme that is repeated over and over.

Queries: ?- executeUpdate(newWatchedPainting(Guest,Painter,Title)).

Rules:

newWatchedPainting(Guest, , ) \ topicalityMeasure(Guest,Theme,W)

<=> W1 is W * 0.7, topicalityMeasure(Guest,Theme,W1).

newWatchedPainting(Guest,Painter,Title), painting(Painter,Title,Theme)

\ topicalityMeasure(Guest,Theme,W)

<=> W1 is W + 0.3, topicalityMeasure(Guest,Theme,W1).
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newWatchedPainting(Guest,Painter,Title), painting(Painter,Title,Theme)

==> not exists topicalityMeasure(Guest,Theme, )

| topicalityMeasure(Guest,Theme,0.3).

newWatchedPainting(Guest,Painter,Title)

<=> watchedPainting(Guest,Painter,Title).

To understand these rules, recall the code pattern for constraint replacement
explained in section 4 above and which is applied here in an extended form. The
first rule decays every measure for the given user, the second one increments it
for the themes of the current painting, with the exception that the third rule
applies in case there is no previous measure constraint for that user and theme.
The last rule inserts a new watchedPainting constraint into the log.

5.4 The advisor’s program

Constraints declarations:

:- iiCHR constraint watchedPainting/3*[file(’log’),time stamped,read only].

:- iiCHR constraint topicalityMeasure/3*[file(’topicalities’),read only].

:- iiCHR constraint painting/3*[file(collection),read only].

:- iiCHR constraint suggestAdvice/0.

:- iiCHR constraint advice/4.

The suggestAdvise constraint is a trigger that initiates a search for possible
relevant advice to give to the current guests, and a constraint advice(Guest,
Painter,Title,Theme,Weight) represents an advice to be issued to a given
Guest to see a given painting; the Theme and Weight represents the topicality
measure that gave rise to the selection of this advice. We leave it unspecified
how the advices produced in this way are communicated to the guests.

Queries: ?- executeQuery(newWatchedPainting(Guest,Painter,Title)).

Rules:
suggestAdvice, topicalityMeasure(Guest,Theme,M),

painting(Painter,Title,Theme)

==> M > 0.63, not exists watchedPainting(Guest,Painter,Title)

| advice(Guest,Painter,Title,Theme,M).

advice(Guest, , , ,W1) \ advice(Guest, , , ,W2) <=> W1 >= W2 | true.

The first rule generates an advice for every guest and painting having a theme
with a topicality measure greater that a certain threshold, however only if the
guest has not seen that picture already. The threshold 0.63 indicates that either
the 3 most recent paintings or 4 out of 5 most recent are tagged with the given
theme. The last rule removes all but one best advice for each guest.

6 Evaluation of the example

In examining the suitability of iiCHR for intelligent and interactive installations,
we consider it already passed with a high mark with respect to the “intelligent”
dimension, i.e., reasoning, based on the comprehensive literature on this issue
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referenced above. For the interaction and coordination aspects, we may assess the
collection of programs developed in the previous section, which concerns mainly
knowledge base maintenance and no advanced reasoning. As it appeared, it was
natural to program in a procedural style in which propagation and simpagation
rules were interesting for their side effects on the constraint store.

This sort of programming may – at first glance – appear rather awkward
to many developers, those who normally think in terms of explicit loops, tests
and database statements, as well as those familiar with declarative programming
in CHR in isolated contexts. However, we also observe that our programs were
based on few and described design patterns that can be learned.

We included all the necessary code in the example section above, nothing
was left out, and the number of code lines is actually quite small. As a thought
experiment, we may consider an implementation using Java and JDBC, that
would likely result in much longer code with at least as many strange maneuvers
to get everything right. To this comparison, we can add that iiCHR is a powerful
reasoning system, so we can continue to develop our application adding more and
more advanced analyses of user behaviour within the same framework, which is
rather hypothetical to consider in a 100% imperative setting such as Java.

7 Related work

Potential concurrency for CHR has attracted attention, especially for confluent
programs, for which the order of rule applications is immaterial. We can imagine
several processors working in parallel applying their own sets of rules to the
same constraint store; see [2] for overview and references to primary literature.
A notion of transactions for CHR has been proposed by [16] and which will be
interesting to investigate for our purpose, so that each query executed in an
iiCHR program is made into such a transaction.

Where our system somehow fakes that all processes work on the same con-
straint store, by constantly reading and writing files, the mentioned ideas could
be used to implement a system in which the different programs actually accessed
the same constraint store. We are not aware of any efficient and workable imple-
mentation of such systems that are ready to be applied in the sort of installations
that we have in mind. Notice also that the locking option of iiCHR’s constraint
declarations provides a simple and effective way of defining transactions.

A mechanism has been suggested by [17] for adaptation of CHR proofs once
produced to changing input constraints, i.e., for small changes in the environ-
ment, a small adjustment of the proof may lead to an updated conclusion. Such
methods may be used for tracking the users of an installation, but it is not clear
to us whether it can be used to model accumulation and refinement of knowl-
edge over time. The cost of maintaining a data structure for proof trees may also
outbalance the gain of reusing previous proof steps.

Efficient compilation of CHR into imperative languages such as C or Java
are described in [18] that also reports efficient implementations. Such combined
paradigms may also be interesting candidates for adding reasoning components
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to interactive installations. We have not studied this in detail, but we may expect
some difficulties due to impedance mismatch between the two worlds in one.

We are not aware of other work on rule-based systems in interactive instal-
lations, that goes beyond having reasoning as a separate subsystem with no
real integration. The idea of processes communication through a common con-
straint store is present in the paradigm of Concurrent Constraint Programming
(CCP) [19]; it is not directly comparable as CCP does not include its own rule-
based language for defining constraints. An application of CCP to interactive
systems is described in [20]. There are also some similarities with the Linda
system [21] from the 1980s in which parallel processes communicate through a
common tuple store.

8 Conclusion

We have presented an adaptation of CHR, in the shape of the iiCHR framework,
to be used for interactive installations, and which allows a fairly straightforward
cooperation between different processes collaborating around the same body of
accumulated knowledge. We have used a rather unsophisticated, but effective
common representation of knowledge in terms of text files, which is also easily
accessible from system components written in other programming languages.
However, seen from the iiCHR developer’s point of view the actual representation
is more or less immaterial as reading and writing of these files are integrated in
a natural way into the querying facilities.

Another possible way to use CHR to maintain a shared, developing knowledge
base may be to have a central “knowledge server” as a perpetually running CHR
process, that waits for external requests and executes them one by one in the
developing constraint store. However, this approach may by vulnerable due to
potential memory leaks, failures and runtime errors.

We have considered using a database system for storing constraints instead
of using text files, but the conversion of the output from the database into
constraints would be at least as time consuming as reading a plain text file.

However, it may be interesting to integrate into iiCHR an additional sort of
database resident constraints intended for very large constraint sets with limited
operations. Only small portions determined by a search key should to be loaded
into CHR, and updating could be restricted forms that are easily translated
into INSERT and UPDATE statements of SQL. In forthcoming work, we plan
to make experiments of developing real applications running in the Experience
Cylinder framework [4] mentioned in section 2 to obtain more experience in order
to test and refine the iiCHR design.
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1 Introduction

Our paper presents an application of Constraint Handling Rules (CHR) for the
type analysis of the Q functional language. We implemented the qtchk type
inference tool, which has been developed in a collaborative project between
Budapest University of Technology and Economics and Morgan Stanley Business
and Technology Centre, Budapest.

The main goal of the type inference tool is to detect type errors and provide
detailed error messages explaining the inconsistency. The qtchk program infers
the possible types of all expressions in the program. Consequently, for any syn-
tactically correct Q program the analyser will detect type inconsistencies, and
will assign a type to each type-consistent expression of the Q program at hand.

We reported on the main issues of the type inference application in our
ICLP2012 paper [9]. There we described type inference as a Constraint Satisfac-
tion Problem (CSP) and presented how the task of type analysis can be mapped
onto a CSP. In the present paper we focus on the implementation details: how we
solved this problem using the Constraint Handling Rules extension of Prolog [4,
6].

In Section 2 we briefly introduce the Q language and provide some back-
ground information. In Section 3 we give an overview of the main issues and of
the implementation details of the constraint based type inference tool for Q. Sec-
tion 4 is devoted to the discussion of some difficulties in using CHR. In Section 5
we provide an evaluation of using CHR.

2 Preliminaries

In this section we give some background to our work following [9], where the
reader can find more details. We first introduce the Q programming language,
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and then give an overview of the type language developed for Q. Finally we dis-
cuss the mapping of a type inference task into a Constraint Satisfaction Problem.

2.1 The Q Programming Language

Q is a highly efficient vector processing functional language, which is well suited
to performing complex calculations quickly on large volumes of data.

Types Q is a strongly typed, dynamically checked language. This means that
while each variable, at any point of time, is associated with a well defined type,
the type of a variable is not declared explicitly, but stored along its value during
execution. The most important types are as follows:

– Atomic types in Q correspond to those in SQL with some additional date
and time related types that facilitate time series calculations.1

– Lists are built from Q expressions of arbitrary types, e.g. (1;2.2;‘abc) is
a list comprising two numbers and a symbol.

– Dictionaries are a generalisation of lists and provide the foundation for
tables. A dictionary is a mapping that is given by exhaustively enumerating
all domain-range pairs.

– Tables are lists of special dictionaries that correspond to SQL records.
– Functions correspond to mathematical mappings specified by an algorithm.

Main Language Constructs Q being a functional language, functions form the
basis of the language. A function is composed of an optional parameter list
and a body comprising a sequence of expressions to be evaluated. Function
application is the process of evaluating the sequence of expressions obtained
after substituting actual arguments for formal parameters. For example, the
expression f: {[x] $[x>0;sqrt x;0]} defines a function of a single argument
x, returning

√
x, if x > 0, and 0 otherwise.

Some built-in functions (dominantly mathematical functions) with one or
two arguments have a special behaviour called item-wise extension. Normally,
the built-in functions take atomic arguments and return an atomic result of some
numerical calculation. However, these functions extend to list arguments item-
wise. If a unary function is given a list argument, the result is the list of results ob-
tained by applying the function to each element of the input list. A binary func-
tion with an atom and a list argument evaluates the atom with each list element.
When both arguments are lists, the function operates pair-wise on elements in
corresponding positions. Item-wise extension applies recursively in case of deeper
lists, e.g. ((1;2); (3;4)) + (0.1; 0.2) = ((1.1;2.1); (3.2;4.2))

While being a functional language, Q also has imperative features, such as
multiple assignment2 of variables and loops.

1 Q has the following 16 atomic types: boolean, byte, short, int, long, real, float,
char, symbol, date, datetime, minute, second, time, timespan, timestamp.

2 Assignment is denoted by a colon, e.g. x:x*2 doubles the value of the variable x.
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2.2 Type Language for Q

In this subsection we describe the type language developed for Q. We allow
polymorphic type expressions, i.e., any part of a complex type expression can be
replaced with a variable. Expressions are built from atomic types and variables
using type constructors. The abstract syntax of the type language – which is at
the same time the Prolog representation of types – is as follows:

TypeExpr =

AtomicTypes | TypeVar | symbol(Name ) | any

| list(TypeExpr ) | tuple([TypeExpr ,...,TypeExpr ])

| dict(TypeExpr , TypeExpr ) | func(TypeExpr , TypeExpr )

AtomicTypes This is shorthand for the 16 atomic types of Q. Furthermore, the
numeric keyword is used to denote a type consisting of all numeric values.

TypeVar represents an arbitrary type expression, with the restriction that the
same variables stand for the same type expression. Type variables make it
possible to define polymorphic type expressions, such as list(A) -> A (a
function mapping a list of a certain type to a value of the given type) and
tuple([A,A,B]).

symbol(Name ) The named symbol type is a degenerate type, as it has a single
instance only, namely the provided symbol. Nevertheless, it is important
because in order to support certain table operations, the type reasoner needs
to know what exactly the involved symbols are.

any This is a generic type description, which denotes all data structures allowed
by the Q language.

list(TE ) The set of all lists with elements from the set represented by TE.
tuple([TE 1, ..., TE k]) The set of all lists of length k, such that the ith

element is from the set represented by TEi.
dict(TE 1,TE 2) The set of all dictionaries, defined by an explicit association be-

tween domain list (TE1) and range list(TE2) via positional correspondence.
func(TE 1, TE 2) The set of all functions, such that the domain and range are

from the sets represented by TE1 and TE2, respectively.3

2.3 Type Inference as a Constraint Satisfaction Problem

In this subsection we give an overview of our approach of transforming the
problem of type reasoning onto a CSP. Type reasoning starts from program
code that can be seen as a complex expression built from simpler expressions.
Our aim is to assign a type to each expression appearing in the program in a
coherent manner. The types of some expressions are known immediately, while
other kinds of information are provided by the program syntax, which imposes
restrictions between the types of certain expressions. The aim of the reasoner is
to assign a type to each expression that satisfies all the restrictions.

3 To help readability, we often use the notation A -> B instead of func(A,B).
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We associate a CSP variable with each sub-expression of the program. Each
variable has a domain, which initially is the set of all possible types. Different
type restrictions can be interpreted as constraints that restrict the domains of
some variables. In this terminology, the task of the reasoner is to assign a value
to each variable from the associated domain that satisfies all the constraints.
However, our task is more difficult than a classical CSP, because there are in-
finitely many types (e.g. tuples can be of arbitrary length), which cannot be
represented explicitly in a list. Representing infinite domains is a challenge for
performing type reasoning.

Partial Ordering We say that type expression T1 is a subtype of type expression
T2 (T1 ≤ T2) if, and only if, all values that belong to T1 also belong to T2. The
subtype relation determines a partial ordering over the type expressions.

For example, consider the tuple([int,int]) type which represents all lists
of length two, where both elements are integers. It is obvious that every value
that belongs tuple([int,int]) also belongs to list(int), i.e., the type ex-
pression tuple([int,int]) is a subtype of list(int).

It is very easy to check whether the subtype relation holds between two type
expressions. For atomic type expressions this is immediate. Complex type expres-
sions can be checked using some simple recursive rules. For example, list(A) is
a subtype of list(B) if, and only if, A is subtype of B.

Finite Representation of the Domain The domain of a variable is initially the
set of all the types, which can be constrained with different upper and lower
bounds, based on the partial ordering.

An upper bound restriction for variable Xi is a list Li = [Ti1, . . . , Tini
],

meaning that the upper bound of Xi is
⋃ni

j=1 Tij , i.e., the type of Xi is a subtype
of some element of Li. Disjunctive upper bounds are very common and natural in
Q, for example, the type of an expression might have to be either list or dict.
The conjunction of upper bounds is easily described by having multiple upper
bounds. If variable Xu gets a new upper bound Lv (e.g. because it turns out
that variable Xu is a subtype of Xv, and so Xu inherits the upper bound of Xv),
this means that the value of Xu has to be in

⋃
(Tuj

⋂
Tvk), for all 1 ≤ j ≤ nu

and 1 ≤ k ≤ nv.
A lower bound restriction for variable Xi is a single type expression Ti,

meaning that Ti is a subtype of Xi. For lower bounds, it is their union which is
naturally represented by having multiple constraints: if X has two lower bounds
T1 and T2, then T1 ∪T2 is a subtype of X. We do not use lists for lower bounds,
so we cannot represent the intersection of lower bounds. We chose this represen-
tation because no language construct in Q yields a conjunctive lower bound.

3 Implementing Type Inference using CHR

We built a Prolog program called qtchk that implements the type reasoning as
a Constraint Satisfaction Problem using the Constraint Handling Rules library.
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It runs both in SICStus Prolog 4.1 [7] and SWI Prolog 5.10.5 [8]. It consists of
over 8000 lines of code4. Q has many irregularities and lots of built-in functions
(over 160), due to which a complex system of constraints had to be implemented
using over 60 constraints. The detailed user manual for qtchk can be found in [3]
that contains lots of examples along with the concrete syntax of the Q language.

The system has two main components: a parser and a type inference engine.
The parser builds an abstract tree (AST) representation of the code, where each
node represents a sub-expression. Afterwards, we traverse the AST and formulate
CHR constraints on which type inference is performed. Both phases detect and
store errors, which are presented to the user. In this section we focus on the
implementation of the CHR based type inference component.

3.1 Representing variables

All subexpressions of the program are associated with CSP variables. If some
constraint fails, we need to know which expression is erroneous in order to gen-
erate a useful error message. If the arguments of the constraints are Prolog
variables, we do not have this information at hand. Hence, instead of variables
we use identifiers ID = id(N,Type,Error)5 which are Prolog terms with three
arguments: an integer N which uniquely identifies the corresponding expression,
the type proper Type (which is a Prolog variable before the type is known) and
an error flag Error which is used for error propagation. We use the same rep-
resentation for type variables in polymorphic types, e.g. the type list(X) may
be represented by list(id(2)).

3.2 Constraint Reasoning

After parsing, the type analyser traverses the abstract syntax tree and imposes
constraints on the types of the subexpressions of the program. The constraints
describing the domain of a variable are particularly important, we call them
primary constraints. These are the upper and lower bound constraints. We will
refer to the rest of the constraints as secondary constraints. Secondary constraints
eventually restrict domains by generating primary constraints, when their argu-
ments are sufficiently instantiated (i.e., domains are sufficiently narrow).

Our aim is to eventually eliminate all secondary constraints. If we manage to
do this, the domains described by the primary constraints constitute the set of
possible type assignments to each expression. In case some domain is the empty
set, we have a type error. Otherwise, the program is considered type correct.

If the upper and lower bounds on a variable determine a singleton set6,
then we know the type of the variable and we say that it is instantiated. If

4 We are happy to share the code over e-mail with anyone interested in it.
5 In order to make the examples easier to read, we will omit the two variable arguments

of the id/3 compound term, i.e. use id(N) instead of id(N,Type,Error).
Also note that we will use the terms “variable” and “identifier” interchangeably.

6 This is the case, e.g., when the lower and upper bounds are the same, or when there
is an atomic upper bound.
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all arguments of a secondary constraint are instantiated, then there are two
possibilities. If the instantiation satisfies the constraint, then the latter can be
removed from the store. Otherwise, the constraint fails.

Constraint reasoning is performed using the Constraint Handling Rules li-
brary of Prolog. In the next two paragraphs we describe how these constraints
interact with each other.

Interaction of Primary Constraints Primary constraints represent variable do-
mains. If a domain turns out to be empty, this indicates a type error and we
expect the reasoner to detect this. Hence, it is very important for the constraint
system to handle primary constraints as “cleverly” as possible. For this, we for-
mulated rules to describe the following interactions on primary constraints:

– Two upper bounds on a variable should be replaced with their intersection.
– Two lower bounds on a variable should be replaced with their union.
– If a variable has an upper and a lower bound such that there is no type that

satisfies both, then the clash should be made explicit by setting the upper
bound to the empty set.

– Upper and lower bounds can be polymorphic, i.e., might contain other vari-
ables. Since lower bounds must be subtypes of upper bounds, we can prop-
agate constraints to the variables appearing in the bounds.

We illustrate our use of CHR by presenting some rules that describe the
interaction of primary constraints. Our two primary constraints are

– subTypeOf(ID,L): The type of identifier ID is a subtype of some type in L,
where L is a list of polymorphic type expressions.

– superTypeOf(ID,T): The type of identifier ID is a supertype of type T, a
polymorphic type expression.

