

《曰》 《圖》 《臣》 《臣》

-2

# First Steps towards a Lingua Franca for Computing: Rule-based Approaches in CHR



Thom Frühwirth | July 2009 | CHR 2009, Pasadena, CA, USA

# The success of Constraint Handling Rules

## CHR - an essential unifying computational formalism?

- CHR is a logic and a programming language
- CHR can express any algorithm with optimal complexity
- CHR supports reasoning and program analysis
- CHR programs are efficient and very fast
- CHR programs are anytime, online and concurrent algorithms
- CHR has many applications from academia to industry
- $\Rightarrow$  CHR a Lingua Franca for computer science:
- \* The first formalism and the first language for students
- \* Reasoning formalism and programming language for research

Renaissance of rule-based approaches

Results on rule-based system re-used and re-examined for

- Business rules and Workflow systems
- Semantic Web (e.g. validating forms, ontology reasoning, OWL)
- Aspect Oriented Programming
- UML (e.g. OCL invariants) and extensions (e.g. ATL)
- Computational Biology (e.g. protein folding, genome analysis)
- Medical Diagnosis
- Software Verification and Security (e.g. access policies)

### Embedding rule-based approaches in CHR and vice versa

Conceptual level: source-to-source transformation (no interpreter, no compiler)

- Rule-based systems
  - Production Rules
  - Event-Condition-Action Rules
  - (Business Rules)
  - Logical Algorithms
- Rewriting- and graph-based formalisms
  - Term Rewriting and Functional Programming
  - (Graph Transformation Systems) and Multiset Transformation

- (Colored Petri Nets)
- Logic- and constraint-based programming languages
  - Prolog and Constraint Logic Programming
  - Concurrent Constraint Programming

## **Embeddings in CHR**

Advantages

CHR as lingua franca has to embed other approaches

- Advantages of CHR for execution
  - Efficiency, also optimal complexity possible
  - Abstract execution by constraints, even when arguments unknown
  - Incremental, anytime, online algorithms for free
  - Concurrent, parallel for confluent programs
- Advantages of CHR for analysis
  - Decidable confluence and operational equivalence
  - Estimating complexity semi-automatically
  - Logic-based declarative semantics for correctness
- Embedding means comparison, cross-fertilization, transfer of ideas

## **Rule-based systems**

Use ground representation, no declarative semantics

- Production rule systems (1980s)
  - First rule-based systems
  - Imperative, destructive assignment

# Event-Condition-Action (ECA) rules (mid 1990s)

- Extension of production rules for active database systems
- Some aspects standardized in SQL-3
- Business rules (since end of 1990s)
  - Constrain structure and behavior of business
  - Describe operation of company and interaction with costumers
- Logical Algorithms formalism (early 2000)
  - Hypothetical declarative production rule language
  - Overshadowing information instead of removal

# **OPS5** Translation

### Definition (Rule scheme for production rule)

```
OPS5 production rule
```

```
(p N LHS --> RHS)
```

translates to CHR generalized simpagation rule

N @ LHS1 \ LHS2  $\Leftrightarrow$  LHS3 | RHS'

LHS left hand side (if-clause), RHS right hand side (then-clause)

- LHS1: patterns of LHS for facts not modified in RHS
- LHS2: patterns of LHS for facts modified in RHS
- ▶ LHS3: conditions of LHS
- RHS': RHS without removal (for LHS2 facts)

# Example (Greatest common divisor) (I)

#### Example (OPS5)

```
(p done-no-divisors
  (euclidean-pair ^first <first> ^second 1) -->
  (write GCD is 1) (halt) )
(p found-gcd
   (euclidean-pair ^first <first> ^second <first>) -->
```

```
(write GCD is <first>) (halt) )
```

## Example (CHR)

done-no-divisors @ euclidean\_pair(First, 1) <=> write(GCD is 1).

found-gcd @ euclidean\_pair(First, First) <=> write(GCD is First).

## Example (Greatest common divisor) (II)

#### Example (OPS5)

#### Example (CHR)

switch-pair @ euclidean\_pair(First, Second) <=> Second > First |
 euclidean\_pair(Second, First),
 write(First--Second), nl.

# Example (Greatest common divisor) (III)

# Example (OPS5)

## Example (CHR)

reduce-pair @ euclidean\_pair(First, Second)) <=> Second < First euclidean\_pair(First-Second, Second), write(First-Second), nl.

