
First Steps towards a Lingua Franca for Computing:
Rule-based Approaches in CHR

Thom Frühwirth | July 2009 | CHR 2009, Pasadena, CA, USA

Page 2 Rule-based Approaches in CHR | Motivation

The success of Constraint Handling Rules

CHR - an essential unifying computational formalism?

I CHR is a logic and a programming language

I CHR can express any algorithm with optimal complexity

I CHR supports reasoning and program analysis

I CHR programs are efficient and very fast

I CHR programs are anytime, online and concurrent algorithms

I CHR has many applications from academia to industry

⇒ CHR - a Lingua Franca for computer science:
* The first formalism and the first language for students
* Reasoning formalism and programming language for research

Page 3 Rule-based Approaches in CHR | Motivation

Renaissance of rule-based approaches

Results on rule-based system re-used and re-examined for

I Business rules and Workflow systems

I Semantic Web (e.g. validating forms, ontology reasoning, OWL)

I Aspect Oriented Programming

I UML (e.g. OCL invariants) and extensions (e.g. ATL)

I Computational Biology (e.g. protein folding, genome analysis)

I Medical Diagnosis

I Software Verification and Security (e.g. access policies)

Page 4 Rule-based Approaches in CHR | Motivation

Embedding rule-based approaches in CHR and vice versa

Conceptual level: source-to-source transformation (no interpreter, no
compiler)

I Rule-based systems
I Production Rules
I Event-Condition-Action Rules
I (Business Rules)
I Logical Algorithms

I Rewriting- and graph-based formalisms
I Term Rewriting and Functional Programming
I (Graph Transformation Systems) and Multiset Transformation
I (Colored Petri Nets)

I Logic- and constraint-based programming languages
I Prolog and Constraint Logic Programming
I Concurrent Constraint Programming

Page 5 Rule-based Approaches in CHR | Motivation

Embeddings in CHR
Advantages

CHR as lingua franca has to embed other approaches
I Advantages of CHR for execution

I Efficiency, also optimal complexity possible
I Abstract execution by constraints, even when arguments unknown
I Incremental, anytime, online algorithms for free
I Concurrent, parallel for confluent programs

I Advantages of CHR for analysis
I Decidable confluence and operational equivalence
I Estimating complexity semi-automatically
I Logic-based declarative semantics for correctness

I Embedding means comparison, cross-fertilization, transfer of
ideas

Page 6 Rule-based Approaches in CHR | Rule-based systems

Rule-based systems

Use ground representation, no declarative semantics
I Production rule systems (1980s)

I First rule-based systems
I Imperative, destructive assignment

I Event-Condition-Action (ECA) rules (mid 1990s)
I Extension of production rules for active database systems
I Some aspects standardized in SQL-3

I Business rules (since end of 1990s)
I Constrain structure and behavior of business
I Describe operation of company and interaction with costumers

I Logical Algorithms formalism (early 2000)
I Hypothetical declarative production rule language
I Overshadowing information instead of removal

Page 7 Rule-based Approaches in CHR | Rule-based systems | Production rule systems

OPS5 Translation

Definition (Rule scheme for production rule)

OPS5 production rule

(p N LHS --> RHS)

translates to CHR generalized simpagation rule

N @ LHS1 \ LHS2 ⇔ LHS3 | RHS’

LHS left hand side (if-clause), RHS right hand side (then-clause)

I LHS1: patterns of LHS for facts not modified in RHS

I LHS2: patterns of LHS for facts modified in RHS

I LHS3: conditions of LHS

I RHS’: RHS without removal (for LHS2 facts)

Page 8 Rule-based Approaches in CHR | Rule-based systems | Production rule systems

Example (Greatest common divisor) (I)

Example (OPS5)
(p done-no-divisors

(euclidean-pair ˆfirst <first> ˆsecond 1) -->

(write GCD is 1) (halt))

(p found-gcd

(euclidean-pair ˆfirst <first> ˆsecond <first>) -->

(write GCD is <first>) (halt))

Example (CHR)
done-no-divisors @ euclidean_pair(First, 1) <=> write(GCD is 1).

found-gcd @ euclidean_pair(First, First) <=> write(GCD is First).

Page 9 Rule-based Approaches in CHR | Rule-based systems | Production rule systems

Example (Greatest common divisor) (II)

Example (OPS5)
(p switch-pair

{(euclidean-pair ˆfirst <first>

ˆsecond { <second> > <first>})

<e-pair>} -->

(modify <e-pair> ˆfirst <second>

ˆsecond <first>)

(write <first> -- <second> (crlf)))

Example (CHR)
switch-pair @ euclidean_pair(First, Second) <=> Second > First |

euclidean_pair(Second, First),

write(First--Second), nl.

