
Constraint Handling Rules –

Compilation, Execution, and Analysis

Editors: Thom Frühwirth and Frank Raiser

Books on Demand GmbH, Norderstedt





Prof. Dr. Thom Frühwirth
Ulm University
Institute of Software Engineering and Programming Languages
Faculty of Engineering, Computer Science and Psychology
89069 Ulm, Germany
http://www.informatik.uni-ulm.de/pm/fileadmin/pm/home/fruehwirth/

Dr. Frank Raiser
89075 Ulm, Germany
http://frankraiser.de

ISBN 978-3-7460-6905-0

Herstellung und Verlag: BoD - Books on Demand, Norderstedt

c� Gregory J. Duck, Thom Frühwirth, Leslie De Koninck, Edmund S. L. Lam, Frank
Raiser, Tom Schrijvers, and Jon Sneyers, 2011, 2018









What are Constraint Handling Rules?

“one of the most powerful multiset rewriting languages“

— Professor Kazunori Ueda and Norio Kato, Waseda University, Japan,
in ’Programming Logical Links’

“a powerful, highly optimized, lazy rule engine [...] consistently outper-
forms Rete-based systems“

— Peter Van Weert, K.U. Leuven, Belgium, in ’E�cient Lazy Evaluation
of Rule-Based Programs’

“has the potential to become a lingua franca, a hub which collects and
dispenses research e↵orts from and to the various related fields“

— Jon Sneyers, K.U. Leuven, Belgium, in ’Optimizing Compilation and
Complexity of CHR’

“perfectly suitable for high level design of constraint systems“

— Marco Alberti and Evelina Lamma, Universita degli Studi di Ferrara,
Italy, in ’Merging Views into CSPs: an Application for Computer Vision’

Constraint Handling Rules (CHR) is both a versatile theoretical formalism based on
logic and an e�cient practical high-level programming language based on rules and con-
straints.

Procedural knowledge is often expressed by if-then rules, events and actions are related
by reaction rules, change is expressed by update rules. Algorithms are often specified using
inference rules, rewrite rules, transition rules, sequents, proof rules, or logical axioms. All
these kinds of rules can be almost directly written in CHR.

The clean logical semantics of CHR facilitates non-trivial program analysis and trans-
formation. About a dozen free implementations of CHR exist in Prolog, Haskell, Javascript,
Java, and C. CHR is also available online. More than 200 academic and industrial projects
worldwide use CHR, more than 200 books and 2000 research papers reference it.

This book accompanies the monography Constraint Handling Rules by Thom Frühwirth,
Cambridge University Press, 2009. Visit http://www.constraint-handling-rules.org
for much more on CHR.

The Chinese letter comprising the CHR logo is transliterated as ”CHR” and stems from the

sign for ”horse”. It means to be fast, to be famous.





Foreword

Constraint Handling Rules (CHR) is a high-level programming language based on multi-
headed, committed-choice, guarded multiset rewrite rules. The CHR language has been
actively developed for over 20 years now and has become a major declarative specification
and implementation language for constraint-based algorithms and applications.

Research in the CHR community has been fostered through numerous meetings through-
out the past years, including seven workshops and a summer school specifically on CHR,
as well as countless research visits.

Apart from increased international collaboration, new theoretical results and optimized
implementations, this has led to many more CHR users and researchers. The recently pub-
lished book on Constraint Handling Rules by Thom Frühwirth and this book complement
each other: The former is a thorough introduction to all aspects of CHR, whereas this
book presents recent research in implementation, extensions, and novel analyses of CHR.

In order to be self-contained, it starts with an introduction to CHR, which in the
spirit of this book, is held concise and research-oriented. After that, carefully selected
chapters from recent PhD theses provide detailed information on the topics compilation
and optimization, execution strategies, and formal analysis of CHR. These chapters can
be read individually based on the reader’s interest.

The chapters have been edited by Thom Frühwirth and Frank Raiser to better suit
the book’s general theme. Additionally, the book has been reviewed by the individual
authors of the chapters, the editors, and Florian Geiselhart and Johannes Langbein. The
involved PhD theses range from 2005 up to the latest theses available at the time of writing,
resulting in the following list of authors: Gregory J. Duck, Leslie De Koninck, Edmund S.
L. Lam, Frank Raiser, Tom Schrijvers, and Jon Sneyers.

March 2011, Ulm Thom Frühwirth and Frank Raiser

I am happy to present the slightly revised large print edition of this research book.

January 2018, Ulm Thom Frühwirth





Contents

I Introduction to CHR 13

1 Constraint Handling Rules 15
1.1 Syntax and semantics of CHR . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Program properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3 CHR systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4 Example CHR programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5 The union-find algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.6 Extensions of CHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.7 Applications of CHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.8 Related formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

II Implementation and Optimization of CHR 51

2 Basic Compilation 53
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2 Parsing and Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3 Runtime Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.5 Compiling the Guard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 The K.U.Leuven CHR System 71
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

III Execution Strategies 89

4 Rule Priorities 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Motivation and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 CHRrp CHR with Rule Priorities . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4 Program Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 Basic Compilation of CHRrp . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



4.6 Optimizing the Compilation of CHRrp . . . . . . . . . . . . . . . . . . . . . 109

4.7 Benchmark Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Concurrent CHR 121

5.1 CHR and Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Concurrent Goal-Based Refined CHR Semantics . . . . . . . . . . . . . . . 125

5.3 Correspondence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Implementation of CHR, a Quick Review . . . . . . . . . . . . . . . . . . . 132

5.5 Parallel CHR System in Haskell GHC . . . . . . . . . . . . . . . . . . . . . 137

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

IV Formal Analysis of CHR 157

6 Computational Complexity 159

6.1 Introduction to Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . 160

6.2 CHR Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3 Complexity-wise Completeness . . . . . . . . . . . . . . . . . . . . . . . . . 174

7 Complexity Analysis of CHRrp Programs 197

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.2 Logical Algorithms and CHRrp . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.3 Translating Logical Algorithms into CHRrp . . . . . . . . . . . . . . . . . . 203

7.4 Translating a subset of CHRrp into Logical Algorithms . . . . . . . . . . . . 210

7.5 Implementing CHRrp, the Logical Algorithms Way . . . . . . . . . . . . . . 215

7.6 A New Meta-Complexity Result for CHRrp . . . . . . . . . . . . . . . . . . 225

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8 A Complete and Terminating Operational Semantics 239

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8.2 Equivalence-based Operational Semantics . . . . . . . . . . . . . . . . . . . 241

8.3 Constraint Handling Rules with Persistent Constraints . . . . . . . . . . . . 252

8.4 Merge Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

8.6 Related and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

9 Abstract Interpretation 283

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

9.2 The Refined Denotational Semantics !d . . . . . . . . . . . . . . . . . . . . 284

9.3 The Abstract Interpretation Framework . . . . . . . . . . . . . . . . . . . . 289

9.4 Late Storage Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

9.5 Groundness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

9.6 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 305

9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307



Part I

Introduction to CHR





Chapter 1

Constraint Handling Rules

Author: Jon Sneyers
Thesis Title: Optimizing Compilation and Computational Complexity of

Constraint Handling Rules
School: K.U.Leuven, Belgium
Publication Year: 2008

In this chapter we give an introduction to the CHR language, in terms of both theory
and practice — that is, the practice of programming in CHR. The next chapter covers the
practice of CHR from the perspective of the implementation of CHR compilers.

For other, more gentle or more complete introductions to CHR we refer to any of
the following: [Frühwirth, 1998], [Frühwirth and Abdennadher, 2003], [Schrijvers, 2005],
[Duck, 2005], [Sneyers et al., 2010b], and [Frühwirth, 2009]. Readers that are already
familiar with CHR can skip this chapter, except for Section 1.1.6 which introduces some
new terminology. All other material in this chapter consists of the usual definitions as in
the above literature.

1.1 Syntax and semantics of CHR

In this section we introduce the syntax and semantics of Constraint Handling Rules. We
assume the reader to be familiar with some basic notions of contraint logic programming.

1.1.1 History

Thom Frühwirth [1992] designed a new special-purpose programming language (or rather,
a language extension), called Constraint Handling Rules. From its conception, CHR was
meant to be used as a high-level and declarative language for implementing constraint
solvers. As the name “Constraint Handling Rules” suggests, CHR programs consist of
rules to handle user-defined constraints. The rules eventually reduce the user-defined
constraints to built-in constraints. CHR is a language extension: it adds new functionality
to an existing programming language, which is called the host language and which provides
the built-in constraints. Historically, CHR was usually added to Prolog, but today there
are also several CHR systems in other languages, like Java and Haskell.

As time went by, it became clear that CHR and its variants can be used for reasoning
systems in general (not just constraint solvers), including deduction and abduction. In
CHR, techniques like forward and backward chaining, bottom-up and top-down evaluation,



1.1. Syntax and semantics of CHR

integrity constraints, tabling and memoization can easily be implemented and combined
[Holzbaur and Frühwirth, 2000a].

More recently, CHR is seen as a concurrent very-high-level general-purpose program-
ming language, especially suitable for rapid prototyping. Because CHR is such a high-level
language, CHR programs are often more concise than pseudo-code descriptions of the cor-
responding algorithms.

The growing scope of CHR — from a special-purpose language for implementing con-
straint solvers to a general-purpose language — was made possible by increasingly more
e�cient CHR systems. In turn, improving the performance of general-purpose CHR pro-
grams (for instance, a CHR implementation of the classic union-find algorithm) motivated
the creation of more e�cient CHR systems.

1.1.2 Syntax

First of all, it should be clear that CHR is not meant to be used as a stand-alone pro-
gramming language in itself. Instead, it is a language extension that adds user-defined
constraints and rules to handle them to some given host language. We always assume
that CHR is embedded in a host language H that provides data types and a number of
predefined constraints. These predefined constraints are called host language constraints
or built-in constraints. The traditional host language of CHR is Prolog. Its only host
language constraint is equality of Herbrand terms (solved using Prolog’s built-in unifi-
cation); its data types are Prolog variables and terms. We denote the host language in
which CHR is embedded between round brackets: i.e. CHR(H) denotes CHR embedded
in host language H. Most systems are CHR(Prolog) systems, but there are also several
implementations of CHR(Java) and CHR(Haskell), and recently a CHR(C) system was
developed. We discuss these CHR systems in Section 1.3.

Host language requirements

We assume the host language to o↵er at least one data type that can be used as an
identifier, i.e. a data type that allows the following two operations: creation of a new
unique value, and equality testing; for instance Prolog variables or integers. We denote
the built-in constraint theory by DH and we assume that it defines at least the basic
constraints true, the empty constraint which is trivially satisfied; fail, a contradictory
constraint which is unsatisfiable; and the ask -versions of syntactic equality (“==”) and
inequality (“\==”).

Syntax of CHR

CHR constraint symbols are drawn from the set of predicate symbols, denoted by a
functor/arity pair (the functor is the name of the predicate, the arity is the number of
arguments). CHR constraints, also called constraint atoms, user-defined constraints, or
constraints for short, are atoms constructed from these symbols and the data types pro-
vided by the host language. A query or goal is a conjunction (or multiset, in an abstract
setting) of both CHR and host language constraints. We denote the set of goals for a given
CHR program P and host language H by the symbol GH

P
.

A CHR program P consists of a sequence of CHR rules. There are three kinds of rules:
(where k, l,m, n � 1)

16



Chapter 1

• Simplification rules: h1, . . . , hn () g1, . . . , gm | b1, . . . , bk.

• Propagation rules: h1, . . . , hn =) g1, . . . , gm | b1, . . . , bk.

• Simpagation rules: h1, . . . , hl \ hl+1, . . . , hn () g1, . . . , gm | b1, . . . , bk.

The sequence, or conjunction, h1, . . . , hn consists of CHR constraints; together they are
called the head or head constraints of the rule. A rule with n head constraints is called an
n-headed rule and when n > 1, it is a multi-headed rule.

All the head constraints of a simplification rule and the head constraints hl+1, . . . , hn
of a simpagation rule are called removed head constraints. The other head constraints
— all heads of a propagation rule and h1, . . . , hl of a simpagation rule — are called kept
head constraints. An occurrence number is associated with every head constraint. Head
constraints are numbered per functor/arity pair, starting from 1, from the first rule to the
last rule, removed heads before kept heads, from left to right.

The conjunction b1, . . . , bk consists of CHR constraints and host language constraints;
it is called the body of the rule. The part of the rule between the arrow and the body is
called the guard. It is a conjunction of host language constraints. The guard “g1, . . . , gm | ”
is optional; if omitted, it is considered to be “true | ”.

A rule is optionally preceded by name @ where name is a term. No two rules may
have the same name. If a rule does not have a name, it gets a unique name implicitly.

For simplicity, both simplification and propagation rules are often treated as special
cases of simpagation rules. The following notation is used, where H i is a sequence of CHR
constraints, and G and B are guard and body as defined above:

Hk \ Hr () G | B

If Hk is empty, then the rule is a simplification rule. If Hr is empty, then the rule is a
propagation rule. At least one of Hr and Hk must be non-empty. We use Hi to denote
the heads of the i-th rule of a program.

1.1.3 Semantics: informal introduction by example

A derivation starts from an initial query: a multiset of constraint atoms, given by the
user. This multiset of constraints is called the constraint store. The derivation proceeds
by applying the rules of the program, which modify the constraint store. When no more
rules can be applied, the derivation ends; the final constraint store is called the solution
or solved form.

Rules modify the constraint store in the following way. A simplification rule can be
considered as a rewrite rule which replaces the left-hand side (the head constraints) with
the right-hand side (the body constraints), on the condition that the guard holds. The
double arrow indicates that the head is logically equivalent to the body, which justifies the
replacement. The intention is that the body is a simpler, or more canonical form of the
head.

In propagation rules, the body is a consequence of the head: given the head, the body
may be added (if the guard holds). Logically, the body is implied by the head so it is
redundant. However, adding redundant constraints may allow simplifications later on.
Simpagation rules are a hybrid between simplification rules and propagation rules: the
constraints before the backslash are kept, while the constraints after the backslash are
removed.

17



1.1. Syntax and semantics of CHR

Listing 1.1: LEQ: Solver for the less-than-or-equal constraint

r e f l e x i v i t y @ l eq (X,X) <=> t rue .
antisymmetry @ l eq (X,Y) , l eq (Y,X) <=> X=Y.
idempotence @ l eq (X,Y) \ l e q (X,Y) <=> t rue .
t r a n s i t i v i t y @ l eq (X,Y) , l e q (Y,Z) ==> l e q (X,Z ) .

Example 1.1.1 (less-than-or-equal). The CHR program LEQ is shown in Listing 1.1. It
is a classic CHR program to solve less-than-or-equal constraints. The first rule, reflexivity,
replaces the trivial constraint leq(X,X) by true. Operationally, this entails removing this
constraint from the constraint store (the multiset of all known CHR constraints). The
second rule, antisymmetry, states that leq(x,y) and leq(y,x) are logically equivalent to
x = y. Operationally this means that constraints matching the left-hand side may be
removed from the store, after which the Prolog built-in equality constraint solver is used
to unify x and y. The third rule, idempotence, removes redundant copies of the same
leq/2 constraint. It is necessary to do this explicitly since CHR has a multiset semantics.
The last rule, transitivity, is a propagation rule that computes the transitive closure of the
leq/2 relation.

An example derivation for the LEQ program would be the following:

leq(A,B), leq(B,C), leq(C,A)

(transitivity) ⇢ leq(A,B), leq(B,C), leq(C,A), leq(A,C)

(antisymmetry) ⇢ leq(A,B), leq(B,C), A=C

(Prolog) ⇢ leq(A,B), leq(B,A), A=C

(antisymmetry) ⇢ A=B, A=C

Starting from the same initial query, multiple derivations may be possible. For example,
another derivation is the following:

leq(A,B), leq(B,C), leq(C,A)

(transitivity) ⇢ leq(A,B), leq(B,C), leq(C,A), leq(B,A)

(antisymmetry) ⇢ leq(B,C), leq(C,A), A=B

(Prolog) ⇢ leq(A,C), leq(C,A), A=B

(antisymmetry) ⇢ A=C, A=B

In the case of the LEQ program, it can be shown that all derivations ultimately lead
to the same result. If a program has this property, we say it is confluent. Confluence will
be discussed in Section 1.2.

Example 1.1.2 (prime numbers). Listing 1.2 shows a simple CHR(Prolog) program called
PRIMES, a CHR variant of the Sieve of Eratosthenes. Dating back to 1992 [Frühwirth,
1992], this is one of the very first examples where CHR is used as a general-purpose
programming language. Given a query of the form “upto(n)”, where n is a positive integer,
it computes all prime numbers up to n. The first rule (loop) does the following: if n > 1,
it simplifies upto(n) to upto(n � 1) and adds a prime(n) constraint. The second rule
handles the case for n = 1, removing any upto(1) constraint. Removing a constraint
is done by simplifying it to the built-in constraint true. The third and most interesting
rule (absorb) is a simpagation rule. If there are two prime/1 constraints prime(a) and

18



Chapter 1

Listing 1.2: PRIMES: Prime number generator

loop @ upto (N) <=> N>1 | prime (N) , upto (N�1).
stop @ upto (1 ) <=> t rue .
absorb @ prime (A) \ prime (B) <=> B mod A =:= 0 | t rue .

prime(b), such that b is a multiple of a, the latter constraint is removed. The e↵ect of
the absorb rule is that all non-primes are eventually removed. As a result, if the rules are
applied exhaustively, the remaining constraints correspond exactly to the prime numbers
up to n.

1.1.4 Logical semantics

There are two ways to define the meaning of CHR programs (or declarative programming
languages in general): a logical semantics formulates the meaning of a program in terms
of a mapping to logical theories, while an operational semantics describes the behavior of
a program, usually in terms of a state transition system that models program execution.
Of course there should be a correspondence between both kinds of semantics. Soundness
and completeness results, linking the logical semantics and the operational semantics, can
be found in [Frühwirth, 1998].

In this section we describe the two main logical semantics of CHR: the original classical
logic semantics, and the recent linear logic semantics, which was motivated by the shift
towards general-purpose programming.

Classical logic semantics

Let x̄ denote the variables occurring only in the body of the rule. A simplification rule
H () G | B corresponds to a logical equivalence, under the condition that the guard
is satisfied: 8(G ! (H $ 9x̄B)). A propagation rule H =) G | B corresponds to
a logical implication if the guard is satisfied: 8(G ! (H ! 9x̄B)). A simpagation rule
Hk \ Hr () G | B corresponds to a conditional equivalence: 8(G ! (Hk ! (Hr $
9x̄B))). The (classical) logical semantics [Frühwirth, 1998] of a CHR program — also
called its logical reading, declarative semantics, or declarative interpretation — is given
by the built-in constraint theory DH (which defines the built-ins of the host language H)
in conjunction with the logical formulas for each rule. As an example, consider again the
program LEQ of Example 1.1.1. The logical formulas corresponding to its rules are the
following:

8
>><

>>:

8x, y : x = y ! (leq(x, y)$ true) (reflex.)
8x, y, x0, y0 : x = x0 ^ y = y0 ! (leq(x, y) ^ leq(y0, x0)$ x = y) (antisym.)
8x, y, x0, y0 : x = x0 ^ y = y0 ! (leq(x, y)! (leq(x0, y0)$ true)) (idempot.)
8x, y, y0, z : y = y0 ! (leq(x, y) ^ leq(y0, z)! leq(x, z)) (transit.)

or equivalently:

8
>><

>>:

8x : leq(x, x) (reflexivity)
8x, y : leq(x, y) ^ leq(y, x)$ x = y (antisymmetry)
true (idempotence)
8x, y, z : leq(x, y) ^ leq(y, z)! leq(x, z) (transitivity)

19



1.1. Syntax and semantics of CHR

Note the strong correspondence between the syntax of the CHR rules, their logical
reading, and the natural definition of partial order.

The classical logical reading, however, does not reflect CHR’s multiset semantics (the
idempotence rule is logically equivalent to true). Also, the classical logic reading does
not always make sense. For example, consider the classical logic reading of the PRIMES
program of Example 1.1.2

8
<

:

8n : n > 1! upto(n)$ 9n0prime(n) ^ n0 = n� 1 ^ upto(n0) (loop)
upto(1)$ true (stop)
8a, b : b mod a = 0! prime(a)! (prime(b)$ true) (absorb)

which is equivalent to:

8
<

:

8n > 1 : upto(n)$ prime(n) ^ upto(n� 1) (loop)
upto(1) (stop)
8a, b : prime(a) ^ b mod a = 0! prime(b) (absorb)

The last formula nonsensically states that a number is prime if it has a prime factor.

Linear logic semantics

For general-purpose CHR programs such as PRIMES, or programs that rely on CHR’s mul-
tiset semantics, the classical logic reading is often inconsistent with the intended meaning.
To overcome these limitations, Bouissou [2004] and Betz and Frühwirth [2005, 2007] in-
dependently proposed an alternative declarative semantics based on (intuitionistic) linear
logic. The latter, most comprehensive study provides strong soundness and complete-
ness results, as well as a semantics for the CHR_ extension of CHR (see Section 1.6.1).
For CHR programs whose constraints represent a multiset of resources, or whose rules
represent unidirectional actions or updates, a linear logic semantics proves much more
adequate. A simple example is the following coin-throwing simulator (which depends on
the nondeterminism in the operational semantics):

throw(Coin) <=> Coin=head.

throw(Coin) <=> Coin=tail.

The classical logic reading of this program entails head = tail. The linear logic reading
of the coin-throwing program boils down to the following formula:

!(throw(Coin)( (Coin = head)&(Coin = tail))

In natural language, this formula means “you can always replace throw(Coin) with either
(Coin = head) or (Coin = tail), but not both”. This corresponds to the committed-
choice and unidirectional rule application of CHR.

1.1.5 Abstract operational semantics !t

In this section we present the (abstract) operational semantics !t of CHR, sometimes also
called theoretical or high-level operational semantics.

The !t semantics is formulated as a state transition system. Transition rules define
the relation between an execution state and its subsequent execution state.

20



Chapter 1

1. Solve. h{c} ]G, S,B,Tin⇢P hG, S, c ^ B,Tin
where c is a built-in constraint and DH |= 9̄;B.

2. Introduce. h{c} ]G, S,B,Tin⇢P hG, {c#n} [ S,B,Tin+1

where c is a CHR constraint and DH |= 9̄;B.

3. Apply. hG, H1 [H2 [ S,B,Tin⇢P hC ]G, H1 [ S, ✓ ^ B,T [ {h}in
where P has a (renamed apart) rule of the form r @ H 0

1 \ H 0

2 () G | C,
✓ is a matching substitution with chr(H1) = ✓(H 0

1) and chr(H2) = ✓(H 0

2),
h = (r, id(H1), id(H2)) 62 T, and DH |= (9̄;B) ^ (B! 9̄B(✓ ^G)).

Figure 1.1: Transitions of the abstract (theoretical) operational semantics !t

Definition 1.1.3 (identified CHR constraint). An identified CHR constraint c#i is a
CHR constraint c associated with some unique integer i, called the constraint identifier.
This number serves to di↵erentiate among copies of the same constraint. We introduce
the functions chr(c#i) = c and id(c#i) = i, and extend them to sequences and sets of
identified CHR constraints in the obvious manner, e.g. id(S) = {i|c#i 2 S}. Note that
chr(S) is a multiset although S is a set.

Definition 1.1.4 (execution state). An execution state � is a tuple hG, S,B,Tin. The goal
G 2 GH

P
is a multiset of constraints to be rewritten to solved form. The CHR constraint

store S is a set of identified CHR constraints that can be matched with rules in the program
P. The built-in constraint store B is the conjunction of all built-in constraints that have
been passed to the underlying solver. This abstracts the internal representation used by
the host language. Its actual meaning depends on the host language H. The propagation
history T is a set of tuples, each recording the identities of the CHR constraints that fired
a rule, and the name of the rule itself. It is used to prevent trivial non-termination for
propagation rules: a propagation rule is allowed to fire on a set of constraints only if the
constraints have not been used to fire the same rule before. Finally, the counter n 2 N
represents the next free integer that can be used to identify a CHR constraint.

We use �,�0,�1, . . . to denote execution states and ⌃chr to denote the set of all states.
Transitions are defined by the binary relation ⇢P : ⌃chr ! ⌃chr shown in Figure 1.1.
Execution proceeds by exhaustively applying the transitions, starting from an initial state.
We define⇢⇤

P
as the transitive closure of ⇢P .

1.1.6 Derivations

Definition 1.1.5 (initial state). Given an initial goal (query) G 2 GH

P
, we define

initstate(G) = hG, ;, true, ;i1. The set of initial states is denoted by ⌃init .

Definition 1.1.6 (final state). A final state �f = hG, S,B,Tin is an execution state for
which no transition applies: ¬9� 2 ⌃chr : �f ⇢P �. In a failure state, the underlying
solver H can prove DH |= ¬9̄;B — such states are always final. A successful final state is
a final state that is not a failure state, i.e. DH |= 9̄;B. The set of final states is denoted
by ⌃final ⇢ ⌃chr.

Definition 1.1.7 (finite derivation). Given a CHR program P, a finite derivation d is
a finite sequence [�0,�1, . . . ,�n] of states where �0 2 ⌃init , �n 2 ⌃final , and �i ⇢P �i+1

21



1.1. Syntax and semantics of CHR

for 0  i < n. If �n is a failure state, we say d has failed, otherwise d is a successful
derivation.

Programs do not necessarily terminate, so derivations are not always finite:

Definition 1.1.8 (infinite derivation). An infinite derivation d1 is an infinite sequence
�0,�1, . . . of states where �0 2 ⌃init and �i⇢P �i+1 for i 2 N.

Two syntactically di↵erent execution states are essentially the same if they are renam-
ings of another or if they are both failure states. We say they are variants, denoted by
� ⇡ �0. For a more thorough discussion of variants and an axiomatic definition of it, the
reader should consult Chapter 8.

We use #d to denote the length of a derivation: the length of a finite derivation is the
number of transitions in the sequence; the length of an infinite derivation is 1. A set of
(finite or infinite) derivations is denoted by �. The set of all derivations in � that start
with initstate(G) is denoted by �|G. We use �H

!t
(P) to denote the set of all derivations

(in the !t semantics) for a given CHR program P and host language H. We now define
the relation  �: ⌃init ! ⌃chr [ {1}:

Definition 1.1.9 (�-output). State �n is a �-output of �0 if [�0, . . . ,�n] 2 �. We say
�0 �-outputs �n and write �0  � �n. If � contains an infinite derivation starting with
�0, we say �0 has a non-terminating derivation. We denote this as follows: �0  � 1.

Definition 1.1.10 (�-deterministic). The CHR program P is �-deterministic for input
I ✓ GH

P
if the restriction of  � to initstate(I) is a function, modulo variant states (so for

any input in I, all output states are variants of each other), and 8i 2 I, d 2 �|i : if d is a
successful derivation, then 8d0 2 �|i : #d = #d0.

In other words, a program is �-deterministic if all derivations starting from a given
input have the same result and all successful ones have the same length.

Example 1.1.11 (PRIMES is �Prolog
!t

-deterministic). Consider the CHR program PRIMES
of Example 1.1.2 (page 19). This program is �Prolog

!t
-deterministic for input {upto(n)|n 2

N}. Although the order in which the transitions of !t are applied is not fixed for a given
input, allowing di↵erent derivations, the derivation length and result is always the same.

Of course not every CHR program is �H
!t
-deterministic for its intended input:

Example 1.1.12 (LEQ is not �Prolog
!t

-deterministic). The CHR program LEQ of Exam-
ple 1.1.1 (page 18) is not �Prolog

!t
-deterministic for all conjunctions of leq/2 constraints.

Consider the input query “leq(A,B), leq(B,A)”. One derivation consists of two Intro-
duce steps followed by an Apply step using the antisymmetry rule, followed by a Solve
step for “A = B”. This derivation has length four. In another derivation, the transitivity
rule is applied after the Introduce steps. This results in a longer derivation, or even an
infinite derivation.

1.1.7 Refined Operational Semantics !r

This subsection was added to provide a formal introduction to the refined operational
semantics, as other chapters of the book refer to it. It is adapted from [Sneyers, 2008b,
Chapter 4].

As a formal description of the standard compilation scheme (and thus also as a de-
scription of the actual behavior of most CHR systems), Duck et al. [2004] have introduced

22



Chapter 1

1. Solve. h[c|A], S0 ] S,B,Tin⇢!r,P hS ++ A, S0 ] S, c ^ B,Tin
if c is a built-in constraint and B fixes the variables of S0.

2. Activate. h[c|A], S,B,Tin⇢!r,P h[c#n :1|A], S0,B,Tin+1

if c is a CHR constraint, where S0 = {c#n} ] S.

3. Reactivate. h[c#i|A], S,B,Tin⇢!r,P h[c#i :1|A], S,B,Tin

4. Drop. h[c#i :j|A], S,B,Tin⇢!r,P hA, S,B,Tin
if there is no j-th occurrence of c in P.

5. Simplify. h[c#i :j|A], {c#i} ]H1 ]H2 ]H3 ] S,B,Tin
⇢!r,P hC ++ A, H1 ] S, ✓ ^ B,T [ {h}in

if the j-th occurrence of the constraint c is dj in a rule r in P of the form
r @ H 0

1 \ H 0

2, dj , H
0

3 () G | C, a matching substitution ✓ exists such that
c = ✓(dj), chr(Hk) = ✓(H 0

k
) for k = 1, 2, 3, D |= B ! 9̄B(✓ ^ G), and T 63 h =

(r, id(H1), id(H2 ++ c#i ++ H3)).

6. Propagate. h[c#i :j|A], {c#i} ]H1 ]H2 ]H3 ] S,B,Tin
⇢!r,P hC ++ [c#i :j|A], {c#i} ]H1 ]H2 ] S, ✓ ^ B,T [ {h}in

if the j-th occurrence of the constraint c is dj in a rule r in P of the form
r @ H 0

1, dj , H
0

2 \ H 0

3 () G | C a matching substitution ✓ exists such that c = ✓(dj),
chr(Hk) = ✓(H 0

k
) for k = 1, 2, 3, D |= B ! 9̄B(✓ ^ G), and T 63 h = (r, id(H1 ++

c#i ++ H2), id(H3)).

7. Default. h[c#i :j|A], S,B,Tin⇢!r,P h[c#i : (j + 1)|A], S,B,Tin
if no other transition applies.

Figure 1.2: Transitions of the refined operational semantics !r

the refined operational semantics !r of CHR. It can be shown that !r is an instantiation of
!t — and hence that the standard compilation scheme is correct w.r.t. the !t semantics,
i.e. it applies only rules that may be applied and execution halts only if there are no more
applicable rules.

The refined operational semantics uses a stack of constraints. When a new constraint
arrives in the constraint store it is pushed on the stack. The constraint on top of the
stack is called the active constraint. The active constraint searches for matching rules, in
the order in which this constraint occurs in the program. The constraint is popped from
the stack when all occurrences have been tried. When a rule fires, its body is executed
immediately, from left to right, suspending the execution of the active constraint while the
body is executed. When the constraint becomes topmost again, it resumes its search for
matching clauses.

Definition 1.1.13 (occurrenced identified constraint). An occurrenced identified CHR
constraint c#i : j is an identified constraint c#i annotated with an occurrence number j.
This annotation indicates that only matches with occurrence j of constraint c are considered
at this point in the execution.

Definition 1.1.14 (!r execution state). An !r execution state � is a tuple of the form
hA, S,B,Tin, where S, B, T, and n represent the CHR store, the built-in store, the propaga-
tion history and the next free identity number just like before. semanticsz]Aexecution stack

23



1.1. Syntax and semantics of CHR

(in an !r CHR execution state) The execution stack A is a sequence of constraints, iden-
tified CHR constraints and occurrenced identified CHR constraints, with a strict ordering
where the top-most constraint is called active.

Execution in !r proceeds by exhaustively applying transitions from Figure 1.2 to the
initial execution state until the built-in store is unsatisfiable or no transitions are applica-
ble. Initial and final states are defined in the same way as in !t.

1.1.8 Other Operational Semantics

This subsection was added to give the reader a better overview of the available operational
semantics of CHR. It is not from [Sneyers, 2008b], but from [Raiser, 2010].

The CHR community has formulated a plethora of operational semantics and exten-
sions for CHR. The semantics discussed above are used throughout the remainder of this
work and in this section we provide an (incomplete) overview of other operational seman-
tics and extensions of CHR available in the literature.

Set-based Although CHR is primarily considered as a language for multiset rewriting,
there is also an operational semantics !set available based on set rewriting. It is presented
in [Sarna-Starosta and Ramakrishnan, 2007], which changes two other significant aspects
of CHR as well: Firstly, tabled execution is considered in analogy to tabled Prolog variants.
Secondly, the trivial non-termination problem is solved in a unique way di↵erent from the
propagation history. The latter change is discussed in more detail in Chapter 8.

Disjunctive The committed-choice nature of CHR means that computations are made
without backtracking, i.e. a rule application is never reversed or undone. This complicates
formulating search algorithms in CHR. An extension which allows disjunctive bodies, and
hence, backtracking over these alternatives, is called CHR_[Abdennadher and Schütz,
1998, Abdennadher, 2001].

Probabilistic Another important extension of CHR allows probabilistic elements. PCHR
[Frühwirth et al., 2002] is an early formulation that allows probabilistic selection of applica-
ble rules. This idea has been taken further in the work on CHRiSM [Sneyers et al., 2009a,
2010a], which is a combination of CHR with the probabilistic Prolog dialect PRISM.

Concurrent CHR in its abstract form is well-suited for concurrent execution and pro-
totype implementations exist which exploit this property (cf. [Frühwirth, 2009]). Lam
and Sulzmann [2007] introduced a concurrent implementation in Haskell. It uses Haskell’s
support for shared transaction memory to resolve conflicting rule applications. The im-
plementation was further refined in [Sulzmann and Lam, 2008] and is presented in more
detail in Chapter 5.

CHR2 A very recent proposal for a new operational semantics, called CHR2, has been
given by Van Weert [2010] in his thesis. It o↵ers a combination of many features of existing
extensions of CHR, like aggregates, rule priorities, or batch processing. However, there
only exists a prototype implementation of CHR2 and a glance at the inference rules given
in [Van Weert, 2010] immediately reveals that it tremendously complicates formal analysis.
As the goal of our thesis is to find an elegant formulation of the operational semantics,
we will not discuss CHR2 any further. However, the results given in Chapter 8 can be

24



Chapter 1

extended analogously to existing CHR extensions, such as to come closer to an elegant
formal representation of the features of CHR2.

More details on available formulations and extensions can be found in [Frühwirth, 2009]
and the surveys [Frühwirth, 1998, Sneyers et al., 2010b].

1.2 Program properties

For a more recent perspective on this topic, the original chapter was merged with a corre-
sponding chapter from [Raiser, 2010] to provide an overview of the literature with regards
to program analysis methods for di↵erent program properties.

Termination As CHR is Turing-complete [Sneyers et al., 2009b], the termination problem
is undecidable in general. An early termination analysis method was derived from
results for term rewriting systems: Given a mapping ' from states into N, often
called measure function, it su�ces to prove that each rule application results in a
state with a lower mapped number (cf. [Baader and Nipkow, 1998]). This technique
was first adapted for termination analysis of CHR programs by Frühwirth [2000].

The results in [Frühwirth, 2000] apply only to CHR programs without propaga-
tion rules. A di↵erent approach, based on conditions imposed on the addition of
constraints, has been introduced by Voets et al. [2007]. It specifically supports pro-
grams with propagation rules. The work of Pilozzi and De Schreye [2008] improves
upon this: They link size-decreases of a di↵erent representation of CHR states to
termination, which provides a strictly more powerful condition than both previous
approaches.

Confluence If for a given CHR program, for all initial states, any !t derivation from that
state results in the same final state, the program is called confluent [Abdennadher
et al., 1999]. Confluence implies correctness, in the sense that the logical reading is
consistent for confluent programs [Frühwirth, 1998].

Confluence is defined in terms of joinable execution states:

Definition 1.2.1 (joinable states). Execution states �1 and �2 are joinable if there
exist states �01 and �02 such that �1⇢⇤

P
�01 and �2⇢⇤

P
�02 and �01 ⇡ �02.

Definition 1.2.2 (confluence). A CHR program P is confluent if, for every initial
state � 2 ⌃init , the following holds: if � ⇢⇤

P
�1 and � ⇢⇤

P
�2, then �1 and �2 are

joinable.

The above definition deviates slightly from the usual definitions in the literature:
normally every execution state is considered instead of only the initial states. There
are programs that are confluent according to the above definition but not according to
the usual definition, where non-confluence originates from unreachable states. This
issue has been addressed in a general way by introducing the notion of observable
confluence [Duck et al., 2007].

There is a decidable, su�cient and necessary test for confluence (according to the
usual definition) of terminating programs [Frühwirth, 1998]. Recently, the topic of
confluence received renewed attention because certain problems and limitations of
this confluence test have surfaced. Firstly, the test is only applicable to terminating
programs. Raiser and Tacchella [2007] investigated confluence of non-terminating

25



1.2. Program properties

programs. Secondly, many programs that are in practice confluent fail the test
because non-confluence originates from unreachable states. The framework of ob-
servable confluence [Duck et al., 2007] allows a restriction to reachable states. It was
further refined in [Raiser, 2010], based on the formalisms developed in Chapter 8.
This refinement also serves as the foundation for an implementation of a confluence
checker given in [Langbein et al., 2010].

Completion Completion is a method for modifying a non-confluent program such that
it becomes confluent. Early results for term rewriting systems date back to the
work from Knuth and Bendix [1970]. Abdennadher and Frühwirth [1998] showed
how to do completion of CHR programs. Completion is a technique to transform
a non-confluent program into a confluent one by adding rules. It allows extension,
modification and specialization of existing programs.

Modularity Multiple CHR programs can be considered as modules to be combined in two
di↵erent ways. A flat union simply merges all rules into a single CHR program. This
kind of modularity has been investigated by Abdennadher and Frühwirth [2004] and
it has been shown, that in general confluence and termination of individual programs
is not preserved for their union.

The second possibility is a hierarchical approach, which allows CHR constraints from
one program to be reused in other programs as built-in constraints. This requires
that the implication of such a constraint can be checked. Schrijvers et al. [2006a]
investigated checking them automatically, whereas Fages et al. [2008] proposed user-
definable rules for implication checking via ask and tell constraints.

Complexity Frühwirth [2002b] was the first to investigate automatic time complexity
analysis for CHR programs in [Frühwirth, 2002b] and [Frühwirth, 2002a]. However,
this analysis is based on a naive CHR compiler without support for important opti-
mizations, hence, the approach yields only weak upper boundaries.

As CHR rule heads can contain multiple constraints, it is incessant to optimize the
code required for matching these head constraints to constraints in the store. A
naive approach, which would try to match each head constraint with each constraint
in the store, leads to exorbitantly slow runtimes. Therefore, CHR research produced
a significant body of work on optimizations of CHR execution. A summary of the
techniques developed up until 2005 is available in [Schrijvers, 2005]. Complexity
analysis is discussed in more detail in Chapter 7.

Computational Power A notable line of research was the investigation of the compu-
tational power of CHR, which culminated in the PhD thesis from Sneyers [2008b].
This work assumes a CHR compiler that supports several important optimization
techniques, which leads to the following significant result: any algorithm can be
implemented in CHR in optimal time and space complexity.

After the proof that CHR in its general form is Turing-complete [Sneyers et al., 2005],
restrictions of CHR, for example, to single-headed rules or limited built-in theories,
have been investigated. This lead to the discovery of several Turing-complete sub-
classes of CHR [Sneyers, 2008a, Sneyers et al., 2009b, Gabbrielli et al., 2010, Mauro
et al., 2010]. The original results from [Sneyers, 2008b] are presented in more detail
in Chapter 6.

26



Chapter 1

1.3 CHR systems

Since the conception of CHR, a large number of CHR systems (compilers, interpreters and
ports) have been developed. In particular, in the last ten years the number of systems has
exploded. Figure 1.3 presents a timeline of system development, branches and influences.
In this section we briefly discuss these systems, grouped by host language paradigm.

1.3.1 CHR(LP)

Logic Programming is a natural (or at least traditional) host language paradigm for CHR.
Hence, it is not surprising that the CHR(Prolog) implementations are the most established
ones. Holzbaur and Frühwirth [2000b] have laid the groundwork with their general compi-
lation scheme for Prolog. This compilation scheme (cf. Chapter 2) was first implemented
in SICStus Prolog by Holzbaur, and later further refined in HAL by Holzbaur et al. [2005]
and in hProlog by Schrijvers and Demoen [2004]. Another system directly based on the
work of Holzbaur and Schrijvers is the CHR library for SiLCC by Bouissou [2004]. SiLCC
is a programming language based on linear logic and concurrent constraint programming.
All of these systems compile CHR programs to host language programs. The only available
interpreter for CHR(Prolog) is TOYCHR1.

1.3.2 CHR(FP)

As type checking is one of the most successful applications of CHR in the context of
Functional Programming (see section 1.7.3), several CHR implementations were devel-
oped specifically for this purpose. Most notable is the Chameleon system [Stuckey and
Sulzmann, 2005] which features CHR as the programming language for its extensible type
system. Internally, Chameleon uses the HaskellCHR implementation2. The earlier HCHR
prototype [Chin et al., 2003] had a rather heavy-weight and impractical approach to logical
variables.

The aim of a 2007 Google Summer of Code project was to transfer this CHR based
type checking approach to two Haskell compilers (YHC and nhc98). The project led to a
new CHR interpreter for Haskell, called TaiChi [Boespflug, 2007].

With the advent of software transactional memories (STM) in Haskell, two prototype
systems with parallel execution strategies have been developed: STMCHR3 and Con-
current CHR [Lam and Sulzmann, 2007]. These systems are currently the only CHR
implementations that exploit the inherent parallelism in CHR programs.

We also mention the Haskell library for the PAKCS implementation of the functional
logic language Curry [Hanus, 2006]. The PAKCS system actually compiles Curry code
to SICStus Prolog, and its CHR library is essentially a front-end for the SICStus Prolog
CHR library. The notable added value of the Curry front-end is the (semi-)typing of the
CHR code.

1.3.3 CHR(Java) and CHR(C)

Finally, CHR systems are also available for both Java and C. For a detailed discussion on
the di↵erent conceptual and technical challenges encountered when embedding CHR into
an imperative host language, see [Van Weert et al., 2008].

1by Gregory J. Duck, 2003. Download: http://www.cs.mu.oz.au/⇠gjd/toychr/
2by Gregory J. Duck, 2004. Download: http://www.cs.mu.oz.au/⇠gjd/haskellchr/
3by Michael Stahl, 2007. Download: http://www.cs.kuleuven.be/⇠dtai/projects/CHR/

27



1.3. CHR systems

Figure 1.3: Timeline of CHR systems

28



Chapter 1

CHR(Java). The earliest CHR(Java) system is the Java Constraint Kit (JaCK) by
Abdennadher [2001] and others [Abdennadher et al., 2002, Schmauß, 1999]. DJCHR
(Dynamic JCHR; [Wolf, 2001a]) is an implementation of adaptive CHR (see Section 1.6.3).
The incremental adaptation algorithm underlying DJCHR maintains justifications for rule
applications and constraint additions. The Leuven JCHR system4 [Van Weert et al., 2005]
focusses on performance and integration with the host language. It is currently one of the
most e�cient CHR systems available. A fourth CHR(Java) system is called CHORD
(Constraint Handling Object-oriented Rules with Disjunctive bodies)5.

CHR(C). CCHR [Wuille et al., 2007] implements CHR for C. It is an extremely e�cient
CHR system and uses a syntax that is intuitive to both CHR adepts and imperative
programmers.

1.3.4 The Leuven CHR system

The Leuven CHR system6 is a state-of-the-art CHR system, developed by Tom Schrijvers
and others at the K.U.Leuven. It is available in seven di↵erent Prolog systems: hProlog7

[Schrijvers and Demoen, 2004], SWI-Prolog8 [Schrijvers et al., 2005], XSB9 [Schrijvers
et al., 2003, Schrijvers and Warren, 2004], YAP10, B-Prolog11 [Schrijvers et al., 2006b],
SICStus Prolog12, and Ciao Prolog13.

One of the distinguishing features of the Leuven CHR system is the option to add
type and mode declarations of constraint arguments. We discuss these declarations in
Section 1.4.1 and they will be used throughout the text.

1.4 Example CHR programs

In this section we present some examples of CHR programs. Some of these examples will
be reconsidered in later chapters, for instance for benchmarking purposes.

1.4.1 Programming in CHR, in practice

Before we discuss the examples, we first explain how to try these examples in practice, in
the Leuven CHR system. Every CHR(Prolog) program starts by loading the CHR library:

:- use_module(library(chr)).

In program listings we do not explicitly include this line. Next, we have to declare
which predicates are CHR constraints. The keyword chr_constraint is used for these
declarations. For example, if the only CHR constraints used in a program are called foo,
with two arguments, and bar, with three arguments, we need the following declaration:

4 Leuven JCHR system home page: http://dtai.cs.kuleuven.be/projects/CHR/JCHR/
5 by Jairson Vitorino and Marcos Aurelio, 2005, http://chord.sourceforge.net/
6 Leuven CHR system home page: http://www.cs.kuleuven.be/⇠toms/Research/CHR/
7 by Bart Demoen, http://www.cs.kuleuven.be/⇠bmd/hProlog/
8 by Jan Wielemaker, http://www.swi-prolog.org/
9 by David S. Warren et al, http://xsb.sf.net/

10 by Vı́tor Santos Costa et al, http://www.ncc.up.pt/⇠vsc/Yap/
11 by Neng-Fa Zhou, http://www.probp.com
12 by Mats Carlsson et al, http://www.sics.se/isl/sicstuswww/site/
13 by Manuel Hermenegildo et al, http://www.ciaohome.org/

29



1.4. Example CHR programs

Listing 1.3: SUM: Sum of the elements of a list

:� chr type l i s t (T) ���> [ ] ; [T | l i s t (T ) ] .
:� c h r c on s t r a i n t sum(+ l i s t ( i n t ) , ? i n t ) .

sum ( [ ] , S ) <=> S = 0 .
sum ( [X |Xs ] , S ) <=> sum(Xs , S2 ) , S i s X + S2 .

:- chr_constraint foo/2, bar/3.

If a rule head contains an undeclared constraint, the Leuven CHR system produces an
error message. In program listings we sometimes omit the constraint declarations, since
they can easily be reconstructed by looking at the rule heads.

Mode declarations

The Leuven CHR system also supports a more advanced way to declare constraints. In-
stead of only giving the arity of each constraint predicate, the programmer can also provide
the mode of each constraint argument. The default mode is “?”, which corresponds to ar-
bitrary argument instantiation. If an argument has mode “+”, it should correspond to a
ground term. The mode “-” indicates that the argument is an unbound variable. A typical
example is the following:

:- chr_constraint address(+,+), find(+,?).

address(Person,Address) \ find(Person,Where) <=> Where = Address.

Mode declarations are crucial in several compiler optimizations; often performance can
significantly be boosted by adding accurate mode declarations.

Type declarations

Even more information about the constraint arguments can optionally be declared by
means of type declarations. The default type is any; other built-in types are int, float,
number, and natural. User-defined types can be declared using the keyword chr_type.
Algebraic data type in the style of Haskell or Mercury are supported. The syntax for
type definitions is “type ---> body”, where the right hand side is a disjunction of the
di↵erent constructors. Type aliases can be defined using “==”. We give some examples of
type definitions:

Example 1.4.1 (type definitions).

:- chr_type color ---> red ; green; blue.

:- chr_type cnode ---> node - color.

:- chr_type node == int.

:- chr_type edge ---> e(node,node).

:- chr_type tree ---> leaf(node) ; branch(node, tree, tree).

:- chr_type tree(T) ---> leaf(T) ; branch(T, tree(T), tree(T)).

The Leuven CHR system performs both static and dynamic type-checking. Type
information is also used in some compiler optimizations. As a simple example, consider
the program SUM of Listing 1.3. Erroneous queries like sum([4,7,x],S) are detected by
dynamic type checks, and an error message is given:

30



Chapter 1

Listing 1.4: FIBONACCI: Top-down computation of Fibonacci numbers

:� c h r c on s t r a i n t f i b (+ ,? ) .

f i b (N,C)#pas s i v e \ f i b (N,V) <=> var (V) | V=C.

f i b (0 ,M) ==> M=0.
f i b (1 ,M) ==> M=1.
f i b (N,M) ==> N>1 | f i b (N�1,A) , f i b (N�2,B) , M i s A+B.

ERROR: Type error: ‘int’ expected, found ‘x’ (CHR Runtime Type Error)

1.4.2 Fibonacci numbers

The Fibonacci numbers are named after the medieval Italian mathematician Leonardo of
Pisa, also known as Fibonacci. The sequence is recursively defined as follows:

fib(n) =

8
<

:

0 if n = 0
1 if n = 1
fib(n� 1) + fib(n� 2) if n > 1

In other words, every Fibonacci number is the sum of the two previous Fibonacci numbers.
The sequence starts as follows: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Example 1.4.2 (Fibonacci numbers). The program FIBONACCI, shown in Listing 1.4,
can be used to compute Fibonacci numbers. Starting with a query of the form fib(n,Q),
all Fibonacci numbers up to the n-th are computed and Q gets the value fib(n).

1.5 The union-find algorithm

A disjoint-set data structure can be used to e�ciently maintain an equivalence relation
— for example, variable unifications in Prolog. An equivalence relation on some set cor-
responds to a partition of that set into equivalence classes. A disjoint-set data structure
should provide (at least) the following three operations:

• make(X) : add a new element X (in a new singleton equivalence class);

• union(X,Y) : assert that elements X and Y are equivalent. Their equivalence classes,
if di↵erent, should be merged;

• find(X,R) : find a representative R of the equivalence class of X. All members of an
equivalence class should have the same representative, so this operation can be used
to determine whether two elements are equivalent.

The union-find algorithm of Tarjan and van Leeuwen [1984] can be shown to imple-
ment this data structure with optimal time complexity. Essentially, the disjoints sets are
represented as trees, where the root node is the representative. The union/2 operation
adds an edge between the root of one tree and the root of the other tree. The find/2
operation follows the edges until the root is found.

A naive implementation of the union-find algorithm is given in Listing 1.5. The naive
version of the union-find algorithm still takes logarithmic time per operation on average.

31



1.5. The union-find algorithm

Listing 1.5: N-UNION-FIND: Naive implementation of the union-find algorithm

make(A) <=> root (A) .
union (A,B) <=> f i nd (A,X) , f i nd (B,Y) , l i n k (X,Y) .

f 1 @ edge (A,B) \ f i nd (A,X) <=> f i nd (B,X) .
f 2 @ root (B) \ f i nd (B,X) <=> X=B.

l 1 @ l i n k (A,A) <=> t rue .
l 2 @ root (B) \ l i n k (A,B) , root (A) <=> edge (A,B) .

Listing 1.6: UNION-FIND: Optimal implementation of the union-find algorithm

:� c h r c on s t r a i n t union (+ ,+) , f i nd (+ ,?) , make(+) , l i n k (+ ,+) ,
edge (+ ,+) , root (+ ,+).

make(A) <=> root (A, 0 ) .
union (A,B) <=> f i nd (A,X) , f i nd (B,Y) , l i n k (X,Y) .

% path compress ion with immediate update
% ( thanks to l o g i c a l v a r i ab l e )
f 1 @ f i nd (A,X) , edge (A,B) <=> f i nd (B,X) , edge (A,X) .
f 2 @ root (B, ) \ f i nd (B,X) <=> X=B.

% union�by�rank
l 1 @ l i n k (A,A) <=> t rue .
l 2 @ l i n k (A,B) , root (A,NA) , root (B,NB) <=> NA>=NB |

edge (B,A) , NA1 i s max(NA,NB+1) , root (A,NA1) .
l 3 @ l i n k (B,A) , root (A,NA) , root (B,NB) <=> NA>=NB |

edge (B,A) , NA1 i s max(NA,NB+1) , root (A,NA1) .

Two techniques can be used to improve the performance of the algorithm; if combined, the
average time per operation can be reduced to O(↵(n)), the inverse Ackermann function
of n, which can be considered constant for all practical purposes. The first technique is
called union-by-rank and consists of maintaining the size of each tree and modifying the
union/2 operation such that it always links the smaller tree to the bigger tree. The second
technique is called path compression: after every find/2 operation, all edges on the path
to the root are modified so that every node on the path is linked directly to the root.
Listing 1.6 gives an optimal implementation of the union-find algorithm. Both programs
are due to Schrijvers and Frühwirth [2006].