#### Negation-as-absence

Negated pattern in production rules

- Satisfied if no fact satisfies condition
- Violates monotonicity
- Semantics unclear

## Example (Minimum in OPS5)

```
(p minimum
    (num ^val <x>)
    -(num ^val < <x>)
    --> (make min ^val <x>) )
```

Negation-as-absence also used for ensuring termination and for default reasoning

## CHR rules with negation-as-absence

Definition (Rule scheme for CHR rule with negation-as-absence)

```
CHR generalised simpagation rule
```

N @ LHS1 \ LHS2 - (NEG1, NEG2)  $\Leftrightarrow$  LHS3 | RHS

#### translates to CHR rules

N1 @ LHS1  $\land$  LHS2  $\Rightarrow$  LHS3 | check(LHS1,LHS2)

N2 @ NEG1 \ check(LHS1,LHS2)  $\Leftrightarrow$  NEG2 | true

N3 @ LHS1 \ LHS2  $\land$  check(LHS1,LHS2)  $\Leftrightarrow$  RHS

- ▶ NEG1 CHR constraints, NEG2 built-in constraints
- check: auxiliary CHR constraint
- Rule N2 must be tried before rule N3 (refined semantics)

#### Embeddings of production rules with negation in CHR

#### Example (Minimum)

```
num(X) ==> check(num(X)).
```

 $num(Y) \setminus check(num(X)) \iff Y \le X \mid true.$ 

 $num(X) \setminus check(num(X)) \iff min(X)$ .

#### Example (Termination: Transitive closure)

```
e(X,Y) ==> check(e(X,Y)).
```

p(X,Y) \ check(e(X,Y)) <=> true.

 $e(X, Y) \setminus check(e(X, Y)) \iff p(X, Y).$ 

#### Example (Default Reasoning: Marital status)

```
person(X) ==> check(person(X)).
```

married(X) \ check(person(X)) <=> true.

```
person(X) \ check(person(X)) <=> single(X).
```

CHR propagation rules with negation-as-absence

Assume negative part holds, otherwise repair later

- Use RHS directly instead of auxiliary check
- ▶ Works if RHS nonempty, no built-ins, contains head variables

Definition (Rule scheme for CHR propagation rule with negation)

CHR propagation rule

```
N @ LHS1 - (NEG1, NEG2) \Rightarrow LHS3 | RHS
```

translates to CHR rules

N2 @ NEG1 \ RHS  $\Leftrightarrow$  NEG2 | true

N1 @ LHS1  $\Rightarrow$  LHS3 | RHS

Rules are ordered: N2 rules have to come before N1 rules

イロン 不得 とくき とくき とうき

#### Consequences and examples

- Shorter, more concise programs
- $\blacktriangleright$  Often incremental, concurrent, declarative  $\Rightarrow$  easier analysis
- Negation often not needed (if we have propagation rules)

#### Example (Minimum in CHR)

 $min(Y) \setminus min(X) \iff Y \le X \mid true.$ 

num(X) = > min(X).

## Example (Transitive closure in CHR)

p(X,Y) \ p(X,Y) <=> true. e(X,Y) ==> p(X,Y).

### Example (Marital Status in CHR)

```
married(X) \ single(X) <=> true.
person(X) ==> single(X).
```

# Conflict resolution

Fire applicable rule with largest weight.

Definition (Rule scheme for CHR rule with static or dynamic weight) Generalised simpagation rule (with weight, priority or probability P) H1 \ H2 ⇔ LHS3 | RHS : P translates to CHR rules delay ∧ H1 ∧ H2 ⇒ LHS3 | rule (P, H1, H2) choose @ rule (P1,\_,\_) \ rule (P2,\_,\_) ⇔ P1≥P2 | true apply ∧ H1 \ H2 ∧ rule (P, H1, H2) ∧ delay ⇔ RHS ∧ delay ∧ apply

- Phase constraint delay: finds applicable rules
- Rule choose: finds rule with maximum weight
- Phase constraint apply: executes chosen rule

Phase constraints delay A apply present at end of guery

#### Summary production rule systems in CHR

- Negation-as-absence and conflict resolution use similar translation scheme
- Propagation and simpagation rules come handy
- Special case of negation-as-absence avoids absence check
- Phase constraints avoid rule firing before conflict resolution
- Phase constraints rely on left-to-right evaluation order of queries
- Alternatively, rely on order of rules (CHR refined semantics)
- Program sizes are roughly propertional to each other
- CHR complexity with proper conflict resolution roughly as production rule program