Page 10 Rule-based Approaches in CHR | Rule-based systems | Production rule systems

Example (Greatest common divisor) (III)

Example (OPS5)
(p reduce-pair

{(euclidean-pair ˆfirst <first>

ˆsecond { <second> < <first> })

<e-pair>} -->

(modify <e-pair> ˆfirst (compute <first>-<second>))

(write <first> -- <second> (crlf)))

Example (CHR)
reduce-pair @ euclidean_pair(First, Second)) <=> Second < First |

euclidean_pair(First-Second, Second),

write(First--Second), nl.

Page 11 Rule-based Approaches in CHR | Rule-based systems | Negation-as-absence

Negation-as-absence

Negated pattern in production rules

I Satisfied if no fact satisfies condition

I Violates monotonicity

I Semantics unclear

Example (Minimum in OPS5)
(p minimum

(num ˆval <x>)

-(num ˆval < <x>)

--> (make min ˆval <x>))

Negation-as-absence also used for ensuring termination and for
default reasoning

Page 12 Rule-based Approaches in CHR | Rule-based systems | Negation-as-absence

CHR rules with negation-as-absence

Definition (Rule scheme for CHR rule with negation-as-absence)

CHR generalised simpagation rule

N @ LHS1 \ LHS2 -(NEG1,NEG2) ⇔ LHS3 RHS

translates to CHR rules

N1 @ LHS1 ∧ LHS2 ⇒ LHS3 check(LHS1,LHS2)

N2 @ NEG1 \ check(LHS1,LHS2) ⇔ NEG2 true
N3 @ LHS1 \ LHS2 ∧ check(LHS1,LHS2) ⇔ RHS

I NEG1 CHR constraints, NEG2 built-in constraints

I check: auxiliary CHR constraint

I Rule N2 must be tried before rule N3 (refined semantics)

Page 13 Rule-based Approaches in CHR | Rule-based systems | Negation-as-absence

Embeddings of production rules with negation in CHR

Example (Minimum)
num(X) ==> check(num(X)).

num(Y) \ check(num(X)) <=> Y<X | true.

num(X) \ check(num(X)) <=> min(X).

Example (Termination: Transitive closure)
e(X,Y) ==> check(e(X,Y)).

p(X,Y) \ check(e(X,Y)) <=> true.

e(X,Y) \ check(e(X,Y)) <=> p(X,Y).

Example (Default Reasoning: Marital status)
person(X) ==> check(person(X)).

married(X) \ check(person(X)) <=> true.

person(X) \ check(person(X)) <=> single(X).

Page 14 Rule-based Approaches in CHR | Rule-based systems | Negation-as-absence

CHR propagation rules with negation-as-absence

Assume negative part holds, otherwise repair later

I Use RHS directly instead of auxiliary check

I Works if RHS nonempty, no built-ins, contains head variables

Definition (Rule scheme for CHR propagation rule with negation)

CHR propagation rule

N @ LHS1 -(NEG1,NEG2) ⇒ LHS3 RHS

translates to CHR rules

N2 @ NEG1 \ RHS ⇔ NEG2 true
N1 @ LHS1 ⇒ LHS3 RHS

Rules are ordered: N2 rules have to come before N1 rules

Page 15 Rule-based Approaches in CHR | Rule-based systems | Negation-as-absence

Consequences and examples

I Shorter, more concise programs
I Often incremental, concurrent, declarative⇒ easier analysis
I Negation often not needed (if we have propagation rules)

Example (Minimum in CHR)
min(Y) \ min(X) <=> Y<X | true.

num(X) ==> min(X).

Example (Transitive closure in CHR)
p(X,Y) \ p(X,Y) <=> true.

e(X,Y) ==> p(X,Y).

Example (Marital Status in CHR)
married(X) \ single(X) <=> true.

person(X) ==> single(X).

Page 16 Rule-based Approaches in CHR | Rule-based systems | Conflict resolution

Conflict resolution

Fire applicable rule with largest weight.