With polymorphic types we can restrict the domain by a type expression con-
taining the – not yet known – type of another identifier. If the type of such an
identifier becomes known, the latter is replaced by the type in the constraint.
For example, consider the following two constraints:

subTypeOf(id(1),[float,list(id(2))])

superTypeOf(id(1),tuple([id(3),int])

Suppose the types of id(2) and id(3) both turn out to be int. Then the above
two constraints are automatically replaced with constraints:

subTypeOf(id(1),[float,list(int)])

superTypeOf(id(1),tuple([int,int])

Due to the lower bound, float can be eliminated from the upper bound.
This is performed by the following CHR rule:

superTypeOf(X,A) \ subTypeOf(X,B0) <=> eliminate_sub(A, B0, B) |

subTypeOf(X, B).
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Here, the Prolog predicate: eliminate sub(A,B0,B) means that the list of upper
bounds B0 can be reduced to a proper subset B based on lower bound A.

To conclude the above example, we obtain:

subTypeOf(id(1),[list(int)])

superTypeOf(id(1),tuple([int,int])

In another example, we show how two upper bounds on the same identifier
are handled. Suppose we have the following constraints:

subTypeOf(id(1),[float,list(int)])

subTypeOf(id(1),[tuple([int,int]),func(int,float)])

The upper bounds trigger the following CHR rule:

subTypeOf(X,T1), subTypeOf(X,T2) <=> type_intersection(T1,T2,T) |

create_log_entry(intersection(X,T1,T2, T)),

subTypeOf(X,T).

The predicate type intersection(T1,T2,T) posts a constraint stating T is the
intersection of T1 and T2. We obtain a single upper bound:

subTypeOf(id(1),[tuple([int,int])])

Interaction of the Secondary Constraints Unfortunately, it is not realistic to cap-
ture all interactions of secondary constraints as that would require exponentially
many rules in the number of constraints. Hence, we only handle the interaction
of secondary constraints with primary constraints. This means, we do not have
any CHR rules with multiple secondary constraints in their heads. Secondary
constraints restrict domains by generating the proper primary and secondary
constraints, when the domains of their arguments are sufficiently narrow: if cer-
tain arguments of the constraints are within a certain domain, then some other
argument can be restricted further.

We obtain most of our secondary constraints from the program syntax. In
general, a syntactic construct imposes restrictions on the types of its subcon-
structs. E.g., the type of the left side of an assignment has to be at least as
“broad” as the type of the right side. Similarly, for every built-in function, there
is a well-defined relation between the types of its arguments and the type of the
result. These relations can be expressed with corresponding CHR constraints.

For example, we use the secondary constraint sum/3 to capture the relation
between the types of arguments and that of the result of the built-in function ‘+’.
Let us consider the Q expression x+y, and let the types associated with x, y and
x+y be id(1), id(2), and id(3), respectively. This Q expression gives rise to
the secondary constraint sum(id(1), id(2), id(3)). If the first argument of
sum/3 turns out to be integer, then the type of the second argument and the type
of the result must be the same (according to the behaviour of the function ‘+’ in
Q). Consequently, the sum constraint can be removed from the constraint store,
and a new constraint eq(id(2), id(3)) is added, expressing the equivalence of
two types. This is performed by the following CHR simplification rules:
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sum(X,Y,Z) <=> known_type(X,int) | eq(Y,Z).

sum(X,Y,Z) <=> known_type(Y,int) | eq(X,Z).

3.3 Error Handling

During constraint reasoning, a failure of Prolog execution indicates some type
conflict. In such situations, before we roll back to the last choice point, we re-
member the details of the error. We maintain a log7 that contains entries on
how various domains change during the reasoning and what constraints were
added to the store. Furthermore, to make error handling more uniform, when-
ever secondary constraints are found violated, they do not lead to failure, but
they set some domain empty. Hence, we only need to handle errors for primary
constraints. Whenever a domain gets empty, we mark the expression associated
with the domain and we look up the log to find the domain restrictions that
contributed to the clash. We create and assert an error message and let Prolog
fail. For example, the following message

Expected to be broader than (int -> numeric) and

narrower than (int -> int)

file:samples/s1.q line:13 character:4

{[x] f[x]}

^^^^^^^^^^

indicates that the underlined function definition is erroneous: the return value
is numeric or broader (inferred from the type of f), although it is supposed to
be narrower than integer (inferred from a type declaration).

3.4 Labeling

After all constraints are added to the constraint store, we use labeling to find
a type assignment to each program expression (i.e., to each identifier associated
with a node of the abstract syntax tree) that satisfies the constraints. This
involves another traversal of the abstract syntax tree to make sure no program
expression is left without a type assignment. We select the next identifier X to be
labelled and set its domain to a singleton set, based on its current domain. We
implemented this by adding a new constraint label(X). This constraint triggers
the narrowing of the domain of X through the following CHR rules:

label(X) <=> id_known_type(X,_) | true.

label(X), superTypeOf(X,A), subTypeOf(X,L) <=>

label_upwards(X,A,L,Type),

hasType(X,Type).

label(X), superTypeOf(X,A) <=>

label_upwards(X,A,[any],Type),

7 We use the create log entry procedure in all CHR rules to facilitate creating error
messages.
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hasType(X,Type).

label(X), subTypeOf(X,L) <=>

label_downwards(X,L,Type),

hasType(X,Type).

label(X) <=>

label_downwards(X,[any],Type),

hasType(X,Type).

First, we check if the type of X is already known. If so, we do nothing. Otherwise,
we have four cases based on the presence or absence of a lower and upper bound:

– If we have a lower and an upper bound, we nondeterministically select a
type from the domain. We start from the lower bound and successively try
the broader types. This directionality is comfortable for implementation,
because while a type might have many subtypes (e.g. any tuple of integers
is a subtype of the type ‘list of integers’), it has only few supertypes.

– If only a lower bound is present, we set the upper bound to any and proceed
as in the previous case.

– If only an upper bound is present, we start from that type and go successively
to its subtypes.

– If there is neither a lower, nor an upper bound, then we assume an implicit
upper bound any and proceed as above.

Note that the hasType/2 constraint, use above in the labeling code, translates
to an upper and a lower bound:
hasType(X,Y):- subTypeOf(X,[Y]), superTypeOf(X,Y).

4 Difficulties

In this section, we discuss some difficulties that we had to overcome during the
implementation of the type inference tool. These problems arose on the one hand
from some special features of the Q language, and on the other hand from some
limitations of the CHR library used. We hope that these experiences can be
useful for the CHR community.

4.1 Handling Meta-Constraints

As we described earlier, several built-in functions of Q have a special behaviour,
called item-wise extension. We discuss the implementation of this feature now.

Let us consider, for example, the constraint sum which captures the relation
between the arguments and the result of the built-in function ‘+’. If some of the
arguments turn out to be lists, then the relation should be applied to the types
of the list elements. We could capture this by adding adequate rules to the sum

constraint. However, the rules describing the list extension behaviour would have
to be repeated for each built-in function, which is counter-productive. Instead,
we introduced a meta-constraint list extension/3.
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Consider a binary built-in function f , which extends item-wise to lists in both
arguments and which imposes constraints Cs on its atomic arguments and result.
Suppose that f has argument types identified by X, Y and a result type identified
by Z. We cannot add the constraints of Cs to the constraint store until we know
that the arguments are all of atomic type. Instead, we use the meta-constraint
list extension(Dir,Args,Fun), where Dir specifies which arguments can be
extended item-wise to lists, Args is the list of arguments on which the list of
constraints8 imposed by function Fun, will have to be formulated.

Hence, the constraint list extension(both,[X,Y,Z],+) is added in our
example. If later the input arguments are inferred to be atomic, then the meta-
constraint list extension/3 adds the atomic constraints Cs and removes itself:

subTypeOf(X,Ux), subTypeOf(Y,Uy) \

list_extension(both,[X,Y,Z],Fun) <=> nonlist(Ux), nonlist(Uy) |

list_ext_constraints(Fun,[X,Y,Z],Cs), ( foreach(C,Cs) do C ).

Here, the complicated part is to find the arguments of the proper constraints
imposed by the given built-in function. We solved this by asserting the relevant
information in the list ext constraints predicate. E.g. in the case of the Q
function ‘+’ we have the following fact:

list_ext_constraints(+, [A,B,C], [sum(A,B,C)]).

If, on the other hand, some argument turns out to be a list, the meta-
constraint is replaced by another one. For example, if we know that the types of
X and Y are list(A) and list(B), then the type of Z must be a list as well and
we replace the list extension constraint with the following two constraints:
list extension(both,[A,B,C],+) and hasType(Z,list(C)).

In fact, the difficulty of the implementation was caused by the following
restriction of CHR: it is not possible to refer to a constraint in a rule head by
supplying a variable holding its name and a list of its arguments (cf. the call/N

built-in predicate group of Prolog).
To express item-wise extension, it would be more convenient to write rules

where the name of a constraint can also be a variable. If such “meta-rules” were
available the list extension meta-constraint would become unnecessary.

For example, in the case of unary functions, where the corresponding con-
straint has two arguments (the input and the output types), item-wise extension
could be implemented using the following, quite natural “meta-rule”9:

call(Cons,A,B) <=> is_list(A,X), is_list_extensible(Cons) |

call(Cons,X,Y), hasType(B,list(Y)).

where is list extensible(Cons) succeeds exactly when Cons has the list-
extension behaviour, is list(A,X) means that the type of A is list(X).

8 Note that there are several built-in functions, whose type is described using more
than one constraint.

9 Here we assume that CHR supports meta-constraints in rule heads using the call/N

formalism of Prolog.
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4.2 Copying Constraints over Variables

Local variables are made globally unique by the parser. This means, that vari-
ables with the same name have the same value, so we can constrain their types
to be the same. However each occurrence of a variable that holds a polymorphic
function can have a different type assigned. Let us show an example:

f:{[x] x+2} (1)

...

f [2] (2)

...

f [1.1f] (3)

In the first line, f is defined to be a function having a single argument x which
returns x+2. This means that the type of f is a (polymorphic) function which
maps A to B (A -> B), where a secondary constraint sum(A, int, B) holds
between the argument and the result. In (2) and (3) there are two different
applied occurrences of function f, which specialise this sum constraint in two
independent ways. In these examples f is applied to an integer and to a float,
therefore the types of the second and third occurrence of f are int -> int and
float -> float.

The above example shows that if the type of a variable is a (polymorphic)
function then we cannot assume that the type of an applied occurrence is the
same as that of the defining occurrence. To capture the relationship between
these types we introduced a relationship, called “specialisation”, which holds if
the type of the applied occurrence can be obtained from that of the defining
occurrence by first copying it and then substituting zero or more type variables
in it with (possibly polymorphic) types.

A straightforward natural implementation of the “specialisation” constraint
would be the following:

– at the defining occurrence of a variable: post the relevant type constraints;
– at the applied occurrence of a variable: read the type constraints posted for

a variable and apply the “specialisation” relationship.

This approach requires that the CHR library provides means for accessing the
constraints that involve a specified argument, a feature similar to the frozen(X.
Goals) built-in predicate of SICStus Prolog. Unfortunately, the CHR implemen-
tations we used do not have this feature. This means that a Q variable holding
a polymorphic function has to be treated specially: the constraints involving its
type have to be collected and remembered, so that they can be accessed at the
applied occurrences of the given Q variable.

We strongly believe that in order to support this and similar use cases, CHR
libraries should provide access to the constraints that are in the store.

4.3 Handling Equivalence Classes of Variables

The constraint system yields lots of equalities. For example, two occurrences
of the same (non-function-valued) variable give rise to an equality constraint.
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One way to handle this is to propagate all primary constraints between equal
variables, i.e. whenever X = Y , Y inherits all primary constraints of X and
the other way round. For example, a simple implementation of propagating the
upper bounds in the equality constraint (eq/2) would be the following:

eq(X,Y), subTypeOf(X, T) ==> subTypeOf(Y,T). (1)

eq(X,Y), subTypeOf(Y, T) ==> subTypeOf(X,T). (2)

Unfortunately, this solution is rather inefficient, since all reasoning is repeated for
each variable made equal to some other one. Moreover, we have found cases which
lead to an infinite propagation of CHR constraints. In the following paragraph
we outline an example of this.

As we have seen in Section 3 two upper bounds on a variable are replaced
with their intersection. Let us suppose that variable A has two upper bounds
list(X) and list(Y). There is an intersection rule which replaces these two
with the upper bound list(Z), where Z is a new variable and Z ≤ X and Z ≤ Y

also have to be satisfied. Consider the following state of the constraint store:

eq(id(1), id(2)),

subTypeOf(id(1), [list(id(3))]),

subTypeOf(id(2), [list(id(4))]).

First the equality rule can fire, yielding two upper bounds on id(1) and id(2).
Now, the intersection rule can produce new upper bounds on these variables,
which can be propagated to the other variable by the equality rule again.

It is easy to show that the above constraint store yields an infinite loop using
these rules. Consider the following condition C: The two variables (id(1) and
id(2)) have got at least two upper bounds in total, where each variable has at
least one, and there exist two upper bounds, on which the intersection rule has
not fired yet. It is easy to see that if C holds, then at least one rule can fire
(intersection, or equality). On the other hand C is an invariant condition, as
when any of these two rules fire. C remains true, if it was true before. Together
with the initial state, where C also holds, this constraint store yields an infinite
loop (regardless of the rule execution order).

The problem is caused by repeating the reasoning at each equal identifier.
We solved this by introducing a directionality to the constraint propagation:
we take a strict total order on identifiers and only propagate constraints to-
wards the smaller identifier. The smallest in a set of equal identifiers thus rep-
resents the whole set in the sense that it accumulates all constraints.10 Once
the type of the smallest identifier becomes known, it gets propagated back to
the other identifiers. Hence, instead of eq(X,Y) we introduced the constraint
represented by(X,Y), where Y ≤ X holds. Furthermore, for all constraints C
we have a new rule, which states that if X is represented by Y and X occurs in C,
then it should be substituted with Y. As we could not formulate meta-constraints
with CHR, we had to provide propagation rules for every single constraint. For
example, in case of the constraint sum we needed the following code:

10 This is similar to how Prolog handles the unification of two variables.
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represented_by(A,B) \ sum(A,C,D) <=> sum(B,C,D).

represented_by(A,B) \ sum(C,A,D) <=> sum(C,B,D).

represented_by(A,B) \ sum(C,D,A) <=> sum(C,D,B).

This yielded lots of new rules, however, it was easy to generate them automati-
cally, using a small Prolog program.

There are efficiency problems even with this solution. Suppose we have the
following constraint: c(...,id(2),...) and a propagation rule R, whose head
matches the above constraint (possibly involving other heads) and the body of
the rule contains a new CHR constraint: d(...,id(2),...). If id(2) later turns
out to be equivalent to id(1), then we substitute id(2) with id(1) in every
constraint that contains id(2). This yields a store with constraints:

c(...,id(1),...)

d(...,id(1),...)

The propagation rule (R) can fire now, which might infer the second constraint
(d) again. In order to avoid further efficiency losses we added idempotency rules
for every constraint, that is, we remove duplicate constraints.

However, this solution also has a negative consequence. It is possible that
duplicate constraints yield redundant inferences, if these are fired before the
idempontency rules. Consider the following example: let the constraint store
contain constraints Ci for all 1 ≤ i ≤ n, furthermore let us suppose we have
propagation rules (Rj): Cj => Cj+1 for all 1 ≤ j ≤ n − 1. Let us examine
what happens when C1 is a constraint inferred redundantly (twice), as described
above. If the Rj rules are fired before the idempontency rules, then it is possible
that we infer all Ci constraints twice, before eliminating the duplicates. This
results in 2n inference steps instead of the optimal 1 (if the duplicate C1 is
eliminated before applying rules Rj). The problem occurs because we have no
control over the firing order of CHR rules with different heads. We believe that
a way to prescribe the order of such rules, e.g. using some priorities, would often
help in improving the efficiency of CHR applications.

The solution of this problem of redundant inference is still an open question.

4.4 Labeling

The implementation of labeling posed several challenges. We noticed that the
order in which identifiers are selected is crucial for efficiency. For example, it
is important to label subexpressions first and then find the type of a complex
expression. Another example is the function application, where labeling should
first assign a type to the input and then the type of the output is typically auto-
matically inferred by the constraints. Consequently, labeling involves a traversal
of the abstract syntax tree, and at each node we decide the order in which ex-
pressions are labelled based on the syntactic construct involved. Often we had to
rely on heuristics as it was hard to guess what order would work best in practice.

The next difficulty arises when we already know which identifier to label,
and we have to choose a value. The set of all types is infinite, so we cannot try
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all values for a variable during labeling. hence we made some restrictions. First,
we only allow a fixed increase in the term depth of types. This depth increase
was experimentally set to two. E.g. if X is known to be a subtype of list(any),
then we replace any with terms of depth at most two. Hence, we will not replace
any with list(list(list(int))).

Second, we restrict using the tuple type. This is needed because tuples can
have arbitrarily many arguments. If there is an identifier X and neither its
lower nor its upper bound contains the tuple type, then we do not assign a
tuple type to it. E.g. if X has the upper bound list(int), then we only try
list(int). If, however, X also has a lower bound tuple([int,int]), then we
try both tuple([int,int]) and list(int). We have found no Q programs
where these restrictions led labeling astray: not finding an existing assignment.
This is because nested types are not typical in Q and because our constraint
system tends to recognise the need for a tuple type before labeling.

The main challenge of labeling comes from the fact that it aims to traverse
a huge search space. The abstract syntax tree can have many nodes even for
moderately long programs, hence we have many identifiers. Besides, Q programs
are typically full of ambiguous expressions (in terms of type), so without label-
ing, very few types are known for sure. All this amounts to labeling being the
bottleneck of type inference.

A solution to this problem would be to find a good partitioning of the pro-
gram, such that not all the tree is labelled together, but in smaller portions.
Consider, for example, two function definitions. The first expression contains an
expression E1 that allows many different types. Labeling assigns one possible
type to E1 and then starts labeling the second function definition. Suppose the
second definition contains a type error at expression E2 which leads labeling to
failure. Hence, we backtrack to the choice point at E1, and assign another pos-
sible type to E1. However, this type has nothing to do with the type mismatch
– since it occurs in a different function definition, – and we get failure again at
E2. This cycle is repeated until all possible types for E1 are tried and only then
do we conclude that the contains a type error. This procedure could be made
more efficient by placing a cut after labeling the first function definition, thus
eliminating the irrelevant choice point. Realizing that the types of expressions
in one piece of code are independent from those of another can lead to much
smaller fragments to be labelled, which has the potential to drastically reduce
the time spent on labeling. Dependency analysis ([1]) could be used to find a code
partitioning. Also, some kind of intelligent backtracking ([2]) algorithm could be
used to avoid unnecessary choice points. However, adapting these techniques to
the Q language requires further work.

5 Evaluation and Future Work

In this section we discuss our motivation for using CHR in the implementation of
the type inference tool and summarise our experiences. We also mention topics
that we intend to explore in the near future to improve our type reasoner.
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5.1 Why Use CHR?