1.5.1 Sudoku puzzle solver

Sudoku is a Japanese puzzle which relatively recently attained international popularity.
Sudoku is played on a 9x9 board, consisting of 9 smaller 3x3 boxes. Initially, most board
cells are empty and some have a value between 1 and 9. The aim is to fill the empty cells
such that the same number does not occur more than once on every row, column, and
box. Normally there is only one valid solution.

32



Chapter 1

Listing 1.7: SUDOKU: Solver for Sudoku puzzles

:� c h r c on s t r a i n t p o s s i b l e (+,+,+,+,+,+) , f i l l (+) ,
f i x e d (+ ,+ ,+ ,+ ,+).

s e a r c h f f @ f i l l (N) , p o s s i b l e (A,B,C,D,N,L)#pas s i v e
<=> member(V,L) , f i x e d (A,B,C,D,V) , f i l l ( 1 ) .

n e x t f f @ f i l l (N) <=> f i l l (N+1).

same column @ f i x ed ( ,B, ,D,V) \ po s s i b l e (A,B,C,D,N,L)#pas s i v e
<=> s e l e c t (V,L , L2) | N>1, p o s s i b l e (A,B,C,D,N�1,L2 ) .

same row @ f i x ed (A, ,C, ,V) \ po s s i b l e (A,B,C,D,N,L)#pas s i v e
<=> s e l e c t (V,L , L2) | N>1, p o s s i b l e (A,B,C,D,N�1,L2 ) .

same box @ f i x ed (A,B, , ,V) \ po s s i b l e (A,B,C,D,N,L)#pas s i v e
<=> s e l e c t (V,L , L2) | N>1, p o s s i b l e (A,B,C,D,N�1,L2 ) .

s o l v e :� f i l l ( 1 ) .

Example 1.5.1 (Sudoku). Listing 1.7 shows an implementation of a Sudoku puzzle solver
based on Thom Frühwirth’s rewrite of Jon Murua González’ and Henning Christiansen’s
program.

In the SUDOKU program, every board cell is identified using 4 coordinates: the first
two refer to one 3x3 box, the other two give the position inside that box. The first four
arguments of the constraints fixed/5 and possible/6 refer to the coordinates of a board
cell. The constraint fixed/5 indicates that the value of a board cell is known; in a query,
this constraint is used to input the given cells. If the value of a board cell is not yet known,
the constraint possible/6 contains the number of remaining possible values and the list
of values. For every empty board cell, the query should contain a constraint of the form
possible(...,9,[1,2,3,4,5,6,7,8,9]).

The rules same_column, same_row, and same_box are very similar: if a board cell is
known, its value is removed from the list of possibilities of any board cell in the same
column (row, box) via the Prolog built-in select/3; if this was the last possibility (so
N=1) then the program fails. These three rules remove all possible values that are directly
in violation with the rules of Sudoku. The first two rules implement a search using the
first-fail principle, that is, unknown board cell with few remaining possible values are
tried first. The search starts with the fill(1) constraint. If there is a cell which has only
one possible value, then the possible/6 constraint is replaced with a fixed/5 constraint,
and then another cell is tried with only one possible value. Note that the new fixed/5
constraints may cause further applications of the same_* rules. If no more cells with only
one possible value are found, then the rule next_ff kicks in, adding fill(2) which looks
for a cell with only two possible values, and so on. If there is more than one possible value,
the call to member/2 in the first rule nondeterministically chooses one of the values. If the
chosen value turns out to be wrong (i.e. it leads to failure later on), Prolog will backtrack
and try a di↵erent choice.

33



1.6. Extensions of CHR

1.6 Extensions of CHR

Over the years, some additional language features have been proposed for CHR. In this
section we give a brief overview of some of them.

1.6.1 Disjunction and search

Most constraint solvers require search next to constraint simplification and propagation.
However, pure CHR does not o↵er any support for search. Abdennadher and Schütz
[1998] propose a solution to this problem: an extension of CHR with disjunctions in rule
bodies (see also Abdennadher [2000, 2001]). The resulting language is denoted CHR_

(pronounced “CHR-or”). Any (pure) Prolog program can be rephrased as an equivalent
CHR_ program (Abdennadher [2000, 2001]). Implementation-wise, disjunction comes for
free in CHR(Prolog) by means of the built-in Prolog disjunction and search mechanism.

In CHR(Java) systems, unlike in CHR(LP) systems, the host language does not provide
search capabilities. The flexible specification of intelligent search strategies has therefore
received considerable attention in several CHR(Java) systems [Krämer, 2001, Wolf, 2005].
In these systems, the search strategies are implemented and specified in the host language
itself, orthogonally to the actual CHR program.

1.6.2 Negation and aggregates

CHR programmers often want to test for the absence of constraints. CHR was therefore
extended with negation as absence by Van Weert et al. [2006]. Negation as absence was
later generalized to a much more powerful language feature, called aggregates [Sneyers
et al., 2007]. Aggregates accumulate information over unbounded portions of the con-
straint store. Predefined aggregates include sum, count, findall, and min. The proposed
extension also features nested aggregate expressions over guarded conjunctions of con-
straints, and application-tailored user-defined aggregates. Aggregates lead to increased
expressivity and more concise programs. An implementation based on source-to-source
transformations [Van Weert et al., 2008] is available. The implementation uses e�cient
incremental aggregate computation, and empirical results show that the desired runtime
complexity is attainable with an acceptable constant time overhead.

As an example of nested aggregate expressions, consider the following rule:

eulerian, forall(node(N),(

count(edge(N,_),X), count(edge(_,N),X)

)) <=> writeln(graph_is_eulerian).

The above rule is applicable if for every constraint node(N), the number of outgoing edges
in N equals the number of incoming edges (i.e. if the first number is X, the other number
must also be X).

1.6.3 Adaptive CHR

Constraint solving in a continuously changing, dynamic environment often requires imme-
diate adaptation of the solutions, i.e. when constraints are added or removed. By nature,
CHR solvers already support e�cient adaptation when constraints are added. Wolf [1999],
Wolf et al. [2000] introduces an extended incremental adaptation algorithm which is ca-
pable of adapting CHR derivations after constraint deletions as well. This algorithm is
further improved by Wolf [2000a] with the elimination of local variables using early pro-
jection. An e�cient implementation exists in Java (Wolf [2001a,b]; cf. Section 1.3.3).

34



Chapter 1

1.6.4 Solver hierarchies

While the theory of the CHR language generally considers arbitrary built-in solvers, tra-
ditional CHR implementations restrict themselves to the Herbrand equality constraint
solver, with very little, if any, support for other constraint solvers.

Duck et al. [2003] show how to build CHR solvers on top of arbitrary built-in constraint
solvers by means of ask constraints. The ask constraints signal the CHR solver when
something has changed in the built-in store with respect to variables of interest. Then the
relevant CHR constraints may be reactivated.

Schrijvers et al. [2006a] provide an automated means for deriving ask versions of CHR
constraints. In the approach of Fages et al. [2008], which is called CHRat, the programmer
is supposed to (manually) implement both ask and tell versions of each constraint. Both
approaches are aimed at adding a form of modularity to CHR. In this way full hierarchies
of constraint solvers can be written, where one solver serves as the built-in solver for
another solver.

1.7 Applications of CHR

In this section, we give a very brief overview of recent applications of CHR. A more
exhaustive overview can be found in [Sneyers et al., 2010b].

1.7.1 Constraint solvers

CHR was originally designed specifically for writing constraint solvers. Some recent ex-
amples are the following:

Lexicographic order. Frühwirth [2006b] presented a constraint solver for a lexicographic
order constraint in terms of inequality constraints o↵ered by the underlying solver.

Rational trees. Meister et al. [2006] presented a solver for existentially quantified con-
junctions of non-flat equations over rational trees. Djelloul et al. [2007b] use this
solver for rational trees as a component of a more general solver for (quantified)
first-order constraints over finite and infinite trees.

Non-linear constraints. A general purpose CHR-based CLP system for non-linear (i.e.,
polynomial) constraints over the real numbers was presented by De Koninck et al.
[2006]. The system, called INCLP(R), is based on interval arithmetic and uses an
interval Newton method as well as constraint inversion to achieve respectively box
and hull consistency.

Solvers derived from union-find. Frühwirth [2006a] has proposed linear-time algo-
rithms for solving certain boolean equations and linear polynomial equations in two
variables. These solvers are derived from the classic union-find algorithm [Schrijvers
and Frühwirth, 2006].

Soft constraints. An important class of constraints are the so-called soft constraints
which are used to represent preferences amongst solutions to a problem. Unlike hard
(required) constraints which must hold in any solution, soft (preferential) constraints
must only be satisfied as far as possible. Bistarelli et al. [2004] have presented a series
of constraint solvers for (mostly) extensionally defined finite domain soft constraints.

35



1.7. Applications of CHR

Another well-known formalism for describing over-constrained systems is that of con-
straint hierarchies, where constraints with hierarchical strengths or preferences can
be specified, and non-trivial error functions can be used to determine the solutions.
Wolf [2000b] has proposed an approach for solving dynamically changing constraint
hierarchies.

Scheduling. Abdennadher and Marte [2000] have successfully used CHR for scheduling
courses at the university of Munich. Their approach is based on soft constraints
to deal with teacher’s preferences. The related problem of assigning classrooms to
courses, given a timetable, is dealt with in [Abdennadher et al., 2000].

Spatio-temporal reasoning. In the context of autonomous mobile robot navigation,
a crucial research topic is automated qualitative reasoning about spatio-temporal
information, including orientation, named or compared distances, cardinal directions,
topology and time. The use of CHR for spatio-temporal reasoning has received
considerable research attention. We mention in particular the contributions of Escrig
et al. (Escrig and Toledo [1998a,b]; [Cabedo and Escrig, 2003]).

Multi-agent systems. FLUX (Thielscher [2002, 2005]) is a high-level programming sys-
tem, implemented in CHR and based on fluent calculus, for cognitive agents that
reason logically about actions in the context of incomplete information. An inter-
esting application of this system is FLUXPLAYER [Schi↵el and Thielscher, 2007],
which won the 2006 General Game Playing (GGP) competition at AAAI’06. Seitz
et al. [2002] and Alberti et al. (Alberti and Daolio et al. 2004; Alberti and Gavanelli
et al. 2004, 2006) have also applied CHR in the context of multi-agent systems.
Lam and Sulzmann [2006] have explored the use of CHR as an agent specification
language, founded on CHR’s linear logic semantics (see Section 1.1.4).

Data integration. One of the core problems related to the so-called Semantic Web is the
integration and combination of data from diverse information sources. Bressan and
Goh [1998] have described an implementation of the coin (context interchange)
mediator that uses CHR for solving integrity constraints. In more recent work,
CHR has been used for implementing an extension of the coin framework, capable
of handling more data source heterogeneity [Firat, 2003]. Badea et al. [2004] have
presented an improved mediator-based integration system.

Description logic. The Web Ontology Language (OWL) is based on Description Logic
(DL). Various rule-based formalisms have been considered for combination and in-
tegration with OWL or other description logics. Frühwirth [2007] has proposed a
CHR-based approach to DL and DL rules.

1.7.2 Automatic solver generation

Many authors have investigated the automatic generation of CHR rules from a formal
specification. Most works consider extensionally defined constraints over (small) finite
domains as the specification.

Apt and Monfroy [2001] have shown how to derive propagation rules from an exten-
sional definition of a finite domain constraint. As an extension, Brand and Monfroy [2003]
have proposed to transform the derived rules to obtain stronger propagation rules. Brand
[2002] has proposed a method to eliminate redundant propagation rules.

Abdennadher and Rigotti [2004] have also derived propagation rules from extensionally
defined constraints. In contrast to the approach of Apt and Monfroy [2001], rules are

36



Chapter 1

assembled from given parts and propagation rules are transformed into simplification rules
if possible. In [Abdennadher and Rigotti, 2005] the approach is extended to intensional
constraint definitions, where constraints are defined by logic programs. The latter is
further extended in [Abdennadher and Sobhi, 2008] to symbolically derive rules from the
logic programs, rather than from given parts.

1.7.3 Type systems

CHR’s aptness for symbolic constraint solving has led to many applications in the context
of type system design, type checking and type inference. While the basic Hindley-Milner
type system requires no more than a simple Herbrand equality constraint, more advanced
type systems require custom constraint solvers.

The most successful use of CHR in this area is for Haskell type classes. Type classes
are a principled approach to ad hoc function overloading based on type-level constraints.
By defining these type class constraints in terms of a CHR program [Stuckey and Sulz-
mann, 2005] the essential properties of the type checker — soundness, completeness and
termination — can be established. Moreover, various extensions, such as multi-parameter
type classes [Sulzmann et al., 2006] and functional dependencies [Sulzmann et al., 2007]
are easily expressed.

1.7.4 Abduction

Abduction is the inference of a cause to explain a consequence: given B, determine A such
that A ! B. It has applications in many areas: diagnosis, recognition, natural language
processing, type inference, . . .

The earliest work connecting CHR with abduction is that of Abdennadher and Chris-
tiansen [2000]. It shows how to model logic programs with abducibles and integrity con-
straints in CHR_. The HYPROLOG system of Christiansen and Dahl [2005] combines
abductive reasoning and abductive-based logic programming in one system. Christiansen
[2006] has also proposed the use of CHR for the implementation of global abduction, an
extended form of logical abduction for reasoning about a dynamic world.

1.7.5 Computational linguistics

CHR allows flexible combinations of top-down and bottom-up computation [Abdennadher
and Schütz, 1998], and abduction fits naturally in CHR as well (see Section 1.7.4). It is
therefore not surprising that CHR has proven a powerful implementation and specification
tool for language processors.

The most successful approach to CHR-based language processing is that of CHR gram-
mars (CHRG), a highly expressive, bottom-up grammar specification language proposed
by Christiansen [2005]. Christiansen recognizes that the CHR language itself can be used
as a powerful grammar formalism. CHRG’s, built as a relatively transparent layer of
syntactic sugar over CHR, are to CHR what DCG’s are to Prolog.

Applications of CHRG. Using CHRG, Dahl and Blache [2005] have developed directly
executable specifications of property grammars. In [Dahl and Gu, 2006], an extension of
this approach is used to extract concepts and relations from biomedical texts. Dahl and
Voll [2004] have generalized the property grammar parsing methodology into a general
concept formation system. Applications of this formalism include early lung cancer di-
agnosis [Barranco-Mendoza, 2005, Chapter 4], error detection and correction of radiology

37



1.8. Related formalisms

reports obtained from speech recognition [Voll, 2006, Section 5.2.8], and the analysis of
biological sequences [Bavarian and Dahl, 2006].

1.7.6 Testing and verification

Another application domain for which CHR has proved useful is software testing and verifi-
cation. Ribeiro et al. [2000] have presented a CHR-based tool for detecting security policy
inconsistencies. Lötzbeyer and Pretschner [2000], Pretschner et al. [2004] have proposed
a model-based testing methodology, in which test cases are automatically generated from
abstract models using CLP and CHR. They considered the ability to formulate arbitrary
test case specifications by means of CHR to be one of the strengths of their approach.
Gouraud and Gotlieb [2006] have used a similar approach for the automatic generation of
test cases for the Java Card Virtual Machine (JCVM). A formal model of the JCVM is
automatically translated into CHR, and the generated CHR program is used to generate
test cases.

More of an exploration than testing application is the JmmSolve framework presented
in [Schrijvers, 2004]. Its purpose is to explore and test the behavior of declarative memory
models for Java, based on the Concurrent Constraint-based Memory Machines proposal
of Vijay Saraswat.

1.8 Related formalisms

For a more recent overview of related formalisms, the original version of this section was
merged with a corresponding section from [Raiser, 2010].

The proposal of CHR as a lingua franca for rewriting systems arrived after numerous
comparisons between CHR and other formalisms have been undertaken. In this section,
we recapitulate selected results from this line of research.

Set-based Formalisms

A comprehensive comparison of RETE-based systems with CHR, focusing on e�cient
execution, was given by Van Weert [2009]. Business rules have influenced the early CHR
compiler implementations, but the current systems are based on numerous research results
for improving e�ciency. A summary of the techniques applied in CHR compilation is
given by [Schrijvers, 2005] in his PhD thesis. Together with more recent optimizations,
Van Weert [2009] has shown that execution of CHR is faster than traditional RETE-based
systems by several magnitudes.

De Koninck [2009] investigated the close relation between CHR and logical algorithms
(LA). LA is a formalism proposed by Ganzinger and McAllester [2002] in order to allevi-
ate the problem of determining runtime complexity of logic programs. De Koninck [2009]
successfully embedded LA into CHR with rule priorities, which allowed him to transfer a
meta-complexity result, available for LA, to a subset of CHR with rule priorities. Addi-
tionally, he provided a mapping from CHR with rule priorities into regular CHR, which
in turn made his embedding the first actual implementation of LA.

Logical Formalisms

Apart from the already discussed first-order and linear-logic declarative semantics, other
logical formalisms have been considered. This line of research was pursued mainly by
Meister [2008].

38



Chapter 1

He implemented a fragment of frame-logic, which is an object-oriented extension of
classical first-order logic, in CHR. Furthermore, he gave a transaction logic semantics for
CHR.

Term Rewriting

CHR is closely related to term rewriting. The main di↵erence is that CHR rewrites a
flat set of constraints, whereas in term rewriting nested terms can be rewritten. It is
possible to simulate term rewriting in CHR by a simple flattening function, as explained
in [Frühwirth, 2009]. However, this only works for linear term rewriting systems.

Raiser and Frühwirth [2008] instead considered term graph rewriting and provided the
necessary folding rules in CHR for sharing term structures. This work is based on prior
research by Plump [1993] on jungle evaluation, and a general treatment of term graph
rewriting is available in [Ohlebusch, 2002].

Term rewriting is the basis of functional programming and CHR has also been applied
to the problem of type checking and inference [Alves and Florido, 2002, Stuckey et al.,
2006]. Finally, Martinez [2010] compared linear concurrent constraint programming with
CHR, which resulted in an encoding of the �-calculus in CHR.

Graph-based Formalisms

There only exist few research results in this direction prior to [Raiser, 2010], which com-
pares graph transformation system and CHR.

The comparison with term graph rewriting was already mentioned above. Another
interesting work is given by Betz [2007], who compared colored Petri nets to CHR. A
subset of these can be translated into CHR, and there also exists a sound and complete
encoding of place/transition nets.

Join-Calculus

The join-calculus is a calculus for concurrent programming, with both stand-alone imple-
mentations and extensions of general purpose languages, such as JoCaml (OCaml), Join
Java and Polyphonic C#.

Sulzmann and Lam [2007] propose a Haskell language extension for supporting join-
calculus-style concurrent programming, based on CHR. Join-calculus rules, called chords,
are essentially guardless simplification rules with linear match patterns. In a linear pattern,
di↵erent head conjuncts are not allowed to share variables. Hence, CHR o↵ers considerably
increased expressivity over the join-calculus: propagation rules, general guards and non-
linear patterns.

Other Formalisms

We explained above that we will not elaborate on all formalisms that have been compared
to CHR. For more complete surveys, the reader should consult [Frühwirth, 2009] and
[Sneyers et al., 2010b]. In addition to the above, these discuss comparisons of CHR with
ACD term rewriting, equivalent transformation rules, production rules, event-condition-
action rules, GAMMA, functional programming, deductive databases, Prolog, (concurrent)
constraint logic programming, and more.

39



1.8. Related formalisms

40



Chapter 1

Bibliography

Slim Abdennadher. A language for experimenting with declarative paradigms. In
T. Frühwirth et al., editors, RCoRP’00(bis): Proc. 2nd Workshop on Rule-Based Con-
straint Reasoning and Programming, Singapore, September 2000.

Slim Abdennadher. Rule-based constraint programming: Theory and practice. Habilita-
tionsschrift, July 2001. Inst. of Comp. Sc., LMU, Munich, Germany.

Slim Abdennadher and Henning Christiansen. An experimental CLP platform for integrity
constraints and abduction. In FQAS’00: Proc. 4th Intl. Conf. Flexible Query Answering
Systems, pages 141–152, Warsaw, Poland, October 2000.

Slim Abdennadher and Thom Frühwirth. On completion of Constraint Handling Rules.
In M. J. Maher and J.-F. Puget, editors, CP’98, volume 1520 of LNCS, pages 25–39,
Pisa, Italy, October 1998. Springer. ISBN 3-540-65224-8.

Slim Abdennadher and Thom Frühwirth. Integration and optimization of rule-based con-
straint solvers. In M. Bruynooghe, editor, LOPSTR’03, volume 3018 of LNCS, pages
198–213, Uppsala, Sweden, 2004. Springer. URL http://www.informatik.uni-ulm.

de/pm/fileadmin/pm/home/fruehwirth/Papers/paper3.pdf.

Slim Abdennadher and Michael Marte. University course timetabling using Constraint
Handling Rules. In J. Applied Artificial Intelligence, Special Issue on Constraint Han-
dling Rules Holzbaur and Frühwirth [2000a], pages 311–325.

Slim Abdennadher and Christophe Rigotti. Automatic generation of rule-based constraint
solvers over finite domains. ACM TOCL, 5(2):177–205, 2004. ISSN 1529-3785.

Slim Abdennadher and Christophe Rigotti. Automatic generation of CHR constraint
solvers. In TPLP Abdennadher et al. [2005], pages 403–418.

Slim Abdennadher and Heribert Schütz. CHR_, a flexible query language. In Andreasen
et al. [1998], pages 1–14.

Slim Abdennadher and Ingi Sobhi. Generation of rule-based constraint solvers: Combined
approach. In King [2008].

Slim Abdennadher, Thom Frühwirth, and Holger Meuss. Confluence and semantics of
constraint simplification rules. Constraints, 4(2):133–165, 1999. ISSN 1383-7133. doi:
http://dx.doi.org/10.1023/A:1009842826135.

Slim Abdennadher, Matthias Saft, and Sebastian Will. Classroom assignment using con-
straint logic programming. In PACLP’00: Proc. 2nd Intl. Conf. and Exhibition on
Practical Application of Constraint Technologies and Logic Programming, Manchester,
UK, April 2000.

Slim Abdennadher, Ekkerhard Krämer, Matthias Saft, and Matthias Schmauß. JACK: A
Java Constraint Kit. In Hanus [2002], pages 1–17.

Slim Abdennadher, Thom Frühwirth, and Christian Holzbaur, editors. Special Issue on
Constraint Handling Rules, volume 5(4–5) of TPLP, July 2005.

41



Bibliography

Marco Alberti, Davide Daolio, Paolo Torroni, Marco Gavanelli, Evelina Lamma, and Paola
Mello. Specification and verification of agent interaction protocols in a logic-based sys-
tem. In H. Haddad et al., editors, SAC’04: Proc. 19th ACM Symp. Applied Computing,
pages 72–78, Nicosia, Cyprus, March 2004a. ACM Press.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni.
Specification and verification of agent interaction using social integrity constraints.
In LCMAS’03: Logic and Communication in Multi-Agent Systems, volume 85(2) of
ENTCS, pages 94–116, Eindhoven, the Netherlands, 2004b.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Federico Chesani, Paola Mello, and
Paolo Torroni. Compliance verification of agent interaction: a logic-based software tool.
Applied Artificial Intelligence, 20(2–4):133–157, 2006.

Sandra Alves and Mario Florido. Type inference using Constraint Handling Rules. In
Hanus [2002], pages 56–72.

T. Andreasen, H. Christiansen, and H.L. Larsen, editors. FQAS’98: Proc. 3rd Intl. Conf.
on Flexible Query Answering Systems, volume 1495 of LNAI, Roskilde, Denmark, May
1998. Springer.

K.R. Apt, A.C. Kakas, E. Monfroy, and F. Rossi, editors. New Trends in Constraints,
Joint ERCIM/Compulog Net Workshop, October 1999, Selected papers, volume 1865 of
LNCS, Paphos, Cyprus, 2000. Springer. ISBN 3-540-67885-9.

Krzysztof R. Apt and Eric Monfroy. Constraint programming viewed as rule-based pro-
gramming. TPLP, 1(6):713–750, 2001. ISSN 1471-0684. doi: http://dx.doi.org/10.
1017/S1471068401000072.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998. ISBN 0-521-45520-0.

L. Badea, D. Tilivea, and A. Hotaran. Semantic Web Reasoning for Ontology-Based
Integration of Resources. In PPSWR’04: Proc. 2nd Intl. Workshop on Principles And
Practice Of Semantic Web Reasoning, volume 3208 of LNCS, pages 61–75, Saint-Malo,
France, September 2004. Springer.

Alma Barranco-Mendoza. Stochastic and heuristic modelling for analysis of the growth of
pre-invasive lesions and for a multidisciplinary approach to early cancer diagnosis. PhD
thesis, Simon Fraser University, Burnaby, Canada, 2005.

Maryam Bavarian and Verónica Dahl. Constraint based methods for biological sequence
analysis. J. Universal Computer Science, 12(11):1500–1520, 2006.

Hariolf Betz. Relating coloured Petri nets to Constraint Handling Rules. In Djelloul et al.
[2007a], pages 33–47.

Hariolf Betz and Thom Frühwirth. A linear-logic semantics for Constraint Handling Rules.
In Peter van Beek, editor, CP’05, volume 3709 of LNCS, pages 137–151, Sitges, Spain,
October 2005. Springer.

Hariolf Betz and Thom Frühwirth. A linear-logic semantics for Constraint Handling Rules
with disjunction. In Djelloul et al. [2007a], pages 17–31.

42



Chapter 1

Stefano Bistarelli, Thom Frühwirth, Michael Marte, and Francesca Rossi. Soft constraint
propagation and solving in Constraint Handling Rules. Computational Intelligence:
Special Issue on Preferences in AI and CP, 20(2):287–307, May 2004.

Mathieu Boespflug. TaiChi:how to check your types with serenity. The Monad.Reader, 9:
17–31, November 2007.

Olivier Bouissou. A CHR library for SiLCC. Diplomathesis, November 2004. Tech. Univ.
Berlin, Germany.

Sebastian Brand. A note on redundant rules in rule-based constraint programming. In
CSCLP’02: Joint ERCIM/CologNet Intl. Workshop on Constraint Solving and Con-
straint Logic Programming, Selected papers, volume 2627 of LNCS, pages 279–336, Cork,
Ireland, June 2002. Springer.

Sebastian Brand and Eric Monfroy. Deductive generation of constraint propagation rules.
In G. Vidal, editor, RULE’03: 4th Intl. Workshop on Rule-Based Programming, volume
86(2) of ENTCS, pages 45–60, Valencia, Spain, September 2003.

Stéphane Bressan and Cheng Hian Goh. Answering queries in context. In Andreasen et al.
[1998], pages 68–82.

Lledó Museros Cabedo and Maŕıa Teresa Escrig. Modeling motion by the integration of
topology and time. J. Universal Computer Science, 9(9):1096–1122, 2003.

Wei-Ngan Chin, Martin Sulzmann, and Meng Wang. A type-safe embedding of Constraint
Handling Rules into Haskell. Honors Thesis, 2003. School of Computing, National
University of Singapore.

Henning Christiansen. CHR grammars. In TPLP Abdennadher et al. [2005], pages 467–
501.

Henning Christiansen. On the implementation of global abduction. In Katsumi Inoue, Ken
Satoh, and Francesca Toni, editors, CLIMA’06: 7th Intl. Workshop on Computational
Logic in Multi-Agent Systems – Revised, Selected and Invited Papers, volume 4371 of
LNCS, pages 226–245, Hakodate, Japan, May 2006. Springer.

Henning Christiansen and Verónica Dahl. HYPROLOG: A new logic programming lan-
guage with assumptions and abduction. In M. Gabbrielli and G. Gupta, editors,
ICLP’05, volume 3668 of LNCS, pages 159–173, Sitges, Spain, October 2005. Springer.

V. Dahl and I. Niemelä, editors. ICLP’07: Proc. 23rd Intl. Conf. Logic Programming,
volume 4670 of LNCS, Porto, Portugal, September 2007. Springer.

Verónica Dahl and Philippe Blache. Extracting selected phrases through constraint satis-
faction. In Proc. 2nd Intl. Workshop on Constraint Solving and Language Processing,
Sitges, Spain, October 2005.

Verónica Dahl and Baohua Gu. Semantic property grammars for knowledge extraction
from biomedical text. In Etalle and Truszczynski [2006], pages 442–443.

Verónica Dahl and Kimberly Voll. Concept formation rules: An executable cognitive
model of knowledge construction. In NLUCS’04: Proc. First Intl. Workshop on Natural
Language Understanding and Cognitive Sciences, Porto, Portugal, April 2004.

43



Bibliography

Leslie De Koninck. Logical Algorithms meets CHR: A Meta-Complexity Result for Con-
straint Handling Rules with Rule Priorities. TPLP, 9(2):165–212, 2009.

Leslie De Koninck, Tom Schrijvers, and Bart Demoen. INCLP(R) - Interval-based nonlin-
ear constraint logic programming over the reals. In Fink et al. [2006], pages 91–100.

B. Demoen and V. Lifschitz, editors. ICLP’04: Proc. 20th Intl. Conf. Logic Programming,
volume 3132 of LNCS, Saint-Malo, France, September 2004. Springer.

K. Djelloul, G. J. Duck, and M. Sulzmann, editors. CHR’07: Proc. 4th Workshop on
Constraint Handling Rules, Porto, Portugal, September 2007a.

Khalil Djelloul, Thi-Bich-Hanh Dao, and Thom Frühwirth. Toward a first-order extension
of Prolog’s unification using CHR: a CHR first-order constraint solver over finite or
infinite trees. In SAC’07: Proc. 2007 ACM Symp. Applied computing, pages 58–64,
Seoul, Korea, 2007b. ACM Press. ISBN 1-59593-480-4.

Gregory J. Duck. Compilation of Constraint Handling Rules. PhD thesis, University of
Melbourne, Australia, December 2005.

Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian Holzbaur.
Extending arbitrary solvers with Constraint Handling Rules. In PPDP’03, pages 79–90,
Uppsala, Sweden, 2003. ACM Press. ISBN 1-58113-705-2.

Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian Holzbaur. The
refined operational semantics of Constraint Handling Rules. In Demoen and Lifschitz
[2004], pages 90–104.

Gregory J. Duck, Peter J. Stuckey, and Martin Sulzmann. Observable confluence for
Constraint Handling Rules. In Dahl and Niemelä [2007], pages 224–239.

Maŕıa Teresa Escrig and Francisco Toledo. A framework based on CLP extended with
CHRs for reasoning with qualitative orientation and positional information. J. Visual
Languages and Computing, 9(1):81–101, 1998a.

Maŕıa Teresa Escrig and Francisco Toledo. Qualitative Spatial Reasoning: Theory and
Practice — Application to Robot Navigation. IOS Press, 1998b.

S. Etalle and M. Truszczynski, editors. ICLP’06: Proc. 22nd Intl. Conf. Logic Program-
ming, volume 4079 of LNCS, Seattle, Washington, August 2006. Springer.

François Fages, Cleyton Mario de Oliveira Rodrigues, and Thierry Martinez. Modular
CHR with ask and tell. In Schrijvers et al. [2008], pages 95–109.

M. Fink, H. Tompits, and S. Woltran, editors. WLP’06: Proc. 20th Workshop on Logic
Programming, T.U.Wien INFSYS research report 1843-06-02, Vienna, Austria, February
2006.

Aykut Firat. Information Integration Using Contextual Knowledge and Ontology Merging.
PhD thesis, MIT Sloan School of Management, MA, USA, September 2003.

T. Frühwirth et al., editors. RCoRP’00: Proc. 1st Workshop on Rule-Based Constraint
Reasoning and Programming, London, UK, July 2000.

44



Chapter 1

Thom Frühwirth. Constraint simplification rules. Technical Report ECRC-92-18, Euro-
pean Computer-Industry Research Centre, Munich, Germany, 1992.

Thom Frühwirth. Theory and practice of Constraint Handling Rules. J. Logic Program-
ming, 37(1–3):95–138, 1998.

Thom Frühwirth. Proving termination of constraint solver programs. In Apt et al. [2000],
pages 298–317. ISBN 3-540-67885-9.

Thom Frühwirth. As time goes by II: More automatic complexity analysis of concurrent
rule programs. In A. Di Pierro and H. Wiklicky, editors, QAPL’01: Proc. First Intl.
Workshop on Quantitative Aspects of Programming Languages, volume 59(3) of ENTCS,
Florence, Italy, 2002a.

Thom Frühwirth. As time goes by: Automatic complexity analysis of simplification rules.
In D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors, KR’02:
Proc. 8th Intl. Conf. Princ. Knowledge Representation and Reasoning, pages 547–557,
Toulouse, France, April 2002b. Morgan Kaufmann.

Thom Frühwirth. Deriving linear-time algorithms from union-find in CHR. In Schrijvers
and Frühwirth [2006], pages 49–60.

Thom Frühwirth. Complete propagation rules for lexicographic order constraints over
arbitrary domains. In Brahim Hnich, Mats Carlsson, François Fages, and Francesca
Rossi, editors, CSCLP’05: Recent Advances in Constraints, Joint ERCIM/CoLogNET
Intl. Workshop on Constraint Solving and CLP, Revised Selected and Invited Papers,
volume 3978 of LNAI, Uppsala, Sweden, 2006b. Springer.

Thom Frühwirth. Description logic and rules the CHR way. In Djelloul et al. [2007a],
pages 49–61.

Thom Frühwirth. Constraint Handling Rules. Cambridge University Press, 2009.

Thom Frühwirth and Slim Abdennadher. Essentials of Constraint Programming. Springer,
2003. ISBN 3540676236.

Thom Frühwirth, Alessandra Di Pierro, and Herbert Wiklicky. Probabilistic Constraint
Handling Rules. In M. Comini and M. Falaschi, editors, WFLP’02: Proc. 11th Intl.
Workshop on Functional and (Constraint) Logic Programming, Selected Papers, vol-
ume 76 of ENTCS, Grado, Italy, June 2002.

Maurizio Gabbrielli, Jacopo Mauro, Maria Chiara Meo, and Jon Sneyers. Decidability
Properties for Fragments of CHR. TPLP, 10(4-6):611–626, 2010.

Harald Ganzinger and David A. McAllester. Logical algorithms. In Stuckey [2002], pages
209–223.

Sandrine-Dominique Gouraud and Arnaud Gotlieb. Using CHRs to generate functional
test cases for the Java card virtual machine. In P. Van Hentenryck, editor, PADL’06:
Proc. 8th Intl. Symp. Practical Aspects of Declarative Languages, volume 3819 of LNCS,
pages 1–15, Charleston, SC, USA, January 2006. Springer.

M. Hanus, editor. WFLP’01: Proc. 10th Intl. Workshop on Functional and (Constraint)
Logic Programming, Selected Papers, volume 64 of ENTCS, Kiel, Germany, November
2002.

45



Bibliography

Michael Hanus. Adding Constraint Handling Rules to Curry. In Fink et al. [2006], pages
81–90.

C. Holzbaur and Th. Frühwirth, editors. Special Issue on Constraint Handling Rules,
volume 14(4) of J. Applied Artificial Intelligence, April 2000a.

Christian Holzbaur and Thom Frühwirth. A Prolog Constraint Handling Rules compiler
and runtime system. In J. Applied Artificial Intelligence, Special Issue on Constraint
Handling Rules Holzbaur and Frühwirth [2000a], pages 369–388.

Christian Holzbaur, Maŕıa Garćıa de la Banda, Peter J. Stuckey, and Gregory J. Duck.
Optimizing compilation of Constraint Handling Rules in HAL. In TPLP Abdennadher
et al. [2005], pages 503–531.

A. King, editor. LOPSTR’07: 17th Intl. Symp. Logic-Based Program Synthesis and Trans-
formation, Revised Selected Papers, volume 4915 of LNCS, Kongens Lyngby, Denmark,
2008.

Donald E. Knuth and Peter B. Bendix. Simple Word Problems in Universal Algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297, 1970.

N. Kobayashi, editor. APLAS’06: Proc. 4th Asian Symp. on Programming Languages and
Systems, volume 4279 of LNCS, Sydney, Australia, November 2006. Springer. ISBN
3-540-48937-1.

Ekkehard Krämer. A generic search engine for a Java Constraint Kit. Diplomarbeit, 2001.
Inst. of Comp. Sc., LMU, Munich, Germany.

Edmund S.L. Lam and Martin Sulzmann. Towards agent programming in CHR. In
Schrijvers and Frühwirth [2006], pages 17–31.

Edmund S.L. Lam and Martin Sulzmann. A concurrent Constraint Handling Rules se-
mantics and its implementation with software transactional memory. In Neal Glew and
Guy E. Blelloch, editors, DAMP’07: Proc. ACM SIGPLAN Workshop on Declarative
Aspects of Multicore Programming, Nice, France, January 2007.

Johannes Langbein, Frank Raiser, and Thom Frühwirth. A State Equivalence and Con-
fluence Checker for CHR. In P. Van Weert and L. De Koninck, editors, CHR ’10, pages
1–8. K.U.Leuven, Dept. Comp. Sc., Technical report CW 588, July 2010.

Heiko Lötzbeyer and Alexander Pretschner. AutoFocus on constraint logic programming.
In LPSE’00: Proc. Intl. Workshop on (Constraint) Logic Programming and Software
Engineering, London, United Kingdom, July 2000.

Thierry Martinez. Semantics-Preserving Translations Between Linear Concurrent Con-
straint Programming and Constraint Handling Rules. In M. Fernández, editor,
PPDP ’10. ACM Press, July 2010.

Jacopo Mauro, Maurizio Gabbrielli, Maria Chiara Meo, and Jon Sneyers. Decidability
Properties for Fragments of CHR. TPLP, 10(4–6):611–626, 2010.

Marc Meister. Advances in Constraint Handling Rules. PhD thesis, Ulm University, Ulm,
Germany, 2008.

46



Chapter 1

Marc Meister, Khalil Djelloul, and Thom Frühwirth. Complexity of a CHR solver for
existentially quantified conjunctions of equations over trees. In F. Azevedo et al., edi-
tors, CSCLP’06: Proc. 11th Annual ERCIM Workshop on Constraint Solving and Con-
straint Logic Programming, volume 4651 of LNCS, pages 139–153, Caparica, Portugal,
June 2006. Springer. ISBN 978-3-540-73816-9. URL http://dx.doi.org/10.1007/

978-3-540-73817-6_9.

Enno Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002. ISBN 978-0-387-
95250-5.

Paolo Pilozzi and Danny De Schreye. Termination analysis of CHR revisited. In Schrijvers
et al. [2008], pages 35–50.

Detlef Plump. Term Graph Rewriting: Theory and Practice, chapter 15, pages 201–213.
John Wiley, 1993.

Alexander Pretschner, Oscar Slotosch, Ernst Aiglstorfer, and Stefan Kriebel. Model-based
testing for real. J. Software Tools for Technology Transfer, 5(2–3):140–157, 2004.

Frank Raiser. Graph Transformation Systems in Constraint Handling Rules: Improved
Methods for Program Analysis. PhD thesis, Ulm University, November 2010.

Frank Raiser and Thom Frühwirth. Towards term rewriting systems in Constraint Han-
dling Rules machines. In Schrijvers et al. [2008], pages 19–33.

Frank Raiser and Paolo Tacchella. On confluence of non-terminating CHR programs. In
Djelloul et al. [2007a], pages 63–76.

Carlos Ribeiro, André Zúquete, Paulo Ferreira, and Paulo Guedes. Security policy consis-
tency. In Frühwirth et al. [2000].

Beata Sarna-Starosta and C.R. Ramakrishnan. Compiling Constraint Handling Rules
for e�cient tabled evaluation. In M. Hanus, editor, PADL’07: Proc. 9th Intl. Symp.
Practical Aspects of Declarative Languages, volume 4354 of LNCS, pages 170–184, Nice,
France, January 2007. Springer.

Stephan Schi↵el and Michael Thielscher. Fluxplayer: A successful general game player. In
AAAI’07: Proc. 22nd AAAI Conf. Artificial Intelligence, pages 1191–1196, Vancouver,
Canada, July 2007. AAAI Press.

Matthias Schmauß. An implementation of CHR in Java. Diplomarbeit, November 1999.
Inst. of Comp. Sc., LMU, Munich, Germany.

T. Schrijvers and Th. Frühwirth, editors. CHR’05: Proc. 2nd Workshop on Constraint
Handling Rules, K.U.Leuven, Dept. Comp. Sc., Technical report CW421, Sitges, Spain,
2005.

T. Schrijvers and Th. Frühwirth, editors. CHR’06: Proc. 3rd Workshop on Constraint
Handling Rules, K.U.Leuven, Dept. Comp. Sc., Technical report CW452, Venice, Italy,
July 2006.

T. Schrijvers, Th. Frühwirth, and F. Raiser, editors. CHR’08: Proc. 5th Workshop on
Constraint Handling Rules, Hagenberg, Austria, July 2008.

47



Bibliography

Tom Schrijvers. Jmmsolve: A generative Java memory model implemented in Prolog and
CHR. In Demoen and Lifschitz [2004], pages 475–476.

Tom Schrijvers. Analyses, optimizations and extensions of Constraint Handling Rules.
PhD thesis, K.U.Leuven, Belgium, June 2005.

Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implementation and
application. In Th. Frühwirth and M. Meister, editors, CHR’04, Selected Contributions,
pages 8–12, Ulm, Germany, May 2004.

Tom Schrijvers and Thom Frühwirth. Optimal union-find in Constraint Handling Rules.
TPLP, 6(1–2):213–224, 2006. ISSN 1471-0684. doi: http://dx.doi.org/10.1017/
S1471068405002541.

Tom Schrijvers and David S. Warren. Constraint Handling Rules and tabled execution.
In Demoen and Lifschitz [2004], pages 120–136.

Tom Schrijvers, David S. Warren, and Bart Demoen. CHR for XSB. In R. Lopes and
M. Ferreira, editors, CICLOPS’03: Proc. 3rd Intl. Colloq. Implementation of Constraint
and Logic Programming Systems, Univ. of Porto, Portugal, Dept. Comp. Sc., Tech. rep.
DCC-2003-05, pages 7–20, Mumbai, India, December 2003.

Tom Schrijvers, Jan Wielemaker, and Bart Demoen. Constraint Handling Rules for SWI-
Prolog. In A. Wolf, Th. Frühwirth, and M. Meister, editors, WCLP’05, volume 2005-01
of Ulmer Informatik-Berichte, Universität Ulm, Germany, February 2005.

Tom Schrijvers, Bart Demoen, Gregory J. Duck, Peter J. Stuckey, and Thom Frühwirth.
Automatic implication checking for CHR constraints. In RULE’05: 6th Intl. Workshop
on Rule-Based Programming, volume 147(1) of ENTCS, pages 93–111, Nara, Japan,
January 2006a.

Tom Schrijvers, Neng-Fa Zhou, and Bart Demoen. Translating Constraint Handling Rules
into Action Rules. In Schrijvers and Frühwirth [2006], pages 141–155.

Christian Seitz, Bernhard Bauer, and Michael Berger. Planning and scheduling in multi
agent systems using Constraint Handling Rules. In IC-AI’02: Proc. Intl. Conf. Artificial
Intelligence, Las Vegas, NV, USA, June 2002. CSREA Press.

Jon Sneyers. Turing-complete subclasses of CHR. In Maŕıa Garćıa de la Banda and
Enrico Pontelli, editors, ICLP’08, LNCS, pages 759–763, Udine, Italy, December 2008a.
Springer.

Jon Sneyers. Optimizing Compilation and Computational Complexity of Constraint Han-
dling Rules. PhD thesis, K.U.Leuven, Leuven, Belgium, November 2008b.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and com-
plexity of Constraint Handling Rules. In Schrijvers and Frühwirth [2005], pages 3–
17. URL http://www.cs.kuleuven.be/~dtai/projects/CHR/biblio/chr2005/sney_

schr_demoen_chr_complexity_chr05.ps.

Jon Sneyers, Peter Van Weert, and Tom Schrijvers. Aggregates for Constraint Handling
Rules. In Djelloul et al. [2007a], pages 91–105.

48



Chapter 1

Jon Sneyers, Wannes Meert, and Joost Vennekens. CHRiSM: Chance Rules induce Statis-
tical Models. In F. Raiser and J. Sneyers, editors, CHR ’09, pages 62–76. K.U.Leuven,
Dept. Comp. Sc., Technical report CW 555, July 2009a.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complexity
of Constraint Handling Rules. ACM TOPLAS, 31(2):1–42, 2009b.

Jon Sneyers, Wannes Meert, Joost Vennekens, Yoshitaka Kameya, and Taisuke Sato.
CHR(PRISM)-based Probabilistic Logic Learning. TPLP, 10(4-6):433–447, 2010a.

Jon Sneyers, Peter Van Weert, Tom Schrijvers, and Leslie De Koninck. As time goes by:
Constraint Handling Rules — a survey of CHR research between 1998 and 2007. Theory
and Practice of Logic Programming, 10(1):1–47, January 2010b.

P. J. Stuckey, editor. ICLP’02: Proc. 18th Intl. Conf. Logic Programming, volume 2401
of LNCS, Copenhagen, Denmark, July/August 2002. Springer.

Peter J. Stuckey and Martin Sulzmann. A theory of overloading. ACM TOPLAS, 27(6):
1216–1269, 2005. ISSN 0164-0925.

Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. Type processing by constraint
reasoning. In Kobayashi [2006], pages 1–25. ISBN 3-540-48937-1. Invited talk.

Martin Sulzmann and Edmund S. L. Lam. Parallel Execution of Multi-set Constraint
Rewrite Rules. In S. Antoy and E. Albert, editors, PPDP ’08, pages 20–31. ACM Press,
July 2008.

Martin Sulzmann and Edmund S.L. Lam. Haskell - Join - Rules. In Olaf Chitil, editor,
IFL’07: 19th Intl. Symp. Implementation and Application of Functional Languages,
pages 195–210, Freiburg, Germany, September 2007.

Martin Sulzmann, Tom Schrijvers, and Peter J. Stuckey. Principal type inference for
GHC-style multi-parameter type classes. In Kobayashi [2006], pages 26–43. ISBN 3-
540-48937-1.

Martin Sulzmann, Gregory J. Duck, Simon Peyton-Jones, and Peter J. Stuckey. Under-
standing functional dependencies via Constraint Handling Rules. J. Functional Prog.,
17(1):83–129, 2007. doi: http://dx.doi.org/10.1017/S0956796806006137.

Robert Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms. J.
ACM, 31(2):245–281, 1984. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/62.2160.

Michael Thielscher. Reasoning about actions with CHRs and finite domain constraints.
In Stuckey [2002], pages 70–84.

Michael Thielscher. FLUX: A logic programming method for reasoning agents. In TPLP
Abdennadher et al. [2005], pages 533–565.

Peter Van Weert. E�cient Lazy Evaluation of Rule-Based Programs. IEEE Transactions
on Knowledge and Data Engineering, 99(RapidPosts), 2009.

Peter Van Weert. Extension and Optimising Compilation of Constraint Handling Rules.
PhD thesis, K.U.Leuven, Leuven, Belgium, May 2010.

49



Bibliography

Peter Van Weert, Tom Schrijvers, and Bart Demoen. K.U.Leuven JCHR: a user-friendly,
flexible and e�cient CHR system for Java. In Schrijvers and Frühwirth [2005], pages
47–62. URL http://www.cs.kuleuven.be/~dtai/projects/CHR/biblio/chr2005/

vanweert_schr_demoen_jchr_chr05.pdf.

Peter Van Weert, Jon Sneyers, Tom Schrijvers, and Bart Demoen. Extending CHR with
negation as absence. In Schrijvers and Frühwirth [2006], pages 125–140.

Peter Van Weert, Jon Sneyers, and Bart Demoen. Aggregates for CHR through program
transformation. In King [2008].

Peter Van Weert, Pieter Wuille, Tom Schrijvers, and Bart Demoen. CHR for imperative
host languages. In Tom Schrijvers and Thom Frühwirth, editors, Constraint Handling
Rules — Current Research Topics, volume 5388 of LNAI, pages 161–212. Springer,
December 2008.

Dean Voets, Paolo Pilozzi, and Danny De Schreye. A new approach to termination analysis
of Constraint Handling Rules. In Djelloul et al. [2007a], pages 77–89.

Kimberly Voll. A methodology of error detection: Improving speech recognition in radiology.
PhD thesis, Simon Fraser University, Burnaby, Canada, 2006.

Armin Wolf. Adaptive Constraintverarbeitung mit Constraint-Handling-Rules – Ein allge-
meiner Ansatz zur Lösung dynamischer Constraint-probleme. PhD thesis, Tech. Univ.
Berlin, Germany, 1999.

Armin Wolf. Projection in adaptive constraint handling. In Apt et al. [2000], pages
318–338. ISBN 3-540-67885-9.

Armin Wolf. Toward a rule-based solution of dynamic constraint hierarchies over finite
domains. In Frühwirth et al. [2000].

Armin Wolf. Adaptive constraint handling with CHR in Java. In T. Walsh, editor, CP’01,
volume 2239 of LNCS, pages 256–270, Paphos, Cyprus, 2001a. Springer. ISBN 3-540-
42863-1.

Armin Wolf. Attributed variables for dynamic constraint solving. In Proc. 14th Intl. Conf.
Applications of Prolog, pages 211–219, Tokyo, Japan, October 2001b.

Armin Wolf. Intelligent search strategies based on adaptive Constraint Handling Rules.
In TPLP Abdennadher et al. [2005], pages 567–594.

Armin Wolf, Thomas Gruenhagen, and Ulrich Geske. On incremental adaptation of CHR
derivations. In J. Applied Artificial Intelligence, Special Issue on Constraint Handling
Rules Holzbaur and Frühwirth [2000a], pages 389–416.

Pieter Wuille, Tom Schrijvers, and Bart Demoen. CCHR: the fastest CHR implementation,
in C. In Djelloul et al. [2007a], pages 123–137.

50



Part II

Implementation and Optimization
of CHR





Chapter 2

Basic Compilation

Author: Gregory J.Duck
Thesis Title: Compilation of Constraint Handling Rules
School: University of Melbourne, Australia
Publication Year: 2005

Foreword

Over the years, many di↵erent CHR compilers have been implemented in a variety of
programming languages and programming language paradigms. Currently there are CHR
compilers for constraint logic programming languages such as Prolog and Mercury, func-
tional languages such as Haskell, and even in more traditional imperative languages such
as C and Java. Compilers range from the “state-of-the-art” such as the K.U.Leuven CHR
system [Schrijvers and Demoen, 2004], which implements powerful program analysis and
optimization, to very simple compilers such as toychr [Duck], which is implemented in a
few hundred lines of Prolog code.

This chapter focuses on the very basic compilation of CHR into a logic programming
language similar to Prolog and Mercury. The basic compilation is useful for two reasons.
Firstly, it can be relatively easily adapted to other programming languages that currently
have no CHR implementation. Secondly, the basic compilation serves as a foundation for
more advanced compilation techniques including program analysis and optimization. Op-
timizing CHR compilers use essentially the same compilation schema as the basic version
presented in this chapter, adapted appropriately.

This chapter assumes the reader is familiar with the refined operational semantics [Duck
et al., 2004] (or simply the “refined semantics”) of CHR. The refined semantics was orig-
inally a formalisation of the operational semantics of CHR implementations of the time,
and is more restrictive than the theoretical operational semantics for CHR. Since then
most CHR compilers respect some variant of refined semantics. It has become an uno�-
cial standard for CHR implementations. Because the refined semantics closely matches the
call-based semantics of most compiler target languages, the compilation schema is simple.

This chapter also assumes the reader is relatively familiar with logic programming
languages. The code examples also include type and mode declarations that are featured
in the Mercury language. The original version of this chapter used the HAL [Demoen et al.,
1999] constraint logic programming language as the target language. Since then the HAL
language has become extinct. In HAL’s place we use a Mercury-like logic programming
language.



2.1. Introduction

2.1 Introduction

In this chapter we explain the basic compilation of CHRs into logic programming languages
such as Prolog or Mercury [Somogyi et al., 1995]. We present all of the information required
to make a simple “no-frills” CHR compiler that performances reasonably well for many
programs. This will form the basis for more advanced compilation, including optimisation.

The specification of the refined operational semantics [Duck et al., 2004] describes a
state machine with (reasonably complicated) transitions between states. It is straightfor-
ward to implement a naive interpreter for this state machine. Interpretation is generally
slower than compilation, since much of the specification is implemented manually, for in-
stance the execution stack. For compiled CHRs, large chuncks of the functionality required
may already be provided by the target language, e.g. the execution stack becomes the call
stack, etc.