Definition (Rule scheme for CHR rule with static or dynamic weight)

Generalised simpagation rule (with weight, priority or probability P)

H1 \ H2 ⇔ LHS3 RHS : P

translates to CHR rules

delay ∧ H1 ∧ H2 ⇒ LHS3 rule(P,H1,H2)

choose @ rule(P1,_,_) \ rule(P2,_,_) ⇔ P1≥P2 true
apply ∧ H1 \ H2 ∧ rule(P,H1,H2) ∧ delay ⇔ RHS ∧ delay ∧ apply

I Phase constraint delay: finds applicable rules
I Rule choose: finds rule with maximum weight
I Phase constraint apply: executes chosen rule

Phase constraints delay ∧ apply present at end of query

Page 17 Rule-based Approaches in CHR | Rule-based systems | Conflict resolution

Summary production rule systems in CHR

I Negation-as-absence and conflict resolution use similar
translation scheme

I Propagation and simpagation rules come handy

I Special case of negation-as-absence avoids absence check

I Phase constraints avoid rule firing before conflict resolution

I Phase constraints rely on left-to-right evaluation order of queries

I Alternatively, rely on order of rules (CHR refined semantics)

I Program sizes are roughly propertional to each other

I CHR complexity with proper conflict resolution roughly as
production rule program

Page 18 Rule-based Approaches in CHR | Rule-based systems | Event Condition Action rules

Event Condition Action rules in CHR

Extension of production rules for ative databases, generalise features
like integrity constraints, triggers and view maintenance

ECA rules
on Event if Condition then Action

Definition (Rule scheme for database relation)
n-ary relation r generates CHR rules for database update events

ins @ insert(R) ⇒ R

del @ delete(P) \ R ⇔ match(P,R) true
upd @ update(R,R1) \ R ⇔ R1

(R= r(x1, . . . , xn), R1= r(y1, . . . , yn), xi, yj distinct variables)

match(P,R) holds if tuple R matches tuple pattern P

Additional generic rules to remove events (at end of program)

Page 19 Rule-based Approaches in CHR | Rule-based systems | Event Condition Action rules

Example (Salary increase)

Limit employee’s salary increase by 10 %

I Before update happends (by rule upd)

Example
update(emp(Name,S1), emp(Name,S2)) <=> S2>S1*(1+0.1) |

update(emp(Name,S1),emp(Name,S1*1.1)).

I After update happends (by rule upd)

Example
update(emp(Name,S1), emp(Name,S2)) <=> S2>S1*(1+0.1) |

update(emp(Name,S2),emp(Name,S1*1.1)).

I Difference: first argument of update in the body

Page 20 Rule-based Approaches in CHR | Rule-based systems | Logical algorithms formalism

LA formalism

I Hypothetical bottom-up logic programming language

I Features explicit deletion of atoms and rule priorities

I Declarative production rule language, deductive database
language, inference rules with deletion

I Designed to derive tight complexity results

I The only implementation is in CHR

I It achieves the theoretically postulated complexity results!

Page 21 Rule-based Approaches in CHR | Rule-based systems | Logical algorithms formalism

Embedding Logical Algorithms in CHR

Range-restricted ground bottom-up formalism with first-order logic
syntax for rules, with rule priorities and explicit deletion of atoms

Definition (Rule scheme for LA rule)

LA rule
r @ p : A→ C

translates to CHR propagation rule with priority

r @ A1 ⇒ A2 C : p

(A1: atoms of A, A2: comparisons of A, C: atoms, p: priority)

Priorities by CHR extension or conflict resolution

Page 22 Rule-based Approaches in CHR | Rule-based systems | Logical algorithms formalism

Embedding Logical Algorithms in CHR (II)

LA is set-based and has explicit deletion by special atom del(A)

Definition (Rule scheme for LA predicate)

n-ary LA predicate a generates simpagation rules

A \ A ⇔ true del(A) \ del(A) ⇔ true del(A) \ A ⇔ true

(A= a(x1, . . . , xn), xi distinct variables)

But set-basedness needs more work...

Page 23 Rule-based Approaches in CHR | Rule-based systems | Logical algorithms formalism

Ensuring set-based semantics

Generation of new rule variants by unifying head constraints

Definition (Rule scheme for set-based semantics)

To CHR propagation rules

H ∧ H1 ∧ H2 ⇒ G B

add rules (if guard does not imply that H ∧ H1 contains B)

H ∧ H1 ⇒ H1=H2 ∧ G B

Example
a(1,Y), a(X,2) ==> b(X,Y).

Additional rule from unifying a(1,Y) and a(X,2)

a(1,2) ==> b(1,2).