As we have seen in Subsection 2.2, our types are not necessarily disjoint (e.g. list
and tuple). If the type of an expression becomes known to be a list of integers
(list(int)), it is possible that later it is further narrowed down to a specific
tuple (e.g. tuple(int,int)). Such a behaviour would be quite difficult to achieve
in a unification based (purely Prolog) setup. This recognition led us to handle the
problem of type inference as a CSP. Nevertheless, the number of possible types
– even with some depth limit – is so large that it is hard to imagine an efficient
implementation based on the CLP(FD) library. Furthermore, mapping the types
to natural numbers (required by most CLP(FD) libraries) is also a non-trivial
task. Choosing CHR for type reasoning seemed to be a good decision, as it is
flexible enough to handle the above problems. These considerations motivated
the use of the CHR library.

5.2 Our Experiences with Using CHR

CHR has proved to be a good choice as it is a very flexible tool for describing
the behaviour of constraints. In CHR, arbitrary Prolog structures can be used
as constraint arguments, therefore it was natural to handle the special domain
defined by the type language.

However, we also had negative experiences with CHR. As described in Sec-
tion 4, it often would be more convenient if we could write “meta-rules” in CHR.
The need to access the constraint store also arose in some situations. For effi-
ciency reasons, we believe it would often be useful to be able to influence the
firing order of rules with different heads. Furthermore, the most of the debugging
of our CHR programs was seriously hampered by the lack of a tracing tool.

5.3 Future Work

Lots of difficulties arose from our decision to represent CSP variables with identi-
fiers, instead of using logical variables. This complicates handling the type equal-
ity of expressions. We introduced identifiers to facilitate error handling: whenever
a constraint fails, its identifier arguments allows for immediately pointing to the
erroneous expression in the program. We intend to explore the possibility of
returning to logical variables, since it promises to be much more efficient.

There is an extension of CHR which allows for providing rule priorities,
called CHRrp [5], which could help avoiding some efficiency problems that we
mentioned in Section 4.

We would also like to examine our constraint propagation mechanism in
terms of soundness and completeness, in order to be able to make more precise
statements about the output of the reasoner.

Conclusion

This paper summarised our experiences using CHR for type analysis of program-
ming languages. We found CHR to be a valuable tool, however, we believe there
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is still room for improvement: giving the programmer greater control over the
constraint reasoning mechanism could further increase programmer productivity.
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Abstract. We present Womb Grammars, a novel constraint-based frame-
work implemented in CHRG and particularly useful for inducing, from
known linguistic constraints that describe phrases in a language called
the source, the linguistic constraints that describe phrases in another lan-
guage, called the target. We present as well an application that uses as
source an existing language fairly related to the target. Next we propose
and motivate an intriguing research thread that uses as source language
a (non-natural but coupled with our framework, generatively very pow-
erful) universal language of our own device. Finally, we discuss further
ramifications of our work.
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1 Introduction

Language processing typically involves analyzing or generating sentences in a
given language. In the case of analysis, there is an implicit aim of sanctioning
the input as correct or incorrect with respect to the grammar, which itself is
assumed to be correct. Incorrect sentences will either just fail to be analyzed or
be explicitly identified as incorrect, with or without a rationale being given. In
the case of synthesis, the aim is to produce correct sentences or phrases from
some given representation of their meaning. Also in this case the (purportedly
correct) grammar sanctions sentences as correct (by producing them as output).

A less typical, but also useful language processing activity is that of grammar
sanctioning, where the input’s correctness is known and the grammar must be
either completed, corrected or fully inferred. For instance, in the area of grammar
induction, a formal grammar (or a subset thereof) is inferred from corpora of
correct and incorrect sentences with the aid of machine learning methods. A
recent survey of this field can be found in D’Ulizia et al [9].

In this article we propose a use of grammar sanctioning which, to the best of
our knowledge, is novel: inferring a language’s syntax given its lexicon, a suffi-
ciently representative set of correct phrases in it, and the property-based syntax
of another language. Section 2 presents the background and motivation. Section
3 describes our Womb Grammar Model, first in its Hybrid Parsing incarnation
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and next as Universal Grammar Parsing, and then discusses existing and pos-
sible extensions. Section 4 presents implementation details, and Section 5 our
concluding remarks.

2 Motivation, Background

Since the advent of CHR [10] and of its grammatical counterpart CHRG [6],
constraint-based linguistic formalisms can materialize through fairly direct method-
ologies. During a recent visit to Universite de Nice, we proposed the use of our
CHRG implementation of Property Grammars [8] to address efficiency concerns
in Jacques Farré’s work on acquiring context-free grammars by applying error-
repair techniques to the grammar (as opposed to the input sentence). Farré’s
work currently uses an extended version of the CYK algorithm in order to re-
pair tree-based grammar rules by either suppressing, inserting or replacing a
symbol, or by permuting two adjacent symbols.1

Although in both method and scope our present work is very distant from
that work, it motivated us to try a constraint-based approach to the extended
problem of inducing grammar constraints. This led us to explore the possibility
of using the known constraints of related languages, which resulted in the present
work.

Grammar induction has met with reasonable success using different views of
grammar: a) as a parametrized, generative process explaining the data [15,12],
b) as a probability model, so that learning a grammar amounts to selecting a
model from a prespecified model family [4,16,7], and c) as a Bayesian model of
machine learning [11].

Using linguistic information from one language for the task of describing
another language has also yielded good results, albeit for specific tasks—such
as disambiguating the other language [3], or fixing morphological or syntactic
differences by modifying tree-based rules [13]—rather than for syntax induction.

This usually requires parallel corpora, an interesting exception being [7],
where information from the models of two languages is shared to train parsers for
two languages at a time, jointly. This is accomplished by tying grammar weights
in the two hidden grammars, and is useful for learning dependency structure in
an unsupervised empirical Bayesian framework.

Most of these approaches have in common the target of inferring syntac-
tic trees. As noted, for example, in [2], constraint-based formalisms that make
it possible to evaluate each constraint separately are advantageous in compar-
ison with classical, tree-based derivation methods. For instance the Property
Grammar framework [1] defines phrase acceptability in terms of the properties
or constraints that must be satisfied by groups of categories (e.g. English noun
phrases can be described through a few constraints such as precedence (a deter-
miner must precede a noun), uniqueness (there must be only one determiner),
exclusion (an adjective phrase must not coexist with a superlative), and so on).

1 http://deptinfo.unice.fr/~jf/Airelles/publis/iwpt09.pdf
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Rather than resulting in either a parse tree or failure, such frameworks charac-
terize a sentence through the list of the constraints a phrase satisfies and the
list of constraints it violates, so that even incorrect or incomplete phrases will
be parsed.

As well, simpler models can be arrived at in less costly fashion by giving
up syntactic trees as a focus and focusing instead on grammar constraints, also
called properties. For instance, if we were to work with tree-oriented rules such
as:

np --> det, adj, n.

their adaptation into a language where nouns must precede adjectives would re-
quire changing every rule where these two constituents are involved. In contrast,
by expressing the same rule in terms of separate constraints, we only need to
change the precedence constraint, and the modification carries over to the entire
grammar without further ado.

We therefore propose a method for inferring constraint-based grammars such
as Property Grammars (PG) [1] from a known lexicon and a representative
sample of correct phrases. We already have a working prototype implementation
in terms of Constraint Handling Rule Grammars (CHRG) [6], which we are
optimizing. Our method does not require parallel corpora, does not a priori rely
on probability (although it could be thus enhanced), and exploits the known
grammar of a (manifest or latent) language to complete the grammar of another
language of which we only know the lexicon. Like preceding work, we start by
relying on some syntactic structure that is known but imperfect, and aim at
completing and perfecting it. We then throw away even this starting point, and
derive our constraints from a universal grammar of our own device. Our proof-
of-concept is restricted so far to simple noun phrases and admittedly, our success
within it may not as easily percolate to more encompassing subsets of language.
However it is an elegant and concise solution, already useful in itself, with the
potential to generalize further.

3 The Womb Grammar Model

3.1 A first approach: Hybrid Parsing

The intuitive idea Let LS (the source language) be a human language that
has been studied by linguists and for which we have a reliable parser that accepts
correct sentences while pointing out, in the case of incorrect ones, what gram-
matical constraints are being violated. Its syntactic component will be noted
LSsyntax, and its lexical component, LSlex.

Now imagine we come across a dialect or language called the target language,
or LT , which is close to LS but has not yet been studied, so that we can only
have access to its lexicon (LTlex) but we know its syntactic constraints overlap
significantly with those of LS—perhaps being a dialect of it, or a close “cousin”.
If we can get hold of a sufficiently representative corpus of sentences in LT
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that are known to be correct, we can feed these to a hybrid parser consisting
of LSsyntax and LTlex. This will result in some of the sentences being marked as
incorrect by the parser. An analysis of the constraints these “incorrect” sentences
violate can subsequently reveal how to transform LSsyntax so it accepts as correct

the sentences in the corpus of LT—i.e., how to transform it into LTsyntax. If we
can automate this process, we can greatly aid the work of our world’s linguists,
the number of which is insufficient to allow the characterization of the myriads
of languages and dialects in existence. Figures 1 and 2 respectively show our
problem and our proposed solution through Hybrid Parsing in schematic form.

LSlex LTlexLSsyntax ?LTsyntax

Fig. 1. The Problem

LT
lex LS

syntax

Violated syntax
properties

Grammar 
Repairing 
Module

LT
syntax

LT
corpus

(Correct sentences)

Womb Grammar
Parser

Fig. 2. The Solution

An Example Let LS = English and LT = French, and let us assume that
English adjectives always precede the noun they modify, while in French they
always post-cede it (an oversimplification, just for illustration purposes). Thus
“the blue book” is correct English, whereas in French we would more readily say
“le livre bleu”.

If we plug the French lexicon and the English syntax constraints into our
Womb Grammar parser, and run a representative corpus of (correct) French
noun phrases by the resulting hybrid parser, the said precedence property will
be declared unsatisfied when hitting phrases such as “le livre bleu”. The gram-
mar repairing module can then look at the entire list of unsatisfied constraints,
and produce the missing syntactic component of LT ’s parser by modifying the
constraints in LSsyntax so that none are violated by the corpus sentences.

Some of the necessary modifications are easy to identify and to perform, e.g.
for accepting “le livre bleu” we only need to delete the (English) precedence
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requirement of adjective over noun (noted adj < n). However, subtler modifi-
cations may be in order, perhaps requiring some statistical analysis in a second
round of parsing: if in our LT corpus, which we have assumed representative,
all adjectives appear after the noun they modify, French is sure to include the
reverse precedence property as in English: n < adj. So in this case, not only do
we need to delete adj < n, but we also need to add n < adj.

3.2 An intriguing approach: Universal Grammar Parsing

Note that if the corpus of LT ’s phrases addressed is a representative sample of
correct phrases, and the lexicon is complete and also correct, our problem sim-
plifies tremendously. Constituency (i.e. the property that sanctions some con-
stituents, e.g. ”determiner”, as appropriate for noun phrases) no longer needs to
be checked: we simply list as legal constituents all those that appear in the lex-
icon. Properties (such as precedence, above discussed) that need to be reversed
no longer need a statistical analysis per se, nor a second round of parsing or
a grammar repair module. In fact we do not need a specific source language’s
syntax at all! All we need to do is a) list all categories in the lexicon as legal
constituents, b) postulate a hypothetical LS (which we shall call LU , or Univer-
sal Language) which lists all possible constraints in LT with respect to the legal
constituents, and c) run the corpus sentences through our parser. The desired
grammar for LT is obtained by deleting from LU all those constraints that the
parser detected as unsatisfied.

For instance, instead of listing the French precedence requirement adj <
n to be confirmed or modified by analysis from the corpus, we list the two
(contradicting) LU constraints: adj < n and n < adj (as we do in fact for any pair
of legal constituents of the phrase). As soon as a sentence in the corpus violates
one of these rules, our parser will delete it. If some phrase in the corpus violates
both rules, both will be deleted, corresponding to no precedence requirement
between these two symbols.

Of course, the assumption that we have a completely representative sam-
ple of correct phrases may be unrealistic, for example in the case of indigenous
languages where the native speakers have fluency but little knowledge of gram-
mar concepts. While it is reasonable to rely on the fact that a native speaker
will only produce correct phrases, s/he may have forgotten to inform of some
particular structure which is nevertheless correct. However, we can exploit the
off-line stage of grammar corroboration by the native speaker, which is needed
anyway, to complete the corpus. Any constraints arrived at by the parser which
are not validated by the native informant indicate some flaw of the corpus and
will prompt the linguist to engage in a clarification dialogue with the native
speaker in order to complete the corpus until it is truly representative.

Figure 3 shows the schematic form of our solution in terms of Universal
Grammar Parsing; here our Womb Grammar parser has been modified to not
only detect violated constraints as before, but to delete them from the list of con-
straints of the source (universal) language, and thus produces the list of syntactic
constraints characterizing the (addressed subset of our) target language.
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Fig. 3. Universal Grammar Parsing

3.3 Extensions

There could be interesting theoretical ramifications to our work too. More than
three decades ago, Noam Chomsky put forward what is widely known as the
innate theory of language: that “all children share the same internal constraints
which characterize narrowly the grammar they are going to construct”, and that
exposure to a specific language determines the actual specialization of these
constraints into those of the grammar they will construct [5]. We might say
that these internal constraints, if the theory is correct, characterize what may
be seen as a (latent, perhaps even impossible to materialize by itself) universal
language. Our Womb Grammar formalism might be useful as an experimental
aid to uncovering a core of such universal language constraints phrase by phrase,
perhaps relative to families of languages, or to help shed some light upon specific
areas of linguistic research, e.g. phylogenetic classification.

4 Implementation Details

Our CHRG implementation enters the appropriate Womb Grammar constraints
(i.e., either those of a similar language for our Hybrid Parsing as described in
3.1, or our Universal Language constraints described in 3.2) in terms of a con-
straint g/1, whose argument stores each possible grammar property. For instance,
our English grammar hybrid parser includes the constraints: g(obligatority(n)),
g(constituency(det)), g(precedence(det,adj)), g(unicity(det)), g(requirement(n,det)),
g(dependence(det,n)), and so on. These properties are weeded out upon de-
tection of a violation by CHRG rules that look for them, e.g. an input noun
phrase where an adjective precedes a noun will provoke deletion of the constraint
g(precedence(n,adj)) when the following CHRG rule applies:

!word(C2,_,_), ... , !word(C1,_,_), {g(precedence(C1,C2))} <:>

{update(precedence(C1,C2))}.

Each word is stored in a CHRG symbol word/3, along with its category and
traits (i.e. word(n,[sing,masc],livre)). Since the CHRG parse predicate stores
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and abstracts the position of each word in the sentence, this simpagation rule
is triggered when a word of category C2 comes before one of category C1, given
the existence of the grammar constraint that C1 must precede C2. In CHRG
syntax the symbols prefixed with exclamation points are kept, while the ones
without are replaced by the body of the rule, in this case an update constraint
that invokes some housekeeping procedures. Each of the properties dealt with
has similar rules associated with it.

5 Concluding Remarks

With the modesty of AI workers—that is, without claiming linguistic plausibility—
we have proposed the appealingly simple and elegant Womb Grammar frame-
work as a constraint-based embodiment both of Chomsky’s innate theory of
language, and hybrid language parsing for grammar induction. CHR and CHRG
have once more proved ideal implementation means, since they allow us to both
express and test linguistic constraints in very modular fashion. We have also
shown that this framework allows us to induce property-based grammars for
simple noun phrases in a very direct fashion. Finally, we have shown that if
the corpus of target language sentences is representative, we do not even need
the syntax of a related language: simply by using our proposed universal syntax
(i.e., all constraints that could in theory apply to the phrases targeted, e.g. noun
phrases) we obtain the same good results as with hybrid parsing, while spar-
ing ourselves the need for an explicit module for grammar repair. We postulate
that the same methodology can be used for other types of simple phrases and
probably for more complex phrases as well.

To the best of our knowledge, this is the first time the idea of grammar
induction through weeding out constraints of a hybrid or a universal constraint-
based grammar has been proposed. The most closely related work (in that it is
also based on property grammars) we have been able to find in the literature
addresses grammar development rather than grammar induction, and requires
several parsers and the development of different grammar versions over different
corpora [2].

It is interesting to note that if the input is not totally representative, the
hybrid approach yields a shorter output than the Universal Language one. This
is in line with the transfer hypothesis from the field of Second Language Acqui-
sition, whereby knowledge of one language bleeds into another [14].

Admittedly, extending our work into more complex phrases and incorporating
other language analysis dimensions such as semantics may not prove as elegantly
concise as the restriction to simple phrases has allowed us; however as an aid to
linguists at the very least, it may already be a big service to provide them with
automatic characterizations of core phrases for languages or dialects that have
not yet been studied. Given that the number of living languages in the world is
estimated at 6909 (http://www.ethnologue.com/), the practical implications of
our work stand to be mind-boggling. With this initial work we hope to stimulate
further research along these lines.
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Abstract. Various methods for solving non-linear algebraic systems ex-
ist, as this question is amongst the most popular in both the realm of
mathematics and computation. As most of these methods use approx-
imations, this work focuses on finding and directly solving a tractable
subset. Bivariate binomial systems of non-linear polynomial equations
were chosen and solved by simulating the by hand method, using the
declarative logic programming language Constraint Handling Rules. Sub-
stitution methods and different equation notations are used to extend the
solvability of the subset.

Key words: Binomial, Bivariate, Constraint Handling Rules, Non-linear,
Polynomial, Substitution

1 Introduction

The world we live in is to the most part non-linear. Thus, it is natural that non-
linear systems reoccur everywhere around us. Diverse fields of science and life,
such as mechanics, robotics, chemistry and economics require solving non-linear
systems for their basic applications. The special case of polynomial systems
occurs even more frequently in the real world and has the advantage of being
simpler than random non-linear systems and easier to visualize.

Solving non-linear algebraic systems of equations, polynomial and non-poly-
nomial, is a very important subfield of mathematics, as non-linear systems of
equations can not be solved quantitatively but to the most part only through
approximations. Over the years many different methods for solving non-linear
polynomial and non-polynomial systems of equations have been developed. The
most common approaches for dealing with non-linear equations are either numer-
ical or symbolic [18, 11, 12], continuation [16], reduction [19, 20] or iterative and
interval methods [17, 14, 5, 9, 13], and sometimes even a combination of them,
for example in most computer algebra tools [26] and [4]. But only one of these
algorithms is based on the logic programming paradigm using the rule based pro-
gramming language Constraint Handling Rules, namely INCLP(R) [6], which is
also based on approximating results of a non-linear system.

The aim of this work and the conducted research is finding a tractable sub-
set of non-linear systems of equations, for which exact roots can be efficiently
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and non-aproximatively calculated and providing a Constraint Handling Rules
(CHR) solver for said subset. The subset chosen is that of binomial bivariate
equation sets and polynomial equations of degrees up to four. The method de-
rived for solving this subset, is one that simulates one of the possible approaches
of humans when met with such problem sets. The implemented solver artificially
reanimates what humans would do by hand, always baring in mind the most ef-
ficient approach given the problem set and the advantages provided by CHR. It
basically uses isolation and substitution methods for solving the bivariate system
of non-linear equations.

The majority of the various pre-existing methods for solving non-linear polyno-
mial equation sets, especially those in the context of constraint programming,
are based on interval and approximation methods. This work focuses on trying
to find the largest subset that can be solved exactly and thus having the highest
precision possible.

The problem field is narrowed down to cover non-linear polynomial equations.
Starting from bivariate systems, alongside univariate equations with degrees less
than five, accuracy and solvability could be ensured. As proof of concept, the
solver algorithm was tested for the binomial case.