# Event Condition Action rules in CHR

Extension of production rules for ative databases, generalise features like integrity constraints, triggers and view maintenance

## ECA rules

on Event if Condition then Action

## Definition (Rule scheme for database relation)

n-ary relation r generates CHR rules for database update events

```
ins @ insert(R) \Rightarrow R
del @ delete(P) \ R \Leftrightarrow match(P,R) | true
upd @ update(R,R1) \ R \Leftrightarrow R1
(R=r(x_1, \dots, x_n), R1 = r(y_1, \dots, y_n), x_i, y_i distinct variables)
```

match (P, R) holds if tuple R matches tuple pattern P Additional generic rules to remove events (at end of program)

## Example (Salary increase)

Limit employee's salary increase by 10 %

Before update happends (by rule upd)

#### Example

update(emp(Name,S1), emp(Name,S2)) <=> S2>S1\*(1+0.1) |

update(emp(Name,S1),emp(Name,S1\*1.1)).

After update happends (by rule upd)

# Example update(emp(Name,S1), emp(Name,S2)) <=> S2>S1\*(1+0.1) |

```
update(emp(Name,S2),emp(Name,S1*1.1)).
```

Difference: first argument of update in the body

# LA formalism

- Hypothetical bottom-up logic programming language
- Features explicit deletion of atoms and rule priorities
- Declarative production rule language, deductive database language, inference rules with deletion
- Designed to derive tight complexity results
- The only implementation is in CHR
- It achieves the theoretically postulated complexity results!

Embedding Logical Algorithms in CHR

Range-restricted ground bottom-up formalism with first-order logic syntax for rules, with rule priorities and explicit deletion of atoms

Definition (Rule scheme for LA rule)

LA rule

 $r @ p : A \to C$ 

translates to CHR propagation rule with priority

 $r @ A_1 \Rightarrow A_2 | C : p$ 

(A1: atoms of A, A2: comparisons of A, C: atoms, p: priority)

Priorities by CHR extension or conflict resolution

Embedding Logical Algorithms in CHR (II)

# LA is set-based and has explicit deletion by special atom del(A)

| Definition (Rule scheme for LA predicate)                        |                                                  |                                             |  |
|------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|--|
| <i>n</i> -ary LA predicate <i>a</i> generates simpagation rules  |                                                  |                                             |  |
| $\mathbb{A} \ \setminus \ \mathbb{A} \ \Leftrightarrow \ true$   | del(A) $\setminus$ del(A) $\Leftrightarrow$ true | del(A) $\setminus$ A $\Leftrightarrow$ true |  |
| $(\mathbb{A}=a(x_1,\ldots,x_n), x_i \text{ distinct variables})$ |                                                  |                                             |  |

イロン イボン イヨン イヨン 三臣

But set-basedness needs more work...

# Ensuring set-based semantics

Generation of new rule variants by unifying head constraints

Definition (Rule scheme for set-based semantics)

To CHR propagation rules

 $H \wedge H_1 \wedge H_2 \Rightarrow G \,|\, B$ 

add rules (if guard does not imply that  $H \wedge H_1$  contains *B*)

$$H \wedge H_1 \Rightarrow H_1 = H_2 \wedge G \mid B$$

イロト イポト イヨト イヨト

#### Example

a(1, Y), a(X, 2) ==> b(X, Y).

Additional rule from unifying a(1, Y) and a(X, 2)

a(1,2) => b(1,2).

LA example (Dijkstra's shortest paths)

#### Example (Dijkstra in LA)

dl @ 1: source(X)  $\rightarrow$  dist(X,0) d2 @ 1: dist(X,N)  $\wedge$  dist(X,M)  $\wedge$  N<M  $\rightarrow$  del(dist(X,M)) dn @ N+2: dist(X,N)  $\wedge$  edge(X,Y,M)  $\rightarrow$  dist(Y,N+M)

#### Example (Dijkstra in CHR)

```
dl @ source(X) ==> dist(X,0) :1.
d2 @ dist(X,N), dist(X,M) ==> N<M | del(dist(X,M)) :1.
dn @ dist(X,N), edge(X,Y,M) ==> dist(Y,N+M) :N+2.
```

Rewriting-based and graph-based formalisms (I)