Compilation of CHRs is very similar to compiling other programming languages in
that it is a multi-phase process: The first phase is parsing and normalisation (desugaring),
followed by analysis, optimisation and then finally code generation. Usually analysis and
optimisation are optional, and are not covered here. We will briefly look at parsing and
program normalisation, but the main focus of this chapter will be on code generation.

Ideally the output of the CHR compiler should be as e�cient or better than the code
a human would write.

Example 1. Consider the classic CHR gcd program.

gcd(0) <=> true.

gcd(M) \ gcd(N) <=> M =< N | gcd(M-N).

The following is a similar program written in Prolog by a human. It is provided as a
benchmark for comparison later on.

gcd(N,M,R) :-

( M =< N ->

( M = 0 ->

R = N

; gcd(N-M,M,R)

)

; gcd(M,N,R)

).

ut

Unfortunately the result of the basic compilation of gcd will be very di↵erent than the
human implemented version above.

The rest of this chapter is divided up as follows. First we will briefly look at parsing
and program normalisation in section 2.2. Section 2.3 will describe our simple runtime
system in preparation for Section 2.4, which describes code generation. Next we devote
Section 2.5 to the surprisingly tricky problem of compiling guards. Finally we conclude.

2.2 Parsing and Normalisation

Parsing and normalisation are the first phases in any compilation process. We briefly
describe parsing and normalisation of CHR programs.

54



Chapter 2

2.2.1 Parsing

The general problem of parsing any programming language, including CHRs, is well-
studied and there are many tools that help automate this process. Since CHRs are usually
embedded in a host language (in this case a logic programming language), the host lan-
guage’s parser is adapted to recognise CHRs.

Assuming that there are no syntax errors, the result of the parsing is usually a list
of some representation of the rules in the program. For example, we can represent the
rule (r @ H1 \ H2 () g | B) as the term rule(r,H1,H2,g,B). We also translate the
head, guard and body into lists of terms, where each term represents a constraint from the
original rule. The rule name r is optional, so if it is omitted by the programmer usually
the parser will generate one (making sure it is unique with respect to the other rules).

Example 2. Consider the gcd program from Example 1. After parsing the program under
our scheme the result is the following list of rules.

[ rule(gcd1,[],[gcd(0)],[],[true]),

rule(gcd2,[gcd(M)],[gcd(N)],[M =< N],[gcd(M-N)])]

ut

2.2.2 Head and Guard Normalisation

Normalisation is a preprocessing step aimed at making all guards explicit, since non-
variable terms and matching variables appearing in the head of a rule or guard can be
represented by guards instead. Head normalisation is achieved by iteratively applying the
following steps

1. Rewrite each constraint c(t1, . . . , ti, . . . , tn) where c is an n-ary constraint symbol
and ti is a non-variable term, to c(t1, . . . , X, . . . , tn) and add the constraint X = ti
to the guard.

2. If variable X appears as an argument more than once in the head of a rule, replace
one occurrence with a new variable, say X 0, and add the constraint X = X 0 to the
guard.

After normalisation, each head simply provides the multiset of names of constraints which
can match that rule, while the guard indicates which such multisets actually match.

To simplify analysis and compilation, guards are also normalised.

1. Rewrite each constraint c(t1, . . . , ti, . . . , tn) where c is an n-ary constraint symbol
and ti is either a non-variable term or a variable which appears as an argument
elsewhere in the guard, to X 0 = ti ^ c(t1, . . . , X 0, . . . , tn) where X 0 is a new variable.

2. Rewrite each equation X = f(t1, . . . , ti, . . . , tn) where f is an n-ary function and ti
is either a non-variable term or a variable which appears as an argument elsewhere
in the guard, to X 0 = ti ^X = f(t1, . . . , X 0, . . . , tn), where X 0 is a new variable.

3. Add explicit existential quantification for each existentially quantified variable in the
guard.

In CHR, a variable that appears in the guard but not in the rule head is implicitly exis-
tentially quantified. For explicit existential quantification we introduce the notation

55



2.2. Parsing and Normalisation

exists [X1, ..., Xn] (g)

to indicate that variables X1, ..., Xn are existentially quantified in guard g.
After guard normalisation, each constraint is either an equation of the form X =

Y , X = f(Y1, ..., Yn), or a constraint c(Y1, ..., Yn) where X,Y, Y1, ..., Yn are all distinct
variables. Both head and guard normalisation preserve the operational and declarative
meanings of the program. Note that sometimes multiple normalisations are possible, e.g.
the head leq(X,X) can be normalised as leq(X,N) or leq(N,X) with guard X = N .
Such normalisations are always unique up to variable renaming, hence any normalisation
can be used.

Example 3. Consider the following CHR program defining a length(Xs,L) constraint
which holds if L is the length of list Xs. Unlike the standard length/2 predicate, this
version works in any mode, including when both arguments are fresh variables.

length([],L) <=> L = 0.

length(Xs,0) <=> Xs = [].

length([ |Xs],L) <=> L = L1+1, length(Xs,L1).

length(Xs,L) <=> 1 =< L | Xs = [ |Ys], length(Ys,L-1).

length( ,L) ==> 0 =< L.

The following is the same program after head and guard normalisation has been applied.

length(Xs,L) <=> Xs = [] | L = 0.

length(Xs,L) <=> L = 0 | Xs = [].

length(Xs1,L) <=> exists [A,Xs] (Xs1 = [A|Xs]) |

L = L1+1, length(Xs,L1).

length(Xs,L) <=> exists [L1] (L1 = 0, L > L1) |

Xs = [ |Ys], length(Ys,L-1).

length( ,L) ==> true | L >= 0.

Thanks to head normalisation, all variables appearing in the rule heads are distinct vari-
ables. Guard normalisation has made all implicit existential quantification explicit and
reduced the guard into the simplified form. ut

2.2.3 Program Normalisation

Our representation still closely resembles the original program, but this is not very help-
ful for the later phases of compilation. Since the refined operational semantics treats a
constraint as a call, and checks each occurrence in order, it is useful to create a mapping
between the constraint and a list of occurrences for that constraint. This mapping is the
normal form of our program.

First we must define a data structure to represent an individual occurrence for a con-
straint. Suppose we have a rule rule(r,H1 ++ [c] ++ H2,H3,g,B), then our representa-
tion of the occurrence in that rule for c is occ(c,remain,n,H1 ++ H2,H3,g,B,r). The
first field contains the constraint from the head that must match the active constraint.
The second field is the constant remain, which represents the fact that this occurrence
does not delete the active constraint (in the other case, this field will contain the constant
delete). The third field n is the occurrence number, which must be calculated during
normalisation. For example, if the occurrence of c is the third in the program, then n = 3.
The fourth field contains the non-deleted part of the head. The rest of the fields, e.g. H3,
g, etc., are exactly the same as in the original rule.

56



Chapter 2

The other case is where the occurrence for c is in the deleted part of the head,
i.e. rule(r,H1,H2 ++ [c] ++ H3,g,B), then the representation of the occurrence is
occ(c,delete,n,H1,H2 ++ H3,g,B,r).

Example 4. The list of occurrences for constraint gcd/1 from Example 2 is the following.

[ occ(gcd(X),delete,1,[],[],[X = 0],[true],gcd1),

occ(gcd(N),delete,2,[gcd(M)],[],[M =< N],[gcd(M-N)],gcd2),

occ(gcd(M),remain,3,[],[gcd(N)],[M =< N],[gcd(M-N)],gcd2)]

Notice that the head of the first occurrence has been normalised. ut

The advantage of the normal form this that all of the information required to compile
an individual occurrence is now in one place.

2.3 Runtime Environment

The refined operational semantics defines an execution state to be a tuple containing an
execution stack, CHR store, built-in store and propagation history. In this section we
show how to implement each of these in a pure logic programming language with minimal
extensions.

2.3.1 Execution Stack

The refined operational semantics [Duck et al., 2004] of CHRs explicitly represent the
execution stack as a sequence of constraints, numbered constraints and active constraints.
In practice the execution stack is nothing more than the ordinary program call stack in
Mercury or Prolog.

The execution stack starts o↵ as a sequence of (non-numbered) constraints and built-in
constraints. Built-in constraints are not treated specially in any way, they are just ordinary
procedure calls. CHR constraints are di↵erent in the sense that the CHR compiler must
generate the required code. Given a CHR constraint in the original CHR program, the
CHR compiler generates a predicate, which implements the constraint, with exactly the
same interface as the original. The predicate that the compiler generates is called the
top-level predicate and will be explained in the code generation section.

The execution stack also contains active constraints. An active constraint of the
form p(X1, ..., Xn)#I : m will be implemented by an occurrence predicate with inter-
face p m(I,X1,...,Xn). The occurrence predicate will contain the code generated by
the compiler for finding matches for the occurrence m of constraint p. Occurrence pred-
icates are also chained, i.e. p m calls p (m + 1) if the rule cannot fire (i.e. the Default
transition). Exactly how this is done is left for the code generation section.

Finally, the execution stack contains numbered constraints, which are woken up from
the store after a Solve transition. In the implementation the Solve and Reactivate
transitions are implemented together, so there is no special representation of numbered
constraints on the stack, only active constraints.

2.3.2 CHR Store

CHR constraints in the store are of the form c#i where i a unique number. A naive
implementation of constraint identifiers could use ordinary integers (as in the specification
of the refined semantics), however there are reasons why this is an ine�cient approach.

57



2.3. Runtime Environment

The operation of testing if a constraint identifier belongs to a deleted constraint turns
out to be a useful and common operation. While an ordinary integer has no memory
of if it has been deleted or not, a cleverer implementation is to use a fresh Herbrand
variable as a constraint identifier. The advantage is that when a constraint is deleted, the
variable identifier is bound to some pre-defined atom, e.g. ‘deleted’, and then testing if
a CHR constraint has been deleted is reduced to testing if the identifier is still a variable
(a very fast operation in Prolog). This approach was first used by the ECLiPSe CHR
compiler [Frühwirth and Brisset, 1995].

A Mercury implementation of constraint identifiers is similar except that instead of
using variables a special mutable1 data structure is used. This data structure has two
states: either the constraint identifier belongs to a deleted constraint or not. We refer to
an identifier belonging to a deleted constraint as a dead identifier, otherwise it is alive.

We define the following operations on constraint identifiers.

• new(Id) – creates a new constraint identifier Id;

• kill(Id) – marks the constraint identifier Id as being dead; and

• alive(Id) – succeeds if Id is alive, otherwise fails.

In the case of the fresh variable implementation, new(Id) is equivalent to a NOP (No
OPeration), as this implicitly creates a fresh variable, and alive(Id) is equivalent to
Prolog’s var(Id) which succeeds if Id is a variable.

A numbered constraint in the CHR store will be represented as the special tuple c #

i, where c is the constraint and i is the identifier. Our representation of the global CHR
store will be a single global list for simplicity. Searching for matching constraints against
some rule will involve iterating through this global list. The cost of this simplicity is that
searching for matching partners in a list is an O(N) operation, where N is the length of
the list.

The CHR store is usually implemented by global variables, which are supported by
Mercury and some implementations of Prolog. We assume the following abstract opera-
tions on the global store.

• insert(C,Id) – Insert constraint C # Id into the global CHR store;

• delete(Id) – Delete the constraint associated with identifier Id from the global
CHR store and mark Id as dead ; and

• get iterator(Ls) – Binds Ls to be a list of all constraints in the global CHR store;

The get iterator operation will be used by the code for finding matchings.
One obvious improvement is to specialise get iterator for each of the predicate sym-

bols of the constraints in the program. For example, if the program defines a constraint
p/3, then a specialised get iterator p 3 returns an iterator containing only p/3 con-
straints. For simplicity, we will stick to the single global list, and leave more advanced
schemes for optimising compilation.

2.3.3 Built-in Store

CHR programs may extend zero or more built-in solvers. In all current Prolog implementa-
tions of CHRs it is always assumed that there is exactly one built-in solver: the Herbrand

1 Changes to mutable data structures are trailed, so they will be undone on backtracking.

58



Chapter 2

equation solver (i.e. ordinary Prolog unification). In general any number of di↵erent built-
in solvers are possible, but for an implementation, there must be communication between
compiled CHR code and these solvers.

Example 5 (Length Constraint). Consider the length program from Example 3 which
extends both Herbrand and finite domain solvers. Consider the goal length(Xs,L), L

= 1. Its execution will first add the CHR constraint length(Xs,L) to the store. This
constraint cannot by itself cause the application of any of the rules except rule (5) which
adds the additional constraint L � 0. Next we add the finite domain constraint L = 1
to the finite domain solver store. This a↵ects rule (4) which can now be applied: Xs is
bound to [ |Ys] and CHR constraint length(Xs,L) is replaced by length(Ys,L1) where
L1 = L� 1 = 0. The second rule simplifies length(Ys,L1) to the Herbrand constraint Ys
= []. Hence, the final solution is Xs = [ ], L = 1. ut

We can see three kinds of interaction between the CHR solver and the built-in solvers
in the example above.

1. The CHR solver adds new constraints to the built-in solvers.

2. The CHR solver asks the built-in solvers whether constraints are entailed. This is
for testing the guard holds in the Simplify and Propagate transitions under the
refined semantics.

3. The built-in solvers must alert the CHR solver whenever non-trivial changes to the
built-in store occur. This is to correctly implement the Solve transition, which
requires all non-ground CHR constraints to be woken up.

Constraint solvers, by definition, provide methods that allow new constraints to be
added to their store. The second kind of interaction that needs a well defined interface
if we wish to extend an arbitrary built-in solver. We will defer consideration of this until
Section 2.5.

For the third type of interaction we use a very simple form of dynamic scheduling. We
assume the existence of a special predicate delay(Term,Id,Goal), which delays Goal on
the condition that any variable in Term has changed provided Id, which is a constraint
identifier, is still alive. Thus, with the appropriate delayed goals set, constraints from the
CHR store are in e↵ect re-added to the execution stack each time a constraint is added to
the built-in store.

It is usually the solver writer’s responsibility to implement the delay predicate, because
the implementation requires intimate knowledge of the inner workings of that solver. If
there are multiple solvers then we assume that delay/3 is overloaded. In Prolog the
delay predicate can be implemented in terms of existing dynamic scheduling constructs,
e.g. with attributed variables [Holzbaur, 1992].

2.3.4 Propagation History

The propagation history is very easy to implement naively, but quite challenging to imple-
ment e�ciently. A naive implementation uses some e�cient queryable data structure (e.g.
balanced tree or hash table) over the entries. The advantage is that testing if an entry is
in the propagation history is very fast, however as program execution proceeds, the prop-
agation history grows in size. Ideally, whenever a constraint is deleted, any entry in the
propagation history which contains the corresponding number should also be deleted. We
need a mechanism for determining all entries that are associated with a given identifier.

59



2.4. Code Generation

:- pred p(t1,...,tn). (1)
:- mode p(m1,...,mn) is d. (2)
p(X1,...,Xn) :- (3)

new(Id), (4)
C = p(X1,...,Xn), (5)
insert(C,Id), (6)
delay(C,Id,p 1(Id,X1,...,Xn)), (7)
p 1(Id,X1,...,Xn). (8)

Figure 2.1: Pseudo code for a top-level predicate.

We will assume a global propagation history, and all interactions with it go through one
operation: check history(Entry) which fails if Entry (which is a list of constraint iden-
tifiers and the rule name) is already in the global propagation history, or adds it otherwise.
In other words, for a unique new entry Entry, the first call to check history(Entry) will
succeed, but all subsequent calls with the same Entry will fail. Note that for simplicity,
the rule name is encoded as a constraint identifier.

2.4 Code Generation

Code generation is the final stage in any compilation process. In this section we give
pseudo code and describe what exactly needs to be generated. The only exception is the
implementation of the guard, which is covered by the next section.

2.4.1 Top-level Predicate

The top-level predicate is called in place of the original CHR constraint after compilation.
Its role is to perform the necessary initialisation, i.e. allocating a new constraint identifier,
insertion into the CHR store and setting up appropriate delayed goals on any free variables.
Naturally the top-level predicate has the same interface as the original CHR constraint.

For CHR constraint of functor/arity p/n, Figure 2.1 shows the corresponding top-level
predicate the CHR compiler generates. Lines (1)-(2) show the pred and mode declarations.
Here t1, ..., tn, m1, ...,mn and d are exactly the argument types, argument modes and
determinism for the original CHR constraint p/n. For a Prolog implementation these
declarations will be omitted. The interface, shown in line (3), is a list of distinct variables
X1,...,Xn which are the arguments to the CHR constraint. Line (4) allocates a new
constraint identifier. Line (5) constructs the constraint C ready for insertion into the
store, whereas line (6) actually does the insertion. Line (7) sets up any necessary delayed
goals on any solver variables in C. Notice that the same identifier Id is used for setting up
the delayed goals and as the constraint identifier. Finally, the constraint becomes active
in line (8) by calling the first occurrence predicate p 1.

2.4.2 Occurrence Predicates

The main purpose of an occurrence predicate is to implement the behaviour of the Sim-
plify or Propagate transitions from the refined operational semantics. For all CHR
constraints p/n from the CHR program, and all occurrences m of p/n, the CHR compiler
generates an occurrence predicate by the name p m. This is usually the bulk of the code
generated by the compiler.

60



Chapter 2

:- pred p i(id,t1,...,tn). (1)
:- mode p i(in,m1,...,mn) is d. (2)
p i(Id,X1,...,Xn) :- (3)

<find-matches-and-call-body> (4)
( alive(Id) -> (5)

p (i+ 1)(Id,X1,...,Xn) (6)
; true (7)
).

Figure 2.2: Pseudo code for the ith occurrence predicate.

The skeleton of an occurrence predicate (for the ith occurrence) is shown in Figure 2.2.
Lines (1)-(2) show the pred and mode declarations, which are identical to the same declara-
tions for the top-level predicate, except for an extra argument for the constraint identifier
(which we assume has type ‘id’). Line (3) is the interface, where the first argument is
the constraint’s identifier, followed by the constraint’s actual arguments. Note that all of
X1,...,Xn are the same set of distinct variables (because of normalisation) from the origi-
nal rule. Line (4) represents the main purpose of this predicate, which is to find matching
partners and fire the rule. We leave this part for now. After line (4) we can assume that
all possible matchings have been tried. The rest of the occurrence predicate, lines (5)-(7)
decides whether or not the next occurrence predicate, p (i+1), should be called. Line (5)
tests if the active constraint has been deleted. If not then the next occurrence predicate
is called in line (6) (in e↵ect we are applying Default to the active constraint), otherwise
the active constraint is e↵ectively Dropped in line (7). Note that for the last occurrence
lines (5)-(7) are omitted.

The rest of this section is concerned with compiling the join, and firing the rule. Thanks
to head and guard normalisation the head of the rule contains CHR constraints with only
variable arguments, and none of those variables are repeated anywhere else in the head.
This simplifies the problem of finding partner constraints considerably, since all constraints
in the store with the same functor/arity as the partner constraint will always potentially
match. The job of selecting which of these matches are valid is now entirely decided by the
guard. The disadvantage of this approach is e�ciency, however a better implementation
is beyond the scope of our basic compilation.

Because of program normalisation, the CHR compiler has a list of partner constraints
for a given active constraint and occurrence. We can break down the problem of finding a
match (for the rule) into the problem of finding a match for individual partner constraints.
Basically, given an iterator, we iterate through all potential matches for the first partner,
and if a potential match is found, then we iterate through all potential matches for the
second partner, and so on. If all partners have been matched, then the rule may fire
provided the guard and propagation history tests succeed. After the rule fires, or after it
failed to fire (e.g. if the guard failed), we return to the iterator for the last partner to find
a new match. Either we find a new match for the last partner, or we return to the iterator
for the previous partner, and so on. This system of iteration avoids the need to start the
search for a set of matching constraints from scratch each time the rule fires, hence we
avoid redundant work.

The code generated by the compiler that attempts to find a match for an individual
partner is contained within a special join-loop predicate. Basically a join-loop predicate
iterates through all potential matches for some partner. If/when a matching is found,

61



2.4. Code Generation

we either call the next join-loop predicate if there are more partners, or we call the call-
body predicate which does the final checks before firing the rule. Likewise, execution only
returns to a join-loop predicate once all matches for the remainder of the join have been
tried.

For the implementation of a join-loop predicate there are complications to consider.
Firstly, the operational semantics of CHRs disallows the same constraint from the store
to be matched against more than one partner.2 Secondly, the partner constraints that we
select from the iterator may have been deleted since the original call to get iterator.
The problem arises because get iterator is called once, then we iterate through the list,
possibly firing the rule as we go. Unfortunately, it is possible that whilst firing the rule we
“delete” some of the constraints in our iterator. Note that deletion removes the constraint
from the global CHR store, and not from any (local) iterators, which are in e↵ect a copy
of an older store. Similarly, it is possible that any constraint from our partial match has
been deleted in a similar fashion.

Since deletion is a problem with iterators, it seems that insertion may also be a problem,
i.e. whilst firing a rule we create new constraints that are potential matches. In fact there is
no problem because of the call-based behaviour of the refined operational semantics. Any
new CHR constraints created by a rule must have finished being active before we return
from the firing of the rule. This means that all matches which include the new constraint
must have already been tried, so there is no need to update the iterators. Actually this
is another advantage of using iterators, since we never consider these constraints we save
redundant work.

The pseudo code for a join-loop predicate is shown in Figure 2.3. Here we assume
that for an active p constraint (at the ith occurrence) we are trying to find a matching
partner q(A,B,C) (the code is similar for any other constraint). Lines (1)-(2) show the
pred and mode declarations. Line (3) handles the case of an empty iterator, where no
action is necessary. Line (4) handles the other case, and also demonstrates the interface
for a join-loop predicate. The first argument is the iterator itself, which we assume has
type ‘iterator’ defined as follows:

:- type iterator == list(numbered).

:- type numbered ---> constraint # id.

This means an iterator is a list of numbered constraints, where type ‘constraint’ is the
type given to the constraints in the CHR store. Next is Id1,...,Idn which are the
constraint identifiers from the active constraint and from any matches of partners so far
(the partial match). Similarly, X1,...,Xk are the combined arguments from the partial
match. Here we assume that t1, ..., tk and m1, ...,mk are the types and modes associated
with X1,...,Xk (based on the types and modes of the constraints involved in the partial
match). In line (4) we have also extracted a new constraint C with identifier Id from the
iterator.

The rest of the code is split into two parts. The first part, lines (5)-(10), decides if
the constraint C matches against the partner (i.e. if C is a q/3 constraint), and takes
appropriate action if so. Line (5) deconstructs the newly acquired constraint C, and fails if
it is not a q/3. Line (6) tests if the identifier Id has not been deleted (recall that deletion
is possible). Lines (7)-(8) test if the new identifier Id has not been matched earlier in this
join (this is to ensure multiset matching). If all of these tests pass, then in line (9) we call
the code for finding a match for the next partner if necessary, or the call the call-body
predicate otherwise.

2This was the purpose of the multiset union ] in the specification of Simplify and Propagate.

62



Chapter 2

:- pred p i join loop(iterator,id,...,id,t1,...,tk). (1)
:- mode p i join loop(in ,in,...,in,m1,...,mk) is d. (2)
p i join loop([], ,..., ). (3)
p i join loop([C # Id|Ls],Id1,...,Idn,X1,...,Xk) :- (4)

(

C = q(A,B,C), (5)
alive(Id), (6)
Id \= Id1, (7)
...

Id \= Idn -> (8)
<find-matches-and-call-body> (9)

; true (10)
),

(

alive(Id1), (11)
...

alive(Idn) -> (12)
p i join loop(Ls,Id1,...,Idn,X1,...,Xk) (13)

; true (14)
).

Figure 2.3: Pseudo code for the join loop predicate.

The second part of the join-loop predicate, in lines (11)-(14), decides if we are allowed
to continue looking for partners, or if we must abort because a constraint from our partial
match has been deleted. The invariant we are maintaining is that all constraints in the
partial match have not been deleted. Lines (11)-(12) test if all the identifiers from the
partial matching are still alive. If so then we recursively call the join-loop predicate with
the same arguments except with the tail of the original iterator, otherwise no action is
necessary.

We can now give a simple example of a join-loop predicate.

Example 6. Consider occurrence number six for the leq constraint in the following (nor-
malised) rule.

leq(X,Y)6, leq(W,Z) ==> Y = W | leq(X,Z).

To find matching constraints for the partner leq(W,Z) the compiler generates the join-loop
predicate as shown in Figure 2.4. Here, we assume that the type of the arguments to the
leq constraints is hint (Herbrand int). ut

After a set of matching constraints has been found we need to check the guard and
propagation history, then delete any constraints if necessary, before calling the code in the
body. This is the role of the body-call predicate, whose pseudo code is shown in Figure 2.5.
Lines (1)-(2) are the pred and mode declarations. The interface to the body call predicate,
shown by line (3), is very similar to that of the join-loop predicate. All of Id1,...,Idn
are constraint identifiers, and all of X1,...,Xk are arguments of the matching respectively.
Note that the interface could be improved by eliminating arguments that are not actually
required by the predicate’s body.

63



2.5. Compiling the Guard

:- pred leq 6 join loop(iterator,id,hint,hint).

:- mode leq 6 join loop(in,in,in,in) is semidet.

leq 6 join loop([], , , ).

leq 6 join loop([C#J|Ls],I,X,Y) :-

(

C = leq(W,Z),

alive(J),

J \= I ->

leq 6 call body(I,J,X,Y,W,Z)

; true

),

(

alive(I) ->

leq 6 join loop(Ls,I,X,Y)

; true

).

Figure 2.4: Join loop predicate for the transitivity rule’s first occurrence.

Line (4) tests the guard and line (5) checks the propagation history. Exactly how
the guard is tested is left for the next section. Checking the propagation history involves
constructing an entry and then calling check history described previously. The history
check is omitted whenever rule r is not a propagation rule. The order of the identifiers in
the history entry is defined by the auxiliary function order, which is evaluated at compile
time. We assume that function order sorts the identifiers based on the textual order of
the constraints in the rule head. It is important that all call-body predicates use the same
order for the same rule.

If both the guard test and history check pass, then the rule can fire. If the rule is
not a propagation rule then some of the matching constraints need to be deleted. Let
{Id01,...,Id0j} ✓ {Id1,...,Idn} be the identifiers of these constraints, then lines (6)-(7)
explicitly do the deletions. Finally, the body of the rule is called in line (8). The body is
usually copied verbatim from the original rule.

We are now ready for a complete example.

Example 7 (Compiled gcd Program). The compiled version of the gcd program is given in
Figure 2.6. Note that we gloss over guard compilation (the guards are inserted “as-is” into
the compiled code) for the time being. Also, we omit the pred and mode declarations for
brevity. The new program consists of one top-level predicate, three occurrence predicates,
two join-loop predicates and three body-call predicates. ut

The compiled version of the gcd program is much larger than the original CHR version,
and this is generally true for all CHR compilation. Several improvements are possible, e.g.
inlining the body-call predicates, and inlining the first occurrence predicate with the top-
level predicate. After optimisation, the resulting code will be considerably more compact.

2.5 Compiling the Guard

Let r be a normalised CHR rule with guard g. The operational semantics of CHRs dictates
that (a renamed copy of) r can only fire i↵ D |=S B ! 9r(✓ ^ g) holds, where B is the

64



Chapter 2

:- pred p i call body(id,...,id,t1,...,tk). (1)
:- mode p i call body(in,...,in,m1,...,mk) is d. (2)
p i call body(Id1,...,Idn,X1,...,Xk) :- (3)

(

<test-guard>, (4)
check history([order(Id1,...,Idn),r]) -> (5)
delete(Id01), (6)
...

delete(Id0
j
), (7)

<body> (8)
; true

).

Figure 2.5: Pseudo code for the call body predicate.

current built-in store, ✓ is the matching substitution, and the (possibly incomplete) test
(D |=S) represents the solver.

In practice the built-in solver must not only provide a procedure for telling a constraint
(adding it to the built-in store) whenever it appears in the body of the rule, but also a
procedure for asking a constraint (determining if the guard is entailed by the current built-
in store) whenever it appears in the guard of the rule. Formally an ask constraint c holds
i↵ D |=S B ! c. For example, in the case of the Herbrand solver, the only tell constraint
(=/2) has the known associated ask constraint ==/2.

2.5.1 Basic Guards

This section presents how guard entailment would be implemented in a Mercury CHR com-
piler. We will first assume that the guard g contains no existentially quantified variables
(i.e., all variables in the guard also appear in the head).

In order for a constraint solver to be extended by CHRs, the solver needs to provide
ask versions of the constraints that it supports. It is the ask version of the constraints
that should be used in guards.

Example 8. For example, consider the following CHR program that implements a min/3
constraint over a finite domain solver.

min(A,B,C) <=> A =< B | C = A.

min(A,B,C) <=> A >= B | C = B.

Consider the compilation of the first rule. The constraint A =< B will be replaced by
some predicate which implements the ask version of the finite domain =< constraint, e.g,
’ask =<’(A,B). ut

CHR implementations typically automatically translate guard tell constraints into ask
constraints. However, most implementations only deal with one built-in solver (Herbrand),
making the translation trivial (i.e. replace = with ==). When arbitrary solvers are used,
the compiler needs a general method for determining the relationship between the tell and
ask versions of each constraint so that it can automatically transform one into the other.
This can be achieved by implementing a special declaration that defines the relationship
between ask and tell constraints, e.g.,

65



2.5. Compiling the Guard

gcd(X) :-

C = gcd(X),

new(I),

insert(C,I),

delay(C,I,gcd 1(I,X)),

gcd 1(I,X).

gcd 1(I,X) :-

gcd 1 call body(I,X),

( alive(I) ->

gcd 2(I,X)

; true

).

gcd 1 call body(I,X) :-

( X = 0 ->

delete(I)

; true

).

gcd 2(I,N) :-

get iterator(Ls),

gcd 2 join loop(Ls,I,N),

( alive(I) ->

gcd 3(I,X)

; true

).

gcd 2 join loop([], , ).

gcd 2 join loop([C # J|Ls],I,N) :-

(

C = gcd(M),

alive(J),

J \= I ->

gcd 2 call body(I,N,M)

; true

),

( alive(I) ->

gcd 2 join loop(Ls,I,N)

; true

).

gcd 2 call body(I,N,M) :-

( M =< N ->

delete(I),

gcd(M-N)

; true

).

gcd 3(I,M) :-

get iterator(Ls),

gcd 3 join loop(Ls,I,M).

gcd 3 join loop([], , ).

gcd 3 join loop([C # J|Ls],I,M) :-

(

C = gcd(N),

alive(J),

J \= I ->

gcd 3 call body(J,N,M)

; true

),

( alive(I) ->

gcd 3 join loop(Ls,I,M)

; true

).

gcd 3 call body(J,N,M) :-

( M =< N ->

delete(J),

gcd(M-N)

; true

).

Figure 2.6: Compiled version of the gcd program.

66



Chapter 2

:- <ask-constraint> asks <tell-constraint>.

The asks declaration is e↵ectively a macro definition on which the following restrictions
apply. First, each tell constraint can only have one associated ask constraint (although an
ask constraint can be associated to more than one tell). Second, the arguments of the tell-
constraint must be distinct variables, and only these and anonymous variables can appear
in the corresponding ask-constraint. And finally, the ask constraint must be defined for
the type of arguments of the associated tell constraints, it must be usable in any mode in
which the associated tell constraints are, and must have semidet determinism.

Example 9. The following are asks declarations that might be declared by a finite domain
solver.

:- ’ask =<’(X,Y) asks X =< Y.

:- ’ask =<’(Y,X) asks X >= Y.

The CHR compiler uses this information to translate the guards from Example 8 into
appropriate ask constraints. ut

A predicate is recognised by the compiler as a tell constraint i↵ it has been declared as
having an associated ask constraint. The compiler automatically replaces each such tell
constraint which textually appears in a guard with its ask version. In addition, Prolog
CHR implementations also allow arbitrary predicates in the guard. This means that tell
constraints nested inside the guard will be treated as tells, when perhaps this was not the
intention of the programmer. A simple call-graph analysis can detect when this might
occur, and hence the compiler can issue a warning.

2.5.2 Guards with Existential Variables

Although normalisation can lead to proliferation of existential variables in the guard, in
many cases such existential variables can be compiled away without requiring extra help
from the solver. Consider determining whether a constraint store B implies a guard g of
the following form

v = f(y1, . . . , yn) ^ g0

Where g0 represents the rest of the guard, and variable v is existentially quantified. Let x̄
be the list of existentially quantified variables excluding v. If f is a total function, such a v
always exists and is unique, then as long as none of the variables y1, . . . , yn are existentially
quantified (i.e. appear in x̄) then the question D |=S B ! 9x̄9v.g is equivalent3 to the
question

D |=S (B ^ v = f(y1, . . . , yn))! (9x̄g0)

Now v is no longer existential in g0.
This translation gives the first hint of how to compile guards with existential quan-

tification. Basically the formula v = f(y1, . . . , yn) can be compiled to a tell constraint
which constrains a (fresh) variable v to be the result of applying function f to y1, . . . , yn,
followed by the code for the rest of the guard g0. Note that order is now important, we
execute the tell constraint v = f(y1, . . . , yn) before g0.

3 For incomplete solvers, equivalence is e↵ectively a condition on (D |=S). In languages where logical
connectives (e.g. ^) are handled by the compiler rather than the built-in solver, we can assume that
equivalence holds.

67



2.5. Compiling the Guard

Example 10. Consider the following CHR constraint before after used in task schedul-
ing which extends a finite domain solver. Basically, the constraint
before after(T1,D1,T2,D2) holds if the task with start time T1 and duration D1 does
not overlap with the task with start time T2 and duration D2.

before after(T1,D1,T2,D2) <=> T1 + D1 > T2 | T1 >= T2 + D2.

before after(T1,D1,T2,D2) <=> T2 + D2 > T1 | T2 >= T1 + D1.

Normalisation of the guard results in:

before after(T1,D1,T2,D2) <=> exists [N] (N = T1 + D1, N > T2) |

T1 >= T2 + D2.

before after(T1,D1,T2,D2) <=> exists [N] (N = T2 + D2, N > T1) |

T2 >= T1 + D1.

thus introducing a new existential variable N .
The call-body predicate (including the guard test) for the first rule is as follows.

before after 1 call body(I,T1,D1,T2,D2) :-

(

N = T1 + D1, % TELL constraint

’ask >’(N,T2) -> % ASK constraint

delete(I),

T1 >= T2 + D2 % Body

; true

).

Here we assume that the ask version of the (</2) constraint is ’ask <’/2 with the same
arguments. In the first rule the ask constraint 9N(N = T1+D1) becomes a tell constraint,
because neither T1 nor D1 are existentially quantified, and the function + is total. The same
reasoning applies to the second rule. ut

Partial functions are common in Herbrand constraints. Consider the constraint x =
f(y1, . . . , yn), where f is a Herbrand constructor. This constraint defines, among others, a
partial (deconstruct) function f�1

i
from x to each yi, 1  i  n. For this reason a compiler

can produce a new ask test bound f(X) for each Herbrand constructor f , which check
whether X is bound to the function f . Herbrand term deconstructions are then compiled
as if the asks declaration

:- bound f(X) asks exists [Y1,..,Yn] X = f(Y1,..,Yn).

appeared in the program.

Example 11. Consider the compilation of the guard from Example 3.

length(Xs1,L) <=> exists [A,Xs] (Xs1 = [A|Xs]) |

L = L1+1, length(Xs,L1).

We will compile this guard to the call ’bound [|]’(Xs1). ut

68



Chapter 2

2.6 Summary

In this chapter we have described how to compile a CHR program into a constraint logic
programming language. Like most other programming languages, compiling CHRs in a
multi-phase process, including phases for parsing and normalisation, guard compilation
and code generation, which were all covered here. Also, a reasonably simple runtime
environment was described, which implements the execution state for the refined semantics.

Parsing CHR rules is not much di↵erent than parsing any other programming language.
The only di↵erence is that as CHRs are usually an embedded language, the job of parsing
CHRs is left to the parser for the host language. Normalisation is important as it helps
simplify later compilation phases. With CHRs we have identified two distinct types of
normalisation: guard normalisation and program normalisation. Guard normalisation
helps significantly simplify the compilation of the guard later, and program normalisation
is especially useful for code generation.

Guard compilation is a surprisingly involved aspect of CHR compilation. This is for
several reasons. Firstly, in order to make compilation work for arbitrary built-in solvers
a general solver interface was devised, namely mapping tell constraints to ask constraints
via a special asks declaration. Guards with existentially quantified variables occur often
in practice, so a CHR compiler should be able to handle them. Existential variables which
are functionally defined by non-existential variables in the guard can be compiled without
any additional help from the solver. Unfortunately, a more general solution would require
a more complicated interface with the built-in solver.

With the program normalised and the guard compiled, the final phase of CHR com-
pilation is code generation. Many aspects of the CHR execution state map neatly into
similar concepts in any constraint logic programming language, e.g. the execution stack
becomes the program stack and the built-in store is implemented by the built-in solvers.

The output of the CHR compiler is a series of predicates that manipulate a global
CHR constraint store. The CHR compiler replaces each constraint with a so-called top-
level predicate that performs the necessary overhead before calling the first occurrence.
Later, the occurrence predicates actually do the rule matching. This mostly involves
iterating through the store for matches to individual partners to the active constraint, and
this is the role of the join-loop predicates. Finally, once potential matches are found, the
call-body predicate tests the guard and checks the history before actually firing the rule.

The compilation scheme presented in this chapter is very simple, and should give
reasonable performance provided the rules themselves have small heads (no more than two
heads) and the CHR store never grows too large at runtime. If either of these conditions
do not hold then the result is likely to be a very ine�cient program. For more complicated
programs, an optimizing CHR compiler should be used instead.

Bibliography

B. Demoen, M. Garcia de la Banda, W. Harvey, K. Marriott, and P. Stuckey. An overview
of HAL. In J. Ja↵ar, editor, Proceedings of the Fifth International Conference on Prin-
ciples and Practices of Constraint Programming, LNCS 1713, pages 174–188. Springer-
Verlag, 1999.

G. Duck, P. Stuckey, M. Garcia de la Banda, and C. Holzbaur. The refined operational
semantics of constraint handling rules. In B. Demoen and V. Lifschitz, editors, Pro-
ceedings of the 20th International Conference on Logic Programming, LNCS 3132, pages
90–104. Springer-Verlag, September 2004.

69



Bibliography

Gregory J. Duck. ToyCHR. http://www.cs.mu.oz.au/⇠gjd/toychr/.

T. Frühwirth and P. Brisset. High-level implementations of constraint handling rules.
Technical Report ECRC-95-20, ECRC Munich, Germany, 1995.

C. Holzbaur. Metastructures vs. attributed variables in the context of extensible uni-
fication. In Proceedings of the International Symposium on Programming Language
Implementation and Logic Programming, LNCS 631, pages 260–268. Springer-Verlag,
1992.

Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: implementation and
application. In First Workshop on Constraint Handling Rules: Selected Contributions,
pages 1–5, 2004.

Z. Somogyi, F. Henderson, and T. Conway. Mercury: an e�cient purely declarative logic
programming language. In Proceedings of the Australian Computer Science Conference,
pages 499–512, February 1995.

70



Chapter 3

The K.U.Leuven CHR System

Author: Tom Schrijvers
Thesis Title: Analyses, Optimizations and Extensions of Constraint Han-

dling Rules
School: K.U.Leuven, Belgium
Publication Year: 2005

Foreword

The K.U.Leuven CHR system, together with Duck’s system in HAL, formed the first
generation of optimizing CHR compilers. Looking at its output, the connection to its
predecessor, Holzbaur’s CHR compilation schema [Holzbaur and Frühwirth, 1999, 2000]
for Prolog, will not be apparent to any but the initiated. The system evolved to incorporate
optimizations at many levels and to cater for frequently occurring patterns.

This chapter describes the state of the system and its optimizations about halfway
through its development lifetime. Several more optimizations were added later, based on
Schrijvers’ subsequent research and part of Sneyer’s Ph.D. research, notably exploiting
optional type and annotations. Currently, the development of the system has ceased;
it has become quite stable and requires little further maintenance. Nevertheless, the
system is still in quite active use, by both researchers and industrial users, both thanks
to its widespread presence in many Prolog systems and its optimizations that make CHR
programs with many hundreds of rules e↵ective.

Further optimization developments have taken place in Java CHR system by Van
Weert, who has come to show that CHR’s optimizing compilation technology is superior
to that of other production rules systems. At present, the CHR community is anticipating
a new generation of optimized compilation developments.

3.1 Introduction

CHR has been around for several years now, but the number of CHR implementors, the
variety of available implementations and the number of Prolog systems containing such an
implementation were surprisingly small at the start of our involvement with CHR.

Figure 1.3 provides an historical overview of CHR implementations, from the language’s
conception in 1991 to the time of writing.



3.1. Introduction

In the first few years, several prototype CHR systems have been developed to experi-
ment with and illustrate the feasibility of the language. These early systems, in Sepia, its
successor ECLiPSe [IC-Parc] and its derivative Sepia* [Meier], as well as in Lisp [Steele,
1984] and Oz [Smolka, 1995], were rather limited. For example, no more than two con-
strains were allowed in the head of a rule. Most of these CHR systems are no longer in
use.

The first full CHR system was developed by Christian Holzbaur in co-operation with
Thom Frühwirth [Holzbaur and Frühwirth, 1999, 2000]. This system was first included in
the SICStus 3 release [Intelligent Systems Laboratory, 2003] and later in the Yap Prolog
system [Santos Costa et al., 2004]. It is considered as the reference implementation of
CHR. It was the first system to allow an unbounded number of constraints in the heads
of rules.

Interest in CHR implementations increased in the last five years. With the help of
Christian Holzbaur an evolved optimizing version of his reference implementation was
ported to the HAL language. Later this implementation was rewritten by Gregory Duck.

A dedicated CHR system was written by Martin Sulzmann et al. for the Haskell variant
Chameleon to support the work on a customizable type system [Stuckey and Sulzmann,
2005]. This first Haskell implementation was later replaced by the HaskellCHR implemen-
tation by Gregory Duck. Gregory Duck also built a small new Prolog interpreter for CHR,
ToyCHR, that runs in SICStus and SWI-Prolog.

JCHR is a Java implementation of CHR by Slim Abdennadher et al. that is part of
the Java Constraint Kit [Abdennadher et al., 2001]. JCHR compiles a CHR program to
a high-level unoptimized intermediate form that is interpreted. The interpreter does not
follow the refined operational semantics, but its own instance of the theoretical operational
semantics. Another CHR system for Java is the DJCHR system by Armin Wolf [Wolf,
2001, 2005] which extends CHR with “justification”. Justification is useful for improved
non-chronological backtracking and adaptive constraint programming.

In this chapter we present our own contribution: a new CHR system for Prolog, the
K.U.Leuven CHR system, that we have developed and extended throughout this thesis.
The objective of the K.U.Leuven CHR system is threefold:

• Firstly, to provide a decent alternative to the reference implementation for Pro-
log. Despite the fair number of CHR implementations listed above, most have been
abandoned altogether and none matches the reference implementation in e�ciency.

• Secondly, to bring the current state-of-the-art in optimized compilation of CHR to
Prolog. The reference implementation has changed very little over the years. While
several optimizations have been developed in the context of HAL [Holzbaur et al.,
2005], no e↵ort had been done to port these optimizations to Prolog.

• Thirdly and most importantly for this thesis, to serve as a basis for new research
into optimized compilation, analysis and extensions of CHR.

This chapter mainly addresses the first two objectives. The implementation of our
system was inspired by the reference CHR implementation of Christian Holzbaur [Holzbaur
and Frühwirth, 1999]. Inspiration also came from several optimizations published by others
[Holzbaur et al., 2005]. Section 3.2 outlines the general implementation of the K.U.Leuven
CHR system. The optimizations implemented in the K.U.Leuven CHR system, both those
taken from related work and those we have contributed ourselves, are contained in Section
3.3.

72



Chapter 3

The host system of the K.U.Leuven CHR system was originally hProlog [Demoen], but
it is now also available in two major open-source Prolog systems: SWI-Prolog [Wielemaker,
2004] and XSB [Warren et al., 2005]. The presence in three di↵erent Prolog systems helps
realize our first objective and CHR programmers are no longer forced to choose among a
limited number of Prolog systems: all major Prolog systems are covered. The two ports,
to SWI-Prolog and XSB, are discussed in Section 3.4.

We verify the realization of the first two objectives with an experimental evaluation
of our system. Section 3.5 compares our system to the reference implementation. Finally,
Section 3.6 concludes.

3.2 Implementation

In this section we describe the main implementational aspects of the K.U.Leuven CHR
system. Initially the system was written for the hProlog system [Demoen]. hProlog is
based on dProlog [Demoen and Nguyen, 2000] and intended as an alternative backend to
HAL [Demoen et al., 1999] next to the current Mercury [Somogyi et al., 1996] backend.
The initial intent of the implementation of a CHR system in hProlog was to validate the
underlying implementation of dynamic attributes [Demoen, 2002].

The K.U.Leuven CHR system consists of two parts:

• The runtime library is strongly based on the SICStus CHR runtime written by
Christian Holzbaur.

• The preprocessor compiles embedded CHR rules in Prolog program files into Prolog
code. The compiled form of CHR rules is similar to that described in [Schrijvers,
2005a, Chapter 5].

The advantage of the runtime code is that it is generic and can be reused for all CHR
programs. However, this genericity also has its price: runtime overhead. In the evolution of
the system, more and more tasks have moved away from the runtime library to specialized
code generated by the compiler. This specialization process is discussed in more detail in
Section 3.3.

3.3 Optimizations

This section lists the noteworthy optimizations implemented in the K.U.Leuven CHR
system. Section 3.3.1 contains the optimizations that were published in related work. Our
own contributions, code specialization for ground constraints, hash table constraint stores
and anti-monotonic delay avoidance, are discussed in Section 3.3.2, Section 3.3.3, and 3.3.4
respectively.

3.3.1 Related Work on Optimizations

Join Ordering In the general compilation schema in [Schrijvers, 2005a, Chapter 5] the
ordering of partner constraint lookups for a particular active occurrence is the left-to-right
ordering of these partner constraints in the rule head. However, the refined operational
semantics does not specify any particular ordering, so we are free to chose any ordering.

In fact, it may have an important impact on the overall e�ciency of the program
what ordering is chosen. The lookup of partner constraints itself is a typical enumeration
problem from constraint programming. For every partner constraint there may be many

73



3.3. Optimizations

candidates and all the partner constraints together with the active constraints have to
satisfy the matching and the guard. The nested lookup of partner constraints determines
the search tree of this problem. Every partner constraint corresponds with a level in
the search tree: the active constraint is the root of the tree, the first partner constraint
corresponds with the first level, . . . , the last partner constraint corresponds with the
deepest level. Every edge from level i�1 to level i selects a particular candidate for partner
constraint i. In every leaf a candidate has been selected for every partner constraint, so
the guard and head matching can be verified to see whether the rule is applicable to that
combination of constraints. The ordering of partner constraint lookups clearly determines
the shape of the search tree.

As explained in [Schrijvers, 2005a, Chapter 5] lookup of partner constraints is either
done by a linear search in a global list of all constraints or, given a variable that occurs
in the constraint, in a list of constraints containing that variable (this is realized with
attributed variables). The latter is potentially much more e�cient as the number of
constraints with a particular variable in it may be much smaller than the number of all
constraints.

Now, the head matching and equality constraints in the guard of the rule imply identical
structures in some (parts of) arguments of constraints. If at runtime (part of) one such
argument contains a variable, that variable should also appear in other constraints with the
same structure. Consider a level in the search tree where the first partner constraint that
shares a particular structure has been selected. To lookup other partner constraints with
the same shared structure, a variable-based lookup can be done if the candidate for the
first partner constraints has a variable in the shared structure. Clearly, this variable-based
lookup consists of a pruning of the search tree when compared with the global list-based
lookup.

This suggests a heuristic for ordering the partner constraint lookups. One should try
to maximize those of constraints in an ordering that share a structure with one of their
predecessors in the ordering or with the active constraint. This heuristic has first been
formulated in [Holzbaur et al., 2005] and we have implemented it in K.U.Leuven CHR
system.

Late Storage Schrijvers [Schrijvers, 2005a, Chapter 5] mentions already an optimization
to the general compilation schema to postpone constraint storage. In [Holzbaur et al., 2005]
a stronger pre-analysis is sketched for late storage optimization that also postpones storage
past some propagation rules. We propose an even stronger late storage analysis based on
abstract interpretation. It is covered in Section 9.4.

Never Stored A rule of the form

c <=> . . .

always removes constraints of the form c from the constraint store. When all the arguments
of c are di↵erent variables, i.e. c = p(X1, . . . , Xn), and no constraint p/n needs to be stored
before this rule (thanks to late storage), then p/n is considered never stored. If a never
stored constraint appears in the head of a rule, no code needs to be generated for the
occurrences of the other constraints in the head of the rule. Such an occurrence of another
constraint would not be able to find a never stored constraint in the constraint store.
Never stored constraints together with the above optimization are described in [Holzbaur
et al., 2005].

74



Chapter 3

In K.U.Leuven CHR system we also detect never stored constraints and apply the above
optimization. In addition, for constraints for which never even a constraint suspension is
created the ID argument in all predicates is omitted altogether as it serves no function.

Continuation Optimization In [Holzbaur et al., 2005] Duck et al. sketch an optimiza-
tion to the simple sequential succession of occurrences. They propose to both optimize
failure and success continuations of occurrences. If a particular occurrence fails to apply,
it may be possible to prove that the next occurrences will fail too. Hence, the next occur-
rences may be skipped over. A similar observation is possible if an occurrence succeeds to
apply. Duck et al. have also implemented a weak prover to enable these optimizations.

A much stronger implementation in the K.U.Leuven CHR system and a more formal
treatment with correctness proof are given in [Sneyers et al., 2005b]. This work also
contains a prover and optimization to remove redundant guards.

3.3.2 Ground Constraints

The CHR language contains one aspect that is intended exclusively for logical variables
that may be constrained: the re-activation of CHR constraints. This aspect is captured
by the Solve and ReActivate rules in the refined operational semantics.

However, not all kinds of CHR programs deal with logical variables. Some deal with
ground constraints only and the variable support causes needless overhead for them. For
example, the gcd program deals with ground constraints only.

The implementation of [Holzbaur et al., 2005] does not have any support for logical
variables and thereby no overhead for ground constraints. Moreover, it does not specify
in what way the general compilation schema may be optimized for ground constraints.

In the K.U.Leuven CHR system however, we do want to support the full range of CHR
applications, both with and without variables. In order to avoid the needless overhead for
ground constraints, the compiler specializes the general compilation schema for them.

The K.U.Leuven CHR system requires static groundness information of the form
p(gi, . . . , gn) where gi may be either + or ?. gi = + means that the ith argument of
all constraints p/n is at all times ground and gi =? means that nothing may be assumed.
This static groundness information may either be derived through analysis or through
manual specification. In Section 9.5 we present a preliminary groundness analysis that
would serve the purpose. Manual specification is already fully supported.

The following minor and major optimizations are applied for ground constraints. Most
of these optimizations are based on the observation that a ground constraint is never
triggered.

• In combination with late storage, the suspension variable in the general schema is
only instantiated from the point where it is created.

This observation allows the specialization of conditional kill operations before the
point of allocation (see Late Storage [Schrijvers, 2005a, Chapter 5]):

( var(ID) ->

true

;

kill(ID)

)

to simply true, i.e. omitted altogether.

75



3.3. Optimizations

• Equality tests in guards may be turned into full unifications as these behave the same
for ground constraints. However, unifications are often implemented more e�ciently.
In addition, the K.U.Leuven CHR system moves unifications at the start of a clause’s
body into the head of that clause when possible. Many Prolog systems use indexing
techniques to speed up such unifications in the heads of clauses.

• No continuation goal is constructed for ground constraints (see [Schrijvers, 2005a,
Chapter 5]).

• No variables have to be looked for in a ground constraint to associate the constraint
suspension with. See also Section 3.3.4 for a similar optimization to particular non-
ground constraints.

• No propagation history needs to be maintained for particular propagation rules whose
head constraints are all ground. Ground constraints consider an occurrence in a prop-
agation rule only once. Moreover, if none of the head constraints of the propagation
rule observes any of the other head constraints at an earlier occurrence, then the
propagation history may be omitted. The latter restriction ensures that at most
one of the head constraints may actively try the propagation rule while all the other
head constraints are present in the constraint store. See Section 9.4.1 and further
for a definition of the observation property and an analysis to derive it.