2 Concepts

2.1 Algebra

Properties of Equations Univariate equations are ones with one variable,
while bivariate equations have two variables. We distinguish between univariate
and multivariate polynomials, meaning polynomials with only one variable and
multiple variables respectively.

Non-linear System of Equations and its Roots A non-linear system of
equations is a set of n equations, containing at least one non-linear equation;
meaning an equation with degree not equal to one. Finding the roots of the
system of equations, means finding a vector x = (x1, ..., xn) that simultaneously
solves all equations within the systems [25]. Non-linear systems of equations
can either have a finite number of solutions, infinite solutions (consistent) or no
solutions at all (inconsistent). Under-defined systems of equations are ones with
more variables than equations, while an over-defined system has more equations
than variables.

Polynomials A polynomial is a finite sum of terms with non-negative degrees.
A polynomial consisting of one term is called monomial and that of two terms
is called binomial. The standard form of polynomial equations is P (x) = cnx

n+
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cn−1x
n−1 + ... + c0, where ci ∈ Q, n ∈ Z, cn 6= 0 and n 6= 0. According to the

fundamental theorem of algebra, any polynomial equation can be expressed as
P (x) = cn(x−r1)(x−r2)...(x−rn), where ri ∈ C are the roots of the polynomial.
Such roots can be directly determined for univariate polynomial equations with
degrees up to four, for which solution formulae exist [21, 15]. It was however
proven that no such formulae could exist for polynomial equation with higher
degrees [22–24].

2.2 Constraint Handling Rules

Constraint Handling Rules (CHR) is a high-level, constraint-based, declarative
logic programming language, invented by Prof. Thom Frühwirth in 1991. CHR
adapts the basic concepts of mathematical logic representation and is thus highly
and easily applicable to various problems. CHR is a committed-choice, single-
assignment language, with multi-headed rules and conditional rule application
through guards. Having simplification, propagation and simpagation (a mixture
of the afore mentioned rules) as the only operators that can deal with constraints,
CHR is well suited for representing mathematical problems and solving them
straightforwardly. The properties of CHR enable the user to design anytime,
online, confluent and concurrent algorithms, depending on the semantics used.
More detailed explanations of CHR, its properties and advanced examples, can
be found in [7].

3 Solution Algorithm

The chosen methodology for solving an input system of equations, is based on
the usual thought procedure most humans would follow. The implemented solver
gives a numeric solution for a non-linear input system. Given a set of two equa-
tions, the solver basically first tries to turn one of them into a univariate equation,
by isolating one of the system variables. Then, this univariate equation is solved
and its solutions renders the second equation univariate, in which case it can in
turn be solved. This can be achieved for equations in one of the two solvable
cases: an already univariate equation, or an equation with a singly occurring
variable that either stands alone or is part of a term. The subset of univariate
equations with solution formulae can be directly solved, the remainder is sim-
plified. Should this not be directly applicable, then some substitutions are to be
done to transform the equation set into one that can be solved by the above
mentioned method. Figure 1 gives the flow diagram of this solving algorithm.

The equations’ terms are ordered before the check for equations in the directly
solvable cases is made, to be sure that the leading term is always the simplest
term, when needing to isolate it or to take it as a reference point for subsitutions.
The order of a term depends on the powers of its variables and the second term
variable is taken as the reference point to give the priority in isolation to the
variable x, thus colexicographic ordering is used. The colexicographic ordering
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Fig. 1. Flow diagram of the solver algorithm

of two pairs xn1ym1 and xn2ym2 is defined as follows:

colex : xn1ym1 ≤ xn2ym2 ⇔ m1 < m2 ∨ (m1 = m2 ∧ n1 ≤ n2). (1)

order_eq_exchange @ order_eq([H1,H2] eq C) <=> lex(H2,H1)

| [H2,H1] eq C.

The helper predicate lex(H1,H2) is true if H1 is colexicographically less than H2.
If univariate equations are found they are transformed into the standard form,
else the most optimal system variable is isolated in one equation and used to
render the other equation univariate. If the set is not in a directly solvable state
then the in 3.2 explained substitution is applied before the set is sent back to the
initial solving state. All univariate equations in standard form with degrees less
than five are solved and their solution produces a second univariate equation to
be solved, possibly with the help of the substitution equation. An example for
the realization of part of the quartic formula [15] is:

A*X^4+B*X^4-E ueq 0 ==> C=0, D=0, F is C-(3*B**2/8), G is (D+(B**3/8))-(B*C/2),

H is (E-(3*B**4/256))+((B**2*C/16)-(B*D/4)),
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I is F/2, J is (F**2-4*H)/16, K is (-G**2)/64,

1*Z^3+I*Z^2+J*Z^1+K ueq 0.

A*X^3+B*X^2+C*X^1+D ueq 0 <=> F is (((3*C)/(A))-(B**2/A**2))/3,

G is ((2*B**3/A**3)-(9*B*C/A**2)+((27*D)/(A)))/27,

H is (G**2/4)+(F**3/27), H > 0

| R is (-G/2)+(H**(1/2)), cubic_root(R,S),

T is (-G/2)-(H**(1/2)), cubic_root(T,U),

X1 is (-((S+U)/2)-(B/3*A)),

XI1 is ((S-U)*(3**(1/2))/2),

XI2 is (-((S-U)*(3**(1/2))/2)),

solved_img(X1,XI1,X1,XI2).

solved_img(Y1,YI1,Y1,YI2),A*X^4+B*X^3-E ueq 0 <=>

C=0, D=0, G is (D+(B**3/8))-(B*C/2),

img_sqrt(Y1,YI1,PR,PI), S is (B)/(4*A),

R is (-G)/(8*(PR**2+PI**2)), X1 is (PR+PR)+(R-S),

X2 is (R-S)-(PR+PR), (X=X1;X=X2), solved(X).

This shows how the quartic equation is reduced to a cubic one whose so-
lutions are then substituted back into the orginal quartic equation to solve it.
In case the helper cubic equation has two imaginary and one real solution, the
imaginary solutions are chosen and their real and imaginary parts are seperatly
forwarded to the quartic equation using the solved_img/4 constraint. The aux-
iliary img_sqrt/2 predicate, extracts the cubic root of a negative number, as
this option is not supported by Prolog.

The algorithm is characterized by its simplicity while covering a wide subset.
This is enabled by the different equation representations used and the substitu-
tion scheme.

3.1 Different Equation Representations

The simplicity and efficiency of the algorithm is ensured by using different repre-
sentations and notations for equations, to distinguish between types of equations
and phases of the algorithm. Equations are expressed as constraints to benefit
from the features of CHR. As the equations are notated differently depending
on the state they are in, the rules are fired voluntarily and no explicit iterations
need to be done. This ensures that any possible solutions are calculated and pos-
sible simplifications are done at any given point, exploiting the online property
of CHR. There are two notations for equations in this solver, and the different
equality constraints belong to different notations.

The standard equation notation A*X^P1*Y^P2+B*X^P3*Y^P4 eq C is where
the equation most resembles the normal mathematical form of equations. The
‘=’ sign is replaced by other constraints e.g. the eq constraint, depending on the
phase of execution of the algorithm. The ueq/2 constraint for example indicates
a univariate equation, while the req/2 constraint means an equation with an
isolated variable and the deq/2 indicates a not yet handled equation and that
the other equation has been already simplified or solved.
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X req W \ L eq C <=>

L = [C1*pot(X,P1)*pot(Y,P2), C2*pot(X,P3)*pot(Y,P4)]

| C1*W^P1*Y^P2+C2*W^P3*Y^P4-C ueq 0.

solved(X) \ C1*X^P1*Y^P2+C2*X^P3*Y^P4 deq C <=>

L1 is C1*X**P1, L2 is C2*X**P3,

L1*Y^P2+L2*Y^P4-C ueq 0.

While the standard notation is easier for users to understand, it does not
give full access to the components of the equation, which is why the pot/4 (po-
tency) constraints were introduced. Each pot(X,E,T,P) constraint comprises a
variable X, its power P and the equation and the term it originates from- E and
T respectively. A term consists of a constant and two or three pot constraints,
and an equation is represented as the following list of constraints
[A*pot(X,E,1,P1)*pot(Y,E,1,P2),B*pot(X,E,2,P3)*pot(Y,E,2,P4)] eq C,
mathematically equivalent to A∗XP1∗Y P2+B∗XP3∗Y P4 = C. At the beginning
of the solver’s run, the input equations are transformed into the pot notation
and the pot constraints are added to the constraint store. pot constraints give a
global insight wether there are univariate equations or singly occuring variables
by cross-referencing powers of variables and the term and equation they are in,
as each variable is directly accessible through its pot constraint. For example
having two pot constraints A*pot(X,1,1,1) and pot(Y,1,1,0) means that Y
occurs at most once in equation one, as the first term does not contain it. To
decide wether it stands alone or is embedded in a term, the second term needs
to be checked. The pot constraints are also used for realizing the substitutions
in 3.2. For readability, the term and equation identifiers will be removed for the
code samples demonstrated here.

[C1*pot(X,0)*pot(Y,P1),C2*pot(X,0)*pot(Y,P2)] eq C,

pot(X,0),pot(X,0) <=> C1*Y^P1+C2*Y^P2-C ueq 0.

[C1*pot(X,0)*pot(Y,P2), C2*pot(X,P3)*pot(Y,P4)] eq C <=>

X req ((C-C1*Y^P2)/(C2*Y^P4))^(1/P3).

3.2 Substitution Scheme

The solvable subset is extended by introducing a substitution scheme that sim-
plifies the initial problem set to one of the solvable states. If there is no variable
x to solve for, without turning the function fi : Ai ∗Tj +Bi ∗Tj = Ci, i ∈ {1, 2},
j ∈ {1, 2, 3, 4} where Tj = xP1 ∗ yP2, into a more complicated one, then some
substitutions are applied to the equation terms until one of the solution cases is
applicable.

The substitution function s : F 2×F 2 → G3×G3 assigns each bivariate term
to an equivalent trivariate one, by introducing a substitution variable a. Substi-
tuting all terms within the initial system of equations (f1(x, y) = 0, f2(x, y) = 0)
results in a trivariate equation set (g1(x, y, a) = 0, g2(x, y, a) = 0), as given by
the function s. The function s is represented by the sub/2 constraint, where
the first attribute is the original bivariate term and the second the trivariate
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substitution term. The input equation set is transformed into the almost iden-
tical output set gi with Tj = aP1 ∗ xP2 ∗ yP3. The chosen substitution scheme
describes system terms in terms of each other while adding only one additional
variable to form the base substitution, to be eliminated later. This is efficient, as
it excludes the possibility of producing numerous new variables, that cause the
system of equations to be strongly under-defined. For the creation of the sub-
stitution keys, namely the sub constraints, there are four different substitution
cases, which should be checked in the order given below:

1. Direct substitution is applicable if there are two identical terms, except for
their respective coefficients: ∃i : Tj = Ti|i 6= j, i, j ∈ {1, 2, 3, 4}.
sub(pot(X,P1)*pot(Y,P2),pot(Var,1)) \ pot(X,P1), pot(Y,P2) <=>

P1\=0, P2\=0 | pot(Var,1), pot(X,0), pot(Y,0),

sub(pot(X,P1)*pot(Y,P2), pot(Var,1)).

2. Multiples substitution is utilized if there exists a term that is the multiple
of another: ∃n ∈ Z : Tni = Tj , i 6= j.

pot(X,P1),pot(Y,P2),pot(X,P3),pot(Y,P4) <=>

P1\=0,P2\=0,P3\=0,P4\=0,divides(P3,P1,Q1),

divides(P4,P2,Q2),Q1 == Q2

| pot(Var,1),pot(X,0),pot(Y,0),pot(Var,Q1),pot(X,0),

pot(Y,0),sub(pot(Y,P2)*pot(X,P1),pot(Var,1)),

sub(pot(Y,P4)*pot(X,P3),pot(Var,Q1)).

3. Product substitution can be applied, if one term can be expressed as the
product of two other terms: ∃i : ∃j : Tk = Tj ∗ Ti ∧ i 6= j.

sub(pot(X,P3)*pot(Y,P4),pot(Var1,N1)*pot(Y,N2)*pot(X,N3)),

sub(pot(X,P5)*pot(Y,P6),pot(Var2,N4)*pot(Y,N5)*pot(X,N6)) \

pot(X,P1),pot(Y,P2) <=> Q1 is P3+P5,P1==Q1,Q2 is P4+P6,

P2==Q2,F1 is N1+N4,F2 is N2+N5,F3 is N3+N6

| sub(pot(X,P1)*pot(Y,P2),pot(Var1,F1)*pot(Y,F2)*pot(X,F3)),

pot(Var1,F1), pot(Y,F2),pot(X,F3).

4. If none of the above cases apply, the only unsubstituted terms remaining will
be those that could be expressed as the multiplication of a term with one of
the system variables: ∃i : Tj = Ti ∗ v, v ∈ {x, y}.
sub(pot(X,P1)*pot(Y,P4), pot(Var,N)) \

pot(X,P1),pot(Y,P2) <=> P1\=0, P2\=0,P2 > P4, Diff is P2-P4

| pot(Var,E1,T1,N),pot(X,E1,T1,0),pot(Y,E1,T1,Diff),

sub(pot(Y,P2)*pot(X,P1),pot(Var,N)*pot(Y,Diff)).

Even though the equation set is three dimensional, the trivariate equation
set will then match one of the solvable cases, as each equation on its own is still
bivariate, which is ensured by the chosen substitution scheme. This matching has
to happen as one whole term must have been taken as a reference point by s and
fully substituted by the substitution variable a. After the sub constraints are cre-
ated, all equations are iterated over and the actual substitution is done. After one
of the variables has been solved, the equation A = XP1 ∗Y P2 from the base sub-
stitution sub(pot(X,P1)*pot(Y,P2), pot(A,1)*pot(X,0)*pot(Y,0)) is added,
to enable the solving of the remaining variables.
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3.3 Evaluation

This solver computes solutions to univariate polynomial equations of degrees
up to four and binomial bivariate equation sets without approximations and
relying only on substitution and direct methods. While various solvers, especially
computer algebra systems, for the chosen subset exist, no tools were found that
could solve binomial bivariate equations without adding approximative methods,
especially none using CHR.

Most of said computer algebra systems, in particular Mathematica [26, 27]
and Maple [28, 29], solve the whole set covered by the implemented CHR solver
and a vast amount of other mathematical problems, relying primarily on sym-
bolic evalutions of equations and approximative, iterative methods like the New-
ton method for calculating numeric results. Although the renowned computer
algebra tools cover a much wider solution set, the CHR solver is capable of
giving the numerical solutions of some systems of equations directly through
substitutions, while Mathematica or Maple for example would have yielded to
approximative methods instead. In case no solutions can be calculated, both the
CHR solver and computer algebra tools, symbolically simplify the equation set
the farthest possible.

The majority of the existing solvers for univariate polynomial equations and
computer algebra results, display all complex results, whereas the implemented
solver only gives the real results of a system of equations, as Prolog is currently
only defined in the domain of real numbers.

The method used in this solver is straightforward and thus does not have a
high complexity. Depending on the input set, one or at most two full iterations
are done and thus the results are achieved almost directly by firing the correct
rules. CHR enables the direct translation of the human-based solution method
into a program which facilitates the solving of the whole subset, which is not a
commonly used method in other non-linear equation solving tools The addition
of the substitution system renders otherwise non-solvable systems of equations
solvable without adding much complexity, thus extending the solvable subset.

4 Conclusion and Future Work

4.1 Conclusion

Deriving new ways to solve non-linear algebraic systems of equations or im-
proving existing ones is the concern of many fields in mathematical computing.
Most of these solution systems are based on approximation methods. This work
aimed at finding an exactly solvable, tractable subset of non-linear equation sets,
deriving a method to solve said subset and realizing this method using CHR.
After investigating different pre-existing solving mechanisms and the non-linear
subsets they solve, it was decided to constrict the solution field to bivariate poly-
nomial systems of equations. A substitution-based method for solving bivariate
equation sets was derived. The algorithm reduces one of the system equations
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into a solvable univariate one and then uses the solution to reduce the sec-
ond one. As proof of concept, the method was modeled for binomial equation
sets, as any extensions to multinomial sets, would follow analogously. The imple-
mented solver extends the solvability of the chosen subset through substitutions,
without resorting to approximative methods. The solver was implemented us-
ing K.U.Leuven’s CHR implementation with Prolog as the host language. The
roots for any consistent system of equations are obtained, given that the re-
sulting univariate equations are standardizable and quantifiable through finite
formulae. Otherwise the highest possible simplification is attained.

4.2 Future Work

There is a large scope of extensions for this solver, depending on the needed func-
tionalities, as this solver was intended to prove a concept based on a subset from
which multidirectional expansions are possible. The solver could be extended to
solve all consistent univariate systems of polynomial equations. Furthermore, the
scope of this work could be broadened to cover multinomial bivariate and over-
defined non-linear systems. Finally, the same concept of the solver could be a
basis for solving more complex types of non-linear equation sets, such as trivari-
ate polynomial equation sets or bivariate non-linear non-polynomial equation
sets, e.g. trigonometric functions for which transformative substitutions exist.
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Coinductive Proofs over Streams
as CHR Confluence Proofs?

Rémy Haemmerlé
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Abstract. Coinduction is an important theoretical tool for defining and
reasoning about unbounded data structures (such as streams, infinite
trees, rational numbers . . . ), and infinite-behavior systems. Confluence
is a fundamental property of Constraint Handling Rules (CHR) since, as
in other rewriting formalisms, it guarantees that the computations are
not dependent on rule application order, and also because it implies the
logical consistency of the program’s declarative view. In this paper, we
illustrate how the confluence of CHR can be used to prove universal coin-
ductive properties. In particular we give several examples of bisimulation
proofs over streams.

1 Introduction

Induction and coinduction are contrasting terms for ways of describing and
reasoning about a system. Whereas, the classical notion of inductive reason-
ing begins with some primitive properties (or definitions) and uses constructive
operations on these to iteratively infer a whole set of conclusions, coinductive
reasoning [4, 5, 20] starts from a set of conceivable properties (or definitions)
and iteratively dismisses those that break the self-consistency of the whole set.
Despite the fact that coinduction is less known than induction, it has started
to receive attention in recent years in computer science. For instance, coinduc-
tion has been employed to define process equivalences in Concurrency Theory
[17, 20], to study lazy evaluations in functional languages [9], or to deal with
infinite data-structures and infinite computations in Logic Programming [21, 16].

Constraint Handling Rules (CHR) is a committed-choice constraint logic pro-
gramming language, introduced by solvers. It has matured into a general-purpose
concurrent programming language. Operationally, a CHR program consists of a
set of guarded rules that rewrite multisets of constrained atoms. Declaratively,
a CHR program can be viewed as a set of logical implications executed on a
deduction principle.
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tional Excellence (PICD), the Madrid Regional Government under the CM project
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MEC project TIN-2008-05624 (DOVES).
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Confluence is a basic property of rewriting systems. It refers to the fact that
any two finite computations starting from a common state can be prolonged
so as to eventually meet in a common state again. Confluence is an important
property for any rule-based language, because it is desirable for computations to
not be dependent on a particular rule application order. In the particular case
of CHR, this property is even more desirable, as it guarantees the correctness of
a program [3, 13]: any confluent program has a consistent logical reading.