## Term rewriting systems (TRS)

- Replace subterms given term according to rules until exhaustion
- Formally based on equational logic
- TRS analysis inspired CHR analysis (termination, confluence)
- Functional Programming (FP)
  - Basically syntactic fragment of TRS extended with built-ins
- Graph transformation systems (GTS)
  - Generalise TRS: graphs are rewritten under matching morphism

Translate to positive ground range-restricted CHR simplification rules over binary (and unary) CHR constraints

# Term rewriting systems (TRS) and CHR

Principles

- Rewriting rules: directed equations between ground terms
- Rule application: Given a term, replace subterms that match lhs. of rule with rhs. of rule
- Rewriting until no further rule application is possible

Comparison to CHR

- TRS locally rewrite subterms at fixed position in one ground term (functional notation)
- CHR globally manipulates several constraints in multisets of constraints (relational notation)
- ► TRS rules: **no built-ins**, no guards, no logical variables
- TRS rules: restrictions on occurrences of pattern variables

# Flattening

Transformation forms basis for embedding TRS (and FP) in CHR

- Opposite of variable elimination, introduce new variables
- Flattening function transforms atomic equality constraint eq between nested terms into conjunction of *flat* equations

# Definition (Flattening function)

 $[X eq T] := \begin{cases} X eq T & \text{if } T \text{ is a variable} \\ X eq f(X_1, \dots, X_n) \land \bigwedge_{i=1}^n [X_i eq T_i] & \text{if } T = f(T_1, \dots, T_n) \end{cases}$ 

(X variable, T term,  $X_1 \dots X_n$  new variables)

# Embedding TRS in CHR

Definition (Rule scheme for term rewriting rule)

 $S \to T$ 

translates to CHR simplification rule

 $[X eq S] \Leftrightarrow [X eq T]$ 

### Example (TRS Addition of natural numbers)

0+Y -> Y.

s(X) + Y -> s(X+Y).

#### Example (Translation to CHR)

T eq T1+T2, T1 eq 0, T2 eq Y <=> T eq Y.

T eq T1+T2, T1 eq s(T3), T3 eq X, T2 eq Y <=>

T eq s(T4), T4 eq T5+T6, T5 eq X, T6 eq Y.

# Functional programming (FP)

- FP can be seen as programming language based on TRS
  - Extended by built-in functions and guard tests
  - Matching only at outermost redex of lhs. of rewrite rule

Definition (Rule scheme for functional program rule)

 $S \to G \,|\, T$ 

translates to CHR simplification rule

 $X \operatorname{eq} S \Leftrightarrow G \mid [X \operatorname{eq} T]$ 

Additional generic rules for data and auxiliary functions

```
X eq T \Leftrightarrow datum(T) \mid X=T.
```

```
X \text{ eq } T \Leftrightarrow \text{builtin}(T) \mid \text{call}(T, X).
```

(call(T,X) calls built-in function T, returns result in X)

## Example (Fibonacci Numbers)

#### Example (Fibonacci in FP)

fib(0) -> 1.
fib(1) -> 1.
fib(N) -> N>=2 | fib(N-1)+fib(N-2).

#### Example (Fibonacci in CHR)

(Generic rules for datum and built-in already applied in bodies)

# GAMMA

- Based solely on multiset rewriting
- Chemical metaphor: molecules in solution react according to reaction rules
- Basis of Chemical Abstract Machine (CHAM)
- Reaction in parallel on disjoint sets of molecules

# Definition (GAMMA)

- ▶ GAMMA program: pairs (c/n, f/n) (predicate *c*, function *f*)
- ▶ *f* applied to molecules for witch *c* holds

• Result 
$$f(x_1, \ldots, x_n) = \{y_1, \ldots, y_m\}$$
 replaces  $\{x_1, \ldots, x_n\}$  in S

### **GAMMA** Translation

Molecules modeled as unary CHR constraints, reactions as rules

## Definition (Rule scheme for GAMMA pair)

GAMMA pair (c/n, f/n) translated to simplification rule

$$d(x_1),\ldots,d(x_n)\Leftrightarrow c(x_1,\ldots,x_n)|f(x_1,\ldots,x_n),$$

where f is defined by rules of the form

$$f(x_1,\ldots,x_n) \Leftrightarrow G \mid D, d(y_1),\ldots,d(y_m),$$

(d wraps molecules, c built-in, G guard, D auxiliary built-ins)