Page 24 Rule-based Approaches in CHR | Rule-based systems | Logical algorithms formalism

LA example (Dijkstra’s shortest paths)

Example (Dijkstra in LA)
d1 @ 1: source(X) → dist(X,0)

d2 @ 1: dist(X,N) ∧ dist(X,M) ∧ N<M → del(dist(X,M))

dn @ N+2: dist(X,N) ∧ edge(X,Y,M) → dist(Y,N+M)

Example (Dijkstra in CHR)
dist(X,N) \ dist(X,N) <=> true.

del(dist(X,N)) \ del(dist(X,N)) <=> true.

del(dist(X,N)) \ dist(X,N) <=> true.

d1 @ source(X) ==> dist(X,0) :1.

d2 @ dist(X,N), dist(X,M) ==> N<M | del(dist(X,M)) :1.

dn @ dist(X,N), edge(X,Y,M) ==> dist(Y,N+M) :N+2.

Page 25 Rule-based Approaches in CHR | Rule-based systems | Logical algorithms formalism

Rewriting-based and graph-based formalisms (I)

I Term rewriting systems (TRS)
I Replace subterms given term according to rules until exhaustion
I Formally based on equational logic
I TRS analysis inspired CHR analysis (termination, confluence)

I Functional Programming (FP)
I Basically syntactic fragment of TRS extended with built-ins

I Graph transformation systems (GTS)
I Generalise TRS: graphs are rewritten under matching morphism

Translate to positive ground range-restricted CHR simplification rules
over binary (and unary) CHR constraints

Page 26 Rule-based Approaches in CHR | Rule-based systems | Term rewriting systems

Term rewriting systems (TRS) and CHR

Principles

I Rewriting rules: directed equations between ground terms

I Rule application: Given a term, replace subterms that match lhs.
of rule with rhs. of rule

I Rewriting until no further rule application is possible

Comparison to CHR

I TRS locally rewrite subterms at fixed position in one ground term
(functional notation)

I CHR globally manipulates several constraints in multisets of
constraints (relational notation)

I TRS rules: no built-ins, no guards, no logical variables

I TRS rules: restrictions on occurrences of pattern variables

Page 27 Rule-based Approaches in CHR | Rule-based systems | Term rewriting systems

Flattening

Transformation forms basis for embedding TRS (and FP) in CHR

I Opposite of variable elimination, introduce new variables

I Flattening function transforms atomic equality constraint eq
between nested terms into conjunction of flat equations

Definition (Flattening function)

[X eq T] :=

{
X eq T if T is a variable
X eq f (X1, . . . , Xn) ∧

∧n
i=1[Xi eq Ti] if T=f (T1, . . . , Tn)

(X variable, T term, X1 . . . Xn new variables)

Page 28 Rule-based Approaches in CHR | Rule-based systems | Term rewriting systems

Embedding TRS in CHR

Definition (Rule scheme for term rewriting rule)

S→ T

translates to CHR simplification rule

[X eq S]⇔ [X eq T]

Example (TRS Addition of natural numbers)
0+Y -> Y.

s(X)+Y -> s(X+Y).

Example (Translation to CHR)
T eq T1+T2, T1 eq 0, T2 eq Y <=> T eq Y.

T eq T1+T2, T1 eq s(T3), T3 eq X, T2 eq Y <=>

T eq s(T4), T4 eq T5+T6, T5 eq X, T6 eq Y.

Page 29 Rule-based Approaches in CHR | Rule-based systems | Term rewriting systems

Functional programming (FP)

I FP can be seen as programming language based on TRS
I Extended by built-in functions and guard tests
I Matching only at outermost redex of lhs. of rewrite rule

Definition (Rule scheme for functional program rule)

S→ G T

translates to CHR simplification rule

X eq S⇔ G [X eq T]

Additional generic rules for data and auxiliary functions

X eq T ⇔ datum(T) X=T.

X eq T ⇔ builtin(T) call(T,X).

(call(T,X) calls built-in function T, returns result in X)

Page 30 Rule-based Approaches in CHR | Rule-based systems | Term rewriting systems

Example (Fibonacci Numbers)

Example (Fibonacci in FP)
fib(0) -> 1.

fib(1) -> 1.

fib(N) -> N>=2 | fib(N-1)+fib(N-2).

Example (Fibonacci in CHR)
T eq fib(0) <=> T=1.

T eq fib(1) <=> T=1.

T eq fib(N) <=> N>=2 | call(F1+F2,T),

F1 eq fib(N1), call(N-1,N1),

F2 eq fib(N2), call(N-2,N2).