In this paper, we illustrate how the proof of confluence of non-terminating
CHR programs can be used to establish coinductive properties. In practice, we
propose a simple encoding of streams1 and bisimulation2 as non-terminating
CHR programs. Then, we explain how the confluence of the resulting programs
provides an effective coinductive proof. Finally, we show how the confluence of
these programs can be inferred by using a criterion we recently introduced [11].
The preliminary results presented in this paper are embedded in the more general
goal of the research we started in [10]: Understanding relationships between
coinduction and CHR.

The remainder of this paper is structured as follows: Sect. 2 gently introduces
the notion of coinduction and stream coalgebra. In Sect. 3, we recall some pre-
liminaries on CHR. Sect. 4 presents a criteria we recently introduced for proving
confluence of non-terminating CHR programs. In Sect. 5, we present how to en-
code stream coalgebras in CHR. Then we show how using CHR confluence to
infer bisimulation over such coalgebras, before concluding in Sect. 6.

2 Streams and Coinduction

In this section, we introduce the notion of stream, the canonical example of
coinductive object. By using few bases from the theory of universal coalgebra,
we explain how to define streams by coinduction. We conclude by showing how
to prove equality of streams by coinduction.

This introduction is freely inspired from the one by Rutten [19]. It is deliber-
ately kept short. The reader may refer to Rutten’s works to get a more general
picture of streams, coalgebras, and coinduction.

2.1 Streams

Let A be an arbitrary set. We define a stream over A as a function from natural
numbers (the positions) to A (the values). Hence Aω is the set respecting the
equation:

Aω = (N→ A)

For convenience, we may denote such a stream s by the informal notation:

s = [s(0), s(1), s(2), . . . ]

1 The canonical example of coinductive data-structure.
2 The canonical example of coinductive property.
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zero 0 one 1 blink0 blink1

1

0

Fig. 1. LTS view of the coalgebra (X3, h3, t3).

Example 1. The stream containing only 0’s (i.e. [0, 0, 0, . . . ]) is the constant
function (x 7→ 0). Similarly the stream containing only 1’s (i.e. [1, 1, 1, . . . ])
is the function (x 7→ 1). The streams alternating 0 and 1 (i.e. [0, 1, 0, . . . ] and
[1, 0, 1, . . . ]) are the respective functions (x 7→ (x mod 2)) and (x 7→ (x + 1
mod 2)).

Following analogy between finite lists and streams, we call head of a stream
s the first value of s, i.e. h(s) = s(0) and call the tail of s the stream obtained
by removing the head, i.e. t(s) = (x 7→ s(x+ 1)).

Example 2. Consider the streams given in the previous example. The head and
the tail of these streams respect the following equations:

h([0, 0, 0, . . . ]) = 0 t([0, 0, 0, . . . ]) = [0, 0, 0, . . . ]
h([1, 1, 1, . . . ]) = 1 t([1, 1, 1, . . . ]) = [1, 1, 1, . . . ]
h([0, 1, 0, . . . ]) = 0 t([0, 1, 0, . . . ]) = [1, 0, 1, . . . ]
h([1, 0, 1, . . . ]) = 1 t([1, 0, 1 . . . ]) = [0, 1, 0, . . . ]

2.2 Coalgebras

A (stream) coalgebra is a triple (X ,hX , tX ) consisting of a set X of states together
with an output function: hX : X → A and a transition function tX : X → X . In
the following we may refer to these two functions as the destructors.

Example 3. The triple (X3,h3, t3) where X3 = {one, zero,blink0,blink1} and
h3 : X3 → A and t3 : X3 → X3 satisfying the equations below is a coalgebra.

h3(zero) = 0 t3(zero) = zero

h3(one) = 1 t3(one) = one

h3(blink0) = 0 t3(blink0) = blink1

h3(blink1) = 1 t3(blink1) = blink0

Alternatively, a coalgebra can be viewed as a (possibly) infinite automaton
or a Labelled Transition System (LTS) (X ,A,→) verifying:

s
h−→ t if and only if h = hX (s) & t = tX (s)

Example 4. Figure 1 represents the coalgebra given in Example 3.
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[0, 0, 0, . . . ] 0 [1, 1, 1, . . . ] 1 [0, 1, 0, . . . ] [1, 0, 1, . . . ]

1
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J·KX3 J·KX3 J·KX3J·KX3

Fig. 2. LTS view of the coalgebra (X3, h3, t3).

Intuitively, within a coalgebra (X ,hX , tX ) a state x ∈ X “represents” a
unique stream s ∈ Aω, while the output and transition functions associate to x
the head and (a state x′ ∈ X representing) the tail of s. In order to formalize
this intuition, we introduce now the notion of homomorphism and finality.

A homomorphism between two coalgebras (X ,hX , tX ) and (Y,hY , tY) is a
function φ : X → Y that respects the destructors, i.e.:

hY(φ(x)) = hX (x) and tY(φ(x)) = φ(tX (x))

The set of streams Aω can be viewed as the coalgebra (Aω,h, t). This coalgebra
has the following property:

Theorem 1 (Finality). The coalgebra (Aω,h, t) is final among the set of all
coalgebras. That is, for any coalgebra (X ,hX , tX ) there exists a unique homo-
morphism φ from (X ,hX , tX ) to (Aω,h, t).

The finality of the set of streams gives us the formal basis to define what
represents a state. Let (X ,hX , tX ) be a coalgebra. We say that a state x ∈ X
represents the stream JxKX = φ(x) where φ is a homomorphism from (X ,hX , tX )
to (Aω,h, t). The finality of (Aω,h, t) ensures us that this definition is meaning-
ful, i.e. each state represents one and only one stream.

Example 5. Consider the coalgebra (X3,h3, t3) given in Example 3. Let φ : X3 →
Aω be the function satisfying the equations:

φ(zero) = [0, 0, 0, . . . ] φ(blink0) = [0, 1, 0, . . . ]

φ(one) = [1, 1, 1, . . . ] φ(blink1) = [1, 0, 1, . . . ]

One can easily verify that φ is a homomorphism. Hence the states zero, one,
blink0, and blink1 respectively represent the streams [0, 0, 0, . . . ], [1, 1, 1, . . . ],
[0, 1, 0, . . . ], and [1, 0, 1, . . . ]. Figure 2 represents graphically this correspondence.
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2.3 Proof by Coinduction

In order to prove that two streams s and s′ are equal, it is necessary and sufficient
to prove that

for all n ∈ N s(n) = s′(n)

An obvious method for establishing equality between streams s and s′ consists
of an induction on the natural number n (i.e. prove s(0) = s′(0) and show
that s(n) = s′(n) implies s(n + 1) = s′(n + 1)). In this section, we present
an alternative way, based on coinduction. This method is often more natural,
especially for those streams defined using coalgebras.

A bisimulation (relation) between two coalgebras (X ,hX , tX ) and (Y,hY , tY)
is a relation S ⊆ X × Y such that for all streams x ∈ X and y ∈ Y if whenever
x S y holds then both hX (x) = hY(y) and tX (x) S tY(y). If there exists a bisim-
ulation S with x S y, we will write x ∼ y, and say that x and y are bisimilar.
Hence two states are bisimilar, if they have the same head and bisimilar tails.
The Coinduction theory guarantees that two bisimilar states represent the same
stream.

Theorem 2 (Coinduction). Let (X ,hX , tX ) and (Y,hY , tY) be two coalgebras.
For all states x ∈ X and y ∈ Y, if x ∼ y then JxKX = JyKY .

This theorem gives us a proof principle: to prove that two streams represented
by two states are equal, it is sufficient to exhibit a bisimulation that relates the
states.

Example 6. Consider the coalgebra (X3,h3, t3) given in Example 3 together with
the coalgebra (Z6,h6, t6) with Z6 = {z, z′} and satisfying the equations:

h6(z) = 0 t6(z) = z′ h6(z′) = 0 t6(z′) = z

One may want to prove that zero and z represent the same stream. For this
purpose assume the relation S = {(zero, z), (zero, z′)}. It is straightforward to
demonstrate S is a bisimulation, i.e. JzeroK = JzK.

We finish the section about coalgebra and coinduction by some observations
that may help readers non familiar with the concepts presented in this section.

The coinduction proof principle can be seen as a systematic way of strength-
ening the statement one is trying to prove. In the previous example instead of
proving the identity JzeroKX3

= JzKZ6
, we extended the relation {(zero, z)} to a

more general relation S = {(zero, z), (zero, z′)} with zero S z.
It is also worth noting that a coalgebra can contain an arbitrary number of

representatives for a given stream. For instance Jblink0KX3 is represented by no
state within (Z6,h6, t6). Conversely, JzeroKX3

is represented twice in (Z6,h6, t6).
Indeed by Theorem 2, we have JzKZ6

= JzeroKX3
= Jz′KZ6

.

3 Constraint Handling Rules

In this section, we recall briefly the syntax and the semantics of CHR. Frühwirth’s
book [7] can be referred to for a more general overview of the language.
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3.1 Syntax

The formalization of CHR assumes a language of (built-in) constraints containing
equality over some theory C, and defines (user-defined) atoms using a different
set of predicate symbols. In the following, R will denote an arbitrary set of
identifiers. By a slight abuse of notation, we allow confusion of conjunctions and
multiset unions, omit braces around multisets, and use the comma for multiset
union. We use fv(φ) to denote the set of free variables of a formula φ. The
notation ∃ -ψφ denotes the existential closure of φ with the exception of free
variables of ψ.

A (CHR) program is a finite set of eponymous rules of the form:

(r @ K\H ⇐⇒ G | B;C)

where K (the kept head), H (the removed head), and B (the user body) are mul-
tisets of atoms, G (the guard) and C (the built-in body) are conjunctions of
constraints and, r ∈ R (the rule name) is an identifier assumed unique in the
program. Rules in which both heads are empty are prohibited. An empty guard
> (resp. an empty kept head) can be omitted with the symbol | (resp. with the
symbol \). The local variables of rule are the variables occurring in the guard
and in the body but not in the head that is lv(r) = fv(G,B,C) \ fv(K,H). Rules
are divided into two classes: simplification rules3 if the removed head is non-
empty and propagation rules otherwise. Propagation rules can be written using
the alternative syntax:

(r @ K =⇒ G | B;C)

3.2 Operational semantics

In this section, we recall the equivalence-based operational semantics ωe of Raiser
et al. [18]. It is equivalent to the very abstract semantics ωva of Frühwirth [6],
which is the most general operational semantics of CHR. We prefer the for-
mer because it includes a rigorous notion of equivalence, which is an essential
component of confluence analysis.

A (CHR) state is a tuple 〈E;C; x̄〉, where E (the user store) is a multiset of
atoms, C (the built-in store) is a conjunction of constraints, and x̄ (the global
variables) is a finite set of variables. Unsurprisingly, the local variables of a state
are those variables of the state which are not global. When no confusion can
occur, we will syntactically merge user and built-in stores. We may futhermore
omit the global variables component when states have no local variables. In the
following, we use Σ to denote the set of states. Following Raiser et al., we will
always implicitly consider states modulo a structural equivalence. Formally, this
state equivalence is the least equivalence relation ≡ over states satisfying the
following rules:

3 Unlike standard presentations, our definition does not distinguish simplification rules
form the so-called simpagation rules.
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– 〈E;C; x̄〉 ≡ 〈E;D; x̄〉 if C � ∃ -(E,x̄)C↔ ∃ -(E,x̄)D
– 〈E;⊥; x̄〉 ≡ 〈F;⊥; ȳ〉
– 〈E, c;C, c=d; x̄〉 ≡ 〈E, d;C, c=d; x̄〉
– 〈E;C; x̄〉 ≡ 〈E;C; {y} ∪ x̄〉 if y /∈ fv(E,C).

Once states are considered modulo equivalence, the operational semantics of
CHR can be expressed by a single rule. Formally the operational semantics of a
program P is given by the binary relation P−→ P on states satisfying the rule:

(r @ K\H ⇐⇒ G|B;C) ∈ Pρ lv(r) ∩ fv(E,D, x̄) = ∅
〈K,H,E;G,D; x̄〉 P−→ 〈K,B,E;G,C,D; x̄〉

where ρ is a renaming. If a program P contains a sole rule r, we may write r−→
for

{r}−−→. For any transition P−→, the symbol P←− will denote its converse, P−→≡ its

reflexive closure, and
P−� its transitive-reflexive closure. We will use P−→ · Q−→ to

denote the left-composition of all binary relations P−→ and
Q−→.

We will say a program P is terminating if there is no infinite sequence of the
form e0

P−→ e1
P−→ e2 . . . Furthermore, we will say that P is confluent if for all

states S, S1, and S2 satisfying S
P−� S1 and S

P−� S2, there exists a state S′ such

that S1
P−� S′ and S2

P−� S′.

3.3 Declarative semantics

Owing to its origins in the tradition of CLP, the CHR language features declar-
ative semantics through direct interprestation in first-order logic. Formally, the
logical reading of a rule of the form:

K\H ⇐⇒ G | B;C

is the guarded equivalence:

∀
(
(K ∧G)→

(
H↔ ∃ -(K,H)(G ∧ C ∧ B)

))

The logical reading of a program P within a theory C is the conjunction of the
logical readings of its rules with the constraint theory C. It is denoted by CP.

Operational semantics is sound and complete with respect to this declarative
semantics [6, 3, 10]. Furthermore, we recently established that any confluent
program P is correct and has a logical model expressible by a CLP program,
called the CLP projection. The (CLP) projection of a CHR program P is a set
π(P) of CLP clauses defined as:

π(P) = {(a← G,C,K,B) | (K\H ⇐⇒ G | B,C) ∈ P and a ∈ H}
Theorem 3 ([13]). Let S be an arbitrary model of the constraint theory C. A
confluent CHR program and its projection have the same least S-model.

It is worth noting that in the current state of knowledge Theorem 3 only
holds when programs are considered with respect to the most general operational
semantics for CHR, namely the very abstract semantics. In particular, the proofs
of the theorem do not appear to be adaptable to more concrete semantics such
as for instance Abdennadher’s token-based semantics [1].
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4 Diagrammatic Confluence for CHR

This section sums up some recent results about conlfuence of non-terminating
CHR programs. More details can be found in [11].

4.1 Critical Peaks

In term rewriting systems, the basic techniques used to prove confluence consist
of showing various confluence criteria on a finite set of special cases, called critical
pairs. Critical pairs are generated by a superposition algorithm, in which one
attempts to capture the most general way the left-hand sides of the two rules
of the system may overlap. The notion of critical pairs has been successfully
adapted to CHR by Abdennadher et al. [2]. Here, we introduce a slight extension
of the notion.

Let us assume that r1 and r2 are CHR rules (form possible disctinct pro-
grams) renamed apart:

(r1 @ K1\H1 ⇐⇒ G1 | B1;C1) ∈ P1 (r2 @ K2\H2 ⇐⇒ G2 | B2;C2) ∈ P2

A critical ancestor (state) Sc for the rules r1 and r2 is a state of the form:

Sc = 〈H∆1 ,H∩1 ,H∆2 ;D; x̄〉

satisfying the following properties:

– (K1,H1) = (H∆1 ,H∩1 ), (K2,H2) = (H∆2 ,H∩2 ), H∩1 6= ∅, and H∩2 6= ∅;
– x̄1 = fv(K1,H1), x̄2 = fv(K2,H2) and x̄ = x̄1 ∪ x̄2;
– D = (H∩1 =H∩2 ,G1,G2) and ∃D is C-satisfiable;
– H∩1 6⊆ K1 or H∩2 6⊆ K2.

Then the following tuple is called a critical peak between r1 and r2 at Sc:

〈K1,B1,H∆2 ;D,C1; x̄〉 r1←− · r2−→ 〈K2,B2,H∆1 ;D,C2; x̄〉

4.2 Rule-decreasingness

In this section, we present the so-called rule-decreasingness criterion. This cri-
terion derived from the decreasing diagrams technique [22] is a novel criterion
on CHR critical pairs that generalizes both local confluence [3] and strong con-
fluence [14] criteria.

Rule-decreasingness criterion assumes the set R of rule identifiers is defined
as a disjoint union Ri ] Rc. For a given program P, we denote by Pi (resp.
Pc) the set of rules form P built with Ri (resp. Rc). We call Pi the inductive
part of P, because we will subsequently assume that Pi is terminating, while
Pc will be called coinductive, as it will be typically non-terminating. A critical
peak is inductive if it involves only inductive rules (i.e. a critical peak of Pi), or
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Fig. 3. Local decreasingness

coinductive if it involves at least one coinductive rule (i.e. a critical peak between
Pc and P).

In the rest of this paper, we will say that a preorder < is wellfounded, if
the strict preorder � associated with < (i.e. α � β iff α < β but not β < α)
is a terminating relation. A preorder < on rule identifiers is admissible, if any
inductive rule identifier is strictly smaller than any coinductive one (i.e. for any
ri ∈ Ri and any rc ∈ Rc, rc � ri holds).

A critical peak S1
r1←− · r2−→ S2 is decreasing with respect to a preorder < if

the following property holds:

S1
�

{r1}−−−−� ·

< {r2}−−−−→≡ ·

�

{r1,r2}−−−−−� ·

�

{r1,r2}�−−−−− ·

< {r1}←−−−−≡ ·

�

{r2}�−−−− S2 (?)

where for any set K of rule identifiers,

<

K stands for {r ∈ R | ∃r′ ∈ K.r′ < r}
and

�
K for {r ∈ R | ∃r′ ∈ K.r′ � r}. Property (?) is graphically represented in

Figure 3. A program P is rule-decreasing with respect to an admissible preorder
< if:

– the inductive part of P is terminating,

– any inductive critical peak of is joinable by
Pi

−� · P
i

�−, and

– any coinductive critical peaks is decreasing with respect to <.

A program is rule-decreasing if it is rule-decreasing with respect to some admis-
sible preorder.

Theorem 4 ([11]). Rule-decreasing programs are confluent.

To illustrate the use of the theorem, we recall now one example form [11].

Example 7 (Partial order constraint). Let P7 be the classic CHR introductory
example, namely the constraint solver for partial order. This consists of the
following four rules, which define the meaning of the user-defined symbol ≤
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〈x ≤ x, x ≤ y〉

〈x ≤ y〉 〈x ≤ x, x ≤ y, x ≤ y〉

〈x ≤ y, x ≤ y〉

reflex. trans.

reflex.dupl.

〈x ≤ y, y ≤ z, z ≤ y〉

〈x ≤ y, y = z〉 〈x ≤ y, y ≤ z, z ≤ y, x ≤ z〉

〈x ≤ y, x ≤ z, y = z〉

anti. trans.

anti.dupl.

Fig. 4. Some rule-decreasing critical peaks for P7

using the built-in equality constraint = :

duplicate @ x ≤ y \x ≤ y ⇐⇒ >
reflexivity @ x ≤ x ⇐⇒ >
antisymmetry @ x ≤ y, y ≤ x ⇐⇒ x = y
transitivity @ x ≤ y, y ≤ z =⇒ x ≤ z

Since P7 is trivially non-terminating (indeed, it uses propagation rules) one
cannot apply local confluence criterion [3]. Nonetheless, confluence of P7 can be
deduced using the full generality of Theorem 4. For this purpose, assume that all
rules except transitivity are inductive and take any admissible preorder. Clearly
the inductive part of P7 is terminating. Indeed the application of any one of
the three first rules strictly reduces the number of atoms in a state. Then by
a tedious but simple analysis, we prove that critical peaks of P7 can be joined
while respecting the hypothesis of rule-decreasingness. In fact all critical peaks
can be joined without using the transitivity rule. Some rule-decreasing diagrams
involving the transitivity rule are given as examples in Figure 4.