Can unfold f, and optimize to simpagation rules

GAMMA examples and translation into CHR

min =  $(X < Y, (X, Y) \setminus \{X\})$ 

 $d(X) \setminus d(Y) \iff X \leqslant Y \mid true.$ 

| Example (Greatest Common Divisor)            |                                                        |  |
|----------------------------------------------|--------------------------------------------------------|--|
| $gcd = (X < Y, (X, Y) \setminus \{X, Y-X\})$ | $d(X) \setminus d(Y) \iff X \leqslant Y \mid d(Y-X)$ . |  |

| Example (Prime sieve)                                |                                                               |
|------------------------------------------------------|---------------------------------------------------------------|
| prime = $(X \text{ div } Y, (X, Y) \setminus \{X\})$ | $d(X) \setminus d(Y) \iff X \text{ div } Y \mid \text{true.}$ |

# Constraint logic programming translation to CHR

For pure Prolog and CLP without cut and negation-as-failure

## Definition (Rule scheme for pure (C)LP clauses)

- CLP predicate p/n is considered as CHR constraint
- For each predicate p/n Clark's completion of p/n added as CHR<sup>∨</sup> simplification rule

# Example (Append in Prolog)

append([],L,L)  $\leftarrow$  true. append([H|L1],L2,[H|L3])  $\leftarrow$  append(L1,L2,L3).

# Example (Append in CHR<sup>∨</sup>)

 $append(X, Y, Z) \Leftrightarrow$ 

- (  $X=[] \land Y=L \land Z=L$
- $\vee$  X=[H|L1] $\wedge$ Y=L2 $\wedge$ Z=[H|L3] $\wedge$ append(L1,L2,L3)).

## Example (Prime sieve)

### Comparison between Prolog and CHR by example

#### Example (Prime sieve in Prolog)

```
primes(N,Ps):- upto(2,N,Ns), sift(Ns,Ps).
```

```
upto(F,T,[]):- F>T, !.
upto(F,T,[F|Ns1]):- F1 is F+1, upto(F1,T,Ns1).
```

```
sift([],[]).
sift([P|Ns],[P|Ps1]):- filter(Ns,P,Ns1), sift(Ns1,Ps1).
filter([],P,[]).
```

```
filter([X|In],P,Out):- X mod P =:= 0, !, filter(In,P,Out).
filter([X|In],P,[X|Out1]):- filter(In,P,Out1).
```

#### Prolog uses nonlogical cut operator.

| Example (Prime sieve in CHR)                                   |  |  |
|----------------------------------------------------------------|--|--|
| upto(N) <=> N>1   M is N-1, upto(M), prime(N).                 |  |  |
| sift @ prime(I) $\setminus$ prime(J) <=> J mod I =:= 0   true. |  |  |

# Example (Shortest path)

## Comparison between Prolog and CHR by example

ample (Chartast noth in Drolag)

| Example (Shorlest path in Prolog) |                                                         |  |
|-----------------------------------|---------------------------------------------------------|--|
| p(From, To, Path, N) :-           | e(From,To,N).                                           |  |
| p(From, To, Path, N) :-           | e(From,Via,1),                                          |  |
|                                   | not member(Via,Path),                                   |  |
|                                   | <pre>p(Via,To,[Via Path],N1),</pre>                     |  |
|                                   | N is N1+1.                                              |  |
| <pre>shortestp(From, To, N)</pre> | :- p(From, To, [], N),                                  |  |
|                                   | <pre>not (p(From,To,[],N1),N1<n).< pre=""></n).<></pre> |  |

Prolog uses nonlogical negation-as-failure.

# Example (Shortest path in CHR) p(X,Y,N) \ p(X,Y,M) <=> N=<M | true. e(X,Y) ==> p(X,Y,1). e(X,Y), p(Y,Z,N) ==> p(X,Z,N+1).

Concurrent constraint programming (CC)

- One of the frameworks closest to CHR
- CC permits don't care and don't know nondeterminisms
- We concentrate on the committed-choice fragment of CC (Based on don't-care nondeterminism like CHR)

## Definition (Abstract syntax of CC program)

CC program is a finite sequence of declarations.