(Generic rules for datum and built-in already applied in bodies)

Page 31 Rule-based Approaches in CHR | Rule-based systems | Multiset transformation

GAMMA

I Based solely on multiset rewriting

I Chemical metaphor: molecules in solution react according to
reaction rules

I Basis of Chemical Abstract Machine (CHAM)

I Reaction in parallel on disjoint sets of molecules

Definition (GAMMA)
I GAMMA program: pairs (c/n, f /n) (predicate c, function f)

I f applied to molecules for witch c holds

I Result f (x1, . . . , xn) = {y1, . . . , ym} replaces {x1, . . . , xn} in S

Page 32 Rule-based Approaches in CHR | Rule-based systems | Multiset transformation

GAMMA Translation

Molecules modeled as unary CHR constraints, reactions as rules

Definition (Rule scheme for GAMMA pair)

GAMMA pair (c/n, f /n) translated to simplification rule

d(x1), . . . , d(xn)⇔ c(x1, . . . , xn) f (x1, . . . , xn),

where f is defined by rules of the form

f (x1, . . . , xn)⇔ G D, d(y1), . . . , d(ym),

(d wraps molecules, c built-in, G guard, D auxiliary built-ins)

Can unfold f , and optimize to simpagation rules

Page 33 Rule-based Approaches in CHR | Rule-based systems | Multiset transformation

GAMMA examples and translation into CHR

Example (Minimum)
min = (X<Y,(X,Y)\{X}) d(X) \ d(Y) <=> X<Y | true.

Example (Greatest Common Divisor)
gcd = (X<Y,(X,Y)\{X,Y-X}) d(X) \ d(Y) <=> X<Y | d(Y-X).

Example (Prime sieve)
prime = (X div Y,(X,Y)\{X}) d(X) \ d(Y) <=> X div Y | true.

Page 34 Rule-based Approaches in CHR | CLP | Prolog and constraint logic programming

Constraint logic programming translation to CHR

For pure Prolog and CLP without cut and negation-as-failure

Definition (Rule scheme for pure (C)LP clauses)
I CLP predicate p/n is considered as CHR constraint

I For each predicate p/n Clark’s completion of p/n added as CHR∨

simplification rule

Example (Append in Prolog)
append([],L,L) ← true.
append([H|L1],L2,[H|L3]) ← append(L1,L2,L3).

Example (Append in CHR∨)
append(X,Y,Z) ⇔

(X=[]∧Y=L∧Z=L
∨ X=[H|L1]∧Y=L2∧Z=[H|L3]∧append(L1,L2,L3)).

Page 35 Rule-based Approaches in CHR | CLP | Prolog and constraint logic programming

Example (Prime sieve)

Comparison between Prolog and CHR by example

Example (Prime sieve in Prolog)
primes(N,Ps):- upto(2,N,Ns), sift(Ns,Ps).

upto(F,T,[]):- F>T, !.

upto(F,T,[F|Ns1]):- F1 is F+1, upto(F1,T,Ns1).

sift([],[]).

sift([P|Ns],[P|Ps1]):- filter(Ns,P,Ns1), sift(Ns1,Ps1).

filter([],P,[]).

filter([X|In],P,Out):- X mod P =:= 0, !, filter(In,P,Out).

filter([X|In],P,[X|Out1]):- filter(In,P,Out1).

Prolog uses nonlogical cut operator.

Example (Prime sieve in CHR)
upto(N) <=> N>1 | M is N-1, upto(M), prime(N).

sift @ prime(I) \ prime(J) <=> J mod I =:= 0 | true.

Page 36 Rule-based Approaches in CHR | CLP | Prolog and constraint logic programming

Example (Shortest path)

Comparison between Prolog and CHR by example

Example (Shortest path in Prolog)
p(From,To,Path,N) :- e(From,To,N).

p(From,To,Path,N) :- e(From,Via,1),

not member(Via,Path),

p(Via,To,[Via|Path],N1),

N is N1+1.

shortestp(From,To,N) :- p(From,To,[],N),

not (p(From,To,[],N1),N1<N).

Prolog uses nonlogical negation-as-failure.

Example (Shortest path in CHR)
p(X,Y,N) \ p(X,Y,M) <=> N=<M | true.

e(X,Y) ==> p(X,Y,1).

e(X,Y), p(Y,Z,N) ==> p(X,Z,N+1).

Page 37 Rule-based Approaches in CHR | CLP | Concurrent constraint programming

Concurrent constraint programming (CC)

I One of the frameworks closest to CHR

I CC permits don’t care and don’t know nondeterminisms

I We concentrate on the committed-choice fragment of CC
(Based on don’t-care nondeterminism like CHR)

Definition (Abstract syntax of CC program)

CC program is a finite sequence of declarations.