In addition, in Section 3.3.3 we present hash table constraint stores, that are only
usable for ground constraints.

An Example of Compiled Code

Consider the following CHR program that computes the sum of a list of integers:

sum([I|Is],Sum) <=> sum(Is,PartialSum), Sum is I + PartialSum.

sum(_,Sum) <=> Sum = 0.

Under the general compilation schema of the previous chapter on the one hand, the
generated code for this simple CHR program would be:

sum(List,Sum) :-

sum_occurrence_1_2(List,Sum,ID).

sum_occurrence_1_2(List,Sum,ID) :-

nonvar(List),

List = [I|Is],

!,

( var(ID) ->

true

;

kill(ID)

),

sum(Is,PartialSum),

Sum is I + PartialSum.

sum_occurrence_1_2(_,Sum,ID) :-

!,

( var(ID) ->

76



Chapter 3

true

;

kill(ID)

),

Sum = 0.

sum_occurrence_1_2(List,Sum,ID) :-

sum_drop(List,Sum,ID).

sum_drop(List,Sum,ID) :-

make_id_sum(List,Sum,ID),

actually_insert_sum(List,Sum,ID).

With the groundness declaration sum(+,?) the K.U.Leuven CHR system on the other
hand generates the following Prolog code:

sum([I|Is],Sum) :- !,

sum(Is,PartialSum),

Sum is I + PartialSum.

sum(_,0).

This extremely compact code is generated thanks to the various optimizations driven by
the groundness information and the never stored property of the sum/2 constraints.

In [Sneyers et al., 2005b,a] the K.U.Leuven CHR system is extended with type decla-
rations and an analysis to get rid of head matchings using these type declarations. This
extension generates the same Prolog code as above, even if the second rule of the CHR
program is written as:

sum([I|Is],Sum) <=> sum(Is,PartialSum), Sum is I + PartialSum.

sum([],Sum) <=> Sum = 0.

where the type of the first argument of sum/2 is a list of integers.
Observe how close the generated Prolog is to the CHR code and to idiomatic Prolog

code with the same behavior:

sum([I|Is],Sum) :-

sum(Is,PartialSum),

Sum is I + PartialSum.

sum([],0).

It is reported in [Sneyers et al., 2005a] that the Prolog code generated for this program
using the groundness declaration is about 2.7 times as fast as the code without such
declaration.

3.3.3 Hash Table Constraint Stores

The CHR constraint store implementation of the general compilation schema, explained in
[Schrijvers, 2005a, Chapter 5], provides very fast lookup of constraints in which a known
variable appears: the constraints are directly stored in an attribute on the variable.

However, attributes cannot be used with non-variables, so they provide no means
to e�ciently look up of ground constraints. The generic schema instead uses a global
unordered list of all constraints in which it is possible to lookup in worst-case time linear
in the number of constraints.

77



3.3. Optimizations

In [Holzbaur et al., 2005] a more e�cient data structure is proposed for lookup of
ground constraints, a 234-tree, that allows for logarithmic worst-case time lookup.

Here we propose the use of an even better data structure: a hash table. A hash table
allows for amortized time constant in the number of elements not only for lookup, but
also for insertion and deletion. Our implementation of hash tables in Prolog uses a term
as an array: the ith argument of the term is the ith entry in the array. The non-standard
built-in setarg/3 is used to update the array in a backtrackable manner.

Our hash table is dynamic in nature. It is initialized to a small size and whenever the
load exceeds the threshold, it is doubled in size. Doubling in size means replacing the term
that is stored in a global variable with a new term with double the arity and rehashing all
entries of the old term to the new term.

The hash function h(T ) used to map terms T , constraints in our case, to entry numbers
in the array is:

h(T ) = (ht(T ) mod s) + 1

where s is the size of the array and ht(T ) is a function that maps terms to integers. The
function ht(T ) should be chosen such that it is hard to find two terms that map onto the
same integer value. We have used the ht(T ) function of SWI-Prolog, implemented by the
term hash/2 predicate.

To resolve hash collision, i.e. two terms hashing to the same array entry, we use
buckets. This means that an array entry is not a single term, but a list of terms.

Experimental Evaluation: Union-Find

To experimentally validate the derived complexity derived in [Schrijvers, 2005a, Chapter
4], we have run the CHR program in SWI-Prolog [Wielemaker, 2004] using our system.
A discussion of the union-find CHR implementation with rule priorities is given in Ex-
ample 4.6.3. A version without rule priorities is discussed in Section 6.3.5. For a more
detailed discussion we refer the reader to [Schrijvers and Frühwirth, 2005].

By adding the appropriate mode declarations to our program, the system establishes
the groundness of shared variables and uses hash tables as constraint stores.

By initializing the hash tables to the appropriate sizes and choosing the used constants
appropriately, it is possible to avoid hash table collisions. Then, the hash tables essentially
behave as arrays just as in the typical imperative code and the assumptions about the
constraint store made in [Schrijvers, 2005a, Chapter 4] are e↵ectively realized.

In contrast, the first and de facto standard CHR system, available in SICStus [Intel-
ligent Systems Laboratory, 2003], does not provide the necessary constant time opera-
tions. While it does have constant lookup time for all constraint instances of a particular
constraint that contain a particular variable, it does not distinguish between argument
positions. Hence, the lookup of root(X,R) can be done in constant time given X, but
the lookup of X ~> Y is proportional to the number of ~> constraints X appears in. If
X is a node with K children, then it will be O(K). Moreover, while the insertion of a
constraint instance is O(1), deletion is O(I), where I is the total number of instances of
the constraint.

The queries we use in our experimental evaluation consist of N calls to make/1, to
create N di↵erent elements, followed by N calls to union/2 and N calls to find/2. The
input arguments of the latter two are chosen at random among the elements. Even the
SICStus CHR system exhibits near-linear behavior for a random set of union operations.
So we also consider a contrived set of union operations: disjoint trees of elements are
unioned pairwise until all elements are part of the same tree. Figures 3.1 and 3.2 show the

78



Chapter 3

runtime results for SICStus and SWI-Prolog. It is clear from the figure that SICStus does
not show the optimal quasi-linear behavior anymore which is still observed in SWI-Prolog.

We also compare the above two cases to the case where the hash tables are not ini-
tialized to a large enough size, but instead double in size and rehash each time their load
equals their size. While individual hash table operations no longer take constant time, on
average they do [Cormen et al., 1990], which is su�cient for our complexity analysis. This
is confirmed by experimental evaluation (see Figure 3.3).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  1000  2000  3000  4000  5000  6000  7000

R
u
n
ti

m
e 

(m
s)

N

SICStus
SWI-Prolog

Figure 3.1: Observation of behavior for contrived unions: SICStus and SWI-Prolog array
constraint stores

The above comparisons illustrate that it is vital for e�ciency to use a CHR system with
the proper constraint store data structures. To the best of our knowledge, the K.U.Leuven
CHR system is currently the only system that provides hash table-based indexing con-
straint stores.

3.3.4 Anti-monotonic Delay Avoidance

In this section we summarize the anti-monotony-based delay avoidance optimization tech-
nique for CHR programs that we published in a technical report [Schrijvers and Demoen,
2004a]. It is based on static analysis and aims at avoiding the rechecking of the program
rules for constraints when it is unnecessary.

The static analysis determines what argument positions of constraint symbols are anti-
monotonic in all the guards in the program. Assume that a guard does not succeed. Then
an argument of a constraint involved in the rule of the guard is anti-monotonic in that
guard, if further constraining that argument does not make the guard succeed. Typical
examples for Prolog are guards in which the arguments or var/2 tests do not occur.

As mentioned in [Schrijvers, 2005a, Chatper 5], in the general compilation schema,
the constraint put on the execution stack are selected as follows. For every constraint
all variables in it get the constraint’s suspension associated as an attributed variable.

79



3.4. Ports

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  1000  2000  3000  4000  5000  6000  7000

R
u
n
ti

m
e 

(m
s)

N

Figure 3.2: Observation of behavior for contrived unions: Detail of Figure 3.1: SWI-Prolog
array constraint store

When any of the variables is unified, the Solve transition selects that variable’s associated
constraints to be put on the execution stack.

Based on the analysis of anti-monotonic arguments, the generic association operation
between variables and constraints is replaced by specialized operations, one for each con-
straint. Such a specialized operation for a constraint only considers arguments that are
not anti-monotonic. This avoids the triggering of the constraint when any of the variables
in anti-monotonic arguments is unified.

A more extensive and formal treatment, together with a correctness proof, is given in
[Schrijvers and Demoen, 2004a].

3.4 Ports

An initial version of K.U.Leuven CHR system was written completely in hProlog using
standard Prolog code with a small number of non-standard built-ins. More evolved versions
of the system were partially written in CHR and currently the core of the compiler, not
counting several auxiliary libraries, consists of almost 6,000 lines of code including 160
CHR rules.

Due to the limited number of non-standard built-ins used, porting the
K.U.Leuven CHR system to other Prolog systems is relatively easy. In the course of
this thesis, two such ports have actually been done and they are described in below.

3.4.1 XSB

XSB [Warren et al., 2005] is a Prolog system best known for its tabled execution extension,
that allows for more succinct programs in various application domains. See [Schrijvers,
2005a, Chapter 8] for our work on integrating the K.U.Leuven CHR system with XSB’s

80



Chapter 3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  1000  2000  3000  4000  5000  6000  7000

R
u
n
ti

m
e 

(m
s)

N

Figure 3.3: Observation of behavior for contrived unions: SWI-Prolog Hash table con-
straint store

tabled execution mechanism, which was the motivation for our port.
Little di�culty was experienced while porting the preprocessor and runtime system

from hProlog to XSB. The main problem turned out to be XSB’s overly primitive pre-
existing interface for attributed variables: it did not support attributes in di↵erent mod-
ules. Moreover, the actual binding of attributed variables was not performed during the
unification, but it was left up to the programmer of the interrupt handler (see [Schrijvers,
2005a, Chapter 5]). This causes unintuitive and unwanted behavior in several cases: while
the binding is delayed from unification to interrupt handling, other code can be executed
in between that relies on variables being bound, e.g. arithmetic. Due to these problems
with the available XSB attributed variables, it was decided to model the attributed vari-
ables interface and behavior more closely to that of hProlog. This facilitated the porting
of the CHR system considerably.

The global variables interface, needed for the CHR constraint store (see [Schrijvers,
2005a, Chapter 5], was implemented on top of a newly added single global variable that
resides at the bottom of XSB’s heap.

3.4.2 SWI-Prolog

SWI-Prolog [Wielemaker, 2004] is a rather popular Prolog system with a large user base,
a rich set of libraries and tools and a focus towards practical applications. However, sup-
port for constraint logic programming is an important aspect missing from SWI-Prolog’s
portfolio of features. Our experience with porting the K.U.Leuven CHR system system
to XSB and CHR’s focus on constraint solvers made a port to SWI-Prolog an attractive
solution to remedy the lack of CLP support.

Jan Wielemaker, SWI-Prolog’s lead developer, has adopted the attributed and global
variable interfaces described in [Schrijvers, 2005a, Chapter 5] with the help of Bart Demoen.
With these built-ins in place, no noteworthy obstacles were encountered during the port.

81



3.5. Experimental Evaluation

In the spirit of SWI-Prolog’s user friendly environment, the CHR compiler was tightly
integrated with the term expansion/2 based preprocessor, so as to exploit SWI-Prolog’s
source-code management and to retain source information. We also added a CHR debugger
which hides the underlying generated Prolog code from the user.

3.5 Experimental Evaluation

3.5.1 Benchmarks

In this Section we evaluate the performance of our CHR system on ten benchmarks which
are available from [Schrijvers, 2005b]. These ten benchmarks are:

bool Addition of two 60,000 bit numbers with full-adder implemented in terms of boolean
constraints.

fib Naive recursive computation of the 22 first fibonacci numbers.

fibonacci E�cient recursive computation of the 1,000 first fibonacci numbers using mem-
oing. The fibonacci numbers are represented as floats.

leq Constraint solving using less-than-or-equal-to constraints on a ring of 60 variables.
The constraints are

V
Xi  Xj for 1  i  60 and j = (i mod 60) + 1.

mergesort Sorting of 32 integers, repeated 10 times.

primes Computation of all prime numbers smaller than 2,500.

uf Application of the naive union-find program on the benchmark described in Section
3.3.3 with 1,000 elements.

uf opt Application of the optimal union-find program on the benchmark described in
Section 3.3.3 with 1,000 elements.

wfs Computation of the well-founded semantics of a small logic program, repeated 200
times.

zebra Computation of the solution to the well-known zebra puzzle using a naive finite
domain constraint solver, repeated 10 times.

3.5.2 Systems Comparison

We compare the performance of the K.U.Leuven CHR system with that of Christian
Holzbaur’s reference implementation on their respective Prolog systems.

The following factors influence performance:

• Firstly, we expect the outcome to be mostly determined by the relative performance
di↵erence on Prolog code as the CHR rules are compiled to Prolog. For plain Prolog
benchmarks, we have found average runtimes of 76.7 % for Yap, 80.0 % for hProlog,
143.1 % for XSB and 358.5 % for SWI-Prolog. These times are relative to SICStus.

• Secondly, the results may be influenced by the more powerful optimizations of our
CHR preprocessor.

82



Chapter 3

Christian Holzbaur K.U.Leuven
Benchmark SICStus Yap hProlog XSB SWI-Prolog
bool 100.0% 106.0% 51.7% 114.0% 150.3%
fib 100.0% 63.3% 59.5% 160.7% 301.2%
fibonacci 100.0% 64.3% 22.0% 64.6% 166.7%
leq 100.0% 114.7% 75.0% 151.6% 373.2%
mergesort 100.0% 63.2% 47.8% 83.3% 419.7%
primes 100.0% 123.4% 61.4% 150.2% 463.2%
uf 100.0% 69.2% 65.0% 108.6% 499.2%
uf opt 100.0% 73.7% 69.5% 99.8% 499.2%
wfs 100.0% 78.8% 52.9% 118.1% 367.6%
zebra 100.0% 55.8% 21.0% 50.5% 133.8%
average 100.0% 81.2% 52.6% 110.1% 337.4%

Table 3.1: Runtime performance of 8 CHR benchmarks in 5 di↵erent Prolog systems.

• Thirdly, the low-level implementation and representation of attributed variables dif-
fers between the systems. The standard constraint store of CHR is represented as
an attributed variable and it may undergo updates each time a new constraint is
imposed or a constraint variable gets bound. Hence, the complexity and e�ciency
of accessing and updating attributed variables may easily dominate the overall per-
formance of a CHR program if care is not taken. Especially the length of reference
chains has to be kept short and nearly constant, as otherwise accessing the cost of
dereferencing the global store may easily grow out of bounds.

Table 3.1 shows the results for the benchmarks. All measurements have been made on
an Intel Pentium 4 2.00 GHz with 512 MB of RAM. Timings are relative to SICStus and
do not include garbage collection time. The Prolog systems used are SICStus 3.12.0 and
Yap 4.4.4 with the CHR reference implementation on the one hand and hProlog 2.4.11-32,
SWI-Prolog 5.5.8 and XSB 2.6.1 with the K.U.Leuven CHR system on the other hand.
Because we wish to measure performance e↵ects independent of memory management
issues, we do not include garbage collection times.

We see that the relative performance di↵erence between SICStus and Yap is more
or less the same for both CHR and plain Prolog. On the other hand, the performance
di↵erence between hProlog and SICStus is about 1.56 times larger for CHR than for plain
Prolog code, both times in favor of hProlog. Similarly, the performance di↵erence between
XSB and SICStus is 1.30 times smaller, in favor of XSB. Even for SWI-Prolog there is a
small improvement: the factor is about 1.06.

The timing improvements are due to various minor code generation improvements and
due to the care taken in implementing the runtime predicates. The good performance of
the fibonacci benchmark in the K.U.Leuven CHR system is mainly thanks to the anti-
monotonic delay avoidance (see also Section 3.5.4). The early scheduling of cheap guards
in the zebra benchmark accounts for the benchmark’s good behavior in the K.U.Leuven
CHR system. All in all there is no one optimization that improves all benchmarks. Rather
a range of di↵erent optimizations is needed, of which only a subset is applicable to any
one benchmark.

83



3.5. Experimental Evaluation

Benchmark hProlog SWI-Prolog
fib 57.4% 35.7%
fibonacci 57.8% 34.4%
mergesort 11.0% 4.9%
primes 81.0% 95.7%
wfs 73.3% 76.0%
uf 2.6% 1.7%
uf opt 3.7% 2.1%

Table 3.2: Runtime performance of 7 CHR benchmarks optimized with groundness anno-
tations relative to unoptimized programs, in both hProlog and SWI-Prolog.

3.5.3 Ground Optimizations

Now we evaluate the e↵ect of the optimizations for ground constraints included in the
hProlog and SWI-Prolog versions of the K.U.Leuven CHR system. For that purpose we
have taken of the above benchmarks those that manipulate ground constraints and have
added groundness declarations to them.

Table 3.2 lists the performance of the benchmarks, relative to the performance with-
out declarations, in both hProlog and SWI-Prolog. The results for the two union-find
benchmarks show that drastic improvements can be realized. The result mainly relies on
the use of hash tables as constraint stores. A similar result is obtained for the mergesort
benchmark: the use of hash tables causes the time complexity to change from O(n2) to
O(n log n)

For the other benchmarks, the speed-ups are less dramatic, ranging between 20%
and 40% in hProlog and 5% and 65% in SWI-Prolog. The improvements are due to a
combination of code specialization and hash tables.

3.5.4 Anti-monotonic Delay Avoidance

To experimentally evaluate the anti-monotony-based optimization described in Section
3.3.4, we consider the e↵ect on the runtime of our standard set of CHR benchmarks
[Schrijvers, 2005b] together with two variants of the fibonacci benchmark which di↵er in
their first rule.

The fibonacci program in the standard benchmark is the most optimized one. Its
first rule is:

r1 @ fibonacci(N,M1) # ID \ fibonacci(N,M2) <=> var(M2) |

M1 = M2 pragma passive(ID).

were the passive(ID) pragma indicates that no code should be generated for the occur-
rence of fibonacci(N,M1).

The first rule of fibonacci1 is:

r1 @ fibonacci(N,M1) \ fibonacci(N,M2) <=> M1 = M2.

Finally, fibonacci2 has the following first rule:

r1 @ fibonacci(N,M1) \ fibonacci(N,M2) <=> var(M2) |

M1 = M2.

84



Chapter 3

Benchmark Optimized/Unoptimized
bool 98.7%
leq 101.2%
mergesort 100.9%
primes 100.0%
uf 102.7%
uf opt 102.5%
wfs 100.0%
zebra 99.3%
fib 98.4%
fibonacci 53.8%
fibonacci1 46.7%
fibonacci2 46.9%
lookup 78.0%

Table 3.3: Runtime of optimized benchmarks relative to unoptimized ones, in hProlog

The standard fib benchmark di↵ers from fibonacci1 in that it uses a simplification
rule. Because this is much more ine�cient, this benchmark computes a smaller Fibonacci
number.

In addition to the above standard benchmarks, we have also looked at the e↵ect on
the following CHR idiom:

entry(Key,Value) \ lookup(Key,Query) <=> Query = Value.

In the above rule, the both the entry/2 and lookup/2 constraints are anti-monotonic with
respect to their second argument. The benchmark based on this idiom is called lookup:
it consists of asserting and entry, immediately followed by a lookup.

Table 3.3 lists the runtime results in milliseconds of running the benchmarks in hPro-
log. The results clearly indicate that there is hardly any e↵ect on the majority of the
benchmarks. The reason is that either no static optimization is possible or dynamically
no variables occur in the constraints.

In the fib benchmark the optimization does have some e↵ect, but it is not manifest.
The reason is that the inherent ine�ciency of the simplification rule is predominant. How-
ever, in all three variants of the fibonacci benchmark, the runtime is about halved by the
delay-avoidance optimization. Similarly, for the lookup benchmark there is a noticeable
speedup, about 20%.

3.6 Conclusion

In this chapter we have presented the K.U.Leuven CHR system. It is a competitive CHR
system in Prolog that implements state-of-the-art CHR program optimizations [Holzbaur
and Frühwirth, 1999, Holzbaur et al., 2005] as well as several novel optimizations: hash
table constraint stores, anti-monotonic delay avoidance and specialization for ground con-
straints.

The K.U.Leuven CHR system increases availability of CHR systems considerably: it is
available in the latest releases of hProlog [Demoen], SWI-Prolog [Wielemaker, 2004] and
XSB [Warren et al., 2005]. It uses only a small set of non-standard built-in predicates and
hence it is fairly easy to port the system to other host languages as well.

85



Bibliography

The first overview of the K.U.Leuven CHR system was published at the First Work-
shop on Constraint Handling Rules [Schrijvers and Demoen, 2004b]. The work on anti-
monotonic delay avoidance appeared in a technical report [Schrijvers and Demoen, 2004a].
The evaluation of hash tables in the context of the union-find programs was included in the
programming pearl accepted by the Theory and Practice of Logic Programming journal
[Schrijvers and Frühwirth, 2005]. The port to SWI-Prolog has been presented as a poster
at the Workshop on (Constraint) Logic Programming [Schrijvers et al., 2005] and the de-
scription of the port to XSB is part of the publications at the International Conference of
Logic Programming [Schrijvers and Warren, 2004] and the Colloquium on Implementation
of Constraint and Logic Programming Systems [Schrijvers et al., 2003].

3.6.1 Future Work

Some steps have already been taken in consolidating the improvements present in the
K.U.Leuven CHR system’s compiler with new improvements to Christian Holzbaur’s CHR
system [Holzbaur and Frühwirth, 1999]. This project aims at a fully bootstrapping CHR
compiler that generates optimized intermediate code. The generated intermediate code
may be compiled to any desired host language. This approach will allow for easier mainte-
nance of multiple host languages at once: any optimization to the generated intermediate
code is immediately available to all.

Future work on generating optimized code will primarily focus on improving the partner
lookup and on more powerful program analyses in the abstract interpretation framework
that is presented in Chapter 9. However, other aspects that seem worthwhile to investigate
are:

• More aggressive specialization of generated host language code.

• New types of constraint stores. Hybrid forms of currently available constraint stores
should be able to perform better in a wider range of circumstances. Another useful
line of research seems the support for more specialized constraint stores that function
well for a small class of programs and the specialization of constraint stores to specific
programs.

• Ideas from other rule-based languages, such as the Rete algorithm [Forgy, 1982] used
in production rule systems.

• Programs that are confluent with respect to the theoretical operational semantics
need not necessarily be executed using the refined operational semantics. Analyses
or heuristics may be used to automatically choose execution orders that are di↵erent
from those in the refined semantics.

Bibliography

Slim Abdennadher, Ekkerhard Krämer, Matthias Saft, and Matthias Schmauss. JACK: A
Java Constraint Kit. In Proceedings of the International Workshop on Functional and
(Constraint) Logic Programming, Kiel, Kiel, Germany, September 2001.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-
rithms. MIT Press, 1990.

Bart Demoen. hProlog. http://www.cs.kuleuven.be/ bmd/hProlog/.

86



Chapter 3

Bart Demoen. Dynamic attributes, their hProlog implementation, and a first evaluation.
Report CW 350, Department of Computer Science, K.U.Leuven, Leuven, Belgium, Oc-
tober 2002.

Bart Demoen and Phuong-Lan Nguyen. So many WAM variations, so little time. In
John Lloyd, Veronica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia
Palamidessi, Luis Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors, CL2000:
Proceedings of the 1st International Conference on Computational Logic, volume 1861
of LNAI, pages 1240–1254, Londong, UK, July 2000. ALP, Springer Verlag.

Bart Demoen, Maria Garćıa de la Banda, Warwick Harvey, Kim Marriott, and Peter J.
Stuckey. An Overview of HAL. In Joxan Ja↵ar, editor, CP’99: Proceedings of the 5th
International Conference on Principles and Practice of Constraint Programming, volume
1713 of Lecture Notes in Computer Science, pages 174–188, Alexandria, Virginia, USA,
1999. Springer Verlag.

Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. In Artificial Intelligence, volume 19, pages 17–37, North Holland Con-
ference, 1982.

Christian Holzbaur and Thom Frühwirth. Compiling constraint handling rules into Prolog
with attributed variables. In Gopalan Nadathur, editor, Proceedings of the International
Conference on Principles and Practice of Declarative Programming, number 1702 in
Lecture Notes in Computer Science, pages 117–133. Springer Verlag, 1999.

Christian Holzbaur and Thom Frühwirth. A Prolog Constraint Handling Rules Com-
piler and Runtime System. Special Issue Journal of Applied Artificial Intelligence on
Constraint Handling Rules, 14(4), April 2000.

Christian Holzbaur, Maŕıa Garćıa de la Banda, Peter J. Stuckey, and Gregory J. Duck.
Optimizing Compilation of Constraint Handling Rules in HAL. Theory and Practice
of Logic Programming: Special Issue on Constraint Handling Rules, 5(Issue 4 & 5):
503–531, 2005.

IC-Parc. ECLiPSe. http://www.icparc.ic.ac.uk/eclipse/.

Intelligent Systems Laboratory. SICStus Prolog User’s Manual, October 2003.

Micha Meier. Sepia*: The constraint logic programming system. http://www.clps.de/.

Vı́tor Santos Costa, Luis Damas, Rogerio Reis, and Ruben Azevedo. YAP User’s Manual,
2004. http://www.ncc.up.pt/˜vsc/Yap/.

Tom Schrijvers. Analyses, Optimizations and Extensions of Constraint Handling Rules.
PhD thesis, Department of Computer Science, K.U.Leuven, Belgium, 2005a.

Tom Schrijvers. A Collection of Assorted CHR Benchmarks, 2005b.
http://www.cs.kuleuven.be/˜toms/Research/CHR/.

Tom Schrijvers and Bart Demoen. Antimonotony-based delay avoidance for CHR. Report
CW 385, K.U.Leuven, Department of Computer Science, July 2004a.

Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implementation and ap-
plication. In Thom Frühwirth and Marc Meister, editors, First Workshop on Constraint
Handling Rules: Selected Contributions, pages 1–5, Ulm, Germany, May 2004b.

87



Bibliography

Tom Schrijvers and Thom Frühwirth. Optimal Union-Find in Constraint Handling Rules.
Theory and Practice of Logic Programming, 2005.

Tom Schrijvers and David S. Warren. Constraint handling rules and tabled execution. In
Bart Demoen and Vladimir Lifschitz, editors, ICLP’04: Proceedings of the 20th Inter-
national Conference on Logic Programming, volume 3132 of Lecture Notes in Computer
Science, pages 120–136, St-Malo, France, September 2004. Springer Verlag.

Tom Schrijvers, David S. Warren, and Bart Demoen. CHR for XSB. In R. Lopes and
M. Ferreira, editors, CICLOPS 2003: Proceedings of the Colloquium on Implementation
of Constraint and LOgic Programming Systems, pages 7–20, Mumbai, India, December
2003. University of Porto.

Tom Schrijvers, Jan Wielemaker, and Bart Demoen. Poster: Constraint Handling Rules
for SWI-Prolog. In Armin Wolf, editor, W(C)LP’05: Proceedings of 19th Workshop on
(Constraint) Logic Programming, Ulm, Germany, February 2005.

Gert Smolka. The Oz Programming Model. In Jan van Leeuwen, editor, Computer Science
Today: Recent Trends and Developments, volume 1000 of Lecture Notes in Computer
Science, pages 324–343. Springer Verlag, Berlin, Germany, 1995.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard Reasoning for CHR Optimiza-
tion. Report CW 411, K.U.Leuven, Department of Computer Science, Leuven, Belgium,
2005a.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard simplification in CHR programs. In
Armin Wolf, editor, W(C)LP’05: Proceedings of 19th Workshop on (Constraint) Logic
Programming, pages 123–134, Ulm, Germany, February 2005b.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of
mercury, an e�cient purely declarative logic programming language. Journal of Logic
Programming, 29(1-3):17–64, 1996.

Guy Steele. Common LISP: The Language. Digital Press, 1984.

Peter J. Stuckey and Martin Sulzmann. A Theory of Overloading. ACM Transations on
Programming Languages and Systems, 2005. To appear.

David S. Warren et al. The XSB Programmer’s Manual: version 2.7, vols. 1 and 2, January
2005. http://xsb.sf.net.

Jan Wielemaker. SWI-Prolog release 5.4.0, 2004. http://www.swi-prolog.org/.

Armin Wolf. Adaptive Constraint Handling with CHR in Java. In CP’01: Proceedings of
the 7th International Conference on Principles and Practice of Constraint Programming,
Lecture Notes in Computer Science 2239, page 256. Springer Verlag, January 2001.

Armin Wolf. Intelligent Search Strategies Based on Apdative Constraint Handling Rules.
Theory and Practice of Logic Programming: Special Issue on Constraint Handling Rules,
5(Issue 4 & 5):567–594, 2005.

88



Part III

Execution Strategies





Chapter 4

Rule Priorities

Author: Leslie De Koninck
Thesis Title: Execution Control for Constraint Handling Rules
School: K.U.Leuven, Belgium
Publication Year: 2008

Foreword

This chapter introduces CHRrp: Constraint Handling Rules with rule priorities. CHRrp

o↵ers flexible control of the propagation strategy which is lacking in CHR. A formal oper-
ational semantics for the extended language is given and is shown to be an instance of the
theoretical operational semantics of CHR. We relate rule priorities to alternative forms
of execution control. We show that CHRrp can be e�ciently compiled into the under-
lying host language. To achieve that, we introduce various optimizations, whose e↵ects
are empirically evaluated. The CHRrp compiler is also compared with the state-of-the-art
K.U.Leuven CHR system and is shown to exhibit comparable performance while o↵ering
a much more high-level form of execution control. This chapter is part of a larger e↵ort to
add high-level execution control to CHR. As such it is a fundamental part of the thesis of
De Koninck [2008]. It builds further on previous work on operational semantics for CHR,
in particular the work defining the refined operational semantics [Duck et al., 2004]. It
forms the basis for the proposal of CHR2 [Van Weert et al., 2009, Van Weert, 2010]. This
work sits at the boundary of CHR as a declarative language for implementing constraint
solvers, and CHR viewed as a general-purpose programming language. Other work related
to execution strategies in CHR is the work on probablistic CHR [Frühwirth et al., 2002]
and CHRiSM [Sneyers et al., 2010]. Since this work, it has been shown that CHR with
rule priorities is more expressive than regular CHR [Gabbrielli et al., 2009].

4.1 Introduction

CHR is very flexible with respect to the specification of program logic, but it lacks high-
level facilities for execution control. In particular, the control flow is most often fixed by
the call-stack based refined operational semantics of CHR. To change the default execution
strategy in implementations based on the refined semantics, one has to use auxiliary con-
structs like flag constraints, i.e., constraints whose sole purpose is to facilitate execution
control. Such an approach is neither flexible nor e�cient.



4.1. Introduction

In this chapter, we propose extending CHR with user-definable rule priorities. The ex-
tension, called CHRrp, o↵ers the flexible execution control needed for implementing highly
e�cient Constraint (Logic) Programming systems. Moreover, it facilitates implementing
rule-based algorithms as these often require certain rules to be tried before others, ei-
ther for e�ciency reasons, or for correctness. Rule priorities allow the programmer to
write programs that are more concise and e�cient, but potentially not confluent under
the theoretical operational semantics of CHR. They support a high-level form of execution
control that is more declarative, flexible and comprehensible than previously available,
while retaining the expressive power needed for the implementation of general purpose
algorithms. In CHRrp, all execution control information is explicit in the rule priority
annotations, which leads to a clear separation of the logic and control aspects of a CHRrp

program in line with [Kowalski, 1979]. We first give some examples of CHR with rule
priorities.

Example 4.1.1 (Less-or-Equal). As a first example, we add priorities to the leq program
of Listing 1.1. The result is shown in Listing 4.1. Note that other priority assignments
are also possible.

1 :: reflexivity @ leq(X,X) <=> true.
1 :: antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
1 :: idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
2 :: transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

Listing 4.1: leq program in CHRrp

The rule priorities are given before the :: symbol. The first three rules have a priority
of 1, while the last rule has a priority of 2. By convention, lower numbers denote higher
priorities, and so this priority assignment prefers constraint simplification (simpagation)
over propagation. In fact, in the theoretical operational semantics of CHR, this program
is not guaranteed to terminate because for some queries, e.g. {leq(X, X), leq(X, Y)}, the
transitivity rule may fire an unbounded number of times. The above shown priority
assignment ensures the program terminates under the operational semantics of CHRrp

because the transitivity rule is only allowed to fire when no other rule can.

Dynamic rule priorities allow the priority of a rule to depend on the variables occurring
on the left hand side of the rule.

Example 4.1.2 (Dijkstra’s Shortest Path). A CHRrp implementation of Dijkstra’s single-
source shortest path algorithm is given in Listing 4.2.

1 :: source(V) ==> dist(V,0).
1 :: dist(V,D1) \ dist(V,D2) <=> D1 =< D2 | true.

D+2 :: dist(V,D), edge(V,C,U) ==> dist(U,D+C).

Listing 4.2: Dijkstra’s shortest path algorithm in CHRrp

The input consists of a set of directed weighted edges, represented as edge/3 con-
straints where the first and last arguments respectively denote the begin and end nodes,
and the middle argument represents the weight. The source node is given by the source/1
constraint. The algorithm keeps track of upper-bounds on the shortest path distances to
the di↵erent nodes, represented by dist/2 constraint whose arguments are respectively the
node in question and the distance. Eventually, the distance upper-bounds become tight.

92



Chapter 4

The first rule initiates the algorithm by creating a (tight) distance upper-bound to the
source node of zero. The second rule removes redundant distance upper-bounds. Both
these rules have a static priority of 1. Finally, the last rule has a dynamic priority and
generates new distance upper-bounds. The priorities ensure these upper-bounds are created
in the order required by Dijkstra’s algorithm.

The rest of this chapter is organized as follows. Section 4.2 presents further moti-
vation for extending CHR with rule priorities. In Section 4.3, we formalize the syntax
and semantics of the extended language: CHRrp. Two important properties of CHRrp

programs, namely confluence and complexity, are discussed in Section 4.4. A basic com-
pilation scheme for CHRrp programs is given in Section 4.5 and several optimizations are
proposed in Section 4.6. The resulting CHRrp implementation is empirically evaluated in
Section 4.7. In Section 4.8 we discuss related work and Section 4.9 concludes the chapter.

4.2 Motivation and Examples

In this section, we show the benefits of our proposed language extension for some typical
problems and illustrate them by examples. In these examples, we use CHR on top of
Prolog, but the problems apply to other host languages as well.

4.2.1 Constraint Propagators

Constraint solvers generally make use of constraint propagators which filter out inconsis-
tent values from the constraint variables’ domains. E�cient solvers use a priority system
to make sure that constraint propagators that are computationally cheaper or are expected
to have a greater impact, are scheduled early [Ringwelski and Hoche, 2005, Schulte and
Stuckey, 2004]. CHR rules are often used as templates for constraint propagators which
are instantiated by actual constraints.

Example 4.2.1. We represent a binary constraint c between two variables x and y as
c(c, x, y). A CHR constraint d(x, dx ) represents that variable x has domain dx. An imple-
mentation of two types of constraint propagators for such constraints is given in Listing 4.3,
where the Prolog built-in predicate member(X, L) non-deterministically unifies X with one of
the values of the list L and findall/3 is used to retrieve a list (3rd argument) of all the
objects (1st argument) that satisfy a given goal (2nd argument).

In this example, the rules ac1 and ac2 implement arc consistency, and rules pc1,
pc2 and pc3 implement path consistency. Because the latter is more costly, we assign
it a lower priority. The consistencies are implemented by using the filter/5 predicate
which filters out the inconsistent values in the domain of one of the constraint variables,
given the constraints in which it appears and the domains of the other variables involved.
The filtering works as follows: for each value in the domain of the target variable (T),
it is checked whether there exists a labeling for the remaining variables (R) such that the
constraints on them (Cs) hold. The label/1 predicate creates a labeling for the variables
in its argument, and the built-in predicate once/1 ensures only the first successful labeling
is considered.1

At first glance it might appear that, given the textual order of the rules, the refined
operational semantics of CHR ensures that the arc consistency rules are always tried before
the path consistency rules. The following situation shows that this is not always the case.

1In practice, we need to take a copy of the constraints in Cs with fresh variables to avoid that the
original variables are bound. The code presented here is a simplified version.

93



4.2. Motivation and Examples

1 :: ac1 @ c(C,X,Y), d(Y,DY) \ d(X,DX0) <=>
filter(DX0,C,X,[Y-DY],DX1), DX0 \= DX1 | d(X,DX1).

1 :: ac2 @ c(C,X,Y), d(X,DX) \ d(Y,DY0) <=>
filter(DY0,C,Y,[X-DX],DY1), DY0 \= DY1 | d(Y,DY1).

2 :: pc1 @ c(C1,X,Y), c(C2,Y,Z), c(C3,X,Z), d(Y,DY), d(Z,DZ) \ d(X,DX0) <=>
filter(DX0,(C1,C2,C3),X,[Y-DY,Z-DZ],DX1), DX0 \= DX1 | d(X,DX1).

2 :: pc2 @ c(C1,X,Y), c(C2,Y,Z), c(C3,X,Z), d(X,DX), d(Z,DZ) \ d(Y,DY0) <=>
filter(DY0,(C1,C2,C3),Y,[X-DX,Z-DZ],DY1), DY0 \= DY1 | d(Y,DY1).

2 :: pc3 @ c(C1,X,Y), c(C2,Y,Z), c(C3,X,Z), d(X,DX), d(Y,DY) \ d(Z,DZ0) <=>
filter(DZ0,(C1,C2,C3),Z,[X-DX,Y-DY],DZ1), DZ0 \= DZ1 | d(Z,DZ1).

filter(DT0,Cs,T,R,DT1) :-
findall(T,(member(T,DT0),once((label(R),call(Cs)))),DT1).

label([X-L|T]) :- member(X,L), label(T).
label([]).

Listing 4.3: Arc and path consistency propagators

Let x be a variable whose domain dx 0 has changed to dx 1 by using one of the arc consistency
rules with as active constraint the domain of some variable y. Assume that x is arc
consistent. The constraint d(x, dx 1) becomes active and the rules ac1 and ac2 are tried,
none of which fires. At that moment, rule pc1 will be tried, while there might still be a
variable (e.g. y) that is not arc consistent yet. In contrast, rule priorities ensure that these
variables are made arc consistent first.

4.2.2 Soft Constraints

Bistarelli et al. [2004] propose a framework to deal with soft constraints in CHR, based
on the c-semiring formalism. It works by assigning a score to each possible value of the
problem variables, denoting to what extent the soft constraints are satisfied for this value.
Hard constraints can be implemented by assigning a score of zero to each value that does
not satisfy the constraint. These values can then be removed from consideration. It is
useful to process the hard constraints first, as they remove values from the domains of
the problem variables, whereas soft constraints generally only update the score of these
values. Moreover, constraint propagation for soft constraints requires combination of the
values of di↵erent problem variables, which can be computationally expensive.

In CHRrp, we can assign a high priority to rules implementing hard constraints, a
medium priority to rules implementing soft constraints, and finally, a low priority to rules
implementing labeling (search). Moreover, we can further di↵erentiate between cheaper
and more costly soft constraints, i.e., depending on the number of variables involved.

Example 4.2.2. We consider variables over finite integer domains, again represented as
d(x, dx ) constraints, with x a variable and dx a domain, which is a list of pairs v � s
with v a value (an integer) and s a score (a floating point number between 0 and 1). The
solver of Listing 4.4 implements three constraints, as well as a simple labeling procedure.
The first constraint, odd/1, is a hard constraint stating that the variable that is its argu-
ment, can only take an odd value. The second constraint lt(x, y, p) is a soft constraint
that imposes a penalty of p to combinations of values for x and y for which x is not less
than y. Finally, there is the all different(x, y, z, p) constraint, which is again a soft
constraint and which imposes a penalty of p to combinations of values for x, y and z in

94



Chapter 4

which these variables do not all have di↵erent values. The soft constraints are dealt with

% hard constraint

1 :: odd(X) \ d(X,DX0) <=>
findall(VX-SX,(member(VX-SX,DX0), VX mod 2 =:= 1),DX1),
d(X,DX1).

% soft constraint over two variables

2 :: lt(X,Y,P) \ d(X,DX0), d(Y,DY0) <=>
findall((VX,VY)-S,

(
member(VX-SX,DX0), member(VY-SY,DY0),
( VX < VY
-> S is min(SX,SY)
; S is min(P,min(SX,SY))
)

),Combination),
project_on_fst(Combination,DX1), d(X,DX1),
project_on_snd(Combination,DY1), d(Y,DY1).

% soft constraint over three variables

3 :: all_different(X,Y,Z,P) \
d(X,DX0), d(Y,DY0), d(Z,DZ0) <=>

findall((VX,VY,VZ)-S,
(

member(VX-SX,DX0), member(VY-SY,DY0), member(VZ-SZ,DZ0),
( VX \= VY, VX \= VZ, VY \= VZ
-> S is min(SX,min(SY,SZ))
; S is min(P,min(SX,min(SY,SZ)))
)

),Combination),
project_on_fst(Combination,DX1), d(X,DX1),
project_on_snd(Combination,DY1), d(Y,DY1),
project_on_trd(Combination,DZ1), d(Z,DZ1).

% labeling

4 :: d(X,DX) <=> DX = [_,_|_] | member(VX-SX,DX), d(X,[VX-SX]).

Listing 4.4: Solver for hard and soft constraints

by first combining the values of the variables involved, and then projecting the combina-
tions on the di↵erent component variables using project_on_fst/2, project_on_snd/2
and project_on_trd/2. The code for the projection predicates is given in Listing 4.5.
It uses the Prolog predicate select/3, which removes a given value from the first list,
and returns the resulting results in the third argument. Basically, the program combines
the scores for all tuples with the same value for respectively their first, second or third
component, using the maximum operation. The all_different/4 soft constraint is more
expensive to enforce than the lt/3 constraint, and so it is given a lower priority. The hard

95



4.2. Motivation and Examples

constraint odd/1 is given the highest priority, and the labeling rule the lowest. Note the
guard in the labeling rule that prevents non-terminating behavior resulting from replacing
d/2 constraints by identical versions.

project_on_fst(Combination,DX1) :-
findall(V-S,member((V,_)-S,Combination),L1),
project(L,DX1).

... % (similar for project_on_snd/2 and project_on_trd/2 )

project([V-S0|T],L) :-
project(T,L0),
( select(V-S1,L0,L1)
-> S is max(S0,S1),

L = [V-S|L1]
; L = [V-S0|L0]
).

project([],[]).

Listing 4.5: Projection for soft constraints

4.2.3 Constraint Store Invariants

It is often desirable to impose certain representational invariants on the constraints in
the CHR constraint store. An example of such an invariant is set semantics: no two
syntactically equal constraints can exist in the constraint store. These invariants may be
violated when asserting new constraints (both built-in and CHR) and we can use special
purpose CHR rules for restoring them. Such rules should fire before any rule that expects
(a subset of) the invariants.

Example 4.2.3. Consider that we want to check whether two graphs, G1 and G2 are
equal. We do this by removing those edges that are common to both graphs. If there are
still edges after reaching a fixed point, then the graphs are di↵erent. We represent the
edges of graph G1 and G2 by the edge constraints e1/2 and e2/2 respectively. This gives
us the program of Listing 4.6.

1 :: s1 @ e1(X,Y) \ e1(X,Y) <=> true.
1 :: s2 @ e2(X,Y) \ e2(X,Y) <=> true.

2 :: rc @ e1(X,Y), e2(X,Y) <=> true.

Listing 4.6: Constraint store invariants in CHRrp

Edges obey set semantics, as implemented by the rules s1 and s2. The rule rc (remove
common) removes those edges that appear both in graph G1 and in graph G2. Now consider
the goal G = {e1(X, X), e2(X, Y), e2(Y, X), X = Y}. Under the refined operational semantics,
ignoring the rule priorities, this goal is executed from left to right. Solving the built-in
constraint X = Y causes the sequential activation of all three CHR constraints. If the e1/2
constraint is activated before any of the e2/2 constraints, then rule rc fires before the s2
rule is tried, which results in a final constraint store containing the e2(X, X) constraint.
This erroneously indicates that the graphs are di↵erent.

96



Chapter 4

We already mentioned in the introduction that rule priorities require that the highest
priority rule for which an applicable rule instance exists, fires. This is a global notion in
that it does not matter which constraints participate in the firing rule instance, and in
particular, there is no concept of an active constraint. So using rule priorities, the set
semantics rules will always be tried before the lower priority rule rc and when the highest
priority applicable rule instance is one of priority 2 (or less), then there will be no two
syntactically equal e1/2 or e2/2 constraints.

The above example can be implemented correctly using the refined semantics, but this
leads to ine�cient and unreadable code as shown in Listing 4.7.

s1 @ e1(X,Y) \ e1(X,Y) <=> true.
s2 @ e2(X,Y) \ e2(X,Y) <=> true.
s3 @ e1(_,_), e1(X,Y) \ e1(X,Y) <=> true.
s4 @ e1(_,_), e2(X,Y) \ e2(X,Y) <=> true.
s5 @ e2(_,_), e1(X,Y) \ e1(X,Y) <=> true.
s6 @ e2(_,_), e2(X,Y) \ e2(X,Y) <=> true.

rc @ e1(X,Y), e2(X,Y) <=> true.

Listing 4.7: Constraint store invariants in regular CHR

4.2.4 Dynamic Rule Priorities

Rule priorities are called dynamic if they depend on (the arguments of) the constraints
that form a rule instance. Dynamic rule priorities are only known at runtime and di↵erent
instances of the same rule may have a di↵erent priority. In Example 4.1.2 we have already
shown how to implement Dijkstra’s shortest path algorithm using dynamic rule priorities.
Below, another example program is given.

Example 4.2.4 (Sudoku). The Sudoku solver from Section 1.5.1 keeps track of the number
of possible values for each Sudoku cell and chooses a value from the most constrained cell
first. Listing 4.8 shows the labeling code.

fillone(N), f(A,B,C,D,N,L) <=> member(V,L), f(A,B,C,D,V), fillone(1).
fillone(N) <=> N < 9 | fillone(N+1).
fillone(_) <=> true.

Listing 4.8: Labeling rules for a Sudoku solver in CHR

The f/6 constraints represent a Sudoku cell: the first four arguments denote the po-
sition of the cell (which 3 ⇥ 3 block and which cell in this block); the 5th argument is the
number of remaining possible values for the cell; the last argument is a list of these values.
If a cell has only one possible value, it is represented by a f/5 constraint where the first
four arguments again denote the position of the cell and the last argument is the value of
the cell.

Initially, the store contains the constraint fillone(1). The argument of this constraint
is increased until a match is found and a rule fires. After the rule has fired, it is reset to
1. In CHRrp we can get the same result using only one rule:

N :: f(A,B,C,D,N,L) <=> member(V,L), f(A,B,C,D,V).

97



4.3. CHRrp CHR with Rule Priorities

1. Solve h{c} ]G,S,B, T in
!p⇢P hG,S, c ^B, T in where c is a built-in constraint.

2. Introduce h{c}]G,S,B, T in
!p⇢P hG, {c#n}[S,B, T in+1 where c is a CHR constraint.

3. Apply h;, H1 ]H2 ] S,B, T in
!p⇢P hC,H1 [ S, ✓ ^ B, T [ {t}in where P contains a rule

of priority p of the form
p :: r @ H 0

1\H 0
2 () g | C

and a matching substitution ✓ such that chr(H1) = ✓(H 0
1), chr(H2) = ✓(H 0

2), D |=
B ! 9̄B(✓ ^ g), ✓(p) is a ground arithmetic expression and t = hid(H1), id(H2), ri /2 T .
Furthermore, no rule of priority p0 and substitution ✓0 exists with ✓0(p0) < ✓(p) for which
the above conditions hold.

Table 4.1: Transitions of !p

The remaining rules of the program filter out inconsistent values:

1 :: f(A,_,C,_,V) \ f(A,B,C,D,N,L1) <=> select(V,L1,L2) | % same row
N > 1, f(A,B,C,D,N-1,L2).

1 :: f(_,B,_,D,V) \ f(A,B,C,D,N,L1) <=> select(V,L1,L2) | % same column
N > 1, f(A,B,C,D,N-1,L2).

1 :: f(A,B,_,_,V) \ f(A,B,C,D,N,L1) <=> select(V,L1,L2) | % same box
N > 1, f(A,B,C,D,N-1,L2).

4.3 CHR
rp CHR with Rule Priorities

CHRrp extends CHR with user-defined rule priorities. In this section, we introduce the
syntax and semantics of CHRrp and investigate its theoretical properties.

4.3.1 Syntax

The syntax of CHRrp is compatible with the syntax of regular CHR. A CHRrp simpagation
rule looks as follows:

p :: r @ Hk \ Hr () G | B

where r, Hk, Hr, G and B are as defined in Section 1.1.2. The rule priority p is an
arithmetic expression for which holds that vars(p) ✓ (vars(Hk)[vars(Hr)), i.e., all variables
in p also appear in the heads. A rule in which vars(p) = ; is called a static priority rule:
its priority is known at compile time and equal for all rule instances. A rule in which
vars(p) 6= ; is called a dynamic priority rule: its priority is only known at runtime and
di↵erent instances of the same rule may fire at di↵erent priorities. In this chapter, all rule
priorities are integers or arithmetic expressions that evaluate on integers. In general, rule
priorities could be any type of terms for which we have a total preorder.

4.3.2 Operational Semantics

We propose a formal operational semantics for CHRrp. It is called the priority semantics
and denoted by !p. It consists of a refinement of the !t semantics of CHR with a minimal
amount of determinism in order to support rule priorities. The !p semantics uses the
same state representation as the !t semantics. Its transitions are shown in Table 4.1. The
!p semantics restricts the applicability of the Apply transition with respect to the !t

semantics. It is only applicable to states with an empty goal and it fires a rule instance of

98



Chapter 4

priority p in state � only if there exists no !t Apply transition �
!t⇢P �0 that fires a rule

instance of a higher priority. The Solve and Introduce transitions are unchanged.
We illustrate the di↵erences between the !p and !r semantics on some small examples.

The first example shows that rule priorities are di↵erent from rule order under the !r

semantics.

Example 4.3.1. Consider the following program:

1 :: r1 @ a ==> b.
2 :: r2 @ a, b ==> c.
3 :: r3 @ a <=> true.
4 :: r4 @ a, b ==> d.

Using the refined operational semantics, the rule priority declarations are ignored. For the
initial goal G = {a}, we get the following results. Under !p, the unique qualified answer
for goal G is {b, c} whereas under the !r semantics, the answer is {b, c, d}. The di↵erence
is explained as follows: under the !p semantics, constraint a is removed by rule r3 before
rule r4 is tried. This causes rule r4 to be no longer applicable. There is no rule ordering
that can cause rule r3 to be fired after rule r2 but before rule r4 in the !r semantics.

The following two examples illustrate the non-determinism in the !p semantics. Note
that this non-determinism could be removed by further refining the !p semantics (e.g.,
using rule order, recency, etc. to resolve conflicts). However, we prefer to keep all the
determinism users can rely on, explicit in the priority annotations.

Example 4.3.2. Consider the following program:

1 :: r1 @ a ==> write(‘rule 1’), nl.
1 :: r2 @ a ==> write(‘rule 2’), nl.

In this example, rules r1 and r2 have an equal priority. For the initial goal a, we get the
following output:

Output in !r Alt. Outputs in !p

rule 1 rule 1 rule 2

rule 2 rule 2 rule 1

Here, the non-determinism is caused by the existence of di↵erent rules with equal priority.

Example 4.3.3. Consider the following program:

1 :: r1 @ a(X) ==> write(r1:X), nl.
2 :: r2 @ a(X) ==> write(r2:X), nl.

Note that this program produces side e↵ects and as such is not pure. For the initial goal
{a(1), a(2)}, we get the following output:

Output in !r Alternative Outputs in !p

r1 : 1 r1 : 1 r1 : 1 r1 : 2 r1 : 2
r2 : 1 r1 : 2 r1 : 2 r1 : 1 r1 : 1
r1 : 2 r2 : 1 r2 : 2 r2 : 1 r2 : 2
r2 : 2 r2 : 2 r2 : 1 r2 : 2 r2 : 1

99



4.3. CHRrp CHR with Rule Priorities

Here the non-determinism is caused by the existence of di↵erent rule instances for the
same rule.