5 Proving Stream Bisimulation Using CHR Confluence

In this section, we illustrate the power of CHR confluence and the rule-decreasing-
ness criterion to prove coinductive properties.

5.1 Coalgebra in CHR

Following preliminary ideas for encoding coalgebras into CHR with the standard
Herbrand constraint system [10], we use first-order terms as states, and define the
destructors by means of a single user-defined atom d(s, h, t). Here the d(s, h, t)
predicate must be understood as the function that returns for a given state s its
head h = h(s) and its tail t = t(s). To enforce functionality of the destructor,
we start our program P with the following simplification rule:

fund @ d(s, h2, t2)\d(s, h1, t1) ⇐⇒ h1 =h2, t1 = t2

Now we use the terms zero, one, blink0, and blink1 as states for the respective
streams containing only 0’s, only 1’s, alternations of 0 and 1, and alternations
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of 1 and 0. Then we add to our program the following rules that specify the
behaviour of the destructor on these states:

dzero @ d(zero, h, t) ⇐⇒ h = 0, t = zero.
done @ d(one, h, t) ⇐⇒ h = 1, t = one.
dblink0 @ d(blink0, h, t) ⇐⇒ h = 0, t =blink1.
dblink1

@ d(blink1, h, t) ⇐⇒ h = 1, t =blink0.

We can go even further and define operators on streams. For this purpose,
we use fresh function symbols as new operators and use recursive simplification
rules to encode the behaviour of the destructors on these operators. For instance,
we will encode the functions odd() and even(), which return the stream formed
by the elements in the odd and even positions, respectively, and the function
zip() which interlaces the elements from the two given streams. Hence, we add
to P the rules:

deven @ d(even(x), h, t) ⇐⇒ d(x, , t1),d(t1, h, t2), t = even(t2).
dodd @ d(odd(x), h, t) ⇐⇒ d(x, h, t1), t = even(t1).
dzip @ d(zip(x, y), h, t) ⇐⇒ d(x, h, t1), t = zip(y, t1).

It is not difficult to convince oneself that P is terminating. For this reason, we
fix all the rules we have defined so far as inductive. Note that what is inductive
here is solely the definition of the destructors. The encoded coalgebra still has
a coinductive nature, in the sense that the destructor can be indefinitely called,
in order to get all the elements composing a stream.

5.2 Proving simple Coinductive properties in CHR

The definition of bisimilation can translated into CHR by a single coinductive
rule added to our program:

∼ @ s1 ∼ s2 ⇐⇒ d(s1, h, t1),d(s2, h, t2), t1 ∼ t2

From a logical point of view, the declarative reading of this rule ensures that
two states s2 and s1 are bisimilar if and only if there exists a model for the
program P we have built so far, that contains the atom s1 ∼ s2. Thanks to
Theorem 3, we know that this is the case precisely if the program augmented
with a “query” rule of the form s1 ∼ s2 ⇐⇒ > is confluent. For instance, in
order to prove that the stream zip(zero, one) is equal to the stream blink0, we
can show that P together with the following rule is confluent:

q1 @ zip(zero, one) ∼ blink0 ⇐⇒ >

Unfortunately this is not the case. Indeed, rules ∼ and q1 yield a non-joinable
peak:

〈zip(one, zero) ∼ blink1〉
P�− · P←−∼ 〈zip(zero, one) ∼ blink0〉 P−→q1 〈>〉
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〈z(z, o) ∼ b0〉

〈>〉

〈z(o, z) ∼ b1〉∼
Pi

q1
κ1

〈z(o, z) ∼ b1〉

〈>〉

〈z(z, o) ∼ b0〉∼
Pi

κ1
q1

Fig. 5. Diagrammatic proofs for z(z, o) ∼ b0

One idea for circumventing this problem is to “complete” the program, i.e.
to add rules to it, in order to make it confluent. Indeed, if an interpretation
is a model for the completed program, it is obviously a model for the original
program. In the case of our example, we can just add a rule closing the previous
peak:

κ1 @ zip(one, zero) ∼ blink1 ⇐⇒ >
This time, the resulting program is confluent. We can use rule-decreasing criteria
to prove this. For the proof passing through, we have to assume the rules q1

and κ1 are coinductive and strictly greater than the rule ∼. The proofs of the
decreasingness of all the critical peaks involving at least one coinductive rule are
graphically represented in Figure 5. For the sake of conciseness, symbols have
been shortened to their initials in the figure.

5.3 Proving universal coinductive properties in CHR

In the previous section, we have proved a coinductive property for a particular
stream. Here we are concerned with proving similar properties for arbitrary
streams. The idea is to take benefit of the implicit universal quantification of
rule-head variables to prove coinductive properties true with respect to arbitrary
streams. However, we first have to formally define in our framework what a
stream is.

As with bisimulation, being a stream is a coinductive property. It can be
translated into CHR by the coinductive rule:

str @ str(x) ⇐⇒ d(x, , t), str(t).

Basically, x is a stream if it can be deconstructed by d into a head and into a tail
which is itself a stream. We now add to our program the following coinductive
rules to specify which terms are actual streams:

strzero @ str(zero) ⇐⇒ >
streven @ str(even(x)) ⇐⇒ str(x).
strzip @ str(zip(x, y)) ⇐⇒ str(x), str(y)

These rules state respectively that zero is a stream, even(x) is a stream if and
only if x is a stream, and zip(y, z) is a stream if and only if both y and z are
streams. From a typing point of view, rule str can be viewed as the definition
of a (coinductive) type, and the rules strx as type declarations. We do not
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〈z(x0, y0) ∼ z0〉

〈o(z0) ∼ x0, e(z0) ∼ y0〉

〈
d(x0, h0, x1),d(z0, h0, z1),

z(y0, x1) ∼ z1

〉 〈
d(x0, h0, x1),d(z, h0, z1),

o(z1) ∼ y0, e(z1) ∼ x1

〉

〈
d(x0, h0, x1),d(z, h0, z1), e(z1) ∼ x1,
d(y0, h1, y1),d(z1, h1, z2), e(z2) ∼ y1

〉
κ4

∼ κ4

∼

∼

〈z(o(x0), e(x0))) ∼ x0〉
〈
s(x0)4

〉 〈
d(x0, , x1), s(x1)2,d(x1, , x2), s(x2)2

〉

〈d(x0, , x1), z(e(x0), e(x1)) ∼ x1〉

〈d(x0, , x1), o(x1) ∼ e(x0), e(x1) ∼ e(x1)〉
〈

d(x0, , x1),d(x1, , x2),
e(x2) ∼ e(x2), e(x1) ∼ e(x1)

〉

q2

∼

κ4

s

∼

κ2

Fig. 6. Diagrammatic proofs for zip(odd(x), even(x)) ∼ x

explicitly present similar declarations for the streams one, blink0, and blink1, or
for the operator odd. As we have done previously with bisimulation, we verify the
coherency of these declarations by checking the confluence of the whole program.
(We assume rules strx are strictly greater than rule str.)

Once streams have been properly defined and declared in our framework, we
can try to prove that any stream x is bisimilar to (zip(odd(x), even(x))). For
this purpose, we add the following coinductive rules to the current program:

q2 @ zip(odd(x), even(x)) ∼ x ⇐⇒ str(x)4

κ2 @ x ∼ x ⇐⇒ str(x)2

κ3 @ even(zip(x, y)) ∼ y ⇐⇒ str(x), str(y)
κ4 @ zip(x, y) ∼ z ⇐⇒ odd(z) ∼ x, even(z) ∼ y

The first rule corresponds to the property we want to prove, while the other rules
are there to complete the program, which would otherwise be non-confluent.

Once again, we are able to establish the confluence of the resulting program
by using the rule-decreasingness criterion (assuming q2 � κ4 � κ3 � κ2 �
strx). Note that, in order to simplify the proof, some atoms are duplicated. The
exponents in the rules q2 and κ2 indicate how many times the atom str(x) is
repeated. In practice, these repetitions are helpful because of the multiset nature
of the user store. They are effective in closing a critical peak between κ2 and
κ4 on the one hand, and a critical peak between q2 and ∼ on the other hand.
From a theoretical point of view, the repetition of atoms is not problematic,
since an atom has a declarative meaning equivalent to the declarative meaning
of several copies of it. Proofs of decreasingness for some relevant critical peaks
of the program are graphically represented in Figure 6. Within the figure, states
are implicitly normalized using the inductive part of the program.
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When the program is proved confluent, the CLP projection provides us a
logical model in the form of a CLP program. (In the practical case of our example,
the projection is obtained by replacing the symbol ⇐⇒ by← in all rules expcet
for fund which can be safely ignored.) This finite representation is convenient
since the model is in fact infinite: the domain of discourse of the model contains
any stream obtained by composition of zero, one, blink0, blink1, even(), odd(),
and zip().

From a model-theory point of view, we are not aware of any technique that is
able to directly prove satisfiable formulas such as the ones presented in the last
part of this section. In particular, the classical techniques, such as SMT solvers,
inference-based theorem provers, or the analytic tableaux all seem inadequate for
dealing with non-valid formulas mixing universal and existential quantifications,
and which also have only infinite models. From a purely coinductive point of
view, there do exist frameworks, such as circular coinductive rewriting [8], which
are able to fully automatically prove bisimulations similar to the ones presented
here. We argue nonetheless that our framework is more general, as coinductive
properties are not hard-coded, but user-defined. Furthermore our work also has
the advantage of shedding new light on the relationship between coinduction,
confluence, and first-order satisfiability.

6 Conclusion

In this paper, we continued the study of relationships between CHR and coinduc-
tion started in [10]. Relying on universal coalgebra theory, we present a simple
encoding of coalgebras and coinduction properties in CHR. Then, using the rule-
decreasingness criterion we recently introduced, we realized effective coinductive
proofs of bisimulations over streams. All the diagrammatic proofs sketched in
the paper have been systematically verified by a prototype of a diagrammatic
confluence checker [12] written in Ciao Prolog [15].
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Qualitative Velocity Model: Representation,
Reasoning and Application

Ester Martinez-Martin and M. Teresa Escrig and Angel P. del Pobil

Abstract On the way to autonomous systems, one of the key issues concerns spatial
reasoning what involves solving problems with uncertainty. From the starting point
of human nature, information must be represented in a way that any system can
reason with imprecise knowledge about different physical aspects and make correct
decisions from them. Keeping this idea in mind, this paper presents the qualitative
model of velocity including representation, reasoning process and a real robotic
application.

1 Introduction

Recent research is aimed at building autonomous systems that help human beings in
their daily tasks, specially when they are tedious and/or repetitive. These common
tasks can concern poorly defined situations. On this matter, humans have a remar-
kable capability to solve them without any measurements and/or any computations.
Familiar examples are parking a car, cooking a meal, or summarizing a story. That is,
humans make decisions based on information that is mostly perception, rather than
accurate measurements as pointed out in [31]. Thus, qualitative reasoning properly
fits this problem since it works on representation formalisms close to human con-
ceptual schemata for reasoning about the surrounding physical environment (e.g.
[30, 26]).
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In qualitative spatial reasoning, it is common to consider a particular aspect of
the physical world, that is, a magnitude, and to develop a system of qualitative re-
lationships between entities which cover that aspect of the world to some degree.
Examples of that can be found in many disciplines (e.g. geography [29], psycho-
logy [19], ecology [5, 28], biology [18, 15], robotics [22, 21, 17, 25] and Artificial
Intelligence [7]). Actually, a qualitative representation of a magnitude results from
an abstraction process and it has been defined in [26, 16] as that representation that
makes only as many distinctions as necessary to identify objects, events, situations,
etc. in a given context for that magnitude. The way to define those distinctions de-
pends on two different aspects:

1. the level of granularity. In this context, granularity refers to a matter of precision
in the sense of the amount of information which is included in the representation.
Therefore, a fine level of granularity will provide a more detailed information
than a coarse level.

2. the distinction between comparing and naming magnitudes (as stated in [6]).
This distinction refers to the usual comparison between absolute and relative.
From a spatial point of view, this controversy corresponds to the way of repre-
senting the relationships among objects (see Fig. 1). As Levinson pointed out
in [20], absolute defines an object’s location in terms of arbitrary bearings such
as cardinal directions (e.g. North, South, East, West), by resulting in binary rela-
tionships. Instead, relative leads to ternary relationships. Consequently, for com-
paring magnitudes, an object b is any compared relationship to another object a
from the same Point of View (PV ). It is worth noting that the comparison depends
on the orientation of both objects with respect to (wrt) the PV , since objects a and
b can be at any orientation wrt the PV . On the other hand, naming magnitudes
divides the magnitude of any concept into intervals (sharply or overlapped sepa-
rated, depending on the context) such that qualitative labels are assigned to each
interval. Note that the result of reasoning with regions of this kind can provide
imprecision. This imprecision will be solved by providing disjunction in the re-
sult. That is, if an object can be found in several qualitative regions, qi or qi+1 or
. . . or qn, then all possibilities are listed as follows {qi,qi+1, . . . ,qn} by indicating
this situation.

Fig. 1 An example of compared distances as represented in [9] (left) and an example of structure
relations in naming magnitudes with sharply and overlapped separated qualitative areas (right)
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From that starting point, and on the way to develop intelligent abilities to solve
some service robotics problems, in this paper, we present a qualitative naming velo-
city model including its qualitative representation, the reasoning process and a real
robotic application. With that aim, the structure of this paper is as follows: the pro-
posed qualitative velocity model is analyzed in Section 2, while a real application is
presented in Section 3. Finally, some conclusions are presented in Section 4.

2 Qualitative Velocity Model

The velocity is the physical concept that measures the distance travelled by an object
per unit of time. From a physical point of view, this concept can be mathematically
defined as:

Velocity =
Distance Travelled

Time of Travel
(1)

2.1 Representation

The first issue to be solved refers to the way to represent the magnitude to be mo-
delled, that is, the velocity. So, from the previous definition of velocity and focusing
on developing its qualitative naming model, the velocity representation will be com-
posed of three elements:

1. the number of objects implied in each relation (i.e. arity). From the physical
definition of velocity, the relationships to be defined imply two objects such that
an object acts as reference and the other one is referred.

2. the set of velocity relations between objects. It depends on the considered level
of granularity. In a formal way, this set of relations is expressed by means of the
definition of a Reference System (RS) consisting of:

• a set of qualitative symbols in increasing order represented by Q = {q0,
q1, ...,qn}, where q0 is the qualitative symbol closest to the Reference Ob-
ject (RO) and qn is the one furthest away, going to infinity. Here, by cognitive
considerations, the acceptance areas have been chosen in increasing size. Note
that this set defines the different areas in which the workspace is divided and
the number of them will depend on the granularity of the task, as abovemen-
tioned

• the structure relations, ∆r = {δ0,δ1, ...,δn}, describe the acceptance areas for
each qualitative symbol qi. So, δ0 corresponds to the acceptance area of qua-
litative symbol q0; δ1 to the acceptance area of symbol q1 and so on. These
acceptance areas are quantitatively defined by means of a set of close or open
intervals delimited by two extreme points: the initial point of the interval j,
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δ i
j, and the ending point of the interval j, δ e

j . Thus, the structure relations are
rewritten by:

{
∆r =

{[
δ i

0,δ
e
0
[
,
[
δ i

1,δ
e
1
[
, . . . ,

[
δ i

n,δ e
n
[}

if open intervals are considered
∆r =

{[
δ i

0,δ
e
0
]
,
[
δ i

1,δ
e
1
]
, . . . ,

[
δ i

n,δ e
n
]}

otherwise

As a consequence, the acceptance area of a particular velocity entity,
AcAr(entity), is δ j if its value is between the initial and ending points of δ j,
that is, δ i

j ≤ value(entity)≤ δ e
j

3. the operations. The number of operations associated to a representation corres-
ponds to the possible change in the PV. In this case, as only two objects are
implied in the velocity relationships, only one operation can be defined: inverse.

By way of illustration, the velocity representation for a given context could be:

• the set of qualitative symbols: Q1 = {zero, slow, normal, quick}
• the structure relations: ∆r1 = {[0,0[ , [0,ud/2ut[ , [ud/2ut,ud/ut[ , [ud/ut,∞[},

such that ud indicates the unit of distance or space travelled by an object while
ut is the unit of time. Note that both values are context-dependent by being able
to be set to metres and seconds, respectively; miles and hours or kilometres and
hours, by depending on which velocity unit has been used

• The operations: as it is a binary relationship, the only allowed operation is inverse

2.2 The Basic Step of the Inference Process

The Basic Step of the Inference Process (BSIP) can be defined as: “given two re-
lationships, (1) the object b wrt a reference system, RS1, and (2) the object c wrt
another reference system, RS2, such that the object b is included into the second
reference system, the BSIP obtains the relationship c wrt RS1” (see Fig. 2 for a
graphical example of the BSIP)

Fig. 2 A graphical example of the BSIP for qualitative models not based on projections, such that
the dashed line represents the relationship to be inferred

For the concept of velocity, the BSIP can be defined as: given two velocity re-
lationships between three spatio-temporal entities a, b and c, we want to find the
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velocity relationship between the two entities which is not initially given. However,
it is important to take into account that the relative movement of the implied objects
can be at any direction. For that reason, the BSIP is studied integrating the velocity
concept with a qualitative orientation model. Note that, for this case, the qualitative
orientational model of Freksa and Zimmerman [12, 11] has been redefined as de-
picted in Fig. 3 since the reference object is always on the b object. In that way, it is
possible to reason with the extreme angles of the defined structure relations for the
Orientation Reference System (ORS).

Fig. 3 Redefinition of the Orientation Reference System (ORS) of Freksa and Zimmerman [12, 11]
by means of its set of qualitative symbols (Qo) and its structure relations (∆o)

Given that we are working with qualitative areas expressed by intervals, we use
the two operations to add and subtract qualitative intervals presented in our previous
work [24]. In particular, the functions to be performed are qualitative sum (obtains
the sum of two qualitative intervals), qualitative difference (provides the subtrac-
tion of two qualitative intervals), Find UB qualitative sum (obtains the qualitative
interval corresponding to the upper bound of the qualitative sum of two qualita-
tive intervals) and Find LB qualitative difference (provides the qualitative interval
corresponding to the lower bound of the qualitative subtraction of two qualitative
intervals). In addition, five new functions are defined: pythagorean theorem LB and
pythagorean theorem UB that obtain the qualitative interval corresponding to, re-
spectively, the lower and upper bounds when the Pythagorean theorem is applied;
intermediate orientation provides the orientations existing between the two ones
given as input (e.g. intermediate orientation(right, straight-front) will be front-
right); open interval, from an orientation defined with a closed interval and an-
other with an open interval, returns that corresponding to an open interval; and,
all orientation relationships returns all the defined qualitative orientations (i.e.
right, front-right, straight-front, front-left, left, back-left, straight-back and back-
right).