Declarations D ::= p(̃t)← A | D, D
Agents A ::= true | c |

∑n
i=1 ci → Ai | A‖A | p(̃t)

(p user-defined predicate symbol, t̃ sequence of terms,
c and ci’s constraints)

Page 38 Rule-based Approaches in CHR | CLP | Concurrent constraint programming

Translation

Definition (Rule scheme for CC expressions)

D ::= p(̃t)⇔ A | D, D
A ::= true | c | ask(

∑n
i=1 ci → Ai) | A ∧ A | p(̃t)

For each Ask A =
∑n

i=1 ci → Ai of CC program generate n
simplification rules for ask constraint

ask(A)⇔ ci Ai (1 ≤ i ≤ n).

Page 39 Rule-based Approaches in CHR | CLP | Concurrent constraint programming

Example (Maximum)

Example (Maximum in CC)
max(X,Y,Z) ← (X≤Y → Y=Z) + (Y≤X → X=Z)

Example (Maximum in CHR)
max(X,Y,Z) ⇔ ask((X≤Y → Y=Z) + (Y≤X → X=Z)).

ask((X≤Y → Y=Z) + (Y≤X → X=Z)) ⇔ X≤Y Y=Z.

ask((X≤Y → Y=Z) + (Y≤X → X=Z)) ⇔ Y≤X X=Z.

To simplify ask rules, replace generic ask by ask max(X,Y,Z)

Example (Simplified maximum in CHR)

ask_max(X,Y,Z) ⇔ X≤Y Y=Z.

ask_max(X,Y,Z) ⇔ Y≤X X=Z.

Page 40 Rule-based Approaches in CHR | CLP | Concurrent constraint programming

Summary: embedding rule-based approaches into CHR

I Logic- and constraint-based languages in single-headed CHR∨

simplification rules
I Rule-based systems and formalisms in positive ground

range-restricted CHR
I ground: queries ground
I positive: no built-ins in body of rule
I range-restricted: variables in guard and body also in head

I These conditions imply
I Every state in a computation is ground
I CHR constraints do not delay and wake up
I Guard entailment check is just test
I Computations cannot fail

Page 41 Rule-based Approaches in CHR | CLP | Concurrent constraint programming

Useful CHR features to support embeddings

We used source-to-source transformation for features.
Could also use dynamic CHR (justifications) or extensions of CHR for

I built-in “negation” of rule-based systems
⇒ CHR with negation-as-absence

I conflict resolution of rule-based systems
⇒ CHR with priorities

I ignorance of duplicates in rule-based formalisms
⇒ CHR with set-based semantics

I built-in search of Prolog, constraint logic programming
⇒ CHR∨ with disjunction or search library

Most available in upcoming K.U. Leuven CHR.

Page 42 Rule-based Approaches in CHR | CLP | Concurrent constraint programming

Distinguishing CHR features to be embedded

Unique combination of features makes embedding of CHR in other
approaches hard

I Multiple Head Atoms not in other programming languages

I Propagation rules only in Logical Algorithms
I Constraints only in constraint-based programming

I Logical variables instead of ground representation
I Constraints are reconsidered when new information arrives
I Notion of failure due to built-in constraints

I Logical Declarative Semantics only in Prolog, CLP
I CHR computations justified by logic reading of program

Page 43 Rule-based Approaches in CHR | CLP | Concurrent constraint programming

Embedding fragments of CHR in other rule-based approaches

Possibilities are rather limited (without interpreter or compiler)
I Positive ground range-restricted fragment embeddable into

I Rule-based systems with negation and Logical Algorithms
I Only simplification rules in Rewriting- and Graph-based formalisms

I Single-headed rules with constraints embeddable into
I Concurrent constraint programming languages

Typically, no (efficient) implementations exist for those approaches

Page 44 Rule-based Approaches in CHR | CLP | Concurrent constraint programming

Conclusions

CHR as lingua franca can indeed embed rule-based approaches from
theoretical to practical: systems, formalism, programming languages

I Positive ground range-restricted CHR fragment sufficient?

I What is the right syntax and terminology for CHR?

I Which features are good, which are bad?

I What are the issues, what are just technicalities?

I What about comparison and cross-fertilisation of embeddings?

If you answer these questions, CHR has a exciting and bright future.

	Motivation
	Rule-based systems
	Constraint-based and logic-based programming