A final example compares the !p semantics with the !t semantics and shows that
CHRrp programs are not always monotonic.

Example 4.3.4. A form of negation by absence (see also [Van Weert et al., 2006]) can
be implemented in CHRrp as follows:

1 :: r1 @ a \ no_a <=> fail.
2 :: r2 @ no_a <=> true.

Under the !t semantics, the goal {a, no a} either fails or succeeds with qualified answer
{a}, whereas under the !p semantics (as well as the refined semantics) it must fail and in
particular, the second rule cannot fire. The goal {no a} succeeds under both semantics by
means of firing rule r2.

4.3.3 Correspondence between !p and !t Derivations

In this subsection, we show the correspondence between the !p semantics of CHRrp and the
!t semantics of CHR. Every CHRrp program is a CHR program if we ignore the priority
annotations. We show that every !p derivation is also a derivation under !t (Theorem 1).
We then prove that the !p semantics respects rule priorities (Theorem 2). Finally, for
CHRrp programs in which all rule priorities are equal, we show that every !t derivation
corresponds to an !p derivation (Theorem 3).

Theorem 1. Every derivation D under !p, is also a derivation under !t. If a state � is
a final state under !p, then it is also a final state under !t.

Proof. The first part of the theorem holds because !p only adds restrictions to the applica-
bility of !t transitions. For the second part, suppose that state � is a final state under !p,
but not under !t. The only transition applicable under !t must be the Apply transition,
since the Solve and Introduce transitions are equal in both semantics. This means that
the goal must be empty.

From all Apply transitions that are applicable in state � under !t, we can choose
the one that fires the highest priority rule instance. It is clear that this transition is also
applicable under !p, which contradicts our assumption. This proves the second part of
the theorem.

Theorem 2. If an Apply transition is applied to a state � under !p, firing a rule instance
of priority p, there exists no derivation under !t and starting in � in which the first Apply
transition fires a higher priority rule instance.

Proof. The !p Apply transition, applied on state �, fires the highest priority rule instance
that can fire given the current built-in store, CHR store and propagation history. If there
exists an !t derivation D starting in � in which the first Apply transition fires a rule
instance of a higher priority, then D must contain a Solve or Introduce transition that
updates respectively the built-in store or CHR store, and that makes the rule instance
applicable. Since the !p Apply transition requires the goal to be empty, no such derivation
can exist.

100



Chapter 4

For every state � = hG,S,B, T in, there exists a derivation �
!p⇢⇤

P
�⇤ where �⇤ =

h;, S [ S0, B ^ B0, T in+|S0| and G = B0 ] chr(S0), B0 is a multi-set of built-in constraints,
S0 is a set of identified CHR constraints and |S0| is the number of elements in S0. The
derivation is formed by solving all built-in constraints, and introducing all CHR constraints
in the goal G. We call state �⇤ a normalization of �. There are |S0|! such normalizations,
one for each order in which the CHR constraints of the goal are introduced.

Theorem 3. For a given CHRrp program P in which all rule priorities are equal, it

holds that for every non-failing derivation D under !t, if �1
!t⇢P �2 2 D then for every

normalization �⇤2 of �2, there exists a normalization �⇤1 of �1 such that �⇤1
!p⇢⇤

P
�⇤2. If a

state � is a final state under !t, it is also a final state under !p.

Proof. Given �1
!t⇢P �2 2 D. We look at each of the three possible transitions:

1. Solve �1 = h{c} ] G,S,B, T in and �2 = hG,S, c ^ B, T in. Clearly all normalizations
of �1 and �2 are equal.

2. Introduce �1 = h{c}]G,S,B, T in and �2 = hG, {c#n}[S,B, T in+1. All normaliza-
tions of �2 are also normalizations of �1.

3. Apply �1 = hG,Hr ] S,B, T in and �2 = hC ]G,S, ✓ ^B, T 0in. In any normalization
of �1, the same rule instance can fire because introducing CHR constraints to the
store nor solving built-in constraints from the goal can prevent a rule instance from
being applicable.2 So we have for every normalization �⇤1 of �1 that �⇤1 = h;, Hr [
S [ S0, B ^ B0, T in0

!p⇢P hC, S [ S0, ✓ ^ B ^ B0, T 0in0 = �02. It is easy to see that
every normalization of �2 corresponds to a normalization of such a state �02 for some
normalization of �1.

We conclude that for every transition �1
!t⇢P �2, there exists a corresponding derivation

�⇤1
!p⇢P �⇤2 for every normalization �⇤2 of �2. The second part of the theorem follows from

Theorem 1.

Theorem 3 implies that for CHRrp programs in which all rule priorities are equal, every
execution strategy under !t is consistent with !p, and so such programs can be executed
using the refined operational semantics as implemented by current CHR implementations.
While such CHRrp programs are obviously degenerate, we can retain many advantageous
aspects of the refined operational semantics of CHR when compiling CHRrp programs (see
Section 4.5).

4.4 Program Properties

In this section, we investigate two important properties of CHRrp programs, namely con-
fluence and complexity.

4.4.1 Confluence

Confluence is the property that a program always gives the same answers for a given goal,
regardless of the execution path followed. In [Abdennadher, 1997], it is shown that for
terminating programs, confluence under the theoretical operational semantics of CHR can

2We do not consider non-monotone guards like Prolog’s var/1. They are not allowed in pure CHR.

101



4.4. Program Properties

be decided by checking if all critical pair states are joinable. A critical pair consists of
two minimal states �1 and �2 that result from a common ancestor state � after firing
di↵erent rule instances, such that the rule instance that led to �1 cannot fire in �2 and
vice versa. Two states are joinable if they both derive into states that are variants of each
other. More formal definitions can be found in [Abdennadher, 1997]. Clearly, under the
!p semantics, a critical pair only follows from firing rule instances with equal priority.

If a rule instance ✓(r) is applicable in state hG,S,B, T in under !t, then this is also the
case in any (non-failed) ‘larger’ state hG ] G0, S [ S0, B ^ B0, T \ T 0in0 . This result does
not hold under !p because adding CHR or built-in constraints to the store or removing
propagation history tuples, can cause a higher priority rule instance to become applicable.
A similar problem was found by Duck [2005] for the refined operational semantics.

Example 4.4.1. Consider the following example, adapted from [Duck, 2005] and extended
with rule priorities:

1 :: r1 @ p, q(_) <=> r.
2 :: r2 @ q(_), q(_) \ r <=> true.
3 :: r3 @ r \ q(_) <=> true.
4 :: r4 @ r <=> true.

A critical pair for rule r1 is

(h{r}, {q(1)#1}, true, T1in, h{r}, {q(2)#2}, true, T2in)

with common ancestor state

h;, {q(1)#1, q(2)#2, p#3}, true, T in

Both states further derive into h;, ;, true, T 0in+1 and the program appears to be con-
fluent. However, given the initial goal {p, q(1), q(2), q(3)} we get the qualified answers
{q(1), q(2)}, {q(2), q(3)} or {q(1), q(3)}. The problem is that in a minimal state, rule r2
is not applicable and rules r3 and r4 can fire. In a larger state, r2 may become applicable
and cause rules r3 and r4 to be not applicable anymore. This example shows that the
fact “all critical pairs are joinable” does not necessarily imply local confluence (and hence
confluence) under CHRrp.

However, since every !p derivation is a valid !t derivation, we can use confluence w.r.t.
!t to prove confluence w.r.t. !p.

Corollary 4.4.2. If program P is terminating under !p, and confluent under !t, then it
is also confluent under !p.

Proof. The proof is by contradiction. Assume that there exists a program P which is
terminating under !p, confluent under !t but not confluent under !p. In that case, there

exists a state � such that �
!p⇢⇤

P
�1 and �

!p⇢⇤

P
�2 with �1 and �2 final !p states that are

not variants of each other. By Theorem 1, we then have that �
!t⇢⇤

P
�1 and �

!t⇢⇤

P
�2, with

�1 and �2 final !t states. Since �1 and �2 are not variants, P is not confluent under !t,
which contradicts our assumption.

If a program P passes the standard !t confluence test (by ignoring rule priorities),
then P is also confluent under !p.

Example 4.4.3. Consider the leq program from Example 1.1.1. This program is confluent
under !t. Therefore, by Corollary 4.4.2, the leq program is confluent under !p.

102



Chapter 4

Note that the converse is not true, that is, there exist programs that are confluent w.r.t.
the !p semantics, but not w.r.t. the !t semantics. For example, consider the following
program.

1 :: p <=> q.
2 :: p <=> r.

Clearly the program is non-confluent under !t. However, under !p the program is confluent
because the first rule is always preferred. In general, requiring a program to be confluent
under !t is too restrictive, so we shall consider some alternative ideas.

Practical Confluence Test

For the refined operational semantics of (regular) CHR, we can fall back on a practical test
to help decide confluence. This test works by examining the non-determinism of each of
the !r transitions w.r.t. the given program P . In particular, there are two sources of non-
determinism: the order in which constraints are reactivated by the Solve transition is not
determined, and neither is the order in which rule matches are found by the Simplify and
Propagate transitions. In [Duck, 2005], the non-determinism resulting from the Solve
transition is eliminated by requiring that this transition never reactivates any constraints
(trivial wake-up policy). Under this condition, one only needs to consider those rule
instances that fire with the same active occurrence.

Now, the practical confluence test consists of proving that all occurrences are matching
complete or matching independent and that the matching complete occurrences are order
independent. The exact definitions are given in [Duck, 2005, Chapter 6], we just give
the intuition here. Matching completeness means that all rule instances involving a given
active occurrence, eventually get to fire, i.e., none of their constituent constraints are
(directly or indirectly) removed. For example, an active a/0 occurrence matching the
left-most head in the rule

a \ b(X) <=> c(X).

is matching complete given that the c/1 constraint does not (directly or indirectly) remove
a/0 or b/1 constraints.

Matching completeness in itself is not su�cient as firing a rule instance may still a↵ect
parts of the constraint store, without invalidating the other matches. Order independence
is a criterion that ensures this is not a problem. For example, let there also be a rule

c(X), c_list(L) <=> c_list([X|L]).

then the result is dependent on the order in which b/1 constraints are converted into c/1
constraints. On the other hand, the rule

c(X), c_sum(S) <=> c_sum(X+S).

is independent of the order, as addition is an associative and commutative operator.
Matching independence means that the result is independent of the rule instance that

fired. For example, an active b/0 occurrence, matching the right-most head in the rule

a(_) \ b <=> c.

is matching independent, as the result does not depend on the argument of the a/1 con-
straint, and hence not on the exact rule instance that fired.

103



4.5. Basic Compilation of CHRrp

In the !p semantics of CHRrp, the only relevant source of non-determinism is in the
Apply transition.3 However, unlike under the !r semantics, di↵erent rules may fire in
a given state.4 Moreover, there does not need to be a constraint that participates in all
rule instances that are applicable. Therefore, in general, we need to consider more cases
than under the refined semantics. Still, the concepts used for the refined confluence test,
transfer to the !p case. For example, consider the following rules, adapted from the ray
tracer program of Duck [2005].

1 :: sphere(I,X3,Y3,Z3,R,_) \ light_ray(X1,Y1,Z1,X2,Y2,Z2,_,J) <=> I \= J,
sphere_intersection_calculation(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,R,U1,U2),
sphere_blocks(U1,U2) | true.

1 :: plane(I,A,B,C,D,_) \ light_ray(X1,Y1,Z1,X2,Y2,Z2,_,J) <=> I \= J,
plane_intersection_calculation(X1,Y1,Z1,X2,Y2,Z2,A,B,C,D,U),
plane_blocks(U) | true.

The rules remove light rays that are blocked by either a sphere or a plane. Clearly, all
light rays that are blocked, are eventually removed by these rules, and it does not matter
which rule instance removes a given light ray when it is blocked by multiple objects. So for
these rules, we have a combination of matching completeness and matching independence.
More precisely, we can partition the set of all rule instances into subsets of matching
independent instances (those involving the same light_ray/8 constraint) such that each
rule firing invalidates only those rule instances that belong to the same subset.

4.4.2 Complexity

In Chapter 7, a meta-complexity result for CHRrp is given that allows one to derive the time
complexity of a CHRrp program by reasoning amongst others about the number of rule
applications. The approach is based on the Logical Algorithms formalism by Ganzinger
and McAllester [2002] and relies on an optimized implementation of CHRrp. The result
of Sneyers et al. 2008 that states that any algorithm can be implemented in CHR with
optimal time and space complexity, also easily transfers to the CHRrp context. However, it
requires memory optimizations that are currently not implemented by our CHRrp compiler
(see [Sneyers et al., 2006b]).

4.5 Basic Compilation of CHRrp

This section gives an overview of the basic compilation schema for CHRrp programs.
First, in Section 4.5.1, we present a refinement of the !p semantics that follows the actual
implementation more closely. This refinement, called the refined priority semantics and
denoted by !rp, is based on the refined operational semantics !r of (regular) CHR and
is as such also based on lazy matching and the concept of active constraints. The !rp

semantics requires that each active constraint determines the actual (ground) priorities of
all rules in which it may participate. In Section 4.5.2, we show how dynamic priority rules
can be transformed so that this property holds for all active constraints. Finally, Section
4.5.3 gives an abstract version of the code generated for each of the !rp transitions.

3The Solve and Introduce transitions also introduce non-determinism, but this has no e↵ect on
confluence.

4These rules do need to have the same priority though.

104



Chapter 4

1. Solve h[c|A], Q, S0 [ S1, B, T in
!rp⇢P hA,Q0, S0 [ S1, c ^ B, T in where c is a built-in con-

straint, vars(S0) ✓ fixed(B) is the set of variables fixed by B, and Q0 = Q [ {c#i @ p |
c#i 2 S1 ^ c has an occurrence in a priority p rule}. This reschedules constraints whose
matches might be a↵ected by c.

2. Schedule h[c|A], Q, S,B, T in
!rp⇢P hA,Q0, {c#n} [ S,B, T in+1 with c a CHR constraint

and Q0 = Q [ {c#n @ p | c has an occurrence in a priority p rule}.

3. Activate hA,Q, S,B, T in
!rp⇢P h[c#i : 1 @ p|A], Q\{c#i @ p}, S,B, T in where c#i @ p =

find min(Q), and A = [c0#i0 : j0 @ p0|A0] with p < p0 or A = ✏.

4. Drop h[c#i : j @ p|A], Q, S,B, T in
!rp⇢P hA,Q, S,B, T in if there is no jth priority p

occurrence of c in P .

5. Simplify h[c#i : j @ p|A], Q, {c#i} ] H1 ] H2 ] H3 ] S,B, T in
!rp⇢P hC ++ A,Q,H1 [

S, ✓ ^B, T in where the jth priority p occurrence of c is dj in rule

p0 :: r @ H 0
1\H 0

2, dj , H
0
3 () g | C

and there exists a matching substitution ✓ such that c = ✓(dj), p = ✓(p0), chr(H1) =
✓(H 0

1), chr(H2) = ✓(H 0
2), chr(H3) = ✓(H 0

3) and D |= B ! 9̄B(✓ ^ g). This transition
only applies if the Activate transition does not.

6. Propagate h[c#i : j @ p|A], Q, {c#i}]H1]H2]H3]S,B, T in
!rp⇢P hC ++ [c#i : j @ p |

A], Q, {c#i} [H1 [H2 [ S, ✓ ^B, T [ {t}in where the jth priority p occurrence of c is
dj in

p0 :: r @ H 0
1, dj , H

0
2\H 0

3 () g | C

and there exists a matching substitution ✓ such that c = ✓(dj), p = ✓(p0), chr(H1) =
✓(H 0

1), chr(H2) = ✓(H 0
2), chr(H3) = ✓(H 0

3), D |= B ! 9̄B(✓ ^ g), and t = hid(H1) ++
[i] ++ id(H2), id(H3), ri /2 T . This transition only applies if the Activate transition
does not.

7. Default h[c#i : j @ p|A], Q, S,B, T in
!rp⇢P h[c#i : j+1 @ p|A], Q, S,B, T in if the current

state cannot fire any other transition.

Table 4.2: Transitions of !rp

4.5.1 The Refined Priority Semantics !rp

The refined priority semantics !rp is given as a state transition system. Its states are
represented by tuples of the form hA,Q, S,B, T in, where S, B, T and n are as in the !p

semantics, A is a sequence of constraints, called the activation stack, and Q is a priority
queue. In the !rp semantics, constraints are scheduled for activation at a given priority.
By c#i : j @ p we denote the identified constraint c#i being tried at its jth occurrence
of fixed priority p. In what follows, the priority queue is considered a set supporting the
operation find min which returns one of its highest priority elements.

The transitions of the !rp semantics are shown in Table 4.2. The main di↵erences
compared to the !r semantics are the following. Instead of adding new or reactivated
constraints to the activation stack, the Solve and Schedule5 transitions schedule them
for activation, once for each priority at which they have occurrences. The Activate
transition activates the highest priority scheduled constraint if it has a higher priority
than the current active constraint (if any). This transition only applies if the Solve and
Schedule transitions are not applicable, i.e., after processing the initial goal or a rule
body. Its function is similar to that of the !r Reactivate transition, except that it also

5The Schedule transition corresponds to the Activate transition in !r.

105



4.5. Basic Compilation of CHRrp

applies to constraints that have never been activated before. Noteworthy is that once
a constraint is active at a given priority, it remains so at least until a rule fires or it is
made passive by the Drop transition. Hence we should only check the priority queue for
a higher priority scheduled constraint at these program points. Again, the transitions are
exhaustively applied starting from an initial state hG, ;, ;, true, ;i1 with G the goal, given
as a sequence.

Example 4.5.1. Consider the leq program of Listing 4.1 and the goal

{leq(A, B), leq(B, C), leq(B, A)}.

The !rp state after three initial Schedule transitions is as follows, where we write the
shorthand c#i @ {p1, . . . , pn} for {c#i @ p1, . . . , c#i @ pn}:

h✏, {leq(A, B)#1@{1, 2}, leq(B, C)#2@{1, 2}, leq(B, A)#3@{1, 2}},
{leq(A, B)#1, leq(B, C)#2, leq(B, A)#3}, true, ;i4

If leq(B, C)#2@1 is activated first then it finds no matching partners and is eventually
dropped. If leq(A, B)#1@1 is activated next, then we have

h[leq(A, B)#1 : 1@1], {leq(A, B)#1@2, leq(B, C)#2@2, leq(B, A)#3@{1, 2}},
{leq(A, B)#1, leq(B, C)#2, leq(B, A)#3}, true, ;i4

!rp⇢leq (Default)
h[leq(A, B)#1 : 2@1], {leq(A, B)#1@2, leq(B, C)#2@2, leq(B, A)#3@{1, 2}},

{leq(A, B)#1, leq(B, C)#2, leq(B, A)#3}, true, ;i4
!rp⇢leq (Simplify)

h[A = B], {leq(A, B)#1@2, leq(B, C)#2@2, leq(B, A)#3@{1, 2}},
{leq(B, C)#2}, true, ;i4

!rp⇢leq (Solve)
h✏, {leq(A, B)#1@2, leq(B, C)#2@{1, 2}, leq(B, A)#3@{1, 2}},

{leq(B, C)#2}, A = B, ;i4

This last transition reschedules the leq(B, C)#2 constraint at priorities 1 and 2. None of
the remaining constraints in the schedule lead to a rule firing.

4.5.2 Transforming Dynamic Priority Rules

In the description of the !rp semantics, we have assumed that every constraint knows the
priorities of all rules in which it may participate. For rules with a dynamic priority, this
is obviously not always the case.

Example 4.5.2. Consider the rule

X+Y :: r @ a(X,Z) \ b(Y,Z), c(X,Y) <=> d(X).

In this case, a c(x, y) constraint with ground arguments x and y knows the priority of the
instances of r in which it may participate, but neither a/2 nor b/2 constraints do. Given
an active a/2 constraint, we need to combine (join) it with either a b/2 or a c/2 constraint
to determine the actual priority.

In this section, we present a pseudo-code source-to-source transformation to transform
a program such that the required property is satisfied. In what follows, we refer to the join
order for a given constraint occurrence, which is the order in which the partner constraints
for this occurrence are retrieved (by nested loops). We consider a join order ⇥ to be a

106



Chapter 4

permutation of {1, . . . , n} where n is the number of heads of the rule. Now, consider a
dynamic priority rule

p :: r @ C1, . . . , Ci\Ci+1, . . . , Cn () g | B

an active head Cj , a join order ⇥ with ⇥(1) = j and a number k, 1  k  n such that the
first k heads, starting with Cj and following join order ⇥, determine the rule priority. We
rewrite rule r as follows (for every j, 1  j  n):

1 :: rj @C⇥(1)#Id1, . . . , C⇥(k)#Idk =)
r-matchj(Id1, . . . , Idk,Vars) pragma passive(Id2), . . . , passive(Idk)

1 :: r0
j
@r-matchj(Id1, . . . , Idk,Vars) ()

ground(p) | r-match0
j
(Id1, . . . , Idk,Vars)

p :: r00
j
@r-match0

j
(Id1, . . . , Idk,Vars), C⇥(k+1)#Idk+1, . . . , C⇥(n)#Idn =)

alive(Id1), . . . , alive(Idk), g | kill(Id⇥�1(i+1)), . . . , kill(Id⇥�1(n)), B
pragma passive(Idk+1), . . . , passive(Idn),

history([Id⇥�1(1), . . . , Id⇥�1(n), r])

where Vars are the variables shared by the first k heads on the one hand, and the
remaining heads, the guard, the body and the priority expression on the other, i.e.,
Vars =

�
[k
i=1vars(C⇥(i))

�
\
��
[n
i=k+1vars(C⇥(i))

�
[ vars(g ^B ^ p)

�
. The first rule gen-

erates a partial match that knows its priority once the necessary arguments are ground
(fixed). It runs at the highest possible value of the dynamic priority expression.6 The sec-
ond rule ensures that the priority expression is ground before the partial match is scheduled
at its dynamic priority. The rule runs at the same priority as the first one. Finally, the
third rule extends the partial match (with ground priority) into a full match. There we
check whether all constraints in the partial match are still alive (calls to alive/1), and
delete the removed heads (calls to kill/1). The pragma7 passive/1 denotes that a given
head is passive, i.e., no occurrence code is generated for it (see further in Section 4.5.3).
The pragma history/1 states the tuple layout for the propagation history. All rule copies
share the same history which ensures that each instance of the original rule can fire only
once.

Example 4.5.3. Given the rule r of Example 4.5.2 and join orders ⇥1 = [1, 2, 3], ⇥2 =
[2, 3, 1] and ⇥3 = [3, 2, 1].8 Furthermore assuming we schedule at a dynamic priority as
soon as we know it, we generate the rules of Listing 4.9.

Note that since r is a simpagation rule, a propagation history is not necessary. We
only show it for illustration purposes.

The proposed translation schema implements a form of eager matching in that all
r-matchj constraints are generated eagerly at the highest priority before one is fired. This
approach resembles the TREAT matching algorithm [Miranker, 1987]. Also similar to the
TREAT algorithm and unlike the RETE algorithm [Forgy, 1982], we allow di↵erent join
orders for each active head.

4.5.3 Compilation Schema

Now that we have shown how a program can be transformed such that each constraint
knows the priorities of all rules in which it may participate, we are ready to present the

6We assume 1 is an upper-bound. A tighter one can be used instead if such is known.
7Most CHR systems support compiler directives by using the keyword pragma.
8By slight abuse of notation, we denote ⇥(1) = ✓1, . . . ,⇥(n) = ✓n by ⇥ = [✓1, . . . , ✓n].

107



4.5. Basic Compilation of CHRrp

1 :: r1 @ a(X,Z) #Id1, b(Y,Z) #Id2 ==>
r-match1(Id1,Id2,X,Y) pragma passive(Id2).

1 :: r01 @ r-match1(Id1,Id2,X,Y) <=>
ground(X+Y) | r-match01(Id1,Id2,X,Y).

X+Y :: r001 @ r-match01(Id1,Id2,X,Y), c(X,Y) #Id3 ==>
alive(Id1), alive(Id2) | kill(Id2), kill(Id3), d(X)
pragma passive(Id3), history([Id1,Id2,Id3],r).

1 :: r2 @ b(Y,Z) #Id1, c(X,Y) #Id2 ==>
r-match2(Id1,Id2,X,Y,Z) pragma passive(Id2).

1 :: r02 @ r-match2(Id1,Id2,X,Y,Z) <=>
ground(X+Y) | r-match02(Id1,Id2,X,Y,Z).

X+Y :: r002 @ r-match02(Id1,Id2,X,Y,Z), a(X,Z) #Id3 ==>
alive(Id1), alive(Id2) | kill(Id1), kill(Id2), d(X)
pragma passive(Id3), history([Id3,Id1,Id2,r]).

1 :: r3 @ c(X,Y) #Id1 ==> r-match3(Id1,X,Y).
1 :: r03 @ r-match3(Id1,X,Y) <=> ground(X+Y) | r-match03(Id1,X,Y).

X+Y :: r003 @ r-match03(Id1,X,Y), b(Y,Z) #Id2, a(X,Z) #Id3 ==>
alive(Id1) | kill(Id1), kill(Id2), d(X)
pragma passive(Id2), passive(Id3), history([Id3,Id2,Id1,r]).

Listing 4.9: Example output of the dynamic priority rule transformation

compilation schema. The generated code follows the !rp semantics closely. In what follows,
we assume the host language is Prolog, although the compilation process easily translates
to other host languages as well. We note that the generated code presented in this section,
closely resembles that of regular CHR under the refined operational semantics, as described
in for example [Schrijvers, 2005]. The di↵erences correspond to those between !r and !rp

as given in Section 4.5.1.

CHR Constraints

Whenever a new CHR constraint is asserted, it is scheduled at all priorities at which it may
fire (Schedule transition). Furthermore, it is attached to its variables for the purpose of
facilitating the Solve transition. In Prolog this is done using attributed variables. The idea
is similar to that of subscribing to event notifiers. Finally, the constraint is inserted into
all indexes on its arguments. Schematically, the generated code is as shown in Listing 4.10.

c(X1,...,Xn) :- GenerateSuspension, S = Suspension,
schedule(p1,c/n_prio_p1_occ_1_1(S)),
...
schedule(pm,c/n_prio_pm_occ_1_1(S)),
AttachToVariables, InsertIntoIndexes.

Listing 4.10: Generated code for a new CHR constraint

The GenerateSuspension code creates a data structure (called the suspension term in
CHR terminology) for representing the constraint in the constraint store. It has amongst
others fields for the constraint identifier, its state (dead or alive), its propagation history,9

9We use a distributed propagation history, as in the K.U.Leuven CHR system [Schrijvers, 2005].

108



Chapter 4

its arguments, and pointers for index management. The scheduling code consists of in-
sertions of calls to the code for the first occurrence of each priority pi (1  i  m) into
the priority queue. With respect to the usual code for CHR constraints under the !r

semantics, we have added the schedule/2 calls and removed the call to the code for the
first occurrence of the constraint.

Built-in Constraints

Built-in constraints are dealt with by the underlying constraint solver, in this case the
Prolog Herbrand solver. Whenever this solver binds a variable to another variable or
a term (during unification), a unification hook is called (see [Holzbaur, 1992, Demoen,
2002]). In this hook, the CHR part of the Solve transition is implemented. It consists
of reattaching the a↵ected constraints, updating the indexes, and scheduling the a↵ected
constraints again at each priority for which they have occurrences.

Occurrence Code

For each constraint occurrence, a separate predicate is generated, implementing the Sim-
plify and Propagate transitions. Its clauses are shown schematically in Listing 4.11. The
approach is very similar to how occurrences are compiled under the refined operational
semantics of CHR. The di↵erences are that only the occurrences of the same priority are
linked, where occurrences with a dynamic priority are assumed to run at di↵erent priori-
ties, and the priority queue is checked (check activation/1) after each rule application.
The code shown is for the jth priority p occurrence of the c/n constraint which is in an
m-headed rule. The indices r(1), . . . , r(i) refer to the removed heads.

The HeadMatch call checks whether the newly looked-up constraint matches with the
corresponding rule head and with the already matched head constraints. A list of all
candidate constraints for the next head is returned by LookupNext/1; RemainingGuard is
the part of the guard that has not already been tested by the HeadMatch calls. Propagation
history checking and extending is handled by respectively HistoryCheck and AddToHistory.
After having gone through all rule instances for the given occurrence, the next occurrence
is tried (Default) or the activation call returns (Drop). The check activation/1 call
in the occurrence code checks whether a constraint occurrence is scheduled at a higher
priority than the current one. It implements the Activate transition.

4.6 Optimizing the Compilation of CHRrp

We now present the main optimizations implemented in the CHRrp compiler. The proposed
optimizations mainly improve constant factors, but might cause complexity improvements
for some programs as well. We start with optimizations that reduce the number of priority
queue operations. We note that such operations may have a higher than constant cost.

4.6.1 Reducing Priority Queue Operations

A first optimization consists of only scheduling the highest priority occurrence of every
new constraint. Only when the constraint has been activated at this priority and has gone
through all of its occurrences without being deleted, it is scheduled for the next priority.
This is a simple extension of how we linked occurrences of equal priority in the occurrence
code.

109



4.6. Optimizing the Compilation of CHRrp

c/n_prio_p_occ_j_1(S1) :-
( alive(S1), HeadMatch, LookupNext(S2)
-> c/n_prio_p_occ_j_2(S2,S1).
; c/n_prio_p_occ_j + 1_1(S1)
).

c/n_prio_p_occ_j_2([S2|S2],S1) :-
( alive(S2), S2 \= S1, HeadMatch, LookupNext(S3)
-> c/n_prio_p_occ_j_3(S3,S2,S2,S1)
; c/n_prio_p_occ_j_2(S2,S1)
).

c/n_prio_p_occ_j_2([],S1) :- c/n_prio_p_occ_j + 1_1(S1).

...

c/n_prio_p_occ_j_m([Sm|Sm],Sm�1,...,S1) :-
( alive(Sm), Sm \= S1, ..., Sm \= Sm�1,

HeadMatch, RemainingGuard, HistoryCheck
-> AddToHistory, kill(Sr(1)), ..., kill(Sr(i)),

Body, check_activation(p),
( alive(S1)
-> ( ...

... ( alive(Sm�1)
-> c/n_prio_p_occ_j_m(Sm,...,S1)
; c/n_prio_p_occ_j_m � 1(Sm�1,...,S1)
)

...
; true
)

; c/n_prio_p_occ_j_m(Sm,Sm�1,...,S1)
).

c/n_prio_p_occ_j_m([],_,Sm�1,...,S1) :-
c/n_prio_p_occ_j_m � 1(Sm�1,...,S1).

Listing 4.11: Generated occurrence code

110



Chapter 4

In the basic compilation scheme, it is checked whether a higher priority scheduled
constraint exists after each rule firing. In a number of cases, this is not needed. If the
active constraint is removed, it is popped from the top of the activation stack and the
activation check that caused it to be activated, checks again to see if other constraints
are ready for activation. So, since a priority queue check will take place anyway, we do
not need to do it here. If the body of a rule does not contain CHR constraints with a
priority higher than the current one, nor built-in constraints that can trigger any CHR
constraints to be scheduled at a higher priority, then after processing the rule body, the
active constraint remains active and we do not need to check the priority queue. We call
the above optimizations reduced activation checking.

Building further on this idea, we note that by analyzing the body, we can sometimes
determine which constraint will be activated next. Instead of scheduling it first and then
checking the priority queue, we can activate it immediately at its highest priority. We call
this inline activation. Inline activation is not limited to one constraint: we can directly
activate all constraints that have the same highest priority. Indeed, when the first of
these constraints returns from activation, the priority queue cannot contain any constraint
scheduled at a higher priority, because such a constraint would have been activated before
returning.

Example 4.6.1. We illustrate the applicability of the proposed optimizations on the leq

program given in Listing 4.1. The leq/2 constraint has five occurrences at priority 1 and
two at priority 2. New leq/2 constraints are only scheduled at priority 1. Only if an
activated constraint has passed the last priority 1 occurrence, it is scheduled at priority
2. For the first three priority 1 occurrences, as well as for the removed occurrence in the
idempotence rule, the active constraint is removed and so there is no need to check the
priority queue after processing the rule body. Since the body of the remaining priority 1
occurrence equals true, no higher priority constraint is scheduled and so we do not need
to check the queue here either. Finally, for the transitivity rule we have that the only
constraint in the body has a higher priority occurrence than the current active occurrence,
and so we can apply inline activation there.

4.6.2 Late Indexing

Similar to an optimization from regular CHR, we can often postpone storage of constraints,
reducing cost if the constraint is removed before the storage operations are to be applied.
We extend the late storage concept of [Holzbaur et al., 2005] to late indexing, where we
split up the task of storing a constraint into the subtasks of inserting it into di↵erent
indexes. The main idea is that an active constraint can only be suspended by another
constraint for occurrences of that constraint in rules of a higher priority. This implies that
when a constraint is active at a given current priority, it should only be stored in those
indexes that are used by higher priority rules.

Example 4.6.2. In the leq program (Listing 4.1), the leq/2 constraints are indexed

• on the combination of both arguments (antisymmetry and idempotence);

• on the first argument and on the second argument (transitivity);

• on the constraint symbol for the purpose of showing the constraint store.

By using late indexing, new leq/2 constraints are not indexed at the moment they are
asserted, but only scheduled (and this only at priority 1). When an active leq/2 constraint

111



4.6. Optimizing the Compilation of CHRrp

‘survives’ the last priority 1 occurrence, it is indexed on the combination of both arguments
and rescheduled at priority 2. We can postpone the indexing this long because only one
constraint can be on the execution stack for each priority and hence all partner constraints
have either been indexed already, or still need to be activated. Only after a reactivated
leq/2 constraint has passed the last priority 2 occurrence, it is stored in the remaining
indexes. Note that our approach potentially changes the execution order of the program,
which can sometimes contribute to changes in the running time (in either direction).

4.6.3 Passive Occurrences

In this section, we show that some constraint occurrences can be made passive, which
allows us to avoid the overhead of looking up partner constraints, and sometimes also the
overhead related to scheduling and indexing. We first give an example and then present
the general approach.

Example 4.6.3 (Naive Union-Find). Listing 4.12 shows a naive CHRrp implementation
of the union-find algorithm (see e.g. [Tarjan and van Leeuwen, 1984]) and is adapted from
[Schrijvers and Frühwirth, 2006].10

1 :: findNode @ X ⇠> PX \ find(X,R) <=> find(PX,R).
2 :: findRoot @ find(X,R) <=> R = X.
3 :: linkEq @ link(X,X) <=> true.
4 :: link @ link(X,Y) <=> Y ⇠> X.
5 :: union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

Listing 4.12: Naive union-find in CHRrp

The input to this algorithm consists of union/2 and find/2 constraints, representing
the corresponding operations. The ⇠>/2 constraint is a data constraint and is used as
internal representation for linked items. The link/2 constraint is an operation constraint
that causes its arguments to be linked.

By looking at the rule bodies, we see that the ⇠>/2 constraint is only asserted at
priority 4 whereas its partner constraint in rule findNode (find/2) is unconditionally
removed after priority 2 by rule findRoot. Therefore, whenever an ⇠>/2 constraint is
asserted, it will not be able to fire rule findNode and its occurrence in that rule can be
made passive. Hence we do not need to schedule the constraint once it is asserted, but we
do need to store it. Note that the ⇠>/2 constraints could also appear in the initial goal.
We can however consider the goal as the body of a rule that runs at the lowest possible
priority.

We now give the general approach. Consider a constraint occurrence c : j @ p in
some rule r and let pmax be the highest priority at which a c constraint can be asserted
by any rule. For constraints that only appear in the goal, pmax = +1. For constraints
with non-ground indexed arguments, pmax equals the highest priority at which either a c
constraint, or a built-in constraint is asserted. Let prm be the highest priority at which
one of the partner constraints of c : j @ p is unconditionally removed. If no such priority
exists, prm = +1. We assume that p < prm, otherwise rule r can never fire. If prm < pmax

then c : j @ p can be made passive and must be stored for this occurrence before any rule
is tried at priority p.

10Because of the rule priorities, we do not need the root/1 constraints, as is the case for CHR under the
!r semantics.

112



Chapter 4

The correctness of this approach is shown as follows. Consider a rule instance ✓(r)
that is applicable, but is missed because we made c : j @ p passive. Let c0 be the most
recently asserted (or reactivated) constraint in ✓(r). If c0 = c then all partner constraints
of c must have been asserted before c and have not been removed thereafter. Clearly, this
contradicts the assumption that prm < pmax. If c0 6= c then because c is stored at the
relevant indexes, the rule instance is found by c0. This reasoning easily extends to multiple
passive heads.

4.7 Benchmark Evaluation

In this section, we evaluate the performance of our system on some benchmarks. The eval-
uation shows the merits of our optimizations, as well as the competitiveness of our system
with respect to the state-of-the-art K.U.Leuven CHR system [Schrijvers and Demoen,
2004], which is based on the refined operational semantics of (regular) CHR.

Less-or-Equal The leq benchmark uses the program of Listing 4.1 and for given n, the
initial goal G = G1 [G2 with

G1 = {leq(X1, X2), . . . , leq(Xn�1, Xn)} ^G2 = {leq(X
n
, X1)}

From the goal G, a final state is derived in which X1 = X2 = . . . = Xn�1 = Xn.
Because of the batch semantics of CHRrp (i.e., the constraints from the goal are all

inserted into the store before the first of them is activated), we achieve an almost linear
time complexity (in n) for this benchmark because of the order in which constraints are
activated.11 Noteworthy is that by using the late indexing optimization, we get a higher
complexity because the necessary partner constraints for the optimal firing order are not
yet stored. This is illustrated in Figure 4.1, which shows runtimes for the leq benchmarks
in three di↵erent setups. In particular, we have tested our CHRrp system with late index-
ing (Priority, +LI) and without late indexing (Priority, -LI), and have also compared with
regular CHR under the !r semantics (Refined) using the K.U.Leuven CHR system (with
all optimizations turned on). The benchmarks were run on a Pentium IV, 2.8GHz running
SWI-Prolog version 5.6.55. The results do not include garbage collection times. Even with
late indexing, our implementation performs better than the K.U.Leuven CHR system for
large enough values of n. This is mainly due to better indexing used in our system.

Optimizations Table 4.3 shows benchmark results for various programs where the ef-
fect on the runtime of each of the optimizations is measured. The runtimes are given as
percentages of the runtime of the unoptimized version for each program. For the unopti-
mized and fully optimized versions, we also give times in seconds. We use the same setup
as in the previous paragraph. The loop benchmark consists of the following two rules
(and does not rely on priorities):

1 :: a(X) <=> X > 0 | a(X-1). 1 :: a(0) <=> true.

and initial goal {a(220)}. The leq benchmark is based on the one presented in the
previous paragraph. However, to measure the e↵ects of late indexing properly, we ensure
that the same rule instances fire in both the versions with and without late indexing. We
do so by first asserting the subgoal G1, waiting for a fixpoint, and only then asserting

11More precisely, constraints are activated in LIFO order.

113



4.7. Benchmark Evaluation

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10
5

n

tim
e
(m

s)

 

 

Priority, +LI
Priority, −LI
Refined

Figure 4.1: Benchmark results for leq

subgoal G2. We have measured for n = 80. The dijkstra benchmark uses the program
of Example 4.1.2 with a graph of 215 nodes and 3 · 215 edges; the union-find benchmark
uses the program of Example 4.6.3 with 212 random union/2 constraints over an equal
number of elements; and finally the sudoku benchmark uses the program of Example 4.2.4
and solves a puzzle in which initially 16 cells have a value (Figure 4.2).12

1 5
3

2 4

3 4 7
2 6 1

2 5
7 3

1

Figure 4.2: Benchmark Sudoku puzzle

The benchmarks are executed with the late indexing (LI), inline activation (IA) and
reduced activation checking (RAC) optimizations switched on and o↵.

The inline activation analysis assumes that dynamic priority rules run at the highest
possible value of the priority expression. It currently assumes this value is 1, but a bounds
analysis or a user declaration can give a tighter upper-bound. In the dijkstra and sudoku

12This puzzle can be solved without backtracking, but this requires a stronger form of consistency, and
relies on the observation that a symmetric solution can be found by switching numbers 8 and 9.

114



Chapter 4

LI IA RAC loop leq dijkstra union-find sudoku

28.82s 14.10s 45.93s 18.79s 16.17sp
89% 98% 98% 93% 98%p
98% 93% 98% 82% 99%p
46% 65% 95% 39% 114%p p p
8% 57% 91% 17% 111%p p p

2.42s 8.04s 41.84s 3.24s 17.90s

Table 4.3: Benchmark results

benchmarks, we have used a tight upper-bound of 2 for the dynamic priority rules. The
passive analysis applied to the union-find benchmark cuts o↵ another 1% and reduces
the runtime with full optimization to about 16% of the runtime without optimization. In
the loop benchmark, inline activation only has a strong e↵ect in combination with reduced
activation checking: the combined optimizations reduce the runtime by 42% whereas the
individual optimizations only cause a reduction of respectively 11% and 2%. The late
indexing optimization can change the execution order. We have already shown how this
a↵ects the leq benchmark. Similarly, it also a↵ects the sudoku benchmark which has
(amongst others) 11% more rule applications in the version with late indexing, hence the
increase in runtime. Moreover, late indexing only reduces the amount of index insertions
by 3% in this benchmark. Therefore, in this case we get the best result, namely a runtime
of 15.68 seconds, when all optimizations except for late indexing are turned on.

We also compare CHRrp against the K.U.Leuven CHR system under the !r semantics.
For leq, loop and union-find, we execute the same code ignoring priorities (though
sometimes relying on rule order). For dijkstra and sudoku the K.U.Leuven CHR code
encodes the behavior obtained using priorities in CHRrp by other methods. As such the
rules are more involved. The leq benchmark takes about 23% less using CHRrp and
the union-find benchmark takes 62% more time. The loop benchmark takes about 6.4
times longer in our system compared to the code generated by the K.U.Leuven CHR
system, which corresponds to a pure Prolog loop. The main remaining overhead is the
generation and destruction of internal data structures (suspension terms), which is avoided
in K.U.Leuven CHR. Comparison for the sudoku benchmark is di�cult because the search
trees are di↵erent. In this particular case, K.U.Leuven CHR is about 28% faster than our
CHRrp system (without late indexing), but also fires 14% fewer rules.

For the dijkstra benchmark, we compared with the CHR program given in [Sneyers
et al., 2006a].13 Our implementation runs about 2.4 times slower than the (regular) CHR
implementation, but it is also arguably more high-level. Noteworthy is the following
optimization, implemented in [Sneyers et al., 2006a] and reformulated here in terms of our
CHRrp implementation. The rule

1 :: dist(V,D1) \ dist(V,D2) <=> D1 =< D2 | true.

removes the dist(V, D2) constraint which might still be scheduled at priority D2+2. After
firing the rule, the dist(V, D1) constraint is scheduled at priority D1 + 2. Instead of first
(lazily) deleting a scheduled item, and then inserting a new one, the cheaper decrease key

operation can be used instead (because D1  D2). Compared to an altered version of the
original CHR implementation in which this optimization is turned o↵, our code is (only)

13For a fair comparison, we use a combination of Fibonacci heaps for the dynamic priorities, and an
array for static priorities 1 and 2, as priority queue.

115



4.8. Related Work

15% slower.14

4.8 Related Work

Rule Priorities Rule priorities are found in many rule based languages. Production rule
systems like CLIPS [Giarratano, 2002], Jess [Friedman-Hill, 2007] or JBoss Rules [Proctor
et al., 2007] use rule priorities (salience) as part of conflict resolution. These priori-
ties are either integers, or a partial order between rules as in the active database system
Starburst [Widom, 1996]. Most production rule systems use the RETE matching algo-
rithm [Forgy, 1982], which is an eager matching algorithm that exhibits high memory
requirements, but allows for an easy implementation of priority schemes. A lazy matching
algorithm called LEAPS [Miranker et al., 1990] is used by a few production rule systems,
such as Venus [Browne et al., 1994] and JBoss Rules (in an experimental stage). This algo-
rithm is similar to what is used by CHR implementations based on the refined operational
semantics. It seems that in these systems, priorities are only used relative to the active
constraint (dominant object in LEAPS terminology), thus not allowing ‘global’ priorities
like the ones proposed in this work.

Priorities have also been introduced in term rewriting systems (Priority Rewrite Sys-
tems [Baeten et al., 1987]). There, rule priorities are used to resolve conflicts that lead
to non-confluent behavior. More recently, this idea has also been applied to term-graphs
[Caferra et al., 2006]. Brewka and Eiter [1999] use rule priorities to choose between alter-
native answer sets in answer set programming and Garćıa and Simari [2004] use priorities
for a similar purpose in the context of defeasible logic programming.

A bottom-up logic programming language with prioritized rules is given by Ganzinger
and McAllester [2002]. The language supports dynamic priorities that depend on the first
head in the rule. It only computes those (partial) matches that have the current highest
priority, but stores them in a RETE-like fashion.

Priorities in C(L)P Systems Many Constraint (Logic) Programming systems o↵er
some form of priorities (see [Schulte and Stuckey, 2004]). The SICStus finite domain solver
clp(fd) [Carlsson et al., 1997] uses two priority levels: the highest priority is reserved for
constraint propagators implemented by indexicals. Specialized algorithms implementing
global constraints are scheduled at the lowest priority.

ILOG CPLEX [ILO, 2001a] uses priorities to select variables for branching during
branch and bound optimization. ILOG Solver [ILO, 2001b] appears to be using only one
propagation queue although its manual suggests that constraints can be pushed onto a
constraint priority queue at a given priority.

The ECLiPSe Constraint Logic Programming system [Wallace et al., 1997] supports
execution at 12 di↵erent priorities. A goal G is executed at a given priority p by using
call_priority(G, p). The priority system is shared by all constraint libraries, which
allows for a form of global control over cooperating constraint solvers. The Extended
Constraint Handling Rules library (ech) of ECLiPSe uses the priority system to support
a form of static constraint priorities. See [De Koninck, 2008] for more details.

14More precisely, we have replaced the decrease key operation by an insertion and have ensured that
only one labeling step is done for each node.

116



Chapter 4

4.9 Conclusion

We have extended the Constraint Handling Rules language with user-defined rule priori-
ties. The extended language, called CHRrp, supports a high-level, flexible and declarative
form of execution control. It allows the programmer to write programs that are more
concise, but perhaps not confluent under the theoretical operational semantics !t of CHR,
while still o↵ering a high-level and declarative reading. The latter is in contrast with the
low-level, procedural nature of execution under the refined operational semantics !r. In
CHRrp, all execution control information is in the priority annotations, which creates a
clear separation of the logic and control aspects of a CHRrp program.

We have formalized the syntax and semantics of CHRrp and investigated its theoretical
properties. We have shown how common CHR programming patterns translate to CHRrp

and have compared rule priorities with other forms of execution control. Next, we pre-
sented a compilation schema for CHRrp. We have shown the feasibility of implementing
rules with both static and dynamic rule priorities using a lazy matching approach, in con-
trast with eager matching as implemented by the RETE algorithm and derivatives. We
have proposed various ways to optimize the generated code. Some of the optimizations
are completely new (those related to reducing priority queue operations), while others are
refinements of previously known optimizations for regular CHR (namely late indexing and
the passive analysis). The optimizations have been shown to be e↵ective on benchmarks,
which furthermore indicate that our implementation has a comparable performance w.r.t.
the state-of-the-art K.U.Leuven CHR system, while o↵ering a much more high-level form
of execution control.

Bibliography

Slim Abdennadher. Operational semantics and confluence of constraint propagation rules.
In Gert Smolka, editor, 3rd International Conference on Principles and Practice of
Constraint Programming, volume 1330 of Lecture Notes in Computer Science, pages
252–266. Springer, 1997.

Jos C.M. Baeten, Jan A. Bergstra, and Jan Willem Klop. Term rewriting systems with
priorities. In Pierre Lescanne, editor, 2nd International Conference on Rewriting Tech-
niques and Applications, volume 256 of Lecture Notes in Computer Science, pages 83–94.
Springer, 1987.

Stefano Bistarelli, Thom Frühwirth, Michael Marte, and Francesca Rossi. Soft constraint
propagation and solving in Constraint Handling Rules. Computational Intelligence:
Special Issue on Preferences in AI and CP, 20(2):287–307, 2004.

Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended logic programs.
Artificial Intelligence, 109(1-2):297–356, 1999.

James C. Browne, E. Allen Emerson, Mohamed G. Gouda, Daniel P. Miranker, Aloysius K.
Mok, Roberto J. Bayardo, Jr, Sarah E. Chodrow, David Gadbois, F. Furman Haddix,
Thomas W. Hetherington, Lance Obermeyer, Duu-Chung Tsou, Chic-Kan Wang, and
Rwo-Hsi Wang. A new approach to modularity in rule-based programming. In 6th Inter-
national Conference on Tools with Artificial Intelligence, pages 18–25. IEEE Computer
Society, 1994.

117



Bibliography

Ricardo Caferra, Rachid Echahed, and Nicolas Peltier. Rewriting term-graphs with prior-
ity. In Annalisa Bossi and Michael J. Maher, editors, 8th ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming, pages 109–120. ACM, 2006.

Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended finite domain con-
straint solver. In Hugh Glaser, Pieter H. Hartel, and Herbert Kuchen, editors, 9th
International Symposium on Programming Languages: Implementations, Logics, and
Programs, volume 1292 of Lecture Notes in Computer Science, pages 191–206. Springer,
1997.

Leslie De Koninck. Execution control for Constraint Handling Rules. PhD thesis,
K.U.Leuven, 2008.

Bart Demoen. Dynamic attributes, their hProlog implementation, and a first evaluation.
Technical Report CW 350, Department of Computer Science, K.U.Leuven, 2002.

Gregory J. Duck. Compilation of Constraint Handling Rules. PhD thesis, University of
Melbourne, 2005.

Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian Holzbaur.
The refined operational semantics of Constraint Handling Rules. In Bart Demoen and
Vladimir Lifschitz, editors, 20th International Conference on Logic Programming, vol-
ume 3132 of Lecture Notes in Computer Science, pages 90–104. Springer, 2004.

Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19(1):17–37, 1982.

Ernest Friedman-Hill. JESS 7.0p2: The rule engine for the Java platform, 2007.
http://herzberg.ca.sandia.gov/jess.

Thom Frühwirth, Alessandra Di Pierro, and Herbert Wiklicky. Probabilistic Constraint
Handling Rules. Electronic Notes in Theoretical Computer Science, 76:115–130, 2002.

Maurizio Gabbrielli, Jacopo Mauro, and Maria Chiara Meo. On the expressive power of
priorities in CHR. In 11th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, pages 267–276. ACM, 2009.

Harald Ganzinger and David A. McAllester. Logical algorithms. In Peter J. Stuckey,
editor, 18th International Conference on Logic Programming, volume 2401 of Lecture
Notes in Computer Science, pages 209–223. Springer, 2002.

Alejandro Javier Garćıa and Guillermo Ricardo Simari. Defeasible logic programming:
An argumentative approach. Theory and Practice of Logic Programming, 4(1-2):95–
138, 2004.

Joseph C. Giarratano. CLIPS User’s Guide, Version 6.20, 2002.
http://www.ghg.net/clips/CLIPS.html.

Christian Holzbaur. Metastructures versus attributed variables in the context of extensible
unification. In Maurice Bruynooghe and Martin Wirsing, editors, 4th International
Symposium on Programming Language Implementation and Logic Programming, volume
631 of Lecture Notes in Computer Science, pages 260–268. Springer, 1992.

118



Chapter 4

Christian Holzbaur, Maŕıa Garćıa de la Banda, Peter J. Stuckey, and Gregory J. Duck.
Optimizing compilation of Constraint Handling Rules in HAL. Theory and Practice
of Logic Programming: Special Issue on Constraint Handling Rules, 5(4 & 5):503–531,
2005.

ILOG CPLEX 7.5 reference manual. ILOG, 2001a.

ILOG Solver 5.1: Reference Manual. ILOG, 2001b.

Robert A. Kowalski. Algorithm = logic + control. Communications of the ACM, 22(7):
424–436, 1979.

Daniel P. Miranker. TREAT: A better matching algorithm for AI production system
matching. In 6th National Conference on Artificial Intelligence, pages 42–47. AAAI
Press, 1987.