Therefore, the BSIP for velocity has been solved as follows (see Fig. 4 for the
graphical resolution): when any velocity relationship is zero, both velocity and
orientation will be equal to the other involved relationship. When the two velo-
city relationships have the same orientation, the resulting relationship has the same
orientation and its value corresponds to the qualitative sum of both relationships. On
the contrary, if the relationships have an opposite orientation, the resulting relation-
ship will be obtained as their qualitative difference and its orientation will be equal
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to that of higher velocity value. On the other hand, in the case both relationships have
the same orientation but it corresponds to an open interval, the resulting relationship
has the same orientation, although its value will be a disjunction of velocity rela-
tionships from the result of applying the Pythagorean theorem to the upper bound
(UB) of the qualitative sum. When the orientation relationships corresponds to an
open and a close interval such that one extreme of an interval matches up with an ex-
treme of the other interval, then the resulting relationship will have the orientation
of the open interval, while its value will be obtained from the Pythagorean theo-
rem and the qualitative sum. The last special case refers to the case two orientation
relationships are perpendicular. In that situation, the resulting relationship results
of the Pythagorean theorem, whereas its orientation is the orientation between the
orientations of the initial relationships. Finally, the remaining situations are solved
by means of qualitative difference and the Pythagorean theorem. With regard to its
orientation, it corresponds to all the possible orientation relationships.

The performance of the proposed method has been tested by comparing the re-
sults with those obtained by hand. The results obtained for the same orientation have
been compared to the handwritten ones [10] by being the same.

2.3 The Complete Inference Process

From the BSIP definition, the Complete Inference Process (CIP) can be defined. It
is necessary when more than two objects are involved in the reasoning mechanism.
Mainly, it consists of repeating the BSIP as many times as possible with the initial
information and the information provided by some BSIP until no more information
can be inferred.

As knowledge about relationships between entities is often given in the form of
constraints, the CIP can be formalized as a Constraint Satisfaction Problem (CSP)
(see [30, 27, 8] for a survey). Note that a CSP is consistent if it has a solution. More-
over, a CSP can be represented by a constraint network where each node is labelled
by a variable Xi or by the variable index i, and each directed edge is labelled by
the relationship between the variables it links. Consequently, a path consistency al-
gorithm can be used as a heuristic test for whether the defined constraint network
is consistent [2], and, therefore, if the CSP has a solution. Thus, a number of al-
gorithms for path consistency has been developed from its definition: a constraint
graph is path consistent if for pairs of nodes (i, j) and all paths i− i1− i2− ...− in− j
between them, the direct constraint ci, j is tighter than the indirect constraint along
the path, i.e. the composition of constraint ci,i1 ⊗ ...⊗ cin, j [13, 14].

A straight-forward way to enforce path-consistency on a CSP is to strengthen
relationships by successively applying the following operation until a fixed point is
reached:

ci j := ci j⊕ cik⊗ ck j (2)
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Fig. 4 Graphical resolution of the BSIP for velocity, where vi and v j represents the velocity rela-
tionships given as input with their corresponding orientation relationships (oi and o j); and vk and
ok are the resulting velocity and orientation relationships
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where the part (cik⊗ ck j) of the formula computes composition and it obtains the
constraint ci j. This result is intersected (⊕) with the preceding computed or user-
defined constraints (if they exist). The complexity of such an algorithm is O

(
n3
)

where n is the number of nodes in the constraint graph [3, 23].
In a similar way, the computation of the full inference process for qualitative

velocity can be viewed as an instance of the CSP. So, in order to determine whether
a graph is complete we repeatedly compute the following operation until a fixed
point is reached:

vx,y := vx,y⊕ vx,z⊗ vz,y (3)

where vx,y corresponds to the velocity relationship between x and y. Again, The
complexity of such an algorithm is O(n3), where n is the number of nodes in the
network, that is, the number of velocity landmarks which are used in the inference
process.

However, although path consistency eliminate some values of variable domains
that will never appear in a solution, a search algorithm is still needed to solve the
CSP. One way of solving this kind of problems is by means of Constraint Logic
Programming (CLP) extended with Constraint Handling Rules (CHRs). So, on the
one hand, CLP is a paradigm based on First Order Predicate Logic that combines
the declarative of logic programming. Moreover, it provides a means to separate
competence of a program (also called logic or what) from performance (control or
how) with the efficiency of constraint solving. The main idea is to replace unification
of terms -the heart of a logic programming system- by constraint handling in a
constraint domain such that a constraint (or a set of constraints) is satisfied. The
scheme is called CLP(X) where the argument X represents a computational domain.

Thus, a CLP program is defined as a finite set of clauses, while CHRs are logical
formulas which basically define simplification and propagation over user-defined
constraints [13]. In such way, simplification replaces constraints by a simpler cons-
traints while preserving logical equivalence; and propagation adds new constraints
logically redundant but being able to cause further simplification. So, repeatedly
applying CHRs, the constraints are incrementally solved as in a built-in constraint
solver. Consequently, CHRs allow the system to faster achieve an answer without
backtracking.

In this context, a Constraint Solver (CS) is a CLP+CHRs program composed of
a finite set of clauses from the CLP language and from the language of CHRs. So, a
CS is defined for solving the CIP for the velocity model by means of a CLP+CHRs
implementation (see Algorithm 1). The constraint vx,y is represented in the algo-
rithms by the predicate ctr vel(X ,Y,V, O), where V is the list of primitive velocity
relationships and O is the list of primitive orientation relationships forming the dis-
junctive constraint. That is, the velocity relationships between X and Y are V and
the orientations of them are O. For instance, if the oriented velocity relationship
between objects a and b is slow, front-left, then the corresponding predicate will be
ctr vel(a,b,slow, f ront− le f t. Note that V and O represents sets since inferred re-
lationships can consist of more than one relationship. The basic operation of a path
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consistency, the Equation 3, is implemented by means of two kinds of CHRs. The
part of the basic operation in Equation 3 corresponding to the intersection (cx,y⊕ ...),
is implemented by simplification CHRs:

ctr vel(X ,Y,V 1,O1),ctr vel(X ,Y,V 2,O2)⇔ intersection(V 1,V 2,V 3),
intersection(O1,O2,O3) | ctr vel(X ,Y,V 3,O3) (4)

so that, when we have two different contraints relative to the oriented velocity rela-
tionships between two objects X and Y (i.e. ctr vel(X ,Y,V 1,O1) and ctr vel(X ,Y,
V 2,O2)) what means the oriented velocity relationship between X and Y is V 1 and
V 2, with their respective orientations O1 and O2, the system replaces both cons-
traints by only one resulting from the intersection of the oriented velocity relation-
ships V 1−O1 and V 2−O2.

On the contrary, the part of the basic operation in Equation 3 corresponding to
the composition (vx,z⊗ vz,y) is implemented by propagation CHRs:

ctr vel(X ,Y,V 1,O1),ctr vel(Y,Z,V 2,O2)⇒ composition(V 1,V 2,V 3),
composition(O1,O2,O3) | newc(X ,Z,V 3,O3) (5)

where, given the oriented velocity relationships between objects X and Y and the
existing relationships between objects Y and Z, the system introduces a new cons-
traint that provides the oriented velocity relationship between objects X and Z. For
that, the BSIP is applied (for simplification, avoiding all the possible cases in solving
the velocity BSIP, here it is called composition)

Note that termination is guaranteed because the simplification rule 5 replaces V 1
and V 2 by the result V 3 of intersecting V 1 and V 2 (V 3 is the same as V 1 or V 2 or
smaller than them) as well as the resulting relationship O3 of intersecting O1 and
O2 replaces O1 and O2 (O3 is the same as O1 or O2 or smaller than them) and
because propagation CHRs are never repeated for the same constraint goals.

Algorithm 1 CIP for Qualitative Velocity integrated with Qualitative Orientation
% Constraint declaration and definition

(1a) constraints ctr vel/4, ctr vel/7.
(1b) label with ctr vel(Nv, No, X, Y, V, O, I) if Nv ≥ 1 and No ≥ 1.
(1c) ctr vel(Nv, No, X, Y, V, O, I) :- member(V1, V), member(O1, O),

ctr vel(1, 1, X, Y, [V1], [O1], I).
% Initialize

(2) ctr vel(X, Y, V, O)⇔ length(N, Nv), length(O, No) | ctr vel(Nv, No, X,
Y, V, O, 1).

% Special cases
(3a) ctr vel(Nv, No, X, Y, V, O, I)⇔ empty(V) | false.
(3b) ctr vel(Nv, No, X, Y, V, O, I)⇔ empty(O) | false.
(3c) ctr vel(Nv, No, X, Y, V, O, I)⇔ Nv = N | true.
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(3d) ctr vel(Nv, No, X, Y, V, O, I)⇔ No = 9 | true.
(3e) ctr vel(Nv, No, X, X, V, O, I)⇔ true.

% Intersection
(4a) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, X, Y, V2, O2, J)

⇔ intersection(V1, V2, V3), length(V3, Nv3), intersection(O1, O2,
O3), length(O3, No3), K is min(I, J) | ctr vel(Nv3, No3, X, Y, V3,
O3, K).

(4b) ctr vel(Nv1, No1, Y, X, V1, O1, I), ctr vel(Nv2, No2, X, Y, V2, O2, J)
⇔ inv op(V1, V11), intersection(V11, V2, V3), length(V3, Nv3),
inv op(O1, O11), intersection(O11, O2, O3), length(O3, No3), K is
min(I, J) | ctr vel(Nv3, No3, X, Y, V3, O3, K).

(4c) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Y, X, V2, O2, J)
⇔ inv op(V2, V12), intersection(V1, V12, V3), length(V3, Nv3),
inv op(O2, O12), intersection(O1, O12, O3), length(O3, No3), K is
min(I, J) | ctr vel(Nv3, No3, X, Y, V3, O3, K).

% Composition
(5a) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2, J)

⇔ velocity zero(V1), K is I+J | ctr vel(Nv2, No2, X, Z, V2, O2, K).
(5b) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2, J)

⇔ velocity zero(V2), K is I+J | ctr vel(Nv1, No1, X, Z, V1, O1, K).
(5c) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2, J)

⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1,O2,O12), build result(O11, O12, O3),
orientation zero(O3), lb qualitative sum(V1, V2, V11),
ub qualitative sum(V1, V2, V12), build result(V11, V12, V3),
length(V3, Nv3), higher orientation(O1, O2, O3), length(O3, No3),
K is I+J | ctr vel(Nv3, No3, X, Z, V3, O3, K).

(5d) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2, J)
⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1, O2, O12), build result(O11, O12,
O3), orientation 90degrees(O3), pythagoream theorem(V1,V2,O1,
O2,V3), length(V3, Nv3), maxmin op(O1,O2,O3), length(O3, No3),
K is I+J | ctr vel(Nv3, No3, X, Z, V3, O3, K).

(5e) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2, J)
⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1,O2,O12), build result(O11,O12,O3),
orientation 180degrees(O3), lb qualitative difference(V1,V2,V11),
ub qualitative difference(V1,V2,V12), build result(V11,V12,V3),
non zero(V3), length(V3, Nv3), higher orientation(O1, O2, O3),
length(O3, No3), K is I+J | ctr vel(Nv3, No3, X, Z, V3, O3, K).

(5f) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2, J)
⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1,O2,O12), build result(O11,O12, O3),
orientation 180degrees(O3), lb qualitative difference(V1,V2,V11),
ub qualitative difference(V1,V2,V12), build result(V11,V12,V3),
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zero(V3), length(V3, Nv3), K is I+J | ctr vel(Nv3, , X, Z, V3, , K).
(5g) ctr vel(Nv1, No1, Y, X, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2, J)

⇔ inv op(V1, V11), velocity zero(V11), K is I+J | ctr vel(Nv2, No2,
X, Z, V2, O2, K).

(5h) ctr vel(Nv1, No1, Y, X, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2, J)
⇔ velocity zero(V2), inv op(V1,V11), length(V11,Nv11), K is I+J |
ctr vel(Nv11, No1, X, Z, V11, O1, K).

(5i) ctr vel(Nv1, No1, Y, X, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2, J)
⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1,O2,O12), build result(O11,O12,O3),
orientation zero(O3), inv op(V1, V11), lb qualitative sum(V11,
V2, V21), ub qualitative sum(V11,V2,V22), build result(V21, V22,
V3), length(V3, Nv3), higher orientation(O1, O2, O3), length(O3,
No3), K is I+J | ctr vel(Nv3, No3, X, Z, V3, O3, K).

(5j) ctr vel(Nv1, No1, Y, X, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2,
J)⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1,O2,O12), build result(O11,O12,O3),
orientation 90degrees(O3), inv op(V1, V11),
pythagoream theorem(V11, V2, O1, O2, V3), length(V3, Nv3),
maxmin op(O1, O2, O3), length(O3, No3), K is I+J | ctr vel(Nv3,
No3, X, Z, V3, O3, K).

(5k) ctr vel(Nv1, No1, Y, X, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2, J)
⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1,O2,O12), build result(O11,O12,O3),
orientation 180degrees(O3), inv op(V1, V11),
lb qualitative difference(V11, V2, V21),
ub qualitative difference(V11,V2,V22), build result(V21,V22,V3),
non zero(V3), length(V3, Nv3), higher orientation(O1, O2, O3),
length(O3, No3), K is I+J | ctr vel(Nv3, No3, X, Z, V3, O3, K).

(5l) ctr vel(Nv1, No1, Y, X, V1, O1, I), ctr vel(Nv2, No2, Y, Z, V2, O2, J)
⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1,O2,O12), build result(O11,O12,O3),
orientation 180degrees(O3), inv op(V1, V11),
lb qualitative difference(V11, V2, V21),
ub qualitative difference(V11,V2,V22), build result(V21,V22,V3),
zero(V3), length(V3, Nv3), K is I+J | ctr vel(Nv3, , X, Z, V3, , K).

(5m) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Z, Y, V2,
O2, J)⇔ velocity zero(V1), inv op(V2, V12), length(V12, Nv12),
K is I+J | ctr vel(Nv12, No2, X, Z, V12, O2, K).

(5n) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Z, Y, V2, O2, J)
⇔ inv op(V2, V12), velocity zero(V12), K is I+J | ctr vel(Nv1, No1,
X, Z, V1, O1, K).

(5o) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Z, Y, V2, O2, J)
⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1,O2,O12), build result(O11,O12,O3),
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orientation zero(O3), inv op(V2,V12), lb qualitative sum(V1,V12,
V21), ub qualitative sum(V1,V12,V22), build result(V21,V22,V3),
length(V3, Nv3), higher orientation(O1, O2, O3), length(O3, No3),
K is I+J | ctr vel(Nv3, No3, X, Z, V3, O3, K).

(5p) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Z, Y, V2, O2,
J)⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1,O2,O12), build result(O11,O12,O3),
orientation 90degrees(O3), inv op(V2, V12),
pythagoream theorem(V1, V12, O1, O2, V3), length(V3, Nv3),
maxmin op(O1, O2, O3), length(O3, No3), K is I+J | ctr vel(Nv3,
No3, X, Z, V3, O3, K).

(5q) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Z, Y, V2, O2, J)
⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1,O2,O12), build result(O11,O12,O3),
orientation 180degrees(O3), inv op(V2, V12),
lb qualitative difference(V1, V12, V21),
ub qualitative difference(V1,V12,V22), build result(V21,V22,V3),
non zero(V3), length(V3, Nv3), higher orientation(O1, O2, O3),
length(O3, No3), K is I+J | ctr vel(Nv3, No3, X, Z, V3, O3, K).

(5r) ctr vel(Nv1, No1, X, Y, V1, O1, I), ctr vel(Nv2, No2, Z, Y, V2, O2, J)
⇔ lb qualitative difference(O1, O2, O11),
ub qualitative difference(O1,O2,O12), build result(O11,O12,O3),
orientation 180degrees(O3), inv op(V2, V12),
lb qualitative difference(V1, V12, V21),
ub qualitative difference(V1,V12,V22), build result(V21,V22,V3),
zero(V3), length(V3, Nv3), K is I+J | ctr vel(Nv3, , X, Z, V3, , K).

Two predicates, ctr vel of arity 4 and 7 are declared in rule (1a). The initial
qualitative velocity information is introduced through predicates ctr vel/4. So, the
predicates of type ctr vel/4 are translated into the predicates ctr vel/7 by means of
rule (1b) where the length of the velocity relation (Nv), the length of the orientation
relation (No) and the length of the shortest path from which the constraint (I) is
derived are added. A path length equal to 1 means that the constraint is direct, that is,
it is user-defined, not obtained from derivation. All those arguments are included to
increase efficiency. The two first ones will avoid compositions between constraints
which do not give more information (rules 3c and 3d) because all the qualitative
primitive (velocity or orientation) relationships are included in the disjunction. They
will also restrict constraints involved in a propagation to be disjunction-free, as it
is explained below. The last argument is used to restrict the propagation CHRs to
involve at least one constraint. The constraints will be treated by the CLP clause (1c)
if the relations, V and O, represent a disjunction of primitive relationships (rule 1b).
In predicate (1c), member(V 1,V ) and member(O1,O) non-deterministically choose
one primitive constraint for velocity and for orientation respectively, V and O, from
the disjunctive constraints V 1 and O1, by implementing the backtrack search part of
the algorithm.
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Special cases are simplification CHRs. (3a) and (3b) detect inconsistent cons-
traints. When the constraint relates three objects with an empty (velocity or orien-
tation) relationship, the constraint is substituted by the built-in predicate false and
the full predicate fails. If it is not be expected behaviour when substituting the in-
consistent constraint by true, that is, deleting this constraint. (3c) and (3d) delete
constraints which contain the full primitive qualitative velocity relationship set or
the full primitive qualitative orientation relationship respectively, while (3e) deletes
constraints which contain only one point instead of two.

Simplification CHRs (4a) to (4c) perform intersections which allow the simpli-
fication of redundant information. Rule (4a) implements intersection in the way
that it was originally defined in Equation 4, i.e., given two constraints which
relate the same three spatial objects, the more restricted relationships (velocity
as well as orientation) between both constraints is obtained by the predicates
intersection(V 1,V 2,V 3) and intersection(O1,O2,O3) and those constraints are
substituted by a new one which relates the same three objects with the new rela-
tionships V 3 and O3 among them. On the other hand, rules (4b) and (4c) solve
intersection when inverse operation is respectively applied to the first or the second
constraint in the head of the original intersection rule (eq. 4). Therefore, it is pos-
sible to obtain intersection if the inverse operation is applied to the relationship or
disjunction of relationships in the guard part of the rules. Note that the application of
the defined operation to a disjunction of relationships is equivalent to the application
of that operation to each relationship included in the disjunction of relation.

Propagation CHRs (5a) to (5r) perform compositions by using the proposed al-
gorithm. Several special cases have to be considered in order to properly solve the
composition equation (Equation 5). These cases depend on the orientation of ob-
jects. For that reason, it has to be distinguished between them (predicates orien-
tation zero, orientation 90degrees and orientation 180degrees). Furthermore, in a
similar way to what it happens to the simplification rule eq. 4, the application of
the inverse operation to the first constraint of the two which define the head of the
original composition rule define the CHRs (5g) to (5l); whereas if it is applied to the
second constraint, the CHRs (5m) to (5r) are obtained. Hence, a total of 18 propa-
gation CHRs are needed to cover all possible combinations of constraints. Note that
another optimization is introduced in order to make composition more efficient. It
is based on the fact that the resulting relationship of combining a zero velocity with
another velocity relation is that velocity relation different from zero.