Declarations  $D ::= p(\tilde{t}) \leftarrow A \mid D, D$ Agents  $A ::= true \mid c \mid \sum_{i=1}^{n} c_i \rightarrow A_i \mid A \mid A \mid p(\tilde{t})$ 

(*p* user-defined predicate symbol,  $\tilde{t}$  sequence of terms, *c* and *c*<sub>*i*</sub>'s constraints)

## Translation

## Definition (Rule scheme for CC expressions)

$$D ::= p(\tilde{t}) \Leftrightarrow A \mid D, D$$
  

$$A ::= true \mid c \mid \operatorname{ask}(\sum_{i=1}^{n} c_i \to A_i) \mid A \land A \mid p(\tilde{t})$$

For each Ask  $A = \sum_{i=1}^{n} c_i \rightarrow A_i$  of CC program generate *n* simplification rules for ask constraint

 $\operatorname{ask}(A) \Leftrightarrow c_i | A_i \ (1 \le i \le n).$ 

・ロト・西ト・ヨト・ヨー つんぐ

## Example (Maximum)

#### Example (Maximum in CC)

 $\max(X, Y, Z) \leftarrow (X \leq Y \rightarrow Y = Z) + (Y \leq X \rightarrow X = Z)$ 

#### Example (Maximum in CHR)

 $\max \left( \text{X}, \text{Y}, \text{Z} \right) \ \Leftrightarrow \ \text{ask} \left( \left( \text{X} {\leq} \text{Y} \ \rightarrow \ \text{Y} {=} \text{Z} \right) \ + \ \left( \text{Y} {\leq} \text{X} \ \rightarrow \ \text{X} {=} \text{Z} \right) \right).$ 

 $ask((X \leq Y \rightarrow Y = Z) + (Y \leq X \rightarrow X = Z)) \Leftrightarrow X \leq Y \mid Y = Z.$ 

ask((X $\leq$ Y  $\rightarrow$  Y=Z) + (Y $\leq$ X  $\rightarrow$  X=Z))  $\Leftrightarrow$  Y $\leq$ X | X=Z.

To simplify ask rules, replace generic ask by ask\_max(X,Y,Z)

#### Example (Simplified maximum in CHR)

ask\_max(X,Y,Z)  $\Leftrightarrow$  X $\leq$ Y | Y=Z. ask max(X,Y,Z)  $\Leftrightarrow$  Y<X | X=Z. Summary: embedding rule-based approaches into CHR

- Logic- and constraint-based languages in single-headed CHR<sup>V</sup> simplification rules
- Rule-based systems and formalisms in positive ground range-restricted CHR
  - ground: queries ground
  - positive: no built-ins in body of rule
  - range-restricted: variables in guard and body also in head
- These conditions imply
  - Every state in a computation is ground
  - CHR constraints do not delay and wake up
  - Guard entailment check is just test
  - Computations cannot fail

# Useful CHR features to support embeddings

We used source-to-source transformation for features. Could also use dynamic CHR (justifications) or extensions of CHR for

- built-in "negation" of rule-based systems
  - $\Rightarrow$  CHR with negation-as-absence
- conflict resolution of rule-based systems
  - $\Rightarrow$  CHR with priorities
- ▶ ignorance of duplicates in rule-based formalisms ⇒ CHR with set-based semantics
- ▶ built-in search of Prolog, constraint logic programming ⇒ CHR<sup>∨</sup> with disjunction or search library

Most available in upcoming K.U. Leuven CHR.

#### Distinguishing CHR features to be embedded

Unique combination of features makes embedding of CHR in other approaches hard

- Multiple Head Atoms not in other programming languages
- Propagation rules only in Logical Algorithms
- Constraints only in constraint-based programming
  - Logical variables instead of ground representation
  - Constraints are reconsidered when new information arrives
  - Notion of failure due to built-in constraints
- Logical Declarative Semantics only in Prolog, CLP
  - CHR computations justified by logic reading of program

### Embedding fragments of CHR in other rule-based approaches

Possibilities are rather limited (without interpreter or compiler)

- Positive ground range-restricted fragment embeddable into
  - Rule-based systems with negation and Logical Algorithms
  - Only simplification rules in Rewriting- and Graph-based formalisms
- Single-headed rules with constraints embeddable into
  - Concurrent constraint programming languages

Typically, no (efficient) implementations exist for those approaches

# Conclusions

CHR as *lingua franca* can indeed embed rule-based approaches from theoretical to practical: systems, formalism, programming languages

- Positive ground range-restricted CHR fragment sufficient?
- What is the right syntax and terminology for CHR?
- Which features are good, which are bad?
- What are the issues, what are just technicalities?
- What about comparison and cross-fertilisation of embeddings?

If you answer these questions, CHR has a exciting and bright future.