Daniel P. Miranker, David A. Brant, Bernie Lofaso, and David Gadbois. On the perfor-
mance of lazy matching in production systems. In 8th National Conference on Artificial
Intelligence, pages 685–692. AAAI Press / The MIT Press, 1990.

Mark Proctor, Michael Neale, Michael Frandsen, Sam Gri�th, Jr, Edson Tirelli, Fer-
nando Meyer, and Kris Verlaenen. Drools Documentation, Version 4.0.3, 2007.
http://www.jboss.com/products/rules.

Georg Ringwelski and Matthias Hoche. Impact- and cost-oriented propagator scheduling
for faster constraint propagation. In Armin Wolf, Thom Frühwirth, and Marc Meister,
editors, 19th Workshop on (Constraint) Logic Programming, volume 2005-01 of Ulmer
Informatik-Berichte, pages 88–98. Universität Ulm, 2005.

Tom Schrijvers. Analyses, Optimizations and Extensions of Constraint Handling Rules.
PhD thesis, K.U.Leuven, 2005.

Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: implementation and
application. In Thom Frühwirth and Marc Meister, editors, 1st Workshop on Constraint
Handling Rules: Selected Contributions, volume 2004-01 of Ulmer Informatik-Berichte,
pages 1–5. Universität Ulm, 2004.

Tom Schrijvers and Thom Frühwirth. Optimal union-find in Constraint Handling Rules.
Theory and Practice of Logic Programming, 6(1&2), 2006.

Christian Schulte and Peter J. Stuckey. Speeding up constraint propagation. In Mark Wal-
lace, editor, 10th International Conference on Principles and Practice of Constraint Pro-
gramming, volume 3258 of Lecture Notes in Computer Science, pages 619–633. Springer,
2004.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. Dijkstra’s algorithm with Fibonacci heaps:
An executable description in CHR. In Michael Fink, Hans Tompits, and Stefan Woltran,
editors, 20th Workshop on Logic Programming, INFSYS Research Report 1843-06-02,
pages 182–191. TU Wien, 2006a.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. Memory reuse for CHR. In Sandro Etalle
and Miroslaw Truszczynski, editors, 22nd International Conference on Logic Program-
ming, volume 4079 of Lecture Notes in Computer Science, pages 72–86. Springer, 2006b.

119



Bibliography

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complex-
ity of Constraint Handling Rules. To appear in ACM Transactions on Programming
Languages and Systems, 2008.

Jon Sneyers, Wannes Meert, Joost Vennekens, Yoshitaka Kameya, and Taisuke Sato.
CHR(PRISM)-based probabilistic logic learning. Theory and Practice of Logic Pro-
gramming, 10(4-6):433–447, 2010.

Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms.
Journal of the ACM, 31(2):245–281, 1984.

Peter Van Weert. Extension and optimising compilation of Constraint Handling Rules.
PhD thesis, K.U.Leuven, 2010.

Peter Van Weert, Jon Sneyers, Tom Schrijvers, and Bart Demoen. Extending CHR with
negation as absence. In Tom Schrijvers and Thom Frühwirth, editors, 3rd Workshop on
Constraint Handling Rules, Report CW 452, pages 125–140. Department of Computer
Science, K.U.Leuven, 2006.

Peter Van Weert, Leslie De Koninck, and Jon Sneyers. A proposal for a next generation
of CHR. In 6th Workshop on Constraint Handling Rules, pages 1–17, 2009.

Mark Wallace, Stefano Novello, and Joachim Schimpf. ECLiPSe: A platform for constraint
logic programming. ICL Systems Journal, 12(1):159–200, 1997.

Jennifer Widom. The Starburst rule system. In Active Database Systems: Triggers and
Rules for Advanced Database Processing, pages 87–109. Morgan Kaufmann, 1996.

120



Chapter 5

Concurrent CHR

Author: Edmund S.L. Lam
Thesis Title: Parallel Execution of Constraint Handling Rules – Theory,

Implementation And Application
School: National University of Singapore, Singapore
Publication Year: 2010

Foreword

The abstract CHR semantics essentially involves multi-set rewriting over a multi-set of
constraints. This computational model is highly concurrent as theoretically rewriting
steps over non-overlapping multi-sets of constraints can execute concurrently [Frühwirth,
2009]. Most intriguingly, this introduces the possibility for a highly parallel CHR solver
implementation, which can be used as a high-level general purpose parallel programming
language. This means that we can naturally use CHR as a high-level concurrency abstrac-
tion which allows us to focus on programming the synchronization of concurrent resources
and processes, rather than on micro-managing the concurrent accesses of shared memory.

In the coming sections, we detail our view of concurrency in CHR and the idea of CHR
as a parallel programming language. We introduce a concurrent goal-based execution
model for CHR. These execution model di↵erentiates itself from existing ones, in that it
explicitly describes concurrent derivation steps initiated by multiple active CHR goals.
Following this, we introduce a parallel implementation of CHR in Haskell, based on this
concurrent goal-based execution model. We will detail the issues which must be addressed
in order to achieve a practical implementation that scales well with system resources.
Finally, we demonstrate the scalability of this implementation with empirical results.

We begin by introducing concurrency in the context of CHR (Section 5.1), this is
followed by a brief demonstration of parallel programming with CHR (Section 5.1.2).
Next, we formally introduce our concurrent goal-based CHR semantics, k G. It forms the
basis for an e�cient parallel CHR implementation (Section 5.2). Section 5.3 presents a
proof of its correspondence with the abstract CHR semantics. In [Lam, 2010] several subtle
issues of the k G semantics are highlighted.

Refining from [Sulzmann and Lam, 2008], we provide details of implementing a Par-
allel CHR system. Section 5.4 provides a quick review on existing CHR goal based im-
plementations which describes sequential goal execution. We highlight our parallel CHR
implementation in Haskell(GHC) (Section 5.5) and provide experiment results in Section
5.6.



5.1. CHR and Concurrency

Communication channel:

get @ Get(x ),Put(y)() x = y

{Get(m),Put(1 )}⇢get {m = 1} k {Get(n),Put(8 )}⇢get {n = 8}
{Get(m),Put(1 ),Get(n),Put(8 )}⇢⇤ {m = 1 ,n = 8}

Greatest common divisor:

gcd1 @ Gcd(0 )() True
gcd2 @ Gcd(n)\Gcd(m)() m >= n&&n > 0 | Gcd(m � n)

{Gcd(3 ),Gcd(9 )}⇢gcd2 {Gcd(3 ),Gcd(6 )}
k

{Gcd(3 ),Gcd(18 )}⇢gcd2 {Gcd(3 ),Gcd(15 )}
{Gcd(3 ),Gcd(9 ),Gcd(18 )} ⇢gcd2 ,gcd2 {Gcd(3 ),Gcd(6 ),Gcd(15 )}

⇢⇤ {Gcd(3 )}
{Gcd(3 ),Gcd(9 ),Gcd(18 )}⇢⇤ {Gcd(3 )}

Figure 5.1: Communication channel and greatest common divisor

Due to the focus on Haskell, this chapter follows the Haskell rather than the Prolog
syntax conventions. For example, variable names are lowercase characters.

5.1 CHR and Concurrency

The abstract CHR semantics is non-deterministic and highly concurrent. Rule instances
can be applied concurrently as long as they do not interfere. By interfere, we mean that
they simplify (delete) distinct constraints in a store. In other words, they do not content
for the same resources by attempting to simplify the same constraints.

Figure 5.1 illustrates concurrency via two examples, communication bu↵er and greatest
common divisor (Gcd). We indicate concurrent derivations via the symbol k. Given deriva-
tion steps {Get(m),Put(1 )}⇢get {m = 1} and {Get(n),Put(8 )}⇢get {n = 8}, we can
straightforwardly combine both derivations, which leads to the final store {m = 1 ,n = 8}.
Note that we have another possible final store {n = 1 ,m = 8}, that is deriveable from
an initial store {Get(m),Put(1 ),Get(n), Put(8)}. The abstract CHR semantics is non-
deterministic and can possibly yield more than one result for a particular program.

For Gcd, we show a more complex parallel composition: we combine the derivations
{Gcd(3 ),Gcd(9 )}⇢gcd2 {Gcd(3 ),Gcd(6 )} and {Gcd(3 ),Gcd(18 )}⇢gcd2 {Gcd(3 ),Gcd(15 )}
in a way that they share only propagated constraints (i.e. Gcd(3 )). The resultant parallel
derivation is consistent since the propagated components are not deleted.

5.1.1 Concurrency in the Abstract CHR Semantics

An important property in the CHR abstract semantics is monotonicity. Illustrated in
Theorem 4, monotonicity of CHR execution guarantees that derivations of the CHR ab-
stract semantics remain valid if we include a larger context (eg. A ⇢⇤ B is valid under
the additional context of constraints S, hence A ] S ⇢⇤ B ] S). This has been formally
verified in [Abdennadher et al., 1999].

122



Chapter 5

Theorem 4 (Monotonicity of CHR). For any sets of CHR constraints A,B and S, if
A⇢⇤ B then A ] S ⇢⇤ B ] S

An immediate consequence of monotonicity is that concurrent CHR executions as
sketched above are sound in the sense that their e↵ect can be reproduced using an appro-
priate sequential sequence of execution steps. Based on this observation, we can justify
the concurrency rule (using an interleaving semantics approach),

(Concurrency)
S ] S1⇢⇤ S ] S2 S ] S3⇢⇤ S ] S4

S ] S1 ] S3⇢⇤ S ] S2 ] S4

This rule essentially states that CHR derivations which a↵ect di↵erent parts of the
constraint store can be composable (i.e. joined as though that occur concurrently).
In [Frühwirth, 2005], the above is referred to as ”Strong Parallelism of CHR”. How-
ever, we prefer to use the term ”concurrency” instead of ”parallelism”. In our context,
concurrency means to run a CHR program (i.e. a set of CHR rules) by using concurrent
execution threads. A related, more detailed discussion on parallelism and concurrency for
CHR can be found in [Frühwirth, 2009].

5.1.2 Parallel Programming in CHR

The example from [Frühwirth, 2009] in Figure 5.2 is a CHR encoding of the well-known
merge sort algorithm. To sort a sequence of (distinct) elements e1, ..., em where m is a
power of 2, we apply the rules to the initial constraint store Merge(1 , e1 ), ...,Merge(1 , em).
Constraint Merge(n, e) refers to a sorted sequence of numbers at level n whose smallest
element is e. Constraint Next(a, b) denotes that a is before b in the sorting order. Rule
merge2 initiates the merging of two sorted lists and creates a new sorted list at the next
level. The actual merging is performed by rule merge1 . Sorting of sublists belonging
to di↵erent mergers can be performed simultaneously. See the example derivation in
Figure 5.2 where we simultaneously sort the characters a, c, e, g and b, d, f, h.

For another example, consider the following CHR rules implementing a concurrent
dictionary, whose concurrent lookup and set operations can occur in parallel as long as the
operated keys are non-overlapping:

lookup @ Entry(k1, v)\Lookup(k2, x)() k1 == k2 | x = v
set @ Set(k1, v), Entry(k2, )() k1 == k2 | Entry(k2, v)
new @ NewEntry(k, v)() Entry(k, v)

Constraint Entry(k , v) represents a dictionary mapping of key k to value v. The CHR
rule lookup models the action of looking up a key k2 in the dictionary, and assigning its
value to v. Similarly, the CHR rule set represents the action of setting a new value v to the
dictionary key k, while new creates new entries in the dictionary. Note that constraints
Lookup(k , x ), Set(k , v) and newEntry(k , v) represent triggers to the respective actions.
The following derivation illustrates non-overlapping dictionary operations:

{Lookup(0a0, x1), Entry(0a0, 1)}⇢ {x1 = 1, Entry(0a0, 1)}
||

{Lookup(0b0, x2), Entry(0b0, 2)}⇢ {x2 = 2, Entry(0b0, 2)}
||

{Set(0c0, 10), Entry(0c0, 3)}⇢ {Entry(0c0, 10)}
{Lookup(0a0, x1), Lookup(0b0, x2), Set(0c0, 10), Entry(0a0, 1), Entry(0b0, 2), Entry(0c0, 3)}

⇢⇤ {x1 = 1, x2 = 2, Entry(0a0, 1), Entry(0b0, 2), Entry(0c0, 10)}

123



5.1. CHR and Concurrency

merge1 @ Next(x , a) \ Next(x , b)() a < b | Next(a, b)
merge2 @ Merge(n, a),Merge(n, b)() a < b | Next(a, b),Merge(n + 1 , a)

Shorthands: N = Next and M = Merge

M (1 , a),M (1 , c),M (1 , e),M (1 , g)

⇢merge2 M (2 , a),M (1 , c),M (1 , e),N (a, g)

⇢merge2 M (2 , a),M (2 , c),N (a, g),N (c, e)

⇢merge2 M (3 , a),N (a, g),N (c, e),N (a, c)

⇢merge1 M (3 , a),N (a, c),N (c, g),N (c, e)

⇢merge1 M (3 , a),N (a, c),N (c, e),N (e, g)

k
M (1 , b),M (1 , d),M (1 , f ),M (1 , h)

⇢⇤ M (3 , b),N (b, d),N (d , f ),N (f , h)

M (3 , a),N (a, c),N (c, e),N (e, g),M (3 , b),N (b, d),N (d , f ),N (f , h)

⇢merge2 M (4 , a),N (a, c),N (a, b),N (c, e),N (e, g),N (b, d),N (d , f ),N (f , h)

⇢merge1 M (4 , a),N (a, b),N (b, c),N (c, e),N (e, g),N (b, d),N (d , f ),N (f , h)

⇢merge1 M (4 , a),N (a, b),N (b, c),N (c, d),N (c, e),N (e, g),N (d , f ),N (f , h)

⇢merge1 M (4 , a),N (a, b),N (b, c),N (c, d),N (d , e),N (e, g),N (d , f ),N (f , h)

⇢merge1 M (4 , a),N (a, b),N (b, c),N (c, d),N (d , e),N (e, f ),N (e, g),N (f , h)

⇢merge1 M (4 , a),N (a, b),N (b, c),N (c, d),N (d , e),N (e, f ),N (f , g),N (f , h)

⇢merge1 M (4 , a),N (a, b),N (b, c),N (c, d),N (d , e),N (e, f ),N (f , g),N (g , h)

M (1 , a),M (1 , c),M (1 , e),M (1 , g),M (1 , b),M (1 , d),M (1 , f ),M (1 , h)

⇢⇤ M (4 , a),N (a, b),N (b, c),N (c, d),N (d , e),N (e, f ),N (f , g),N (g , h)

Figure 5.2: Merge sort

In the last example, we implement the parallel programming framework map-reduce in
CHR:

map1 @ Map((x : xs),m, r)()Work(x,m, r),Map(xs,m, r)
map2 @ Map([ ], , )() True
work @ Work(x,m, r)() Reduce([m(x)], r)
reduce @ Reduce(xs1, r), Reduce(xs2, )() Reduce(r(xs1, xs2), r)

We assume that m and r are higher-order functions representing the abstract map and
reduce functions. The constraint Map(xs,m, r) initiates the map1 rule which maps the
function m onto each element in xs. Each application of m is represented byWork(x ,m, r)
and the actual application m(x) is implemented by the rule work, producing the results
Reduce(xs, r). The rule reducemodels the reduce step, combining the results in the manner
specified by reduce function r1 When CHR rewritings are exhaustively applied, the store
will have a single Reduce(xs, r) constraint where xs is the final result. Note that the

1For simplicity, we assume a simple setting, where the ordering of elements need not be preserved.

124



Chapter 5

Notations:
] Multi-set union
[ Set union
|= Theoretic entailment
� Substitution
a Set/List of a’s

CHR Syntax:
Functions f ::= + |>| && | ...
Constants v ::= 1 | true | ...
Terms t ::= x | f t
Predicates p ::= Get | Put | ...
Equations e ::= t = t
CHR Constraints c ::= p(t)
Constraints b ::= e | c
CHR Guards tg ::= t
CHR Heads H ::= c
CHR Body B ::= b
CHR Rule R ::= r @ H \ H () tg | B
CHR Program P ::= R
Num Constraint nc ::= c#i
Goal Constraint g ::= c | e | nc
Stored Constraint sc ::= nc | e
CHR Num Store Sn ::= sc
CHR Goals G ::= g
CHR State � ::= hG,Sni
Side E↵ects � ::= Sn \ Sn

Figure 5.3: CHR Goal-based Syntax

concurrent CHR semantics models the parallelism of the map reduce framework: multiple
Work(x ,m, r) constraints are free to be applied to the work rule concurrently, while non-
overlapping pairs of Reduce(xs, r) can be combined by the reduce rule concurrently.

Note that in the examples above, the CHR rules here declaratively defines the synchro-
nization patterns of the constraints representing concurrent processes, while the concurrent
CHR semantics abstracts away the actual details of the synchronization. To execute such
programs to scale with multi-core systems, we will require an implementation of the CHR
concurrent semantics that actually executes multiple CHR rewritings in parallel. We will
provide details of such an implementation in Chapter 5.4.

5.2 Concurrent Goal-Based Refined CHR Semantics

We present the formal details of the concurrent goal-based CHR semantics. Figure 5.3
describes the necessary syntactic extensions. Because constraints in the store now have
unique identifiers, we treat the store as a set (as opposed to a multiset) and use set
union [. Goals are still treated as multi-sets because they can contain multiple copies
of (un-numbered) CHR constraints. Please note that we will use lower-case identifiers
for variables, upper-case identifiers for constants2 Note that we will only consider CHR

2Advocates of logic constraint programming should have noticed this “abnormally”. We sincerely
apologize, but insist that this is for consistency with our Haskell formulation of CHR in Chapter 5.4

125



5.2. Concurrent Goal-Based Refined CHR Semantics

(Solve)
W = WakeUp(e, Sn)

h{e} ]G | Sni
W\{}
⇢G hW ]G | {e} [ Sni

(Activate)
i is a fresh identifier

h{c} ]G | Sni
{}\{}
⇢G h{c#i} ]G | {c#i} [ Sni

(Simplify)

(r @ H 0
P \H 0

S () tg | B0) 2 P such that

9� Eqs(Sn) |= � ^ tg �(H 0
P ) = DropIds(HP )

�(H 0
S) = �({c} ]DropIds(HS)) � = HP \{c#j} [HS

h{c#j} ]G | {c#j} [HP [HS [ Sni
�⇢G h�(B0) ]G | HS [ Sni

(Propagate)

(r @ H 0
P \H 0

S () tg | B0) 2 P such that

9� Eqs(Sn) |= � ^ tg �(H 0
S) = DropIds(HS)

�(H 0
P ) = �({c} ]DropIds(HP )) � = {c#j} [HP \HS

h{c#j} ]G | {c#j} [HP [HS [ Sni
�⇢G h�(B0) ] {c#j} ]G | {c#j} [HP [ Sni

(Drop)
(Simplify) and (Propagate) does not apply on c#j in Sn

h{c#j} ]G | Sni
{}\{}
⇢G hG | Sni

where Eqs(S) = {e | e 2 S, e is an equation}
DropIds(Sn) = {c | c#i 2 Sn} ] {e | e 2 Sn, e is an equation}
WakeUp(e, Sn) = {c#i | c#i 2 Sn ^ � m.g.u. of Eqs(Sn)^

✓ m.g.u. of Eqs(Sn [ {e}) ^ �(c) 6= ✓(c)}
Figure 5.4: Goal-Based CHR Semantics (Single-Step Execution

�⇢G)

rules with non-empty simplification heads (i.e. no pure propagation rules). The actual
semantics is given in two parts. Figure 5.4 describes the single-step execution part whereas
Figure 5.5 introduces the concurrent execution part. The first part is a generalization of
the refined CHR semantics as given in [Duck, 2005] whereas the second (concurrent) part
is novel.

We first discuss the single-step derivation steps in Figure 5.4. A derivation step �
�⇢G

�0 maps the CHR state � to �0 with some side-e↵ect �. � represents the constraints that
where propagated or simplified during rule application. Hence derivation steps that do
not involve rule application ((Activate) and (Drop)) contains no side-e↵ects (i.e. {}\{}).
We will omit side-e↵ects � as and when it is not relevant to our discussions. We ignore the
(Solve) step for the moment. In (Activate), we activate a goal CHR constraint by assigning
it a fresh unique identifier and adding it to the store. Rewrite rules are executed in steps
(Simplify) and (Propagate). We distinguish if the rewrite rule is executed on a simplified
or propagated active (goal) constraint c#i. For both cases, we seek for the missing partner
constraints in the store for some matching substitution �. The auxiliary function DropIds
ignores the unique identifiers of numbered constraints. They don’t matter when finding a
rule head match. The guard tg must be entailed by the primitive (here equations) store
constraints under the substitution �.

In case of a simplified goal, step (Simplify), we apply the rule instance of r by deleting

126



Chapter 5

(Lift)
hG | Sni

�⇢G hG0 | Sn0i

hG | Sni
�⇢||G hG0 | Sn0i

(Goal Concurrency)

hG1 | HS1 [HS2 [ Si
�1⇢||G hG0

1 | HS2 [ Si

hG2 | HS1 [HS2 [ Si
�2⇢||G hG0

2 | HS1 [ Si
�1 = HP1\HS1 �2 = HP2\HS2

HP1 ✓ S HP2 ✓ S � = HP1 [HP2\HS1 [HS2

hG1 ]G2 ]G | HS1 [HS2 [ Si
�⇢||G hG0

1 ]G0

2 ]G | Si

(Closure)
�

�⇢||G �
0

�⇢⇤

||G
�0

�
�⇢||G �

0 �0⇢⇤

||G
�00

�⇢⇤

||G
�00

Figure 5.5: Goal-Based CHR Semantics (Concurrent Part
�⇢||G)

all simplified matching constraints HS and adding the rule body instance �(B) into the
goals. Since c#i is simplified, we drop c#i from the goals as it does not exist in the
store any more. In case of a propagated goal, step (Propagate), c#i remains in the goal
set as well as in the store and thus can possibly fire further rules instances. For both

(Simplify) and (Propagate) derivation step, say �
HP \HS⇢G �0, we record as side-e↵ect the

numbered constraints in the store that were propagated (HP ) or simplified (HS) during
the derivation step. We will elaborate on the purpose of side-e↵ects when we introduce
the concurrent part of the semantics.

In step (Drop), we remove an active constraint from the set of goals, if the constraint
failed to trigger any CHR rule.

Rule (Solve) moves an equation goal e into the store and wakes up (reactivates) any
numbered constraint in the store which can possibly trigger further CHR rules due to the
presence of e. Here is a simple example to show why reactivation is necessary.

r1 @ A(x), B(x)() C(x)

h{a = 2} | {A(a)#1, B(2)#2}i

(Solve)
{A(2)#1}\{}
⇢G h{A(2)#1} | {A(2)#1, B(2)#2, a = 2}i

(Simp r1)
{}\{A(2)#1,B(2)#2}

⇢G h{C(2)} | {a = 2}i
...

For clarity, we normalize all constraints in the store once an equation is added. Prior to
addition of a = 2, A(a)#1, B(2)#2 cannot fire rule r1. After adding a = 2 however, we can
normalizeA(a)#1 to A(2)#2, which can now fire r1 withB(2)#2. To guarantee exhaustive
rule firings, we reactivate A(2)#2 by adding it back to the set of goals. WakeUp(e, Sn)
represents a conservative approximation of the to be reactivated constraints [Duck, 2005].
Note we treat reactivated constraints as propagated constraints in the side-e↵ects.

Figure 5.5 presents the concurrent part of the goal-based operational semantics. In
the (Lift) step, we turn a sequential goal-based derivation into a concurrent derivation.

127



5.2. Concurrent Goal-Based Refined CHR Semantics

Short hands: G = Get P = Put

h{G(x1), G(x2), P (1), P (2)} | {}i

(D1a Activate)
{}\{}⇢G h{G(x1)#1, G(x2), P (1), P (2)} | {G(x1)#1}i

||

(D1b Activate)
{}\{}⇢G h{G(x1), G(x2)#2, P (1), P (2)} | {G(x2)#2}i
h{G(x1), G(x2), P (1), P (2)} | {}i

(D1a || D1b)
{}\{}⇢||G h{G(x1)#1, G(x2)#2, P (1), P (2)} | {G(x1)#1, G(x2)#2}i

(D2a Drop)
{}\{}⇢G h{G(x2)#2, P (1), P (2)} | {G(x1)#1, G(x2)#2}i

||

(D2b Drop)
{}\{}⇢G h{G(x1)#1, P (1), P (2)} | {G(x1)#1, G(x2)#2}i

h{G(x1)#1, G(x2)#2, P (1), P (2)} | {G(x1)#1, G(x2)#2}i

(D2a || D2b)
{}\{}⇢||G h{P (1), P (2)} | {G(x1)#1, G(x2)#2}i

(D3a Activate)
{}\{}⇢G h{P (1)#3, P (2)} | {G(x1)#1, G(x2)#2, P (1)#3}i

||

(D3b Activate)
{}\{}⇢G h{P (1), P (2)#4} | {G(x1)#1, G(x2)#2, P (2)#4}i
h{P (1), P (2)} | {G(x1)#1, G(x2)#2}i

(D3a || D3b)
{}\{}⇢||G h{P (1)#3, P (2)#4} | {G(x1)#1, G(x2)#2, P (1)#3, P (2)#4}i

(D4a Fire get)
�1⇢G h{x1 = 1, P (2)#4} | {G(x2)#2, P (2)#4}i

||

(D4b Fire get)
�2⇢G h{P (1)#3, x2 = 2} | {G(x1)#1, P (1)#3}i

where �1 = {}\{G(x1)#1, P (1)#3} �2 = {}\{G(x2)#2, P (1)#4}
h{P (1)#3, P (2)#4} | {G(x1)#1, G(x2)#2, P (1)#3, P (2)#4}i

(D4a || D4b)
�⇢||G h{x1 = 1, x2 = 2} | {}i

where � = {}\{G(x1)#1, P (1)#3, G(x2)#2, P (1)#4}

(D5a Solve)
{}\{}⇢G h{x2 = 2} | {x1 = 1}i || (D5b Solve)

{}\{}⇢G h{x1 = 1} | {x2 = 2}i
h{x1 = 1, x2 = 2} | {}i

(D5a || D5b)
{}\{}⇢||G h{} | {x1 = 1, x2 = 2}i

Figure 5.6: Example of concurrent goal-based CHR derivation

Note that side-e↵ects are retained. Step (Goal Concurrency) joins together two concurrent
derivations operating on a shared store, if their rewriting side-e↵ects �1 and �2 are non-
overlapping as defined below.

Definition 5.2.1 (Non-overlapping Rewriting Side-E↵ects). Two rewriting side-e↵ects
�1 = HP1\HS1 and �2 = HP2\HS2 are said to be non-overlapping, if and only if HS1 \
(HP2 [HS2) = {} and HS2 \ (HP1 [HS1) = {}

Concurrent derivations with non-overlapping side-e↵ects essentially simplify distinct
constraints in the store, as well as propagate constraints which are not simplified by one
another. The (Goal Concurrency) step expresses non-overlapping side-e↵ects by struc-
turally enforcing that simplified constraints HS1 and HS2 match distinct parts of the
store, while propagated constraints HP1 and HP2 are found in the shared part of the store
S not modified by both concurrent derivations. In the resulting concurrent derivation, the
side-e↵ects �1 and �2 are composed by the union of the propagate and simplify components
respectively, forming �.

The (Closure) step defines transitive application of the concurrent goal-based deriva-
tion. Because side-e↵ect labels are only necessary for the (Goal Concurrency) step, we
drop the side-e↵ects in transitive derivations.

Figure 5.6 shows a sample concurrent goal-based CHR derivation. We assume two
concurrent threads, referred to as a and b, each thread executes the standard goal-based

derivation steps. The novelty is that each goal-based derivation step
�⇢G now records its

128



Chapter 5

e↵ect on the store. The e↵ect � represents the sets of constraints in the store which were
propagated or simplified. Goal-based derivation steps can be executed concurrently if their
e↵ects are not in conflict.

Each thread activates one of the two Get goals (Steps D1a and D1b). Since both
steps involve no rule application, side-e↵ects are empty ({}\{}). Both steps are executed

concurrently denoted by the concurrent derivation step (D1a || D2a)
{}\{}

⇢||G . Concurrent
goal-based execution threads operate on a shared store and their e↵ects will be immediately
made visible to other threads. This is important to guarantee exhaustive rule firings.

In the second step (D2a || D2b), both active goals are dropped because there is no
complete match for any rule head yet. Next, steps D3a and D3b activate the last two
goal constraints, Put(1) and Put(2). Each active constraint can match with either of
the two Get constraints in the store. We assume that active constraint Put(1)#3 in step
D4a matches with Get(x1)#1, while Put(2)#4 in step D4b matches with Get(x2)#2,
corresponding to the side-e↵ects �1 and �2. This guarantees that steps D4a and D4b
operates on di↵erent (non-conflicting) parts of the store. Thus, we can execute them
concurrently which yields step (D4a || D4b). Their side-e↵ects are combined as �. Finally,
in step (D5a || D5b) we concurrently solve the two remaining equations by adding them
into the store and we are done.

5.3 Correspondence Results

The correctness of our concurrent goal-based semantics is established by showing that all
concurrent derivations can be replicated by sequential goal-based executions. We also prove
that there is a correspondence between our goal-based CHR semantics with the abstract
CHR semantics. This proof generalizes from [Duck, 2005] which shows a correspondence
between the refined CHR operational semantics and abstract semantics.

We formally verify that the concurrent goal-based semantics is in exact correspondence
to the abstract CHR semantics when it comes to termination and exhaustive rule firings.
Detailed proofs are given in [Lam, 2010]. In the following sections, we provide key lemmas
and proof sketches.

5.3.1 Formal Definitions

We first introduce some elementary definitions before stating the formal results.
The first two definitions concern the abstract CHR semantics. A store is final if no

further rules are applicable.

Definition 5.3.1 (Final Store). A store S is known as a final store, denoted FinalA(S)
if and only if no more CHR rules applies on it (i.e. ¬9S0 such that S ⇢A S0).

A CHR program terminates if all derivations lead to a final store in a finite number of
states.

Definition 5.3.2 (Terminating CHR Programs). A CHR program P is said to be termi-
nating, if and only if for any CHR store S, there exists no infinite derivation paths from
S, via the program P.

Next, we introduce some definitions in terms of the goal-based semantics. In an initial
state, all constraints are goals and the store is empty. Final states are states which no
longer have any goals. We will prove the exhaustiveness of the goal-based semantics by

129



5.3. Correspondence Results

proving a correspondence between final stores in the abstract semantics and final states of
the goal-based semantics

Definition 5.3.3 (Initial and Final CHR States). An initial CHR state is a CHR state
of the form hG | {}i where G contains no numbered constraints (c#n), while a final CHR
state is of the form h{} | Sni

A state is reachable if there exists a (sequential) goal-based sequence of derivations to
this state. We write ⇢⇤

G
to denote the transitive closure of ⇢G .

Definition 5.3.4 (Sequentially Reachable CHR states). For any CHR program P, a CHR
state hG0 | Sn0i is said to be sequentially reachable by P if and only if there exists some
initial CHR state hG | {}i such that hG | {}i⇢⇤

G
hG0 | Sn0i.

5.3.2 Correspondence of Derivations

We build a correspondence between the abstract semantics and the concurrent goal-based
semantics. We begin with Theorem 5, which states the correspondence of the (sequential)
goal-based semantics.

Theorem 5 (Correspondence of Sequential Derivations). For any reachable CHR state
hG | Sni, CHR state hG0 | Sn0i and CHR program P,

if hG | Sni⇢⇤

G
hG0 | Sn0i

then (NoIds(G) ]DropIds(Sn)) = (NoIds(G0) ]DropIds(Sn0)) _
(NoIds(G) ]DropIds(Sn))⇢⇤

A
(NoIds(G0) ]DropIds(Sn0))

where NoIds = {c | c 2 G, c is a CHR constraint} ] {e | e 2 G, e is an equation}

The above result guarantees that any sequence of sequential goal-based derivations
starting from a reachable CHR state either yields equivalent CHR abstract stores (due to
goal-based behaviour not captured by the abstract semantics, namely (Solve) (Activate),
(Drop)) or corresponds to a derivation in the abstract semantics (due to rule application).
A goal-based semantics state hG | Sni is related to an abstract semantics store by removing
all numbered constraints in G and union it with constraints in Sn without their identifiers.
The theorem and its proof is a generalization of an earlier result given in [Duck, 2005].

We formalize the observation that the goal context can be extended without interfering
with previous goal executions.

Lemma 5.3.5 (Monotonicity of Goals in Goal-based Semantics). For any goals G,G0 and
G00 and CHR store Sn and Sn0, If hG | Sni ⇢⇤

G
hG0 | Sn0i then hG ] G00 | Sni ⇢⇤

G

hG0 ]G00 | Sn0i.

Next, we state that given any goal-based derivation with side-e↵ects �, we can safely
ignore any constraints (represented by S2) in the store which is not part of �.

Lemma 5.3.6 (Isolation of Goal-based Derivations).

If hG | HP [HS [ S1 [ S2i
HP \HS⇢G hG0 | HP [ S0

1 [ S2i

then hG | HP [HS [ S1i
HP \HS⇢G hG0 | HP [ S0

1i

Lemma 5.3.6 can be straight-forwardly extended to multiple derivation steps. This is
stated in Lemma 5.3.7.

130



Chapter 5

Lemma 5.3.7 (Isolation of Transitive Goal-based Derivations).

If hG | HP [HS [ S1 [ S2i⇢⇤

G
hG0 | HP [ S0

1 [ S2i
with side-e↵ects � = HP \HS

then hG | HP [HS [ S1i⇢⇤

G
hG0 | HP [ S0

1i

The next lemma states that any concurrent derivation starting from a reachable CHR
state can be replicated by a sequence of sequential goal-based derivations. Lemma 5.3.8
is the first step to prove the correspondence of concurrent goal-based derivations.

Lemma 5.3.8 (Sequential Reachability of Concurrent Derivation Steps). For any sequen-

tially reachable CHR state �, CHR state �0 and rewriting side-e↵ects � if �
�⇢||G �

0 then
�0 is sequentially reachable, �⇢⇤

G
�0 with side-e↵ects �.

Proof. (Sketch) We can always reduce k mutually non-overlapping concurrent derivations
into several applications of the (Goal Concurrency) step. Hence we can prove Lemma
5.3.8 by structural induction over the concurrent goal-based derivation steps (Lift) and
(Goal Concurrency) where we use Lemmas 5.3.5 and 5.3.7 to show that concurrent deriva-
tions can always be replicated by a sequence of sequential goal-based derivations.

Theorem 6 (Sequential Reachability of Concurrent Derivations). For any initial CHR
state �, CHR state �0 and CHR Program P, if �⇢⇤

||G
�0 then �⇢⇤

G
�0.

The above can be directly proven from Lemma 5.3.8 by converting each single step
concurrent derivation into a sequence of sequential derivations, and showing their com-
posibility.

From Theorem 5 and 6, we have the following corollary, which states the correspondence
between concurrent goal-based CHR derivations and abstract CHR derivations.

Corollary 5.3.9 (Correspondence of Concurrent Derivations). For any reachable CHR
state hG | Sni, CHR state hG0 | Sn0i and CHR program P,

if hG | Sni⇢⇤

||G
hG0 | Sn0i

then (NoIds(G) ]DropIds(Sn)) = (NoIds(G0) ]DropIds(Sn0)) _
(NoIds(G) ]DropIds(Sn))⇢⇤

A
(NoIds(G0) ]DropIds(Sn0))

where NoIds = {c | c 2 G, c is a CHR constraint} ] {e | e 2 G, e is an equation}

5.3.3 Correspondence of Termination

We show that all derivations from a initial state to final states in the concurrent goal-based
semantics corresponds to some derivation from a store to a final store in the abstract
semantics. We first define rule head instances:

Definition 5.3.10 (Rule head instances). For any CHR state � = hG,Sni and CHR
program P, any (HP [ HS) ✓ Sn is known as a rule head instance of �, if and only if
9(r @ H 0

P
\H 0

P
() tg | B) 2 P,9� Eqs(Sn) |= � ^ tg and �(H 0

P
]H 0

S
) = DropIds(HP [

HS).

Definition 5.3.11 (Active rule head instances). For any CHR state � = hG,Sni and
CHR program P, a rule head instance H of � is said to be active if and only if there exists
at least one c#i 2 G such that c#i 2 H.

131



5.4. Implementation of CHR, a Quick Review

Rule head instances (Definition 5.3.10) are basically minimal subsets of the store which
matches a rule head. Active rule head instance (Definition 5.3.11) additional have at least
one of its numbered constraint c#i in the goals as well. Therefore, by the definition of the
goal-based semantics, active rule head instances will eventually be triggered by either the
(Simplify) or (Propagate) derivation steps.

Lemma 5.3.12 (Rule instances in reachable states are always active). For any reachable
CHR state hG | Sni, any rule head instance H ✓ Sn must be active. i.e. 9c#i 2 H such
that c#i 2 G.

Lemma 5.3.12 shows that all rule head instances in reachable states are always active.
This means that by applying the semantics steps in any way, we must eventually apply
the rule head instances as long as all its constraints remain in the store.

Theorem 7 states that termination of a concurrent goal-based derivation corresponds to
termination in the abstract semantics. This is of course, provided that the CHR program
is terminating.

Theorem 7 (Correspondence of Termination). For any initial CHR state hG, {}i, final
CHR state h{}, Sni and terminating CHR program P,

if hG | {}i⇢⇤

||G
h{} | Sni

then G⇢⇤

A
DropIds(Sn) and FinalA(DropIds(Sn))

We prove this theorem by first using Theorem 6 which guarantees that a concurrent
goal-based derivation from an initial state to a final state corresponds to some abstract
semantics derivation. We next show that final states corresponds to final stores in the
abstract semantics. This is done by contradiction, showing that assuming otherwise con-
tradicts with Lemma 5.3.12.

5.4 Implementation of CHR, a Quick Review

In the execution of CHR goals, rule head matching is essentially the most technically
complex and computationally intensive procedure that is involved. As such, any practi-
cal implementation of goal-based CHR execution must include a highly e�cient rule-head
matching routine. Recall the (simplify) derivation step of the concurrent goal-based se-
mantics k G:

(Simplify)

(r @ H 0
P \H 0

S () tg | B0) 2 P such that

9� Eqs(Sn) |= � ^ tg �(H 0
P ) = DropIds(HP )

�(H 0
S) = �({c} ]DropIds(HS)) � = HP \{c#j} [HS

h{c#j} ]G | {c#j} [HP [HS [ Sni
�⇢G h�(B0) ]G | HS [ Sni

This, as well as the (propagate) derivation step, models CHR rewritings in a declarative
manner. But operationally, it specifies little about how the actual matching as well as
searching for constraints is done. For instance, the premise of the derivation step simply
states that given the goal c#j, there must exist some constraints HS and HP in the
constraint store that matches with the rule heads for this derivation step to be possible,
but not exactly how such constraints in the store are located or how they are selected. In
this section, we will provide more details on this problem which we will refer to as the
CHR goal-based matching problem.

132



Chapter 5

Non-linearized CHR Rule:

r1 @ A(1 , x ) \ B(x , y),C (z )() y > z | D(x , y , z )

Linearized CHR Rule:

r1 @ A(1 , x1 ) \ B(x2 , y),C (z )() y > z ^ x1 = x2 | D(x1 , y , z )

Figure 5.7: Linearizing CHR Rules

CHR Syntax:

Constants v ::= 1 | true | ...
Terms t ::= x | f t
Predicates p ::= Get | Put | ...
Equations e ::= t = t
CHR Constraints c ::= p(t)
Constraints b ::= e | c
CHR Guards tg ::= t
CHR Heads H ::= c
CHR Body B ::= b
CHR Rule R ::= r @ H \ H () tg | B

CHR Goal-Based Rule Compilation:

Rewrite Type rw ::= S | P
Match Task mt ::= Goal rw c | Lookup rw c | Guard tg
Match Task Sequence mts ::= mt
Rule Compilation occ ::= (mts,B)

Figure 5.8: CHR Goal-Based Rule Compilation

5.4.1 CHR Goal-Based Rule Compilation

We highlight a compilation scheme for CHR rules which encodes CHR rules as a list of
search tasks that locates a complete rule-head match, and a set of body constraints. This
CHR compilation scheme, which we shall refer to as the CHR Goal-based Rule Compilation,
is comparable with those used in existing CHR systems [Holzbaur et al., 2005].

For convenience, we assume that rule heads are linear. That is, each variable occurs
at most once in a constraint in the rule head. It is straightforward to linearize CHR rules.
For instance, Figure 5.7 shows the CHR rule r1 in its non-linearized and linearized form
respectively.

Figure 5.8 shows the formal description of CHR goal-based rule compilations. For
convenience, we also include the relevant fragment of the CHR syntax, shown earlier
in Figure 5.3. The idea is to compiled a CHR rule, into a set of CHR goal-based rule
compilations, where each uniquely corresponds to a rule head of the CHR rule. Each
rule compilation is essentially a tuple that represents the sequence of match tasks to be
executed when a goal is matched to its associated rule head, and a set of constraints

133



5.4. Implementation of CHR, a Quick Review

which represents the rule body. A match task specifies one of the three type of nodes,
matching a goal (Goal), looking for a specific partner constraint (Lookup) or checking a
guard condition (Guard). Each Goal or Lookup task is annotated by a rewrite type which
distinguishes whether its goal/partner constraint is to be simplified (S) or propagated (P ).

We illustrate this compilation scheme by example (A formal treatment to the compila-
tion scheme is detail elsewhere [Duck, 2005, Schrijvers, 2005]). Let’s consider our running
example, rule r1 and its corresponding CHR goal-based rule compilations:

r1 @ A(1 , x1 ) \ B(x2 , y),C (z )() y > z ^ x1 = x2 | D(x1 , y , z )

mts1 = [Goal P A(1 , x1 ),Lookup S B(x2 , y),Lookup S C (z ),Guard (y > z ^ x1 = x2 )]
mts2 = [Goal S B(x2 , y),Lookup P A(1 , x1 ),Lookup S C (z ),Guard (y > z ^ x1 = x2 )]
mts3 = [Goal S C (z ),Lookup P A(1 , x1 ),Lookup S B(x2 , y),Guard (y > z ^ x1 = x2 )]

comp = {(mts1 , {D(x1 , y , z )}), (mts2 , {D(x1 , y , z )}), (mts3 , {D(x1 , y , z )})}

Rule r1 is compiled into three match tasks, namely mts1, mts2 and mts3, which
corresponds to rule heads A(1, x1), B(x2, y) and C(z). For instance, mts1 represents the
match tasks for executing goals that matches with the rule head A(1, x1), which involves
looking for a partner constraint B(x1, y) and then C(z) and finally checking the guard
constraints. This match task generates match trees like the one seen in Figure 5.9. Note
that all well-formed match tasks have a leading Goal task.

5.4.2 CHR Goal-Based Lazy Matching

CHR goal-based matching is essentially a lazy matching problem. As opposed to eagerly
matching all rule head instances in a given constraint store, for each CHR goal, we wish
only to locate and execute rule head instances on demand. In essence, this matching
problem involves some form of search routine which starts from a CHR goal and searches
for matching constraints in the CHR store. This goal-based lazy matching routine is
essentially encoded by the goal-based rule compilations discussed in the previous section.

Let’s consider the CHR rule r from Figure 5.7. We model the search space of such
matching problems via match trees. The particular match tree shown in Figure 5.9 rep-
resents the search space of the constraint matching problem for rule r1, triggered by the
execution of the goal A(1, x) (Match tasks mts1 from Section 5.4.1). Given the Goal node
A(1, x), we seek for constraints in the store matching rule heads B(x, y) and C(z), in
this particular order3. For instance, the root (Goal) node A(1, 2)#1 has two child nodes,
namely Lookup B(2, 10)#2 and B(2, 8)#3, each representing possible matches of B(x, y)
under the substitution {2/x, 10/y} and {2/x, 8/y} respectively. Simp and Prop tokens
simply indicates if the constraint is to be simplified or propagated. Guard nodes repre-
sents the checking of CHR rule guards. Successful leaf nodes contain the complete rule
head match which corresponds to all rule heads along the path from the root to the leaf
node. By successful, we mean that the guard constraint is satisfied. Note that a complete
specification of the matching problem for CHR rule r would include two other match trees,
each of which specifies the matching problem starting from the each of the other two rule
heads (B(x, y) and C(z)).

The match tree in Figure 5.9 specifies four possible rule head instances (also referred
to as successful matches). However, it is not possible to fire all of them together. This is
because some of the matches are likely to contain overlapping rule heads. Note that for

3Note we can similarly have it in the order C(z) then B(x, y), but the abstract CHR semantics leaves
this choice open. This flexibility allows us to use known CHR optimizations like optimal join-ordering

134



Chapter 5

A CHR simpagation rule and Constraint Store:

r @ A(1 , x ) \ B(x , y),C (z ), y > z | D(x , y , z )
{A(1 , 2 )#1 ,B(2 , 10 )#2 ,B(2 , 8 )#3 ,C (5 )#4 ,C (6 )#5 ,C (12 )#6}

Match tree:
Goal :
Prop

A(1, 2)#1

{2/x,10/y}

��

{2/x,8/y}

◆◆

Lookup :
Simp

B(2, 10)#2
{2/x,10/y,5/z}

⌦⌦

{2/x,10/y,6/z}

✏✏

{2/x,10/y,12/z}

◆◆

Lookup :
Simp

B(2, 8)#3
{2/x,8/y,5/z}

↵↵

{2/x,8/y,6/z}

✏✏

{2/x,8/y,12/z}

◆◆

Lookup :
Simp

C(5)#5

{2/x,10/y,5/z}

✏✏

Lookup :
Simp

C(6)#6

{2/x,10/y,6/z}

✏✏

Lookup :
Simp

C(12)#7

{2/x,10/y,12/z}

✏✏

Lookup :
Simp

C(5)#5

{2/x,8/y,5/z}

✏✏

Lookup :
Simp

C(6)#6

{2/x,8/y,6/z}

✏✏

Lookup :
Simp

C(12)#7

{2/x,8/y,12/z}

✏✏

Guard :
10 > 5

{2/x,10/y,5/z}
✏✏

Guard :
10 > 6

{2/x,10/y,6/z}
✏✏

Guard :
10 6> 12

Guard :
8 > 5

{2/x,8/y,5/z}
✏✏

Guard :
8 > 6

{2/x,8/y,6/z}
✏✏

Guard :
8 6> 12

Match :
A(1, 2)#1
B(2, 10)#2
C(5)#5

Match :
A(1, 2)#1
B(2, 10)#2
C(6)#6

Match :
A(1, 2)#1
B(2, 8)#3
C(5)#5

Match :
A(1, 2)#1
B(2, 8)#3
C(6)#6

M1 M2 M3 M4

Figure 5.9: Example of CHR rule, derivation and match Tree

rule r1, we propagate A(1, x) but simplify B(x, y) and C(z). If we choose to use match
M1, match M2 becomes invalid because M1 and M2 share an overlapping constraint
B(2, 10)#2 which will be simplified. Hence, we can either use match M1 or M2 but not
both. The CHR semantics (eg. k G) of course does not any impose restriction on the
choice of which match to use. Similarly, match M3 becomes invalid because of the shared
simplified constraint C(5)#5. Hence, for each match tree, we can only fire a set of rule
head instances which has mutually non-overlapping simplified constraints. For instance,
the following illustrates the k G derivations that corresponds to the applications of matches
M1 and M4.

h{A(1, 2)#1} | {A(1, 2)#1, B(2, 10)#2, B(2, 8)#3, C(5)#4, C(6)#5, C(12)#6}i
⇢r h{A(1, 2)#1, D(2, 10, 5)} | {A(1, 2)#1, B(2, 8)#3, C(6)#5}i
⇢r h{A(1, 2)#1, D(2, 10, 5), D(2, 8, 6)} | {A(1, 2)#1, C(12)#6}i

Similarly, we can apply the alternative set of matches M2 and M3. In general, we can
apply any subsets of matches of a match tree which consist of mutually non-overlapping
rule head matches.

Figure 5.1 illustrates pseudo code which implements the execution of goals of the form
A(1, x)#n. Description of operations match, deleteFromStore and addToGoals can be
found in [Lam, 2010]. Line 2 creates an iteration (ms1) of constraints in the store Sn
that matches the pattern B(x, ), where the symbol represents the ’any’ pattern. The
’For’ loop of lines 3 � 13 tries matching constraints in ms1 on the rest of the search
procedure. Similar to Line 2, Line 4 creates an iteration of constraints matching C( ).

135



5.4. Implementation of CHR, a Quick Review

1 execGoal hG | Sni A(1, x)#n {
2 ms1 = match Sn B(x, )
3 for B(x, y)#m in ms1 {
4 ms2 = match Sn C( )
5 for C(z)#p in ms2 {
6 if(y > z) {
7 deleteFromStore Sn [B(x, y)#m,C(z)#p]
8 addToGoals G [A(1, x)#n,D(x, y, z)]
9 return true

10 }
11 }
12 }
13 return false
14 }

Table 5.1: Example of basic implementation of CHR goal-based rewritings

1 exec Goal:

2 while 9 goal

3 select goal G
4 if 9 r@ P1, ..., Pl \ S1, ..., Sm () tg | C1, ..., Cn 2 P and

5 9 � such that

6 St ⌘ Stc ] {�(P1), ...,�(Pl),�(S1), ...,�(Sm)} and

7 |= �(tg) and

8 either (G ⌘ �(Pi) for some i 2 {1, ..., l}) or

9 (G ⌘ �(Sj) for some j 2 {1, ...,m})
10 then let  be m.g.u. of all equations in C1, ..., Cn

11 St := Stc ] { �(P1), ...,�(Pl), � �  (C1), ...,� �  (Cn)}

Table 5.2: Goal-based lazy match rewrite algorithm for ground CHR

This is following by the inner ’For’ loop of Lines 7� 11 which iterates through constraints
in ms2. Line 6 checks the rule guard which only executes rewriting (Lines 7 � 9) for
constraint sets satisfying y > z. CHR rewriting is modeled by the following: Line 7
removes the constraints B(x, y)#m and C(z)#p which matched the simplified heads of
the rule. Line 8 adds the rule bodyD(x, y, z) and the propagated goal constraint A(1, x)#n
4 into the CHR goals G as new goal(s) to be executed later. Line 9 exits the procedure with
success (true). Finally, in Line 13, when no rule head match is found, the goal constraint
is dropped and the procedure is exited with failure (false). Note that this procedure
essentially traverses the search space specified by match tree in Figure 5.9.

Existing implementations assume that goal execution routines such as the one found
in Figure 5.1 are executed strictly in isolation , hence avoiding the issues and woes of
concurrent execution. For the rest of the Chapter, we will detail these issues and highlight
our solutions to address them.

Table 5.2 lays out the general structure of a goal-based lazy match rewrite algorithm.
We select a goal G which then finds its matching partners. Lines 8 and 9 ensure that
the goal must be part of the left-hand side. Our formulation assumes that the CHR
rule system is ground. That is, equations on right-hand side of rules can immediately

4Note that this necessary, as specified by the (Propagate) rule of the k G semantics.

136



Chapter 5

be eliminated by applying the m.g.u. This ensures that any derivation starting from a
ground constraint store (none of the constraints contains any free variables) can only lead
to another ground constraint store. In our experience, the restriction to ground CHR is not
onerous because most examples either satisfy this condition, or it is fairly straightforward
to program unification/instantiation on top of CHR (e.g. see our encoding of union-find
in the upcoming Section 5.6).

In essence, we wish to extend this CHR execution scheme to execute multiple copies of
CHR rewritings (Table 5.2) concurrently, each copy strictly executing a distinct goal but
rewriting over the same store St shared among all computation threads.

5.5 Parallel CHR System in Haskell GHC

In this section, we dive down into the details of implementing a concrete parallel CHR
system, known as ParallelCHR , that implements the k G semantics in a scalable man-
ner. Our choice of programming language is Haskell, a lazy functional programming
language. In particular, we use the Glasgow Haskell Compiler [GHC] because of its
good support for shared memory, multi-core architectures. Haskell also provides high-
level abstraction facilities (polymorphic types higher-order functions etc) and its clean
separation between pure and impure computations invaluable in the development of our
system. In principle, our system can be re-implemented in other main-stream languages
such as C and Java. Our implementation in Haskell GHC is available for download at
http://code.google.com/p/parallel-chr/.