3 A Practical Application

A real application of the proposed method is presented. In this case, the qualitative
velocity model has been implemented on a mobile robot. The aim of this system is
to assist human beings in performing a variety of tasks such as carrying person’s
tools or delivering parts. One of the major requirements of such robotic assistants
is the ability to track and follow a moving person through a non-predetermined,
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unstructured environment. To achieve this goal, two different tasks have to be carried
out: person recognition and segmentation from the surrounding environment, and
motion control to follow the person using the recognition results. In particular, in
this section, we proposed a qualitative reasoning method to achieve the second task
to be performed.

For that, an indoor pan-tilt-zoom (PTZ) camera was mounted on a Pioneer 3-DX
mobile platform [1] without restricting its autonomy and flexibility as depicted in
Fig. 5. The core of the PTZ system is a Canon VC-C4 analog colour camera [4]
with a resolution of 320x240 pixels, which is integrated with the mobile platform
hardware.

Fig. 5 Experimental set-up: external view of the used mobile platform (left) and a more detailed
view of the camera (right)

So, on the one hand, the system knows both its velocity and its orientation
through the information obtained from its motors. On the other hand, an image
processing based on optical flow provides an estimation of the velocity and orienta-
tion relationships corresponding to the person to be followed. Therefore, from these
two relationships (the one obtained by the robotic system itself and the other corres-
ponding to the person from image processing), the system is able to determine the
required velocity-orientation relationship that allows it to know the required trajec-
tory change to properly follow and assist that person. An example of the obtained
results can be seen in Fig. 6.

4 Conclusions

In this paper, we have proposed a qualitative velocity model including represen-
tation, reasoning process and a real robotic application of that. From the starting
point that the development of any qualitative model consists of a representation of
the magnitude at hand and the reasoning process, we have developed a qualitative
model for physical velocity such that velocity and orientation are combined, the
basic step of the inference process is expressed in terms of qualitative sums and
differences, and, given that knowledge about relationships between entities is often
provided in the form of constraints, the complete inference process is formalized as
a Constraint Satisfaction Problem (CSP).

As future work we will investigate the development of new qualitative models
based on intervals of aspects such as: time, weight, body sensations (such as hunger,
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Input Optical Flow

Qualitative classification Snapshot program running
Velocity Relationships Orientation Relationships

Fig. 6 Results obtained with the real robot when the qualitative velocity model proposed in the
previous section has been used. In this case, velocity relationships are labelled as Q = {zero, slow,
normal, quick} coded in the image by purple, red, green and blue respectively. On the other hand,
orientation relationships correspond to the modified Freksa and Zimmermann’s approach such that
fl is coded by red, sf by green, fr by yellow, l by blue, r by purple, bl by orange, sb by rose and br
by olive

sleepiness, tiredness, love, etc.), etc. with the purpose of providing robots with in-
telligent abilities to solve service robotics problems.
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Abstract. Graphical Processing Units (GPUs) consist of hundreds of
small cores, collectively operating to provide massive computation ca-
pabilities. The aim of this work is to utilize this technology to execute
Constraint Handling Rules (CHR) which are inherently parallel. A trans-
lation scheme is defined to transform a subset of CHR rules to C/C++,
then to use a GPU to fire the rules on all combinations of constraints. As
proof of concept, the scheme was performed on several CHR examples.
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1 Introduction

In recent years, graphics hardware has incurred a rapid increase in terms of
performance. Its use has evolved from merely rendering graphics to offering a
powerful platform for parallel computations. It has facilitated high performance
computing to be readily available on a typical desktop, shipped as the common
graphics processing units (GPUs). The powerful technology has become abun-
dant at a relatively low price, hence it is tempting for researchers to harness this
power for general-purpose computing to tackle intensive computations.

Furthermore, the introduction of CUDA (Compute Unified Device Archi-
tecture) by NVIDIA, a leading GPU manufacturer, gave rise to a new era of
computing. CUDA allows users to seamlessly run C, C++ and Fortran code on
a GPU, without requiring to resort to assembly language. CUDA has helped
unleash the power of GPUs to be easily available to wide range of users [6].
Several works have emerged making use of this computing potential, like several
number crunching algorithms [1], graph algorithms [4] and various others.

Constraint Handling Rules (CHR) is a committed-choice rule-based program-
ming language having a well-established formal basis. The abstract semantics of
CHR is inherently parallel, it involves multi-set rewriting over a multi-set of con-
straints [2]. CHR rules can be applied in parallel even to overlapping multi-sets
of constraints, if they are removed by at most one rule. Thus it supports a very
fine-grained form of parallelism.

A first abstract operational semantics for parallel CHR has been proposed
by Thom Frühwirth [3]. Early prototypes for parallel execution of CHR have
been developed based on shared-transaction memory (STM) by Edward Lam
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and Martin Sulzmann [5, 7]. Experimental evaluation of these systems revealed
a significant boost and often linear speedup over sequential executions. However,
these prototypes showed that conflicts occur with the STM-based approach; this
results in a slow down of the execution. More recently, Andrea Triossi [8, 9] has
developed a framework for compiling CHR to specialized hardware circuits. A
code fragment of CHR is compiled into a low level hardware description language,
to generate a specialized digital circuit on a Field Programmable Gate Array
(FPGA) for each specific CHR code fragment. The hardware blocks then enable
a parallel execution model for the compiled CHR fragment.

In this work, we aim to develop a prototype whilst exploiting the power
of graphics processing units to simulate the execution of a subset of CHR by
experimenting with different potential execution schemes. A translation scheme
from CHR to CUDA is defined in such a manner that the output CUDA code is
run in parallel, hence investigating the potential speed up of a parallel execution
of the CHR rules.

2 CHR Overview

Constraint Handling Rules (CHR) is a high-level, concurrent, committed-choice,
constraint logic programming language [2]. It consists of guarded rules that per-
form conditional transformation of multi-sets of constraints, known as a con-
straint store, until a fixed point is reached. CHR utilizes built-in constraints
which are predefined by the host language, and other user-defined CHR con-
straints. A CHR constraint is a predicate having a name and a certain number
of arguments. A CHR program typically consists of a finite set of rules, which
can be generally represented with a simpagation rule as follows:

rule name @ heads kept \ heads removed <=> guard | built ins, body constraints.

The rule name is an optional unique identifier given to a rule. heads kept,
heads removed, body constraints are a conjunction of one or more CHR con-
straints, where the constraints are kept, removed or added respectively. The
rule operates by matching the heads kept and heads removed with constraints
in the constraint store, then checks for the guard validity. If it holds then the
heads removed are removed from the store, and replaced with the built ins and
the body constraints. Additionally there are propagation and simplification rules,
which do not remove and do not keep any constraints respectively.

3 CUDA

CUDA offers a data parallel programming model that is supported on NVIDIA
GPUs [10]. In this model, the host program launches a sequence of kernels,
where a kernel is a hierarchy of threads. Threads are grouped into blocks, and
blocks are grouped into a grid. The sizes of grids, blocks and threads is hardware
dependent but a block typically contains 512 threads.



84 Amira Zaki, Thom Frühwirth, and Ilvar Geller

Each thread has a unique local index in its block (threadIdx), and each block
of dimension (blockDim) has a unique index in the grid (blockIdx). The three
indexes given are built-in 3-component vectors to access their values. Threads in
a single block will be executed on a single multiprocessor, sharing the software
data cache, and can synchronize and share data with threads in the same block.
Threads in different blocks may be assigned to different multiprocessors concur-
rently, to the same multiprocessor concurrently, or may be assigned to the same
or different multiprocessors at different times, depending on how the blocks are
scheduled dynamically.

Thus a kernel is executed N times in parallel by N different CUDA threads. A
kernel is defined using C/C++ functions and characterized with the __global__
declaration specifier indicating that it is callable from the host only. The number
of threads per block and the number of blocks per grid is specified using the
<<<...>>>> statement. Other functions which are callable from the device only
are indicated with __device__ specifier.

4 Translation Scheme

The approach presented in this paper involves translating CHR rules into an
imperative form, which can then be easily transformed into CUDA code to run on
a graphics card. The CUDA code is run in parallel to simulate the parallel firing
of the CHR rules. A subset of the CHR language is used, which includes only
simplification rules and simpagation rules that do not introduce more constraints
than those removed. This subset is a necessity due to the limited memory of the
graphics card.

The CUDA code defines a structure for every CHR constraint, to store the
information associated with it. The constraint store is then modeled and stored
as an array of fixed length consisting of the structures. The dynamic nature of
CHR constraints could be captured more clearly with a dynamic data structure
such as a list structure, however this would not be practical on the graphics
card. The GPU can not allocate memory in kernel calls because it does not
contain a memory management unit. Moreover despite developments to support
this feature in the future, there would still be an overhead introduced due to
synchronization issues. Moreover, the total number of constraints possible in the
lifetime of a program has to be known in advance, due to memory limitations
of the GPU. For the scope of this work, a compromise was reached by choosing
the subset of CHR that ensures an easy prediction of the number of constraints
incurred by a program.

4.1 CHR Constraint Representation

Constraints represent data in a program and can be introduced and removed
from the constraint store by CHR rules. Every constraint is a distinguished
predicate of first order logic, having a name and a number of arguments. With
the CHR Prolog implementation, every CHR constraint used has to be declared
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with a chr_constraint/1 declaration by the constraint specifier. In its ex-
tended form, a constraint specifier is constraint name(type1, . . . , typen), where
constraint name is the constraint’s functor, n its arity and the typei are argu-
ment specifiers. An argument specifier is a mode, followed by a type. Similar
to the work done in [11], for every constraint a C/C++ structure is defined
having the same name as the functor and with a listing of the arguments of
the constraint using the provided types. Additional meta-data about the con-
straint can also be stored within the structure. Thus for a CHR constraint
constraint name(type1, . . . , typen), the corresponding C/C++ structure can be
defined accordingly:

typedef struct {

type1 var1;
. . .
typen varn;
boolean isRemoved;

} constraint name;

The variables vari are used to store the arguments of the constraint. Addition-
ally every constraint structure generated should contain a boolean isRemoved

variable, which indicates the presence of the constraint in the store. It should be
changed during the computation if the constraint was removed from the store.

As an example, a CHR constraint to describe a candidate number for the
computation of a minimum can be expressed as: min(+int). Using the previ-
ously mentioned translation scheme, it can be transformed into the following
MIN structure:

typedef struct {

int value;

bool isRemoved;

} MIN;

The constraint store which contains N candidate minimum constraints is mod-
eled as an array named min_store as follows: MIN min_store [N].

4.2 CHR Rule Representation

The CHR subset chosen, should ensure that the body includes at most as many
added constraints as the removed ones. Generic simpagation rules are taken as
expressed in section 2. The subset chosen ensures that the number of constraints
removed is at most equal to the added body constraints, thus:

|heads removed| ≥ |body constraints|

A CHR rule can be translated into a function in C/C++, by mapping it to the
following form:
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void rule name (calling heads kept, calling heads removed) {

if(head constraints are not marked as removed
&& matching of variables in heads holds
&& guard holds) {

equivalent built-ins, setting body constraints
}

}

The name for a rule is optional in CHR but it is needed in C/C++ as a unique
identifier for each function. The parameter list contains a listing referencing the
structures of the equivalent head constraints. Constraints are fired only if they
are actually present in the constraint store, thus first a check must be performed
to check that they have not been marked as removed. Then when firing the rule,
variables may exist in common between the head constraints and matching is
performed. Thus in the translated C/C++ code matching of the variables must
be explicitly ensured. Lastly before the rule fires, the guard must be checked if
it holds and this must also be performed in the translated code. The guard is
a typical condition and contains only built-in constraints which are expressed
as straight forward C/C++ built-ins. The body consists of built-in constraints
and overwrites existing constraints or deletes them by changing their isRemoved
status variable.

Added constraints are actually overwritten in the place of removed head
constraints. This is done by modifying their respective structure variables, to
match the newly produced constraint. Head constraints that are removed and
not overwritten, must have their isRemoved variable changed.

For example to calculate the minimum of a multi-set of numbers ni expressed
as min(n1),. . . min(nk), a simpagation rule that takes two min candidates and
removes the one with the larger value is given as:

minimum @ min(A) \ min(B) <=> A=<B | true.

The equivalent C/C++ function using the previously mentioned translation
scheme is shown below. No variable matching is done in the rule, however both
constraints are first checked for being present in the store. The guard is also
checked, if all holds then the constraint with the larger value is removed from
the store.

void minimum(MIN &a, MIN &b) {

if(!a.isRemoved && !b.isRemoved && a.value <= b.value)

b.isRemoved = true;

}

4.3 CHR Rule Firing

The translation scheme involves transforming the query constraints into the
specified structure format and then placing them in an indexed array. The rule
is fired on every possible combination of constraints. This exhaustive method
can be optimized and changed according to the problem to be solved.
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For the running minimum example, it is sufficient to apply the exhaustive
firing. This means that the rule is fired for each pair of constraints; for an array
min_store of N constraints, N2 pairs are constructed.

The MIN constraints are stored in an indexed array and for each constraint
pair the rule-function is called. Using the exact same constraint in the rule does
not make any sense since a constraint is only present once in the store and
should not be fired against itself unless it is present twice in the store, therefore
a further if statement is needed. At the end of the loops the result will be a
single non-removed constraint in the array which contains the smallest value.
Encapsulating this functionality into a fire function is shown below:

void fire_minimum(MIN *min_store, int N) {

for (int i = 0; i < N; i += 1)

for (int j = 0; j < N; j += 1)

if (i != j)

minimum(min_store[i], min_store[j]);

}

4.4 Mapping to CUDA

After translating a CHR program into a C/C++ program it can be mapped with
little effort into a CUDA program. Every CHR rule was mapped into a C/C++
function, which is now defined to be called by a thread from a device, and thus
is redefined by adding the __device__ declaration specifier. The function is
redefined to the following:

__device__ void minimum(MIN &a, MIN &b) {

if(!a.isRemoved && !b.isRemoved && a.value <= b.value)

b.isRemoved = true;

}

The calls to the rule-firing functions, which were shown in the previous section
as nested loops, will now be run in parallel. This straightforward translation with
nested for-loops is perfectly suitable for the massive parallelism of CUDA. The
outer loop is now considered as a block and each block can be designed to have
512 threads working on its content. With this thread layout a large amount of
data can be processed.

An alternative approach to parallelize both loops is possible, but the amount
of data has to be significantly smaller and a greater overhead is incurred leading
to a slow down. The topic of work distribution between the threads remains a
subject of future investigations.

The loop-firing function is now declared with __global__. The loops are
reduced by one dimension, which now is replaced by the index of the handling
thread (calculated from one-dimension of the 3-component indexes). For the
minimum example, this now becomes:
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__global__ void fire_minimum(int *min_store, int N) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

for (int j = 0; j < N; j += 1)

if(i != j)

minimum(min_store[i], min_store[j]);

}

In the CUDA code’s main body, the number of threads is initialized. Assum-
ing we have defined an array, min_store, of N minimum constraints, and a
block_size equal to 512, then the initialization of the worker threads and as-
signing them to the firing function is done as given below:

int num_blocks = N / block_size + (N % block_size == 0 ? 0 : 1);

fire_minimum <<< num_blocks, block_size >>> (min_store, N);

A CUDA kernel launch is asynchronous and returns immediately. Thus to ensure
synchronization between the worker threads, cudaThreadSynchronize() should
be called to block execution until the device has completed all preceding tasks.
This would ensure that all worker threads fire a single rule synchronously, and
update the needed constraints before launching another kernel round.

5 Dynamic Detection Enhancement: Floyd-Warshall

As a proof of concept, several different algorithms were investigated and trans-
lated using the proposed scheme. These algorithms were the Sieve of Eratos-
thenes, GCD calculation and Floyd-Warshall. Due to the limited space of this
short paper, the latter one will only be presented here. It sheds light on the
need for an enhancement to the initial translation scheme to allow for dynamic
detection of re-firing of rules due to new constraints that have been added.

The Floyd-Warshall algorithm finds the length of the shortest paths between
all pairs of vertexes in a weighted graph. An edge can be represented by a CHR
constraint edge(?int,?int,?int), with the first two parameters expressing a
connection between two connected integer indexed nodes in a graph and the third
parameter describing the weight of the edge. The Floyd-Warshall algorithm can
be expressed in a single CHR rule:

floydw @ edge(I, K, D1), edge(K, J, D2) \ edge(I , J, D3)

<=> D3 > D1 + D2

| D4 is D1 + D2, edge(I, J, D4).

The edge constraints are stored in an array named edges_store; each one is
modeled using the following structure:

typedef struct {

int from, to, weight;

bool isRemoved;

} EDGE;
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The number of constraints in the program life cycle is equal to the number of
input constraints, as the rule only overwrites an existing constraint. The floydw

rule is transformed into the following CUDA function:

__device__ void floydw (EDGE &a, EDGE &b, EDGE &c) {

if(!a.isRemoved && !b.isRemoved && !c.isRemoved

&& a.from == c.from && a.to == b.from && b.to == c.to

&& c.weight > a.weight + b.weight)

c.distance = a.distance + b.distance;

}

Since the rule tries the matching of three heads, it follows that the rule firings
require three nested for-loops. Similar to the previous example this gets reduced
to two for-loops, and the resulting in the CUDA code is shown below:

__global__ void fire_floydw(EDGE *edges_store, int N) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

for (int j = 0; j < N; j += 1)

for (int k = 0; k < N; k += 1)

if (k != j && k != i && j != i)

floydw(edges_store[i], edges_store[j], edges_store[k]);

}

However in this example an existing constraint is overwritten and a new con-
straint has been introduced into the constraint store. This new constraint must
be tried in a potential rule application. Thus it is not sufficient to fire the rule
on every triplet combination, rather the firings must be performed exhaustively
until no changes have been done.

Thus a boolean flag (update) is introduced which detects if a new constraint
has been added. The flag is changed inside the body of the if-statement of the
floydw function. Inside a loop, the CUDA threads are initialized and call the
kernel fire function. This takes place several times until no new constraint is
added to the store. A simplified CUDA code snippet for this would look like:

int update = 1;

while (update) {

update = 0; ...

fire_floydw <<< n_blocks, block_size >>> (edges_store, N);

cudaThreadSynchronize(); ...

}

6 Conclusion

Constraint Handling Rules is a declarative multi-headed guarded rule-based pro-
gramming language, which is parallel by nature. Graphics processing units have
gained popularity nowadays, and have emerged as a cheap and powerful compu-
tation power for parallel executions; their uses have exceeded the rendering of
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graphics and have become desirable for various computationally expensive tasks.
In this work, we described a means to model the parallel execution of CHR onto
a graphics processor. Due to the limited memory of graphical units, a subset of
CHR was chosen which ensures that the maximal number of CHR constraints
present in the constraint store throughout the course of the program is known
beforehand. The scheme translates CHR constraints to C/C++ structures, de-
fines an array of these structures to denote the constraint store and each rule
into a function that performs the firing action. The firing of rules is simulated
by nested for-loops that fire rules on all combinations of constraints available in
the store.

The work presented is still in progress, requiring several extensions, bench-
marks and generalizations. Benchmarks to access the value of the gained speed
up which the translation incurred is missing. Furthermore, an automatic CHR-
to-CUDA translator that produces the output CUDA code would be greatly
advantageous. Another criterion which further needs optimization is the rule fir-
ings methodology and threads work load distribution. The process used in this
work was a naive one which exhaustively tries all combinations of constraint
pairs, this could be altered and optimized. Benchmarks for the various options
for rule firings would then be an interesting open topic to access.
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