5.5.1 Implementation Overview

As the most computationally intensive routine of CHR goal execution is the search for
matching constraints, much can be gained by implementing a CHR system which can
execute search routines (for matching constraints) of multiple CHR goals in parallel, over
a shared constraint store. While the k G semantics formally describes how CHR goals can
be executed concurrently over a shared constraint store, it provides little details on how
we can implement this in a practical and scalable manner. In other words, the technical
concerns of how to implement scalable CHR rewritings are not observable in the formal
semantics.

We take a high-level look at finding matches in parallel and atomic rule execution. In
our implementation, a thread pool consisting of several light-weight Haskell GHC threads
are used to execute CHR goals in a shared collection of goals. Goal execution threads like
these execute CHR rewriting asynchronously by searching the shared store for matching
partner constraints (to complete rule head instances), deleting the simplified constraints
of the rule head instance and finally adding body constraints into the collection of goals.
The challenge we face in this parallel execution problem is that the partners found by
asynchronous threads running in parallel be overlapping (share similar simplified heads).
As defined in the k G semantics (Definition 5.2.1), parallel goal execution must rewrite over
non-overlapping rule-heads. Here, we briefly introduce two approaches which uses di↵er-
ent concurrency primitives to implement this non-overlapping parallel rule-head matching
routine.

Fine-grained Lock-based parallel matching: This approach is a standard refine-
ment of the coarse-grained locking approach. Rather than guarding the shared store with
a single global lock, we restrict the access of each constraint in the shared store with a
unique dedicated lock. The parallel matching task at hand now includes incrementally

137



5.5. Parallel CHR System in Haskell GHC

acquire locks of partner constraints. However, we must be careful to avoid deadlocks.
For example, suppose that thread 1 and 2 seek partners A and B to fire any of the rules
A,B,C () rhs1 and A,B,D () rhs2. We assume that C is thread 1’s goal constraint
and D is the goal constraint of thread 2. Suppose that thread 1 first encounters A and
locks this constraint. By chance, thread 2 finds B and imposes his lock on B. But then
none of the two threads can proceed because thread 1 waits for thread 2 to release the
lock imposed on B and thread 2 waits for the release of the locked constraint A.

The scenario illustrated above is a classic (deadlock) problem when programming with
locks. The recently popular becoming concept of Software Transactional Memory (STM)
is meant to avoid such issues. Instead of using locks directly, the programmer declares
that certain program regions are executed atomically. The idea is that atomic program
regions are executed optimistically. That is, any read/write operations performed by the
program are recorded locally and will only be made visible at the end of the program.
Before making the changes visible, the underlying STM protocol will check for read/write
conflicts with other atomically executed program regions. If there are conflicts, the STM
protocol will then (usually randomly) commit one of the atomic regions and rollback the
other conflicting regions. Committing means that the programs updates become globally
visible. Rollback means that we restart the program. The upshot is that the optimistic
form of program execution by STM avoids the typical form of deadlocks caused by locks.
In our setting, we can protect critical regions via STM as follows.

STM-based parallel matching means that we perform the search for partner con-
straints and their removal from the store atomically. For the above example, where both
threads attempt to remove constraints A and B as well as their specific goal constraints we
find that only one of the threads will commit whereas the other has to rollback, i.e. restart
the search for partners.

The downside of STM is that unnecessary rollbacks can happen due to the conservative
conflict resolution strategy. Here is an example to explain this point. Suppose that thread
1 seeks partner A and thread 2 seeks partner B. There is clearly no conflict. However,
during the search for A, thread 1 reads B as well. This can happen in case we perform a
linear search and no constraint indexing is possible or the hash-table has many conflicts.
Suppose that thread 2 commits first and removes B from the store. The problem is that
thread 1 is forced to rollback because there is a read/write conflict. The read constraint
B is not present anymore. STM does not know that this constraint is irrelevant for thread
1 and therefore conservatively forces thread 1 to rollback.

In our current implementation, we use a hybrid STM-based scheme which uses both
Software Transactional Memory and traditional shared memory access techniques. The
search for matching partner constraints is performed ”outside” STM (to avoid unnecessary
rollbacks), this means that accessing constraint memory locations at this stage does not
invoke STM concurrency synchronization protocols. Once a set of constraints forming a
complete match is found, we perform an atomic STM procedure which atomically checks
that all the constraints are still available, and logically deletes the simplified constraints5.
This essentially implements atomic rule-head verification (as described in [Lam, 2010])
which guarantees the atomic deletion of rule-head instances. Logically deleted constraints
will eventually be physically delinked from the constraint store, either immediately after
the atomic rule-head verification step or by an amortized delete procedure. Both can be
implemented with relative ease with traditional concurrency primitives (e.g. compare-and-
swap, locks, etc...).

5By logically delete, we mean that the constraint is not physically removed from the data structure,
but simply marked as deleted

138



Chapter 5

Abstract Data Types

Integer Value: Int Boolean Value: Bool
List of a’s: [a] Substitution: Subst
CHR Constraint: Cons Rule Guard: Guard
CHR Store: Store CHR Goals: Goals

Rule Occurrence Data Types

Head Type: data Head = Simp | Prop
Match Task: data MatchTask = LpHead Head Cons | SchdGrd Guard

Rule Compilation: type Comp = ([MatchTask],[Cons])
CHR Program: type Prog = [Comp]

Figure 5.10: Interfaces of CHR data types

5.5.2 Data Representation and Sub-routines

We briefly discuss our data representation of the Constraint Handling Rules language in
Haskell, illustrated by Figure 5.10. Abstract Data Type shows the Haskell data type
representation of CHR language elements, like constraints, substitution, store etc. Rule
Occurrence Data Types represent the goal-based compilation of CHR rules, detailed
in Section 5.4.1. Essentially, a CHR Program is a list of CHR rule compilations. A rule
compilation Comp is a tuple, which consist of a list of match tasks (MatchTask) and a list of
constraints (Cons). Note that we will represent sets with lists. Note that for presentation,
we shall focus entirely on CHR matching and rewriting of CHR constraints. Hence we will
not include builtin constraints in our CHR language here. Treatment of builtin constraints
can be found in [Lam, 2010].

The following provide brief descriptions of the basic CHR Solver Sub-routines. These
sub-routines represents basic interfaces to the underlying shared store and goal data struc-
tures, as well as substitution framework.

• isAlive :: Cons -> Bool

Given CHR constraint c, returns true if and only if c is still stored.

• match :: Subst -> Cons -> Cons -> IO (Maybe Subst)

Given a substitution and two CHR constraints c and c’, returns resultant substitu-
tion of matching c with c’, if they match. Otherwise return nothing.

• consApply :: Subst -> [Cons] -> [Cons]

Given a substitution and a list of CHR constraints, apply the substitution on each
constraint of the list and return the results.

• grdApply :: Subst -> Guard -> Bool

Given a substitution and a guard condition, apply the substitution on the guard and
return true i↵ guard condition is satisfiable.

• emptySub :: Subst

Returns the empty substitution.

• addToStore :: Store -> Cons -> IO Cons

Given a CHR store st and a CHR constraint c, add c into st. Returns the stored

139



5.5. Parallel CHR System in Haskell GHC

constraint c containing additional book-keeping information (store back-pointers,
etc..).

• getCandidates :: Store -> Cons -> IO [Cons]

Given a CHR Store st and a CHR constraint c, return a list of constraints from the
st that matches c.

• getGoal :: Goals -> IO (Maybe Cons)

Given CHR goals, returns the next goal if one exists, otherwise returns nothing.

• addGoals :: Goals -> [Cons] -> IO ()

Given CHR goals gs and a list of CHR constraints cs, add cs into gs.

• notRepeat :: [(Head,Cons)] -> Cons -> Bool

Given a list of matching heads, and a constraint c returns true if c is not already
found in the list of heads.

• isStored :: Store -> Cons -> STM Bool

Given a CHR store st and a constraint c, returns true if and only if c is stored in
st.

• logicalDeleteFromStore :: Store -> Cons -> STM ()

Given a CHR store and a constraint in the store, logically mark the specified con-
straint as deleted from the store.

• delinkFromStore :: Store -> Cons -> IO ()

Given a CHR store and a constraint in the store, physically delink the constraint
from the store.

• atomically :: STM a -> IO a

Given a STM operation, execute it atomically in the IO monad.

Next, Section 5.5.3 and 5.5.4 will introduce the main high-level goal execution routine
which uses these sub-routines.

5.5.3 Implementing Parallel CHR Goal Execution

We introduce our parallel CHR implementation from a top-down approach, starting
from the function goalBasedThread, as shown in Table 5.3. The parallel CHR solver com-
prises of multiple copies of this function, executed asynchronously in parallel by multiple
threads of computation. Each execution essentially implements the execution of a CHR
goal. For now, we focus on execution of CHR goals only.

This function is given the references to the shared goals gs and store st, and the CHR
program prog. Goals are exhaustively executed via the rewritingLoop procedure, which
terminates only when the goals are empty (line 11). As specified by the (Activate) rule
of the k G semantics (Figure 5.4 of Section 5.2), goals are added to the store only when
they are executed (line 8). Procedure executeGoal attempts to match the active goal g
with each of the occurrence compilations (via the matchGoal operation at line 13, whose
definition is deferred till later). Procedure executeGoal stops when the goal is no longer
alive (line 15) or all occurrence have been tried (line 16), both of which are cases which
lead to the application of the (Drop) rule of the k G semantics.

140



Chapter 5

1 goalBasedThread :: Goals -> Store -> Prog -> IO ()
2 goalBasedThread gs st prog =
3 rewriteLoop
4 where
5 rewriteLoop = do
6 { mb <- getGoal gs
7 ; case mb of
8 Just g -> do { a <- addToStore st g
9 ; executeGoal a prog

10 ; rewriteLoop }
11 Nothing -> return () }
12 executeGoal a (occ:occs) = do
13 { matchGoal gs st a occ
14 ; if isAlive a then executeGoal a occs
15 else return () }
16 executeGoal [] = return ()

Table 5.3: Top-level CHR Goal Execution Routine

Procedure matchGoal in Table 5.4 implements the main parallel matching algorithm
which searches for matching constraints of the active goal constraint. This search is spec-
ified by the match tasks of CHR goal-based rule compilations, described earlier in Section
5.4.1. We assume that the first match task is the lookup of the active goal pattern (line
3)6. In line 4 the active goal is then matched with the head pattern (from the lookup
task)7. If the active goal successfully matches the head pattern (line 6) we call execMatch.
If matching fails, we abort the procedure (line 7).

Procedure execMatch essentially implements the search traversal through CHR match
trees (Section 5.4.2). It checks for the remaining match tasks, which can be either looking
up a partner constraint, or checking a guard condition. It controls the branching of the
search by returning True if the search is to terminate at the current branch, or False if
the search is to proceed. Lines 9 � 11 implements the scheduling of a guard constraint
grd. We proceed with the rest of the match tasks if the guard evaluates to true. Lines
12� 25 on the other hand, implements the lookup of a partner constraint, as specified by
the matchtask LpHead hd c. We first collect all possible candidates cans matching c from
the store (line 24)8. Then, we call exec match candidate (line 25) which tries to find a
complete match for the entire rule head by iterating over the set of candidates. Note that
we only iterate through as many candidate as required (lines 19 � 20) for exhaustiveness
of the goal execution (details in Section 5.5.8).

In case we find a complete match (line 26), we fire the rule. Note that this step can
happen in parallel with multiple goal executions, hence to guarantee consistency, we must
atomically verify and commit this match via verifyRuleHeads (line 27). This procedure
checks that all heads are still alive and logically marks all the simplified heads as deleted.
All these operation are done in one atomic transactional step. That is, if any of the
intermediate steps fails the entire transaction fails with no visible side e↵ect (atomic rule-
head verification, cf. Sect. 5.5.4). Follow a successful run of verifyRuleHeads (line
28�32), we will physically delink all the simplified constraints (line 29) and add the body
constraints of the rule instance into the goals (line 30). If the executed goal is a simplified

6This is because CHR rules have at least one head, hence this constraint lookup task must exist.
7Note that with known pre-compilation analysis, this matching of active goal and head pattern can be

avoided. Such optimizations are covered in [Duck, 2005] and will not be discussed here.
8Note that this procedure can be implemented ’lazily’, or with iterators representing a collection of all

candidate matching constraints and hence only retrieved on demand.

141



5.5. Parallel CHR System in Haskell GHC

1 matchGoal :: Goals -> Store -> Cons -> Occ -> IO ()
2 matchGoal goals store g (mtasks,body) = do
3 { let (LpHead hd c):rest = mtasks
4 ; mb <- match emptySub c g
5 ; case mb of
6 Just subst -> do { execMatch [(hd,g)] subst rest ; return () }
7 Nothing -> return () }
8 where
9 execMatch hds subst ((SchdGrd guard):mts) =

10 if grdApply subst guard then execMatch hds subst mts
11 else return False
12 execMatch hds subst ((LpHead hd c):mts) =
13 let execMatchCandidates (nc:ncs) =
14 if (notRepeat hds nc) && (isAlive nc)
15 then do { mb <- match subst c nc
16 ; case mb of
17 Just subst’ -> do
18 { succ <- execMatch ((h,nc):hds) subst’ mts
19 ; if not succ then execMatchCandidates ncs
20 else return False }
21 Nothing -> execMatchCandidates ncs }
22 else execMatchCandidates ncs
23 execMatchCandidates [ ] = return False
24 in do { cans <- getCandidates store c
25 ; execMatchCandidate cans }
26 execMatch hds subst [ ] = do
27 { succ <- atomically (verifyRuleHeads store hds)
28 ; if succ then do { let simpHds = filter (\(h, ) -> h == Simp) hds
29 ; mapM (\( ,g) -> delinkFromStore store g) simpHds)
30 ; addGoals goals (consApply subst body)
31 ; let (h, ) = first hds
32 ; return (h == Simp) }
33 else return False }

Table 5.4: Implementation of Goal Matching

head, we end the search by return True (since the goal currently executed will be deleted
from the store), otherwise we proceed to the next candidate (line 32). In a failed run of
verifyRuleHeads (line 33), we return False to indicate that the goal execution should
try another partner constraint.

Note that the delinkings of simplified constraints (line 29) are done in a seemingly
unsafe (“unatomic”) sequence of IO operations. Yet it is safe to do so, thanks to the fact
that the constraints to be delinked at line 29 are the same constraints marked as deleted
by verifyRuleHeads in line 27. Hence we have the guarantee that no two concurrent goal
executions will attempt to delink the same constraints.

5.5.4 Implementing Atomic Rule-Head Verification

Atomic rule-head verification (ARV) guarantees the atomic deletion of rule-head instances.
We detail here the implementation via Software Transactional Memory in Haskell (GHC).

Table 5.5 illustrates the implementation of ARV with STM in Haskell GHC. The STM
operation verifyRuleHeads works as follows: Given the shared store and a set of matching
constraints (presumably the complete rule-head instance), we check that all the constraints
are still in the store and not deleted by any other parallel goal execution routines (line

142



Chapter 5

1 verifyRuleHeads :: Store -> [(Head,Cons)] -> STM Bool
2 verifyRuleHeads store hds = do
3 { bs <- mapM (\( ,g) -> isStored store g) hds
4 ; if and bs
5 then do { let simpHds = filter (\(h, ) -> h == Simp) hds
6 ; mapM (\( ,g) -> logicalDeleteFromStore store g) simpHds
7 ; return True }
8 else return False }

Table 5.5: Implementation of Atomic Rule-Head Verification (ARV)

3). If so (line 5 � 7) we delete (from the store) all the constraints that are matched as
simplified heads and return true. Otherwise (line 8) we return false. Note that since
this STM operation is guaranteed to execute atomically, a successful run (resulting to the
return of True) indicates that we were able to independently observe the presence of all
constraints involved in the store and delete the simplified constraint. Most importantly,
constraints involved in this STM validation process corresponds directly to the constraints
that form the rule head instance, thus we will not introduce any false overlaps, which are
described in the following section.

5.5.5 False Overlaps

When implementing concurrent CHR rewritings, it is no doubt that consistency of such
an implementation is of the utmost importance. As such, we must exploit the concurrency
synchronization protocols o↵ered by most main-stream programming language, to model
the consistent concurrent behaviours of the concurrent CHR semantics. Consider a simple
concurrent derivation:

get@G(x), P (y)() x = y

h{P (1)#3, P (2)#4} | {P (1)#3, P (2)#4, G(x)#1, G(y)#2}i
{}\�1
⇢⇤

||G h{P (2)#4} | {x = 1, P (2)#4, G(y)#2}i (1)

||
h{P (1)#3, P (2)#4} | {P (1)#3, P (2)#4, G(x)#1, G(y)#2}i

{}\�2
⇢⇤

||G h{P (1)#3} | {y = 2, P (1)#3, G(x)#1}i (2)

�1 = {P (1), G(x)} �2 = {P (2), G(y)}
h{P (1)#3, P (2)#4} | {P (1)#3, P (2)#4, G(x)#1, G(y)#2}i

{}\(�1]�2)

⇢⇤
||G h{} | {x = 1, y = 2}i

This concurrent derivation shows a valid non-overlapping pair of CHR derivations
(labelled (1) and (2)) which can be concurrently composed together. They are non-
overlapping because their side-e↵ects {}\{P (x), G(1)} and {}\{P (y), G(2)} consist of
mutually distinct sets of constraints. To only allow such non-overlapping concurrent
derivations in an implementation of the concurrent semantics, we use concurrency syn-
chronization protocols to model the enforcement of mutual exclusivity of CHR derivation
side-e↵ects. While it is not always possible (or practical) to exactly model such mutual ex-
clusiveness of such side-e↵ects, any implementation must guarantee that it models mutual
exclusive side-e↵ects conservatively, in that it never allows overlapping parallel9 deriva-

9note we use parallel here as oppose to concurrent. This is because we are talking about actually

143



5.5. Parallel CHR System in Haskell GHC

tions but might deny certain non-overlapping parallel derivations specifically because of
false overlapping side-e↵ects, introduced by the conservative concurrency synchronization
protocols. An example of such false overlaps can be as follows: Suppose we implement
our parallel CHR derivations by making the execution of a derivation demand complete
“atomicity”, in that all shared memory (in this case, constraints in the store) that it has
read and written to must not have been modified by another parallel execution, other-
wise it must retry it’s execution. Further suppose that our store is naively implemented
with a simple concurrent linked-list and all CHR execution threads search the store in
a specific order (for convenience, let’s assume left-to-right ordering for the above exam-
ple). Execution of (1) would have read constraints {P (1)#3, P (2)#4, G(x)#1} before
finding the rule head match {P (1)#3, G(x)#1} while execution of (2) would have read
{P (1)#3, P (2)#4, G(x)#1, G(y)#2} before finding {P (2)#4, G(y)#2}. As such, the con-
current derivations would be ruled as overlapping, and cannot be allowed to execute in
parallel.

Such false overlaps, caused by the in-precision of coarse grained concurrency synchro-
nization, normally impairs the benefits of parallel execution of CHR rewritings. As a
result, a practical and scalable implementation of parallel CHR rewriting must be im-
plemented to model exclusivity of concurrent CHR derivation side-e↵ects conservatively,
while minimizing false overlaps as much as possible.

5.5.6 Logical Deletes and Physical Delink

Recall that we have chosen to use logical deletes during ARV, while the physical delinking
of constraints from the store data structure is only executed in subsequent non-atomic
steps (Sections 5.5.3 and 5.5.4). This approach is beneficial in two ways. Firstly, we
can implement ARV with smaller STM transactions. This is because multiset logical
deletes can be straight-forwardly implemented as the toggling of boolean flags stored in
STM transactional variables. Hence, logically deleting n constraints is essentially just
writing into n boolean variables. Logical deletes are much cheaper operations, compared
to implementing physical removal of constraints (from the store) which involves delinking
of nodes from a list data structure (implemented on STM). As such, our atomic rule-head
verification can be implemented with smaller STM transactions which most certainly incur
less conflicts from STM roll backs. Besides reducing the number of STM roll backs, we
can now implement other list operations (list traversal, delinking of list nodes) via lighter
weight concurrency primitives.

In our works on comparing Haskell concurrency primitives [Sulzmann et al., 2008],
we have demonstrated with empirical evidence that a concurrent list data structure im-
plemented via traditional compare-and-swap operations is much more e�cient than one
implemented via STM. Yet, STM provides the most elegant solution to atomic multiset
operations10. Our multiset logical delete via STM and physical delink via compare-and-
swap implementation essentially adopts the best of both worlds (or rather, concurrency
primitives) and provides the alternative with least concurrency synchronization overheads.

5.5.7 Back Jumping in ARV

Consider the following example:

A(x ),B(x , y),C (y , z ),D(z )() E (x , y , z )

executing CHR derivations concurrently, in practice.
10as oppose to traditional locks or compare-and-swap synchronization variables, which are prone to errors

and other overheads incurred by complex synchronization acrobatics.

144



Chapter 5

1 verifyRuleHeadsBackJump :: Store -> [(Head,Cons)] -> STM Int
2 verifyRuleHeadsBackJump store hds = do
3 { bs <- mapM (\( ,g) -> isStored store g) hds
4 ; if and bs
5 then do { let simpHds = filter (\(h, ) -> h == Simp) hds
6 ; mapM (\( ,g) -> logicalDeleteFromStore store g) simpHds
7 ; return 0 }
8 else let Just j index = elemIndex False bs
9 in return (j index + 1) }

Table 5.6: ARV with Backjumping Indicator

Suppose while executing the goal A(1)#n we have found the rule-head instance [A(1)#n,
B(1, 2)#m,C(2, 3)#p,D(3)#q] in that specific sequence and now attempts to rule ARV
on the four constraints. Further suppose that the verification procedure failed because
the constraint B(1, 2)#m has already been deleted by some other executing thread. Our
implementation of ARV in Table 5.5 will return False suggesting that one of the constraint
has been deleted, but without more information other than the boolean flag, our goal
execution procedure in Table 5.4 has to explore other alternate branches of the match
tree, iterating through possible alternative candidates of D(z), C(y, z), before reaching
B(x, y) lookup node, where the verification had failed.

To avoid such pointless traversals of the match tree, we can implement a well known
optimization technique for backtracking search algorithms, known as backjumping. By
keeping track of exactly which constraint has failed the ARV, we can precisely backtrack
our search to the “highest” point of the match-tree which is possibly still valid and resume
the search from that point.

Table 5.6 illustrates the ARV function verifyRuleHeads with backjumping indicator.
verifyRuleHeadsBackJump is similar to that of in Table 5.5, but instead returns an integer.
If verification is successful, 0 is returned (line 7). Otherwise, it returns the 1-index of the
left-most constraint which has failed the verification11

Table 5.7 illustrates the modified matchGoalBackJump operation that utilizes the back-
jumping indexes provided by verifyRuleHeadsBackJump. Note that the most important
change is in lines 19�20, where new candidates are tried only if the jump index i returned
by the previous branch (line 18) is equal to 1. Otherwise, we simply return the index
decrement by one (line 20). Successful run of the verifyRuleHeadsBackJump indicated
by index i == 0 (line 28) results to the same delinking of simplified constraint (line 29)
and adding of body constraints into the goals (line 30). If goal is a simplified constraint
(line 32), we return the number of the rule heads (e↵ective “backjumping out” of the goal
execution), otherwise we procedure on with the search through the match tree.

5.5.8 Implementation and k G Semantics

In this section, we informally discuss the correspondence of our parallel CHR system
in Haskell GHC, and the k G semantics. Our implementation implements the CHR k G
semantics in that given the shared goals gs (initially containing goals cs), shared store
st (initially empty) and CHR program compilation prog (of CHR program P), when
multiple concurrent execution of the goalBasedThread gs st prog goal execution routine
terminates12, shared goals gs will be empty and shared store st will contain constraints

11Since new rule-heads are appended to the end of our rule-heads hds, left-most constraint which has
failed represents the “highest” point of the match tree which has failed the verification.

12This also includes the termination of all goal reactivation threads

145



5.5. Parallel CHR System in Haskell GHC

1 matchGoalBackJump :: Goals -> Store -> Cons -> Occ -> IO ()
2 matchGoalBackJump goals store g (mtasks,body) = do
3 { let (LpHead hd c):rest = mtasks
4 ; mb <- match emptySub c g
5 ; case mb of
6 Just subst -> do { execMatch [(hd,g)] subst rest ; return () }
7 Nothing -> return () }
8 where
9 execMatch hds subst ((SchdGrd guard):mts) =

10 if grdApply subst guard then execMatch hds subst mts
11 else return 1
12 execMatch hds subst ((LpHead hd c):mts) =
13 let execMatchCandidates (nc:ncs) =
14 if (notRepeat hds nc) && (isAlive nc)
15 then do { mb <- match subst c nc
16 ; case mb of
17 Just subst’ -> do
18 { i <- execMatch ((h,nc):hds) subst’ mts
19 ; if i == 1 then execMatchCandidates ncs
20 else return (i-1) }
21 Nothing -> execMatchCandidates ncs }
22 else execMatchCandidates ncs
23 execMatchCandidates [ ] = return 1
24 in do { cans <- getCandidates store c
25 ; execMatchCandidate cans }
26 execMatch hds subst [ ] = do
27 { i <- atomically (verifyRuleHeadsBackJump store hds)
28 ; if i==0 then do { let simpHds = filter (\(h, ) -> h == Simp) hds
29 ; mapM (\( ,g) -> delinkFromStore store g) simpHds)
30 ; addGoals goals (consApply subst body)
31 ; let (h, ) = first hds
32 ; return (if h == Simp then (length hds) + 1 else 1) }
33 else return i }

Table 5.7: Goal Matching with Back-Jumping

cs0 such that for the CHR program P, hcs | {}i⇢||G h{} | cs0i.
To summarize, each k G transition rule (Figure 5.4) corresponds to our implementation

in the following manner:

• (Solve): An equation constraint e is not physically stored in the constraint st as
suggested in the k G semantics, but imposes its side-e↵ects on the builtin theory when
e is executed by the routine solve. The set of constraints WakeUp(e, st) awaken
(reactivated) by the (Solve) transition is replicated in our implementation by the
execution of reactivateWhenGround by reactivation threads spawned specifically
for this purpose (add the a↵ected constraint back into the goals).

• (Activate): This transition immediately corresponds to the execution of addToStore,
line 8 of goalBasedThread in Table 5.3.

• (Simplify): This transition corresponds to an execution of executeGoal a prog (line
9, Table 5.3) which results to the deletion of active goal constraint a (line 29, Table
5.4). This means that the active constraint a is one of the simplified constraint of the
successful rule-head match. The CHR rewriting (removal of simplified constraints

146



Chapter 5

and adding of body to the goals) is eventually completed by the execution of lines
28�32 of Table 5.4. Atomic rule head verification (line 27, Table 5.4) guarantees that
concurrent goal execution selects mutually exclusive simplified constraints, hence
rewrites non-overlapping rule instances. This is exactly specified by the merging of
side-e↵ects � in the k G semantics (Figure 5.5).

• (Propagate): Very much similar to the above (Simplify), except the execution of
executeGoal a prog results in a successful rule-head match where a matches a
propagated constraint.

• (Drop): This transition models the removal of a goal constraint after it has ex-
haustively searched the store for matching partner constraints and has not been
simplified. It corresponds to the end of an execution of executeGoal a prog which
does not end with the simplification of the active constraint a. Essentially, all com-
plete execution of executeGoal a prog corresponds to a either a sequence (empty
allowed) of (Propagate) transitions followed by a (Drop) transition, or a sequence
(empty allowed) or (Propagate) transitions followed by a (Simplify) transition.

Our parallel CHR implementation faithfully implements the concurrent CHR goal-
based semantics, in that every execution on a termination CHR program corresponds to
a valid k G concurrent derivation. But because of practical limitations of hardware, it
is likely that our implementation cannot replicate all possible executions modeled by the
semantics.

5.6 Experimental Results

In this section, we present the experiments we have conducted on our parallel CHR system
and the empirical results we have collected. We focus on eight distinct CHR programs,
which represents a diverse spread of CHR rules with varying characteristics. The following
highlights each of these CHR programs, and the experiment parameters we have used:

• Merge Sort:

merge1 @ Next(x , a) \ Next(x , b)() a < b | Next(a, b)
merge2 @ Merge(n, a),Merge(n, b)() a < b | Next(a, b),Merge(n + 1 , a)

CHR implementation of Merge sort. CHR goal threads essentially compare di↵erent
pairs of integers in parallel. We optimize with a specific goal ordering scheme (stack
Next goals and queue Merge goals) which minimizes the number of comparisons
between Next constraints and the number of conflicts between goal executions (see
[Lam, 2010] for details). For our experiment, we run merge sort on a collection of
1024 integers.

• Gcd:
gcd1 @ Gcd(n) \ Gcd(m)() m � n&&n > 0 | Gcd(m � n)

gcd2 @ Gcd(0 )() True

CHR implementation of greatest common divisor Euclid’s algorithm. We optimize
by queuing Gcd goals. For our experiments, we find the greatest common divisor
of 1000 integers. Finding the Gcds of distinct pairs of integers can be executed in
parallel.

147



5.6. Experimental Results

• Parallelized Union Find:

union @ Union(a, b),Fresh(x ) () Fresh(x + 2 ),Find(a, x ),Find(b, x + 1 ),Link(x , x + 1 )
findNode @ Edge(a, b) \ Find(a, x ) () Find(b, x )
findRoot @ Root(a) \ Find(a, x ) () Found(a, x )
found @ Edge(a, b) \ Found(a, x ) () Found(b, x )

linkeq @ Link(x , y),Found(a, x ),Found(a, y) () True
link @ Link(x , y),Found(a, x ),Found(b, y),Root(a),Root(b) () Edge(b, a),Root(a)

Adapted from [Frühwirth, 2005], Union find is basically a data structure which
maintains the union relationship among disjoint sets. Sets are represented by trees
(Edge(x , y)) in which root notes (Root(x )) are the representatives of the sets. The
union operation between two sets of a and b (Union(a, b)) is executed by finding the
representatives x and y of the sets a and b (Find(a, x ) and Find(b, y)), and then
linking them together (Link(x , y)). The union rule initiates the union operation.
The constraint Fresh(x ) introduces ”fresh variables” since our current prototype
only supports ground CHR rules/stores. Rule findNode traverses edges until we reach
the root in rule foundRoot . Rule found re-executes a find if the tree structure has
changed. This is necessary since union find operations can be executed in parallel.
Rule linkeq removes redundant link operations and rule link performs the actual
linking of two distinct trees. In experiments, we test an instance of parallelized
union find, where 300 union operations are issued in parallel to unite 301 disjoint
sets (binary trees) of depth 5.

• Blockworld:

grab @ Grab(r , x ),Empty(r),Clear(x ),On(x , y)() Hold(r , x ),Clear(y)
puton @ PutOn(r , y),Hold(r , x ),Clear(y)() Empty(r),Clear(x ),On(x , y)

A simple simulation of robot arms re-arranging stacks of blocks. Grab(r , x ) specifies
that robot r grabs block x , only if r is empty and block x is clear on top and on y
(On(x , y)). The result is that robot r will be holding block x (Hold(r , x )) and block
x is no longer on block y , thus y is clear. PutOn(r , y) specifies that robot r places
a block on block y , if r is holding some block x and y is clear. In our experiments,
we simulate 8 agents each moving a unique stack of 1000 blocks. Robots can be
executed in parallel as long as their actions do not interfere.

• Dining Philosophers:

grabforks @ Think(c, 0 , x , y),Fork(x ),Fork(y)() Eat(c, 20 , x , y)
thinking @ Think(c,n, x , y)() n > 0 | Think(c,n � 1 , x , y)

putforks1 @ Eat(0 , 0 , x , y)() Fork(x ),Fork(y)
putforks2 @ Eat(c, 0 , x , y)() Fork(x ),Fork(y),Think(c � 1 , 20 , x , y)

eating @ Eat(c,n, x , y)() Eat(c,n � 1 , x , y)

The classic dining philosopher problem, simulating a group of philosophers thinking
and eating on a round table, and sharing a fork with each of her neighbors. In
our implementation, Forks are represented by the constraints Fork(x ) where x is
a unique fork identifier. A thinking and eating philosopher is represented by the
constraints Think(c,n, x , y) and Eat(c,n, x , y) where x and y are the fork identifiers,
c represents the number of eat/think cycles left and n a counter that simulates the
delay of thinking/eating process. Rules thinking and easting delay thinking and
eating. If there any think/eat cycles left, we return both forks and issue a new
thinking process. See rule putforks2 . Otherwise, we only return both forks. See rule
putforks1 . In our experiments, we simulated the dining philosopher problem with
150 philosophers, each eating and thinking for 50 cycles with a delay of 20 steps.

148



Chapter 5

• Prime:

prime1 @ Candidate(1 )() True
prime2 @ Candidate(x )() x > 1 | Prime(x ),Candidate(x � 1 )

prime3 @ Prime(y) \ Prime(x )() x mod y == 0 | True

A CHR program that computes the first n prime numbers. In our experiments,
we find the first 1500 prime numbers. Parallelism comes in the form of parallel
comparison of distinct pairs of candidate numbers.

• Fibonacci:

fibo1 @ FindFibo(0 )() Fibo(1 )
fibo2 @ FindFibo(1 )() Fibo(1 )

fibo3 @ FindFibo(x )() FindFibo(x � 1 ),FindFibo(x � 2 )
fibo4 @ Fibo(x ),Fibo(y)() Fibo(x + y)

A CHR program that computes the value of the nth Fibonacci number. We find the
25th Fibonacci number. Parallelism is present when evaluating di↵erent parts of the
Fibonacci tree.

• Turing Machine:

delta left @ Delta(qs, ts, qs 0, ts 0,LEFT ) \ CurrState(i , qs),TapePos(i , ts)
() CurrState(i � 1 , qs 0),TapePos(i , ts 0)

delta right @ Delta(qs, ts, qs 0, ts 0,RIGHT ) \ CurrState(i , qs),TapePos(i , ts)
() CurrState(i + 1 , qs 0),TapePos(i , ts 0)

A simple formulation of the classic Turing machine. In our implementation delta left
and delta right define the state transitions of the Turing machine. The constraint
Delta(qs, ts, qs 0, ts 0, dir) specifies the state transition (qs, ts) 7! (qs 0, ts 0, dir) where
qs, qs 0 are state symbol and ts, ts 0 are tape symbols and dir is the direction which
the tape is moved. CurrState(i , qs) states that the current state of the machine
is qs at tape position i . TapePos(i , ts) states that tape position i has the symbol
ts. In our experiments, we tested a Turing machine instance which determines if a
tape (string of 0’s and 1’s) of length 200 is of the form {0 n1 n | n > 1}. The Turing
machine simulator is inherently single thread (rules cannot fire in parallel), as it
involves state transitions of a single state machine. This serves to investigate the
e↵ects of parallel rewriting applied to a single threaded problem.

Our experiments are conducted to investigate into the e↵ects of optimizations targeted
at improving parallel goal execution. We observe the performance of the eight CHR
programs with each optimization versus a default alternative. To summarized, we focus
on the following concurrency specific optimizations:

• Throttled/Bounded Thread Pools: Aimed to reduce number of conflicting par-
allel executions and to prevent limited system resources from being swarmed by
redundant concurrent goal executions. The alternative to this is to rely entirely on
GHC’s thread pooling system, hence we spawn a lightweight GHC thread to execute
each new active goal.

• Atomic Rule-Head Verification (ARV): Aimed to reduce the number of false-
overlaps during parallel goal executions. The alternative to this is a simple STM
implementation that does not use ARV (This implementation executes each goal as
a single STM operation).

149



5.6. Experimental Results

1 Thread 2 Threads 4 Threads 8 Threads Unbounded

Merge Sort 121% 94% 70% 52% >200%
Gcd 109% 37% 18% 12% 123%
Parallel Unionfind 125% 82% 52% 32% >200%
Blockworld 123% 77% 54% 39% >200%
Dining Philosophers 119% 74% 49% 41% >200%
Prime 115% 73% 46% 30% 155%
Fibonacci 125% 85% 59% 39% >200%
Turing Machine 111% 63% 78% 70% >200%

Figure 5.11: Experimental results, with optimal configuration (on 8 threaded Intel pro-
cessor)

• Bag Constraint Store and Store Iterators: Aimed to reduce number of overlap-
ping matches selected by parallel goals, by making each goal thread observe stored
constraints in a unique order. The alternative to this are basic list constraint stores
and list store iterators.

• Domain Specific Goal Ordering: Aimed to optimally schedule goals for exe-
cution. Goal ordering is specifically customized for each CHR program and only
crucial for some examples, specifically Gcd and Mergesort. The alternative to this
is the basic stack ordering of goals, which is the traditional ordering used by most
CHR implementations.

On top of the concurrency optimizations mentioned here, our implementation also in-
cludes existing CHR optimizations which are still applicable to the concurrent context.
Specifically, our implementation includes constraint indexing (hashing), optimal join or-
dering and early guard scheduling.

Our experiments are conducted on an Intel Core i7-920 processor13 with 6 GB of
memory running 64-bit Windows XP and Haskell GHC 6.10.1. For each experiment, we
measure the relative performance of executing with 1, 2, 4 and 8 goal thread(s) against a
base non-concurrent implementation in Haskell. Final results shown are the medians of 20
runs of the same experiment. This non-concurrent implementation serves as a benchmark
for our concurrent implementation and is free from the overheads of concurrent execution
(e.g. invoking STM runtime synchronization, ARV, etc..).

5.6.1 Results with Optimal Configuration

Figure 5.11 illustrates the experimental results conducted with our parallel CHR system
in optimal configuration. In other words, ARV, Bag constraint store and iterators,
throttled goal thread pool and domain specific goal ordering14 concurrent opti-
mizations are enabled. Measurements are based on the percentage time against execution
time of the basic non-concurrent implementation (we will refer to this execution time as
the base execution time).

There are several important observations. Firstly, executing our parallel implemen-
tation with 1 goal thread is inferior (at all examples) compared to the non-concurrent
implementation for obvious reasons (overheads of concurrent execution are introduced,

13An Intel Core i7-920 processor is essentially a quad core processor, but is equipped with Hyper-
threading technology that e↵ectively allows it to run 8 concurrent threads of computation.

14Where applicable. Namely, Merge sort and Gcd

150



Chapter 5

Gcd Example:

gcd1 @ Gcd(0) () True
gcd2 @ Gcd(n)\Gcd(m) () m >= n&&n > 0 | Gcd(m � n)

Derivation A: Single Threaded (Shorthands: G = Gcd, g1 = gcd1 and g2 = gcd2)

{G(30)1 ,G(2)2 ,G(45)3 ,G(15)4 }
⇢g2(2,1)⇥15 {G(0)1 ,G(2)2 ,G(45)3 ,G(15)4 }
⇢g1(1)⇥1 {G(2)1 ,G(45)2 ,G(15)3 }
⇢g2(1,2)⇥22 {G(2)1 ,G(1)2 ,G(15)3 }
⇢g2(2,1)⇥2 {G(0)1 ,G(1)2 ,G(15)3 }
⇢g1(1)⇥1 {G(1)1 ,G(15)2 }
⇢g2(1,2)⇥15 {G(1)1 ,G(0)2 }
⇢g1(2)⇥1 {G(1)1 }

Total Number of Sequential Derivations: 57 Steps

Derivation B: 2 Distinct Parallel Derivation

(Expected Results)

{G(30)1 ,G(2)2 }
⇢g2(2,1)⇥15

{G(0)1 ,G(2)2 }
⇢g1(1)⇥1

{G(2)1 }

k

{G(45)3 ,G(15)4 }
⇢g2(4,3)⇥3

{G(0)3 ,G(15)4 }
⇢g1(3)⇥1

{G(15)3 }
{G(2)1 ,G(15)2 }

⇢g2(1,2)⇥7 {G(2)1 ,G(1)2 }
⇢g2(2,1)⇥2 {G(0)1 ,G(1)2 }
⇢g1(1)⇥1 G(1)1

Total Number of Sequential Derivations: 26 Steps
(⇡ linear speed-up)

Derivation C: 2 Overlapping Parallel Derivations

(Actual Results)

{G(30)1 ,G(2)2 ,G(45)3 ,G(15)4 }
⇢(g2(2,1)kg2(4,3)) ⇥ 1 {G(28)1 ,G(2)2 ,G(30)3 ,G(15)4 }
⇢(g2(1,3)kg2(2,4)) ⇥ 1 {G(28)1 ,G(2)2 ,G(2)3 ,G(13)4 }
⇢(g2(4,1)kg2(2,3)) ⇥ 1 {G(15)1 ,G(2)2 ,G(0)3 ,G(13)4 }
⇢(g2(4,1)kg1(3)) ⇥ 1 {G(2)1 ,G(2)2 ,G(13)3 }
⇢g2(1,2)⇥1 {G(0)1 ,G(2)2 ,G(13)3 }
⇢g1(1)⇥1 {G(2)1 ,G(13)2 }
⇢g2(1,2)⇥6 {G(2)1 ,G(1)2 }
⇢g2(2,1)⇥2 {G(0)1 ,G(1)2 }
⇢g1(1)⇥1 {G(1)1 }

Total Number of Sequential Derivations: 15 Steps
(super-linear speed-up)

Figure 5.12: Super-Linear Speed-up in Gcd

with no benefits of concurrent goal execution being exploited). Executions with 2, 4 and
8 goal threads scale well against base execution time in general, with exception of the
Turing Machine example. This is expected as the Turing machine example is inherently
single-threaded. Interestingly, we still obtain improvements from parallel execution of
administrative procedures (for example dropping of goals, due to failed matching). Rel-
ative drop in performance (between 2 and 4/8 goal threads) indicates a upper bound of
parallelism of such “administrative” procedures.

One interesting result that our experiment uncovered is the presence of super-linear
speed-up for certain examples, like Gcd. The reasons for this is often very subtle and
domain specific. Figure 5.12 illustrates why we get super-linear speed-up for the Gcd ex-
ample. For presentation purpose, we annotate each constraint with a unique identifier and
each derivation with the rule name parameterized by the constraints that fired it and the
number of times it fired. For instance g2 (x , y)⇥ t denotes that rule g2 fired on constraints
x and y for t number of times. We examine derivations of the Gcd example from the initial
store {Gcd(30 ),Gcd(2 ),Gcd(45 ), Gcd(15 )} Derivation A shows the single threaded case
where we get a total of 57 derivation steps to reach the final store. Derivation B shows
the parallel derivation of 2 threads which yield the expected results (linear speed-up of 26
sequential derivation steps). This assumes an unlikely scenario where derivations between
2 pairs of Gcd constraints do not overlap (i.e. interfere with each other). Derivation C
shows the actual result which yields super-linear speed-up. Derivations overlap, that is,
there can be rule firings across parallel derivations. 15 This allows Gcd constraints of
higher values to be matched together, cutting down tediously long derivations initiated by

15 Of course, this behavior is also possible in a sequential execution scheme where we interleave the
execution of goal constraints, thus, e↵ectively simulating the parallel execution scheme.

151



5.6. Experimental Results

1 Thread 2 Threads 4 Threads 8 Threads

Merge Sort 118% 143% >200% >200%
Gcd 123% >200% >200% >200%
Parallel Unionfind 109% 131% 152% 178%
Blockworld 119% 126% 189% >200%
Dining Philosophers 124% 89% 72% 75%
Prime 115% 119% 147% 175%
Fibonacci 124% >200% >200% >200%
Turing Machine 111% 73% 82% 85%

Figure 5.13: Experimental results, with atomic rule-head verification disabled

Gcd constraints of lower values (which is typical in the single threaded case). By queuing
Gcd goals (domain specific goal ordering), we encourage derivations similar to Derivation
C to be chosen over other possibilities, since goals are processed in a breadth first manner
(See results in Section 5.6.4 for confirmation of this point).

The final important insight lies in the right most data set of each CHR example. ”Un-
bounded” refers to the performance of the parallel CHR system when we do not bound
the number of CHR goal threads. This means that we spawn as many Haskell GHC
lightweight threads as there are goal constraints, hence representing the abandonment of
the bounded goal thread pool concurrency optimization. Results here show defini-
tively that unbounded thread pooling (see [Lam, 2010]) is harmful to parallel CHR goal
execution, with all CHR examples in this configuration performing sub-optimally.

5.6.2 Disabling Atomic Rule Head Verification

Figure 5.13 illustrates the experiment results conducted with ARV disabled. The alterna-
tive implementation we use here is similar to the simple implementation described in [Lam,
2010] and has the potential to introduce many false overlaps in concurrent goal execution.
In general, results here show that multi-threaded goal execution performs worse than a
single threaded execution or even the basic non-concurrent implementation. This essen-
tially highlights the importance of minimizing false overlaps in concurrent goal execution,
via ARV, or other fine-grained micro management of lower level concurrency primitives.

Dining Philosophers and Turing Machine examples demonstrate slight speed ups over
base execution time, showing that there are domains which are more tolerant to the absence
of fine-grained synchronization (introduced by ARV). It is not surprising, since Dining
philosophers and Turing machine are examples in which CHR rule head matching heavily
relies on constraint indexing. For instance, looking at the dining philosopher’s problem,
the active goal Think(c, 0, a, b)#n can seek for partners Fork(a)#m and Fork(b)#p via
specifying indexed lookups for arguments a and b in the Fork constraint store (as oppose
to a linear iteration of all Fork constraint, until a and b are found). This reduces the
number of shared memory reads and thus reducing number of false overlaps, even without
the presence of streamlined synchronization introduced by ARV.

To further support this argument, we investigate further by repeating the experiments,
this time with constraint indexing also disabled. Figure 5.14 shows the highlights of this
follow up experiment (we omit the examples which present insignificant or no di↵erence
from results in Figure 5.13). In this experiment, we see that Unionfind, Dining philoso-
phers and Turing machine demonstrate terrible performance when constraint indexing is
disabled. Since these examples heavily rely on constraint indexing, using linear lookups

152



Chapter 5

1 Thread 2 Threads 4 Threads 8 Threads

P. Unionfind (no ARV) 109% 131% 152% 178%
P. Unionfind (no ARV, no Indexing) 114% >200% >200% >200%
Dining Philo (no ARV) 124% 89% 72% 75%
Dining Philo (no ARV, no Indexing) 126% >200% >200% >200%
Turing Machine (no ARV) 111% 73% 82% 85%
Turing Machine (no ARV, no Indexing) 111% >200% >200% >200%

Figure 5.14: Experimental results with and without constraint indexing (atomic rule-head
verification disabled)

1 Thread 2 Threads 4 Threads 8 Threads

Gcd (Optimal) 109% 37% 18% 12%
Gcd (No Bag Store) 109% 134% 146% 148%
Prime (Optimal) 115% 73% 46% 30%
Prime (No Bag Store) 115% 91% 75% 67%
Fibonacci (Optimal) 125% 85% 59% 39%
Fibonacci (No Bag Store) 125% >200% >200% >200%

Figure 5.15: Experimental results with and without bag constraint store

instead forces goal executions to iterate through many more shared memory locations in
the constraint store, thus increasing number of failed concurrent execution due to false
overlaps. This explains why results (no ARV and no Indexing) worsens with more goal
threads executing in parallel.

5.6.3 Disabling Bag Constraint Store

Figure 5.15 illustrates experiment results conducted without the use of bag constraint
stores and iterators versus our optimal results from Section 5.6.1. Here, we highlight
only the Gcd, Prime and Fibonacci examples as all others show little significant changes
in scalability and performance. Without bag constraint store and iterators, Gcd and
Fibonacci perform worse when more goal threads are executed in parallel. Even though
Prime demonstrate better performance with more goal threads, its scalability with more
threads is still less impressive than our optimal results.

These results are not entirely surprising, since Gcd, Fibonacci and Prime are indeed
CHR problems where CHR goals likely share overlapping sets of potential candidates for
partner constraints. For instance, consider the Fibonacci rule fibo4 :

fibo4 @ Fibo(x ),Fibo(y)() Fibo(x + y)

An active goal Fibo(x1)#n is free to match with any Fibo constraint (variable y of rule
head Fibo(y) is unbounded), as such if all parallel goals iterate through potential candidate
Fibo constraints in the same order, they will frequently select overlapping constraints.
Hence, more computation time is wasted for synchronizing between parallel goal threads
(STM roll back and continue search for another available partner). As the experiment
results in this section show, such unnecessary synchronization procedures are avoided in
our optimal configuration by the use of bag constraint stores and iterators. The Gcd
example CHR rule gcd1 and the Prime example rule prime3 also shares this similarly
with the Fibonacci example rule fibo4 .

153



Bibliography

1 Thread 2 Threads 4 Threads 8 Threads

Merge Sort (Optimal) 121% 94% 70% 52%
Merge Sort (Unordered Goals) 121% 158% 190% >200%
Gcd (Optimal) 109% 37% 18% 12%
Gcd (No Bag Store) 109% 62% 41% 28%

Figure 5.16: Experimental results, with domain specific goal ordering disabled

5.6.4 Disabling Domain Specific Goal Ordering

Figure 5.16 illustrates our experiment results without the domain specific goal ordering op-
timization. In our examples, only Mergesort and Gcd examples specifies a goal ordering16,
hence disabling goal ordering will only a↵ect these two examples.

The results show that without goal ordering, Mergesort without goal ordering does not
scale with increasing goal threads. This confirms that the optimal goal ordering reduces
number of conflicting concurrent goal executions and number of Next comparisons (see
[Lam, 2010] for details). Gcd without goal ordering still performs decently, but without
the super linear speed up it experiences with goal ordering.

Bibliography

Slim Abdennadher, Thom Frühwirth, and Holger Meuss. Confluence and semantics of
constraint simplification rules. Constraints Journal, 4, 1999.

Gregory J. Duck. Compilation of Constraint Handling Rules. PhD thesis, The University
of Melbourne, 2005.

Thom Frühwirth. Parallelizing union-find in Constraint Handling Rules using confluence
analysis. In Proc. of ICLP’05, volume 3668 of LNCS, pages 113–127. Springer-Verlag,
2005.

Thom Frühwirth. Constraint Handling Rules. Cambridge University Press, 2009. ISBN
0-521-87776-8.

GHC. Glasgow haskell compiler home page. http://www.haskell.org/ghc/.

Christian Holzbaur, Maria J. Garćıa de la Banda, Peter J. Stuckey, and Gregory J. Duck.
Optimizing compilation of Constraint Handling Rules in HAL. TPLP, 5(4-5):503–531,
2005.

Edmund S.L. Lam. Parallel Execution of Constraint Handling Rules – Theory, Imple-
mentation And Application. PhD thesis, National University of Singapore, Singapore,
2010.

Tom Schrijvers. Analyses, optimizations and extensions of Constraint Handling Rules:
Ph.D. summary. In Proc. of ICLP’05, volume 3668 of LNCS, pages 435–436. Springer-
Verlag, 2005.

Martin Sulzmann and Edmund S. L. Lam. Parallel execution of multi-set constraint rewrite
rules. In Proc. of PPDP’08, pages 20–31. ACM Press, 2008.

16For Mergesort, Next goals are stacked, Merge goals are queued. For Gcd, goals are queued.

154



Chapter 5

Martin Sulzmann, Edmund S. L. Lam, and Simon Marlow. Comparing the performance of
concurrent linked-list implementations in haskell. In DAMP ’09: Proceedings of the 4th
workshop on Declarative aspects of multicore programming, pages 37–46, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-417-1. doi: http://doi.acm.org/10.1145/1481839.
1481845.

155





Part IV

Formal Analysis of CHR





Chapter 6

Computational Complexity

Author: Jon Sneyers
Thesis Title: Optimizing Compilation and Computational Complexity of

Constraint Handling Rules
School: K.U.Leuven, Belgium
Publication Year: 2008

“Computer Science is no more about computers than astronomy is about
telescopes.”

“The question of whether Machines Can Think . . . is about as relevant as
the question of whether Submarines Can Swim.”

— Edsger Dijkstra (1930–2002)

Foreword

In this chapter we study the complexity of CHR. We start as follows. After a brief intro-
duction to computational complexity theory in Section 6.1, we introduce a new model of
computation, the CHR machine, and compare it with the standard models of computation
— Turing machines and RAM machines. We define CHR machines in Section 6.2. Next,
in Section 6.2.1 we show the unsurprising result that CHR machines are Turing-complete.
Then, in Section 6.2.2 we define the time and space complexity of CHR machines.

A section on identifying syntactical subsets of CHR programs that are still Turing-
complete ([Sneyers, 2008b, Ch.10.3]) has been omitted, because it has been superseded
by more recent work [Sneyers, 2008a, Gabbrielli et al., 2010]. Also note that Listing 10.8
in [Sneyers, 2008b] is wrong (the last line will cause problems in case of a jump). This
“bug” is no coincidence: this class of programs (single-headed CHR without functors) has
meanwhile been shown to be non-Turing-complete by Gabbrielli et al. [2010].

We will derive a general complexity meta-theorem in Section 6.3 which we use to show
a complexity-wise completeness result: we demonstrate that it is possible to implement
any algorithm in CHR in an e�cient way, i.e. with the best known time and space
complexity. In Section 6.3.4 we investigate to what extent the result can be ‘ported’ to
other declarative languages, and in Section 6.3.5 we examine the constant factors hidden
behind the asymptotic big O notation.



6.1. Introduction to Complexity Theory

6.1 Introduction to Complexity Theory

The theory of computation is one of the most fundamental branches of computer science.
In a nutshell, it is the study of whether or not certain problems can be algorithmically
solved, both in principle and in practice. The field of computability theory deals with the
question of which problems can be solved algorithmically in principle, that is, if there are
no time and space constraints. One of the most important results in computability theory
is the undecidability of the halting problem [Turing, 1936]. In the field of (computational)
complexity theory, the question is whether a problem can be algorithmically solved in
practice. Although there may be an algorithm that solves the problem in principle, it
could very well take such a huge amount of time or space — say, it takes longer than
the age of the universe to complete the computation, or more bits than the number of
particles in the universe — that it is essentially useless in practice. Complexity theory is
mainly concerned with the scalability of algorithms, that is, the correlation between the
size of the problem instance and the amount of computational resources needed by the
algorithm. The most famous open problem in complexity theory is the question of whether
the complexity classes P and NP coincide or not.

Both in computability theory and in computational complexity theory, idealized formal
models of computation are constructed in order to define the notions of “algorithm” and
“computational resource” in a precise way. In Section 6.1.1 we discuss three well-known
models of computation: the Turing machine, the RAM (random access memory) machine,
and the Minsky machine. (In Chapter 6.2 we will introduce a fourth model of computation,
called the CHR machine.) Section 6.1.2 briefly discusses some elementary notions of
computability theory; in particular, the concept of Turing-completeness and the Church-
Turing thesis. Finally, in Section 6.1.3, we define the notions of time and space complexity
in the di↵erent models of computation.

6.1.1 Models of computation

Di↵erent models of computation have been proposed for di↵erent purposes. The well-
known Turing machine (Section 6.1.1) is conceptually very simple, which makes it very
suitable for theoretical investigation. It also has a non-deterministic variant (Section 6.1.1).
An even simpler model of computation is the Minsky machine (Section 6.1.1). The Random
Access Memory machine (Section 6.1.1) is somewhat more complicated, but it more closely
models realistic computers.

Turing machines

The Turing machine, originally introduced by Alan Turing [1936], is the prototypical
computational model which is still widely used in computability and complexity theory.
We use the single-tape definition of Hopcroft et al. [2001]:

Definition 6.1.1 (Turing machine). A (deterministic) Turing machine is a 6-tuple M =
hQ,⌃, q0, b, F, �i where

• Q is a finite set of states;

• ⌃ is a finite set of symbols, the tape alphabet;

• q0 2 Q is the initial state;

• b 2 ⌃ is the blank symbol;

160



Chapter 6

• F ✓ Q is the set of accepting final states;

• � : Q⇥⌃ 7! Q⇥⌃⇥{left, right} is a partial function, called the transition function;
“left” and “right” represent the direction of the tape head move.

In the literature definitions sometimes di↵er subtly, usually without an impact on the
computational power or time complexity. For example the set {left, right} is often
extended to allow the machine to stay on the same tape cell.

A Turing machine M operates on an infinite tape of cells. Each cell contains a symbol
of the tape alphabet ⌃. The tape is assumed to be arbitrarily extendible to the left and
the right. A head is positioned on a particular cell of the tape, can read and write a symbol
in that cell and can move left and right.

Operation starts in the initial state q0 on a tape which contains a finite string of symbols
(called the input), and the head is positioned on the left-most input symbol. Execution
proceeds by considering the current state q and the symbol s that is under the head. Then:

• Either (q, s) is a member of the domain of � and �(q, s) = (q0, s0, X). The e↵ect then
is that the current state of M changes to q0, the head overwrites the value s in the
cell under it with s0 and next the head either moves to the left or the right depending
on whether X = left or X = right.

• Or (q, s) is not part of the domain of �. Execution stops. If q 2 F , the input is
accepted, otherwise it is rejected.

We represent an execution state of a Turing machine M = hQ,⌃, q0, b, F, �i as a 4-
tuple �tm = hq, P, s,Ni, representing the current state q 2 Q, the current symbol s 2 ⌃,
the previous symbols P and the next symbols N which are sequences of symbols. We use
�tm0 ,�tm1 , . . . to denote Turing machine execution states, and ⌃tm(M) to denote the set
of all execution states of M . Given an input I = [f |N ] (a sequence of symbols), the initial
execution state is �tm0 = hq0, [], f,Ni. The transition rules are:

(1) hq, [p|P ], s,Ni ! hq0, P, p, [s0|N ]i if �(q, s) = (q0, s0, left)
(2) hq, P, s, [n|N ]i ! hq0, [s0|P ], n,Ni if �(q, s) = (q0, s0, right)
(3) hq, [], s,Ni ! hq0, [], b, [s0|N ]i if �(q, s) = (q0, s0, left)
(4) hq, P, s, []i ! hq0, [s0|P ], b, []i if �(q, s) = (q0, s0, right)

The machine operates by exhaustively applying the transition rules on the initial execution
state. Note that the size of execution states is unbounded but finite. In execution state
�tm0 = hq, P, s,Ni, the contents of the tape is the sequence tape(�tm0 ) = reverse(P ) ++
[s] ++ N , where reverse reverses a sequence (i.e. reverse([a1, a2, . . . , an�1, an]) equals
[an, an�1, . . . , a2, a1]). If the final execution state is of the form hqf , P, s,Ni, the Turing
machine has accepted the input I if qf 2 F . If qf 2 Q \ F , the input is rejected. When
the input is accepted, the output of the Turing machine is the tape contents in the final
execution state; when the input is rejected, the output is undefined. Given a Turing
machine M and input I, we denote the corresponding derivation by derivM (I). If the
machine terminates on input I, we denote the output by M(I) = tape(�tm

f
), where �tm

f

is the last state in derivM (I).

Non-deterministic Turing machines

In deterministic Turing machines, there is exactly one next step (or none, for the config-
urations in which the machine terminates) for every combination of a state and an input

161



6.1. Introduction to Complexity Theory

symbol. Non-deterministic Turing machines do not have this restriction: there can be
di↵erent actions for the same state and input symbol.

Definition 6.1.2 (non-deterministic TM). A non-deterministic Turing machine is a 6-
tuple M = hQ,⌃, q0, b, F, �i which is defined as in Definition 6.1.1, except for �, which is
an arbitrary relation (not necessarily a function):

� ✓ (Q⇥ ⌃)⇥ (Q⇥ ⌃⇥ {left, right})

A non-deterministic Turing machine works just like a deterministic one, except that
whenever there are n > 1 possible actions to be taken, n duplicates of the machine are
made, and every choice is executed in parallel. As soon as one of the execution branches
halts in an accepting final states, the entire non-deterministic Turing machine stops and
accepts the input (the output is the tape content of the accepting branch). When all
execution branches have halted in a rejected final state, the entire non-deterministic Turing
machine stops and rejects the input. Otherwise, the machine does not terminate.

RAM machines

The Random Access Memory (RAM) machine [Aho et al., 1975] closely models the basic
features of traditional sequential computers. In the literature many variations of the RAM
machine have been considered. We investigate two di↵erent RAM machines. The first is a
RAM machine with simple Peano arithmetic operations and the second has the standard
arithmetic operations as they are implemented on today’s computers.

Common architecture. A RAM machine consists of three components: the central
processing unit (CPU), the program, and the random-access memory (RAM). The memory
consists of an infinite number of cells, or registers, which are labeled with a natural number
which is called its address. If a register is initialized, it contains a value, which is an integer
number. We use A,A1, A2, . . . to represent the memory addresses and JAK to denote the
value of the register at address A.

The program consists of a sequence of instructions. The program instructions are
labeled with successive natural numbers. We use L,L1, . . . to denote program instruction
labels. The CPU follows a fetch-and-execute cycle. It has a program counter PC that
is initialized to the first program instruction label. This program counter contains the
label of the next program instruction to be executed. The CPU fetches the instruction
and performs the corresponding operations.1 This involves setting the program counter
to the next instruction, by default the successor of the current address. Table 6.1 lists
the instructions supported by the standard RAM machine. The Peano-arithmetic RAM
machine uses a subset of these instructions.

Definition 6.1.3 (Peano-arithmetic RAM machine). A Peano-arithmetic RAM machine
consists of a program and a working memory as described above. The program instructions
are inc, dec, clr, jmp, cjmp, and halt (see Table 6.1).

This corresponds to the definition used by Savage [1998]. Indirect addressing is not
supported, so all registers that are used in a program are supposed to be initialized in
advance. All copying, addition and subtraction has to be done by repeated use of the
inc and dec instructions. This makes the Peano-arithmetic RAM less practical, as actual
computers do provide instructions for addition and subtraction.

1If an illegal instruction is encountered, the machine halts. Examples of illegal instructions are division
by zero, jump to a non-existent label, instructions referring to registers with a negative address, etc.

162



Chapter 6

Instruction E↵ect
inc A JAK JAK + 1
dec A JAK JAK� 1
clr A JAK 0
jmp L PC  L
cjmp A L PC  L if JAK = 0
halt Halt execution of the RAM machine
init A Initialize the register at address JAK to

zero
cnst B A JAK B
add A2 A1 JA1K JA1K + JA2K
sub A2 A1 JA1K JA1K� JA2K
mul A2 A1 JA1K JA1K ⇤ JA2K
div A2 A1 JA1K JA1K/JA2K if JA2K 6= 0
mov A2 A1 JA1K JA2K
imv A2 A1 JA1K JJA2KK
mvi A2 A1 JJA1KK JA2K

Table 6.1: Instruction set of the RAM machine

Definition 6.1.4 (standard RAM machine). A standard-arithmetic RAM machine con-
sists of a program and a working memory as described above. The program instruction set
is given in Table 6.1.

This instruction set is similar to the definition of Aho et al. [1975], and resembles more
closely actual computers. The inc, dec, and clr instructions are redundant: they can
be implemented using add, sub, and cnst. Without loss of generality, we assume the
instructions that refer to two (add, sub, mul, div, mov) or three (imv, mvi) memory cells
refer to two or three di↵erent cells. For example, the instruction “add a a” should be
rewritten to “mov a t ; add t a” where t is some temporary register.

By convention, particular memory cells are initialized in advance and contain the input,
while other (or the same) memory cells are meant to contain the output. Without loss of
generality we assume that the program initializes all additional registers (using the init

instruction) before they are used.

Minsky machines

An even simpler version of the Peano-arithmetic RAM machine was proposed by Min-
sky [1967]. Minsky machines have only two registers, that can hold natural numbers.
There are only two instructions: succ(ri), which increases the value of ri by one, and
decjump(ri,pj), which decreases the value of ri by one if it is nonzero, and otherwise
jumps to program line pj . A program consists of a numbered sequence of instructions and
unless there is a jump, the program continues with the next instruction in the sequence.
Some program lines may be empty; in that case the machine halts (in some formulations a
third instruction halt is used to represent these empty lines). Without loss of generality
we can assume that both registers are initialized to zero.

6.1.2 Computability

Computability theory studies the boundary between the problems that can be solved al-
gorithmically, and those that cannot. An algorithm that solves a problem (also called an

163



6.1. Introduction to Complexity Theory

e↵ective method or e↵ective procedure) is a method consisting of steps that may be de-
scribed as mechanical operations; a method which, if followed rigorously, has the following
properties:

• the method always terminates after a finite number of steps;

• the method always gives the correct answer and never a wrong answer;

• the method works for all instances of the problem.

Note that this is not a mathematically precise definition — the notion of e↵ective
procedure is somewhat vague and intuitive, in particular because it is not specified what
kind of operations “may be described as mechanical operations”. The models of compu-
tation of the previous section were formulated in an attempt to formalize this notion of
an algorithm.

Church-Turing thesis

The Church-Turing thesis can be formulated as follows: “A problem can be algorithmically
solved if and only if there is a Turing machine that solves it.” In other words, the notion
of computability by a Turing machine and the intuitive notion of e↵ective computability
are in fact the same. This is not a mathematical statement that can be proven correct
formally because it is a statement about the informal notion of an algorithm.

It is supported by the equivalence of Turing machines and �-calculus, a formal system
introduced by Alonzo Church and Stephen Kleene in the 1930s. Both formalisms were in-
troduced independently to capture what is computable. They are very di↵erent formalisms,
originating from a di↵erent approach to computability: the “mechanical” approach in the
case of Turing machines and the “mathematical” or “functional” approach in the case of
�-calculus. Still, both formalisms were shown to be equivalent — which indicates that
either formalism really corresponds to the intuitive notion of “e↵ective computability”.

According to the Church-Turing thesis, all ‘reasonable’ models of computation are
equivalent to the Turing machine in the sense that they can all solve the same problems.
Today, about 70 years after its first formulation, the Church-Turing thesis is widely be-
lieved to hold. Indeed, for all reasonably strong models of computation that have been
proposed in the literature, it has been proved that they are (computationally) equivalent
to the Turing machine. Clearly, models of computation can also be defined that are weaker
than Turing machines — for example, finite automata.

Turing-completeness

A model of computation is called Turing-complete if it has (at least) the same computa-
tional power as Turing machines, that is, every Turing Machine can be simulated in the
model. A model of computation is called Turing-equivalent if it has precisely the same
computational power as Turing machines, i.e. it is Turing-complete and every program of
the model can also be simulated on a Turing machine. All ‘reasonable’ Turing-complete
models of computation are also Turing-equivalent2, a fact that adds support to the Church-
Turing thesis.

2 Some contrived models of computation that are not intended to model some physically realizable
computational device are not ‘reasonable’. For example, so-called oracle machines are more powerful than
plain Turing machines if the oracle is su�ciently powerful, for instance capable of solving the halting
problem in a single step. Another example is the so-called Zeno machine, in which each computational
step takes half the time of the previous step — such a machine can perform a countably infinite number
of steps in finite time.

164



Chapter 6

A universal Turing machine is a Turing machine program that can “run” any arbitrary
Turing machine: if the tape is initialized with some encoding of a Turing machine program
followed by an input tape for that program, the final output on the tape is exactly the same
as the output the encoded program would give. The existence of such universal machines
is arguably one of the most important results in the whole of computer science, and it is
due to Turing [1936]. The von Neumann architecture and concepts like program-as-data,
subroutines, compilers, operating systems, . . . were directly influenced by the existence of
universal machines.

6.1.3 Computational complexity theory

Complexity theory investigates the amount of computational resources needed to execute
an algorithm. The two most important computational resources are time (execution time
— number of steps) and space (size of the required memory — number of tape cells or
registers).

One of the seminal papers that founded and shaped the field of computational com-
plexity theory was [Hartmanis and Stearns, 1965]. Relatively recently, in 1988, a letter
surfaced3 that indicates that the core idea and importance of complexity theory was al-
ready recognized by Kurt Gödel as early as 1956.

Time complexity

The worst-case time complexity of an algorithm or program is defined as a function of the
size of the input. For a given input size, the worst-case time complexity is the maximal
number of execution steps needed for executing the program on arbitrary input of that
size.

It is important to make explicit, for a given problem, how the size of a problem instan-
tiation (the input size) is to be measured. For example, if the problem is testing whether
or not a number is a prime, one could count the number itself as the size of the input
or, alternatively, the number of bits (or decimal digits) needed to represent the number.
Depending on which input size measure is used, the time complexity of the AKS primality
test [Agrawal et al., 2004] is polylogarithmic or polynomial, respectively.

In some cases the related notions of average-case and best-case complexity may also
be useful. Usually, we are interested in performance guarantees, for which the worst-case
is most important. From now on, when we say “complexity”, we implicitly mean the
worst-case complexity.

For deterministic Turing machines, the length #derivM of a derivation derivM is simply
the number of steps in that derivation. Recall that for non-deterministic Turing machines,
we consider the shortest possible derivation that leads to an accepting final state; if there
are no accepting paths, the derivation length is defined to be zero.

Definition 6.1.5 (time complexity of Turing machines). The time complexity of a Turing
machine M = hQ,⌃, q0, b, F, �i is the maximal derivation length for inputs of a given size:

tmtimeM (n) = max{#derivM (I) | I 2 ⌃⇤ and |I| = n}

Definition 6.1.6 (time complexity of RAMmachines). The time complexity ramtimeP (n)
of a RAM machine with program P is the maximal time needed for an execution starting

3The letter can be found at http://www.contrib.andrew.cmu.edu/⇠hardt/godel.html.

165



6.1. Introduction to Complexity Theory

with some input of size n. The time needed for a program execution is the sum of the times
needed for every instruction that is executed. All instructions take constant time except
for the arithmetic instructions add, sub, mul, and div, which take O(log |x|) time where
x is the largest (in absolute value) of the numbers involved in the arithmetic operation.

Space complexity

The space complexity of an algorithm is the number of tape cells (or bits) it needs, in
the worst case, during its execution. As time complexity, it is defined as a function of the
input size.

Definition 6.1.7 (space complexity of Turing machines). The space complexity of a Turing
machine M is the maximal tape size used in derivations for inputs of a given size:

tmspaceM (n) = max{#tape(�) | � 2 derivM (I) and I 2 ⌃⇤ and |I| = n}

Definition 6.1.8 (space complexity of RAMmachines). The space complexity ramspaceP (n)
of a RAM machine with program P is the maximum, over every execution starting with an
input of size n, of the sum over all registers in the range 0, . . . ,maxaddr of the number of
bits needed to represent the maximal value that it held. Unused registers within that range
are charged one bit for the implicit value 0 stored in them.

In practice, we often assume the registers to use at most a fixed number of bits. In
that case, every instruction takes constant time and the space complexity is just maxaddr,
the maximum register address reached in a computation.

In the following, we will assume RAM programs to use at least as much time as space.
This is a nontrivial assumption given our definition of space complexity, but unless a
program uses the registers in an unrealistically sparse way, it is not a very restrictive
assumption. After all, every program can be rewritten to use memory in a dense way
with only logarithmic time overhead, e.g. by explicitly storing address-value pairs using a
balanced search tree.

Asymptotic complexity and big O notation

We are usually not interested in the exact time or space complexity of an algorithm, but
only in its scalability. The practical reason is that real computers tend to become faster
and faster and the amount of physical memory also tends to increase. Hence, if I have
an algorithm which is a constant factor k slower than your algorithm, we can still handle
the same range of input sizes — I just have to buy a more expensive computer that is
k times as fast as yours, or wait until such computers become available. However, if my
algorithm takes 2n steps for input of size n and your algorithm takes n2 steps, then there
will always be inputs that you can handle but I cannot (in, say, one human lifetime), no
matter how much faster my computer is compared to yours. A more theoretical reason
to ignore constant factors is the so-called linear speedup theorem [Hartmanis and Stearns,
1965]: if a problem can be solved by a Turing machine in time f(n), there is also a Turing
machine that solves it in time cf(n) + n+ 2, for any c > 0.

The notion of asymptotic complexity is used to compare the scalability of algorithms.
A function f(n) is asymptotically bounded by another function g(n), which we denote by
saying f(n) is O(g(n)), if and only if

9N, c > 0 : 8n > N : f(n)  cg(n)

166



Chapter 6

Complexity Name Example problem (algorithm)
O(1) constant Accessing an arbitrary element of an array

O(log n) logarithmic Searching in a sorted list of length n
O(n) linear Searching in an unsorted list of length n

O(n↵(n)) inverse Ackermann Performing n union-find operations
O(n log n) quasilinear Sorting a list of n elements (heapsort)

O(n2) quadratic Sorting a list of n elements (insertion sort)

O(n3) cubic Finding a shortest path in a weighted graph
(where edge weights may be negative) with n
nodes (Bellman-Ford algorithm)

O(nk) polynomial Testing whether a number of n digits is
prime (Agrawal-Kayal-Saxena primality test)

O(kn) exponential Traveling salesman problem (dynamic program-

ming)

O(n!) factorial Traveling salesman problem (brute force)

Table 6.2: Common asymptotic complexities

If algorithm A has complexity f(n) and algorithm B has complexity g(n), and f(n) is
O(g(n)), then we say algorithm A is at least as e�cient as algorithm B. If both f(n) is
O(g(n)) and g(n) is O(f(n)), we say that f(n) is ⇥(g(n)).

Table 6.2 lists some common asymptotic time complexities, ordered from most e�cient
to least e�cient. In this table, n denotes the input size and k denotes some constant. We
also use the notation Õ(f(n)) as a shorthand for O(f(n) logk f(n)), for some fixed k. In
this notation, polylogarithmic factors are ignored. Polylogarithmic factors are often not
that important since any function that is Õ(nk) is also O(nk+✏), for arbitrary small ✏ > 0.

Amortized complexity analysis

The execution of many algorithms, in particular data structure algorithms, consists of a
sequence of operations. In most circumstances (the exception being real-time programs)
we are only interested in the total time, not in the time per operation.

Sometimes the time per operation varies a lot, and as a result, the worst-case time per
operation would seem rather bad. However, if the worst case only happens demonstrably
rarely, the worst-case time for sequences of operations can be much better than the naive
bound obtained by multiplying the length of the sequence by the worst-case time per
operation.

The amortized complexity of an operation is the average time needed for the operation,
over a worst-case sequence of operations. As a simple example, consider a data structure
which has two operations: push(x), which puts some item x at the top of a stack, and
popall, which removes all items from the stack while printing them. Clearly, if there
are n elements on the stack, the time needed for the popall operation is O(n). Given a
sequence of k operations, the stack size may be as large as k, so the total time is O(k2).
Using amortized complexity analysis, we can improve this bound. Both operations take
only constant amortized time.

This can be seen as follows. We assign a potential, a positive number, to every possible
state of the stack data structure. The amortized time for an operation is its actual time
plus the net increase in potential caused by it. The actual time for a sequence of operations
is then the total amortized time minus the total net increase in potential. We define the

167



6.2. CHR Machines

potential of a stack simply as the number of elements it contains. At the beginning of
a sequence of operations we have an empty stack, so the initial potential is zero. Since
the potential cannot be negative, the amortized time complexity is an upper bound for
the actual time complexity. The push operation indeed has a constant amortized time
complexity: adding one element to the stack takes constant time, and the potential of
the stack is increased by one, which is also a constant. The popall operation takes n
time units if the stack has size n, but the increase in potential it causes is �n, so its
amortized complexity is also constant. We can conclude that any sequence of push and
popall instructions of length k takes only O(k) time.

In [Sneyers, 2008b], chapter 5.2.3, we give a more interesting example of amortized
complexity analysis when discussing the time complexity of the Fibonacci heap algorithm
of Fredman and Tarjan [1987].

Relation between RAM machines and Turing machines

It is easy to see that RAM machines are Turing-complete. Both kinds of RAM machines
can simulate a T -time Turing machine in O(T ) time. Also, both kinds of RAM machines
are Turing-equivalent. The main di↵erence between the two RAM machines is the time
complexity that can be achieved when simulating them on a Turing machine. According
to Savage [1998], a T -time Peano-arithmetic RAM using S registers can be simulated on
a Turing machine in O(ST log2 S) time. The standard RAM is also polynomially related
to the Turing machine, although it is more expensive to simulate on a TM. According
to Aho et al. [1975], a standard RAM machine with time complexity T can be simulated
on a multi-tape TM in O

�
(T log T log log T )2

�
time. Simulating a multi-tape TM on a

single-tape TM squares the time complexity [Hartmanis and Stearns, 1965], so we have:

Lemma 6.1.9. Any standard RAM machine with time complexity T can be simulated on
a Turing machine with time complexity Õ(T 4).

6.2 CHR Machines

We define a CHR machine as follows:

Definition 6.2.1 (CHR machine). A CHR machine is a tuple M = (H,P,VG). The host
language H defines a built-in constraint theory DH, P is a CHR program, and VG ✓ GH

P
is

a set of valid goals, such that P is a �H
!t
-deterministic CHR program for input VG. The

machine takes an input query G 2 VG and executes a derivation d 2 �H
!t
|G.

To fully specify a CHR machine, we need to give the host language, the CHR program
it uses, and the set of queries that are allowed as input. Note that the above definition
heavily restricts the class of allowed CHR programs: they have to be �H

!t
-deterministic

for valid input queries.
In [Sneyers, 2008b], chapter 12, we consider more general types of CHR machines. For

now, the above definition su�ces and it is considerably simpler. In the terminology of
[Sneyers, 2008b], chapter 12, CHR machines as defined above are both deterministic and
abstract (in the sense that they follow the abstract operational semantics !t).

Terminology. Since we only allow deterministic CHR programs, we will assume that
there is exactly one derivation corresponding to every goal. If there are di↵erent deriva-
tions, we arbitrarily pick one — the resulting final state has to be unique anyway, and in

168



Chapter 6

Listing 6.1: TMSIM: Turing machine simulator

r1 @ de l t a (Q, S ,Q2 ,T, l e f t ) , adj (L ,C)
\ s t a t e (Q) , c e l l (C, S ) , head (C)
<=> L \== nu l l | s t a t e (Q2) , c e l l (C,T) , head (L ) .

r2 @ de l t a (Q, S ,Q2 ,T, r i g h t ) , adj (C,R)
\ s t a t e (Q) , c e l l (C, S ) , head (C)
<=> R \== nu l l | s t a t e (Q2) , c e l l (C,T) , head (R) .

r3 @ de l t a (Q, S ,Q2 ,T, l e f t )
\ adj ( nu l l ,C) , s t a t e (Q) , c e l l (C, S ) , head (C)
<=> c e l l (L , b ) , adj ( nu l l , L) , adj (L ,C) ,

s t a t e (Q2) , c e l l (C,T) , head (L ) .
r4 @ de l t a (Q, S ,Q2 ,T, r i g h t )

\ adj (C, nu l l ) , s t a t e (Q) , c e l l (C, S ) , head (C)
<=> c e l l (R, b ) , adj (C,R) , adj (R, nu l l ) ,

s t a t e (Q2) , c e l l (C,T) , head (R) .
f a i l @ node l ta (Q, S ) , r e j e c t (Q) , s t a t e (Q) , c e l l (C, S ) , head (C)
<=> f a i l .

case it is successful, there cannot even be di↵erent derivation lengths. Therefore we will of-
ten talk about the derivation for a given goal as a shorthand for “an arbitrary derivation”.
We use derivM(G) to denote the derivation for goal G. If the derivation d = derivM(G) is
finite, we say the machine terminates for goal G, with output state M(G) = hG0, S,B,Tin
which is the last state of d. The machine accepts the input G if d is a successful derivation
and rejects G if d is a failed derivation. If d is an infinite derivation, we say the machine
does not terminate.

A CHR(X) machine is a CHR machine with host language X, i.e. of the form (X, , ).
We use � to denote no host language: the built-in constraint theory D� defines only the
basic constraints true and fail, and syntactic equality and inequality (only to be used
as an ask -constraint). This implies that the Solve transition can only be used once (to
add fail). The only data types are constants, and variables that cannot be bound. A
CHR-only machine is a CHR(�) machine.

A su�ciently strong host languageH is a host language whose built-in constraint theory
DH defines at least true, fail, == and \==, the integer numbers and the arithmetic
operations for addition, subtraction, multiplication and integer division. Clearly, most
realistic host languages are su�ciently strong. Prolog, for instance, defines true, fail,
== and \==, and allows integer arithmetic using is/2.

6.2.1 CHR machines are Turing-complete

We now show that CHR-only machines are Turing-complete (cf. Section 6.1.2), i.e. they
have at least the computational power of Turing machines. In order to prove this, it
su�ces to construct a CHR machine which corresponds to a universal Turing machine, i.e.
a CHR machine which can simulate any Turing machine.

Consider the CHR program TMSIM shown in Listing 6.1 and the corresponding CHR-
only machine Mtm = (�,TMSIM,VTmG). We postpone the definition of VTmG for now.
The program TMSIM simulates Turing machines (see Section 6.1.1).

169



6.2. CHR Machines

Description. The TMSIM program defines the following constraints:

delta/5 encodes the transition function � (the Turing machine program) in the obvious
way: delta(q,s,q0,s0,d) means that �(q, s) = (q0, s0, d);

nodelta/2 encodes the domain on which � is undefined;

reject/1 encodes the set of non-accepting final states Q \ F ;

state/1 contains the current state;

head/1 contains the identifier of the cell under the head;

cell/2 represents a tape cell. The first argument is the unique identifier of the cell.
The second argument is the symbol in the cell.

adj/2 encodes the order of the tape cells. The constraint adj(A,B) should be read:
“the right neighbor of the tape cell with identifier A is the tape cell with
identifier B”.

The special cell identifier null is used to refer to a not yet instantiated cell. The rules r3
and r4 take care of extending the tape as needed. The first four rules of TMSIM correspond
to the four Turing machine transition rules.

A simulation of the execution of a Turing machine M proceeds as follows. The tape
input is encoded as cell/2 constraints and adj/2 constraints. The identifier of the cell to
the left of the left-most input symbol is set to null and similarly for the cell to the right
of the right-most input symbol. The transition function � of M is encoded in multiple
delta/5 constraints. All these constraints are combined in the initial query together with
the constraint state(q0) where q0 is the initial state of M and the constraint head(c1)
where c1 is the identifier of the cell representing the left-most input symbol. Every rule
application of the first four rules of TMSIM corresponds directly to a Turing machine
transition.

If no more (Turing machine) transitions can be made, the last rule is applicable if the
current state is non-accepting. In that case, the built-in constraint fail is added, which
leads to a failure state. If the Turing machine ends in an accepting final state, the CHR
program ends in a successful final state.

Correctness proof. We define a function tm to chr which produces a query for TMSIM,
given a Turing machine and an input tape. It is defined as follows: given a Turing machine
M = hQ,⌃, q0, b, F, �i and an input tape I = [i1, . . . , in],

tm to chr(M, I) = prog to chr(M) [ tape to chr(I) [ {state(q0), head(c1)}

where prog to chr(M) is defined as follows:

prog to chr(M) = {delta(q, s, q0, s0, d) | (q, s) 2 Q⇥ ⌃ and �(q, s) = (q0, s0, d)}
[ {nodelta(q, s) | (q, s) 2 Q⇥ ⌃ and �(q, s) is undefined}
[ {reject(q) | q 2 Q \ F}

and tape to chr(I) is defined as follows:

tape to chr(I) = {adj(null,c1)} [
n[

j=1

{cell(cj ,ij), adj(cj ,cj+1)}

170



Chapter 6

Turing machine M

((

with input I

tm to chr

✏✏

: �tm0 �!⇤ �tm
f

CHR machine Mtm with goal G : �0 ⇢⇤ �f

chr to tm

OO

Figure 6.1: Simulation of Turing machines on a CHR machine

M

%%

with input I

tm to chr

✏✏

: �tm0
�! �tm1

�! �tm2 · · ·

Mtm with goal G : �0

chr to tm

OO

⇢ �1

^^

⇢⇤

gg

�k1

chr to tm

OO

⇢ �k1+1

__

⇢⇤

hh

�k2

chr to tm

OO

· · ·

Figure 6.2: States of Mtm and corresponding Turing machine states

where cn+1 = null and the other cj are unique cell identifiers. Clearly, tm to chr can be
computed in time linear in the size of the input tape plus the size of the domain of the
Turing machine program. We now define VTmG as follows:

VTmG = {tm to chr(M, I) | M is a Turing machine for which I is an input tape} .

Lemma 6.2.2. Mtm is indeed a CHR machine, that is, the CHR program TMSIM is
��

!t
-deterministic for input queries from VTmG.

Proof. Clearly, the rules of TMSIM maintain a valid tape representation and the invariant
that there is at most one head/1 constraint and one state/1 constraint. For deterministic
Turing machines the first two arguments of delta/5 functionally determine the other three
arguments. Hence, since valid input corresponds to a deterministic Turing machine, the
rules of TMSIM are mutually exclusive. As a result, the Apply transitions of a derivation
are determined, and only the order of the Introduce transitions may vary. However, it
can easily be verified that the order of Introduce transitions cannot a↵ect the derivation
result and it can only a↵ect the derivation length for failing derivations.

We define a function chr to tm which returns a Turing machine execution state, given
an execution state for a CHR machine: chr to tm : ⌃chr ! ⌃tm :
chr to tm(hG, S,B,Tin) = hq, P, s,Ni where q, P , S, and N are such that G ] S =
prog to chr(M) [ {state(q), head(c), cell(c,s)} [ tape to chr(tape(hq, P, s,Ni)).
It can easily be verified that this is indeed a function, and that it can be computed in time
linear in the tape size.

We now show that Mtm can simulate every Turing machine (cf. Figure 6.1).

Theorem 8. For any Turing machine M and input tape I :

1. M terminates on input I , Mtm terminates on input tm to chr(M, I)

2. M accepts I , Mtm accepts tm to chr(M, I)

3. M outputs chr to tm(X) on input I
() Mtm outputs X on input tm to chr(M, I)

171



6.2. CHR Machines

Proof. Let �0 = initstate(tm to chr(M, I)) be the initial state of Mtm with the input
tm to chr(M, I). Note that chr to tm(�0) = hq0, [], i1, [i2, . . . , in]i is the initial execution
state of M . We observe the following:

Observation 1. For every Mtm transition �i⇢ �i+1, either

(a) chr to tm(�i)! chr to tm(�i+1) is a TM transition for M , or

(b) chr to tm(�i) = chr to tm(�i+1).

This can be shown by induction on the number of CHR machine steps and case analysis
on the transition rules of !t. The first case (a) holds if �i⇢ �i+1 by the Apply transition
rule, where the applied rule is rx. The second case (b) holds if �i⇢ �i+1 by the Introduce
transition rule. Case (b) also holds when �i⇢ �i+1 by the Apply transition rule for the
rule fail, which can only be followed by (a series of Introduce transitions followed by) a
Solve transition which results in a failure state. The relation between the Turing machine
derivation steps and the CHR machine steps is shown schematically in Figure 6.2.

Observation 2. If �i is a final state (for Mtm), then chr to tm(�i) is a final state (for
M). Furthermore, if �i is a successful final state, then chr to tm(�i) is an accepting final
state, and if �i is a failure state, then chr to tm(�i) is non-accepting.

Observation 3. The sub-derivations corresponding to one Turing machine step are
finite. In other words, all chains of the form

chr to tm(�n) = chr to tm(�n+1) = chr to tm(�n+2) = . . .

have a finite length. This follows from observation 1 and the definition of the Introduce
transition, which decrements the size of the (finite) multiset representing the goal in CHR
execution states.

Observation 4. If M terminates on input I, then the Mtm derivation on input
tm to chr(M, I) is also finite. This follows from observation 1 and 3.

The three properties follow straightforwardly from the above observations.

6.2.2 Complexity of CHR machines

Thus far we have only considered the computability of CHR machines. In the following
chapters we will investigate the computational complexity of CHR machines. But first, we
need to complete the definition of CHR machines of Section 6.2, and define what exactly
we mean with the time and space complexity of a CHR machine.

Time complexity

We will use a rather simple and natural measure for the time complexity of CHR machines:

Definition 6.2.3 (time function). Given a CHR machine M = (H,P,VG) and a valid
goal G, the time function chrtimeM returns the derivation length:

chrtimeM : VG ! N : G 7! #derivM(G).

Definition 6.2.4 (time complexity of CHR machines). Given a CHR machine M =
(H,P,VG) and assuming that host language constraints of H take constant time, the
(worst-case) time complexity function chrtimeM is defined as follows:

chrtimeM(n) = max{chrtimeM(G) | G 2 VG ^ inputsize(G) = n}

where inputsize is a function which returns the size of a goal.

172



Chapter 6

% horizontal: vertical:

word(A,B,C,D,E), word(A,F,I),

word(J,M,R),

word(I,J,K), word(C,G,K,N,S),

word(M,N,O,P), word(O,T),

word(Q,R,S,T,U), word(E,H,L,P,U)

==> printsolution(...).

Figure 6.3: Solver program for some crossword puzzle.

Example 6.2.5 (time complexity of PRIMES). Consider the CHR machine

MP = (Prolog,PRIMES, {upto(n)|n 2 N}),

where the program PRIMES is that of Listing 1.2 on page 19. An appropriate goal size
function is given by inputsize(upto(n)) = n. Every derivation starting with upto(n)
consists of n� 1 Solve steps (one for every computation of N-1), 2n� 1 Introduce steps
(n upto/1 constraints and n�1 prime/1 constraints), and n+nonprimes(n) < 2n Apply
steps, where nonprimes(n) is the number of composite numbers between 2 and n (the loop

rule is applied n� 1 times, the stop rule once, and the absorb rule nonprimes(n) times).
As a result, the time complexity chrtimeMP (n) is smaller than 5n�2 and thus it is O(n).

The time given by chrtimeM is the time needed by a theoretical CHR machine. The
next chapter deals with the relation between this theoretical time and the time needed
by practical CHR implementations. The distinction is important because the definition of
chrtimeM does not correspond to the reality of CHR implementations, as the following
example illustrates (cf. Theorem 11).

Example 6.2.6 (crossword puzzle). A CHR machine can solve a crossword puzzle in
time linear in the number of words. Given a query containing n words from a dictionary
as word/k constraints (word length k), the CHR machine with the program of Figure 6.3
returns all s solutions for a crossword puzzle in time O(n + s). It seems highly unlikely
that this time complexity can be achieved on practical computers (i.e. on a RAM machine)
for arbitrary puzzles.

Space complexity

We define the size of a CHR machine state as follows:

Definition 6.2.7 (state size function).

size : ⌃chr ! N : hG, S,B,Tin 7! size(G) + size(S) + size(B) + size(T)

where for sets X, size(X) =
P

x2X
|x| and the size |x| is the usual term size.

The space complexity of a CHR machine is defined in the usual way:

Definition 6.2.8 (space function). Given a CHR machine M = (H,P,VG) and a valid
goal G, the space function chrspaceM returns the largest state size encountered during the
derivation for that goal:

chrspaceM(G) = max{size(�) | � 2 derivM(G)}

173



6.3. Complexity-wise Completeness

Definition 6.2.9 (space complexity of CHR machines). Given a CHR machine M =
(H,P,VG), the space complexity function chrspaceM is defined as follows:

chrspaceM(n) = max{chrspaceM(G) | G 2 VG ^ inputsize(G) = n}

Example 6.2.10 (space complexity of PRIMES). Consider, as in Example 6.2.5, the CHR
machine MP and the goal size function inputsize(upto(n)) = n. If we assume all integers
can be represented in a fixed number of bits, the space complexity chrspaceMP is O(n).
Note that if the constraint size is bounded, the size of the constraint store is asymptotically
dominated by the number of Introduce steps, and the size of the built-in store is dominated
by the number of Solve steps.

6.3 Complexity-wise Completeness

In this chapter we investigate the complexity of CHR machines and their practical im-
plementation in the Leuven CHR system. RAM machines are more realistic and faster
than Turing machines, so from the complexity point of view it makes sense to focus on
RAM machines. We show how to program the CHR machine to e�ciently simulate RAM
machines. We then discuss how to simulate CHR machines e�ciently on a RAM machine,
a problem that corresponds to optimizing compilation of CHR programs. This results
in a general complexity meta-theorem. Finally we apply this meta-theorem to the CHR
program that simulates RAM machines. This allows us to conclude that existing CHR
compilation techniques, in particular those described in Chapter 3 su�ce to implement
the RAM machine simulator e�ciently. As a result, all RAM machine programs (so also
every known algorithm) can be translated automatically to CHR programs that have the
same complexity.

6.3.1 RAM machine simulators

We now show that the CHR machine is at least as e�cient as the RAM machine. Specif-
ically, the CHR-only machine can simulate any PA-RAM machine with the same time
complexity, and if H is a su�ciently strong host language, then CHR(H) machines can
simulate standard RAM machines with the same time and space complexity.

Theorem 9. A CHR-only machine MPAram exists which can simulate, in O(T +P +I)
time and O(P + J) space, a T -time, S-space Peano-arithmetic RAM machine with a
program of P lines, where I is the sum of the values of the input registers and J is the
maximal sum of the values of all registers during the entire computation.

Proof. The proof roughly corresponds to that of Theorem 8. Consider the CHR-only
program PARAMSIM (see Listing 6.2), and the corresponding CHR-only machine (� ,
PARAMSIM,VPAramG).

The mapping from CHR machine states to RAM machine states is as follows. Memory
cells are represented as m(A,V ) constraints, where A is the address and V refers to the
value. If V is the atom zero, the value is zero. Otherwise, there is a successor constraint
s(V ,W ) which expresses that V = W +1. Again, W can be either zero or there is another
successor constraint s(W ,X), etc. For example, to represent that the register r1 contains
the value 3, the following conjunction of constraints could be used: m(r1, N3), s(N3, N2),
s(N2, N1), s(N1, zero).

The mapping from a RAM machine program and input to an initial CHR goal is
now obvious. We define VPAramG to be the image of this mapping. The RAM machine

174



Chapter 6

Listing 6.2: PARAMSIM: Simulator of Peano-arithmetic RAM machines

i (L , L2 , inc ,A) \ m(A,X) , c (L) <=> m(A,Z) , s (Z ,X) , c (L2 ) .
i (L , L2 , dec ,A) \ m(A,X) , s (X,Y) , c (L) <=> m(A,Y) , c (L2 ) .
i (L , L2 , c l r ,A) \ m(A,X) , c (L) <=> m(A, zero ) , c (L2 ) .
i (L , L2 , jmp ,A) \ c (L) <=> c (A) .
i (L , L2 , cjmp ,A, J ) , m(A, zero ) \ c (L) <=> c ( J ) .
i (L , L2 , cjmp ,A, J ) , m(A,X) , s (X, ) \ c (L) <=> c (L2 ) .
i (L , L2 , ha l t ) \ c (L) <=> t rue .

program is encoded as i/{3,4,5} constraints; the first argument represents the label (or line
number), the second argument is the label of the next program line, the other arguments
represent the actual instruction. The input memory cells are represented as above. The
program counter is set to the label of the first line of the program by adding a corresponding
initial c/1 constraint.

After the initialization, one rule is applied for every step of the RAM machine. Ap-
plying a rule causes at most three constraints to be inserted. Therefore, the number of
CHR steps is bounded by four times the number of RAM machine steps, plus P steps to
Introduce the i/{3,4,5} constraints. Initializing the input memory cells to their values
means inserting one m/2 constraint for every input and I s/2 constraints. The number
of registers (and hence m/2 constraints) is bounded by the program size P (remember we
don’t have indirection), so the total time complexity of the CHR machine is O(T +P + I).
The CHR store contains P i/{3,4,5} constraints; since the number of m/2 constraints is
O(P ) and the number of s/2 constraints is bounded by J , the space complexity of the
CHR machine is O(P + J).

The PARAMSIM program does not use any host language arithmetic operations. Its
unary number representation causes an exponential space penalty. If host language arith-
metic is available, a similar program can be written which uses only O(P + S) space by
directly storing the value of a register in the second argument of the m/2 constraints.

We can also simulate the more realistic standard-arithmetic RAM machine in CHR.
However, if we want to do this without a harsh complexity penalty, we need host language
support to handle the integers.

Theorem 10. For any su�ciently strong host language H, a CHR(H) machine Mram
exists which can simulate, in O(T + P + S) time and O(S + P ) space, a T -time, S-space
standard RAM machine with a program of P lines.

Proof. As in Theorem 9, for the simulator program of Listing 6.3. The RAM memory
representation is simpler since integer numbers are available. The representation of a
RAM machine program and memory is as before, except that we assume input registers
to be in a continuous range 0, . . . ,m and a constraint maxm(m) is added to the initial
CHR goal. The auxiliary constraint maxm(m) indicates that the current highest initialized
register address is m. When a register with a higher address n is initialized, the auxiliary
constraint initm/3 is used to initialize all addresses in the range m+1, . . . , n. In addition
to the O(P ) time to Introduce the encoded program and the O(T ) time to simulate it
(again one CHR rule application per program instruction), the simulator needs O(S) time
to initialize memory.

175



6.3. Complexity-wise Completeness

Listing 6.3: RAMSIMUL: Simulator of standard RAM machines

i (L , i n i t ,A) , m(A,B) , maxm(M) \ c (L) <=> in i tm (M+1,B,L ) .
in itm (A,B,L) <=> A =< B | m(A, 0 ) , in i tm (A+1,B,L ) .
in itm (A,B,L) , m(B,X) <=> A > B | m(B, 0 ) , maxm(B) , c (L+1).

i (L , cnst ,B,A) \ m(A,X) , c (L) <=> m(A,B) , c (L+1).
i (L , add ,B,A) , m(B,Y) \ m(A,X) , c (L) <=> m(A,X+Y) , c (L+1).
i (L , sub ,B,A) , m(B,Y) \ m(A,X) , c (L) <=> m(A,X�Y) , c (L+1).
i (L , mul ,B,A) , m(B,Y) \ m(A,X) , c (L) <=> m(A,X⇤Y) , c (L+1).
i (L , div ,B,A) , m(B,Y) \ m(A,X) , c (L) <=> m(A,X//Y) , c (L+1).
i (L ,mov ,B,A) , m(B,Y) \ m(A, ) , c (L) <=> m(A,Y) , c (L+1).
i (L , imv ,B,A) , m(B,C) , m(C,Y) \ m(A, ) , c (L) <=> m(A,Y) , c (L+1).
i (L , mvi ,B,A) , m(B,Y) , m(A,C) \ m(C, ) , c (L) <=> m(C,Y) , c (L+1).
i (L , jmp ,A) \ c (L) <=> c (A) .
i (L , cjmp ,A, J ) , m(A, 0 ) \ c (L) <=> c ( J ) .
i (L , cjmp ,A, J ) , m(A,X) \ c (L) <=> X =\= 0 | c (L+1).
i (L , ha l t ) \ c (L) <=> t rue .

Note that for a fixed RAM machine program which uses at least as much time as space,
P is a constant and S is O(T ), so the CHR simulator RAMSIMUL takes O(T ) time and
O(S) space.

6.3.2 Complexity meta-theorem

The previous section dealt with the complexity properties of the theoretical CHR machine.
In this section we investigate the complexity achievable in practice, i.e. on a RAMmachine,
which corresponds (more or less) to a real computer. As a result, we get a complexity
meta-theorem; in Section 6.3.3 we will then apply this meta-theorem to the RAM machine
simulator program RAMSIMUL. This will allow us to conclude that every algorithm can
be implemented e�ciently in CHR.

CHR is Turing-equivalent

In Chapter 2 we have discussed the compilation of CHR. Most of the CHR compilers
translate CHR programs to host language programs. The resulting host language code
can be executed on RAM machines by an interpreter or via further compilation steps.
In this sense, we can say that CHR compilers convert CHR programs to (RAM machine)
executable code. So, because clearly CHR compilers do exist, RAM machines can simulate
CHR machines:

Lemma 6.3.1. The RAM machine can simulate CHR machines.

Because CHR machines can simulate Turing machines (Theorem 8), and Turing ma-
chines can simulate CHR machines (Lemma 6.1.9 and the above), we get the following
rather unsurprising result:

Corollary 6.3.2. The CHR machine is Turing-equivalent.

Complexity of the compiled code

We now examine the practically achievable complexity of simulating a CHR machine on
a RAM machine. We consider existing CHR compilers, in particular, the Leuven CHR

176



Chapter 6

system in hProlog (see Section 1.3.4).
First we recapture some compiler optimizations that are crucial for the time and space

complexity of the generated code. We then define the dependency rank of a constraint
occurrence, which will turn out to play a crucial role in the time complexity of executing
a CHR machine.

The refined operational semantics. Most CHR implementations — in particular,
the Leuven CHR system — follow the refined operational semantics !r of CHR. The !r

semantics is discussed in detail in Chapter 2.
Essential in the !r semantics is the notion of an active constraint. Query and body

constraints are introduced from left to right. Once a constraint is introduced (or triggered
by a Solve transition), it becomes active: its occurrences in the program are tried, in
textual order. For every occurrence, the corresponding rule is tried by looking up matching
partner constraints.

Join ordering. As discussed in [Sneyers, 2008b], chapter 9, the order in which partner
constraints are looked up is important. CHR compilers implement a strategy to pick the
order of partner constraint lookups, called the join ordering. Given a CHR program P, a
join ordering strategy � induces for every head constraint occurrence c of P, an order �P

c

on its partners.

Functional dependencies. In [Sneyers, 2008b, Chapter 4] the notion of functional
dependencies between constraint arguments was introduced [Duck and Schrijvers, 2005].
Informally, for a given CHR store, a constraint has a set semantics functional dependency
on certain key arguments if there are no two instances of the constraint with the same key
arguments.

In the refined operational semantics, set semantics functional dependencies can easily
be enforced using simpagation rules. For example, to make sure that c/4 has a functional
dependency on the combination of its first and third argument, we add the following rule
before all other rules:

c(A,_,B,_) \ c(A,_,B,_) <=> true.

Indexing. As we have seen in Chapter 3, advanced data structures can be used to imple-
ment the CHR constraint store in an e�cient way. The join ordering strategy determines
which combinations of key arguments (look-up patterns) are used for partner constraint
look-ups. The constraint store is implemented in such a way that for every combination
of constraint arguments that is used as a look-up pattern, an index is maintained, for
instance using hash-tables. As a result, all constraint store operations can be done in O(1)
amortized time. Furthermore, in terms of space, these data structures have an overhead
of only a constant factor.

Determined partners and dependency rank. We now introduce the notions of de-
termined partners and dependency rank. This will allow us to get a tighter upper bound
on the complexity of finding suitable partner constraints.

Definition 6.3.3 (determined partner). Given a join ordering strategy �, a CHR program
P, and a set of valid goals VG, we say an occurrence c is determined by the j-th occurrence
of constraint a i↵ for all execution states � that occur in a derivation d 2 �H

!r
|G for some

177



6.3. Complexity-wise Completeness

valid goal G 2 VG, the following holds: if � is of the form h[a#i : j|A], S,B,Tin (that is,
the occurrence subprocedure for the j-th occurrence of constraint a is about to be executed),
then a set semantic functional dependency for c holds in state �, where the key arguments
of c are fixed by a and all partners x for which x �P

a c.

In other words, a partner constraint c is determined by a given (active) constraint
occurrence of a if the following holds: whenever the partner constraint c is looked up in
the corresponding occurrence subprocedure for a, there is at most one match for c that
needs to be considered.

Definition 6.3.4 (dependency rank). The dependency rank of an (active) occurrence a
is the number of non-determined partner constraints of a.

The following example illustrates the above definitions. Consider the join ordering
strategy � used in the Leuven CHR system, the program RAMSIMUL, and the set of valid
goals corresponding to the valid RAM machine instances.

Example 6.3.5 (dependency rank). Consider the fifth rule of RAMSIMUL:

i(L,add,B,A), m(B,Y) \ m(A,X), c(L) <=> m(A,X+Y), c(L+1).

For the active occurrence c(L), the following join ordering is used:

c(L) �RAMSIMUL
c(L) i(L,add,B,A) �RAMSIMUL

c(L) m(B,Y) �RAMSIMUL
c(L) m(A,X).

Given the first argument L there can be only one matching i/4 constraint, which means
the first argument of each m/2 constraint is known. Again, for a given first argument,
there can be only one m/2. These functional dependencies are not enforced explicitly by
simpagation rules; they are implied by the set of valid goals and the rules. Since all its
partners are determined, the dependency rank of c(L) is zero.

Similarly, the other occurrences of c/1 also have dependency rank zero. In general, the
dependency rank is of course not always zero. Di↵erent occurrences in the same rule may
even have a di↵erent dependency rank.

Example 6.3.6 (non-zero dependency ranks). Consider the following rule:

m(A,B), m(B,C), m(D,E), m(E,F), m(G,H) <=> ...

Assume that m/2 constraints are uniquely determined by their first argument (as in the
RAMSIMUL program) and that the join ordering is the textual order. The dependency rank
of m(A,B) is two: m(D,E) and m(G,H) contribute to it while the other head constraints
are determined partners. The dependency rank of m(B,C) is three: m(D,E), m(G,H), and
m(A,B) contribute to it.

Space reuse. Every time a CHR constraint is removed, its representation in memory
becomes garbage. If this garbage is not collected, we may get a space complexity which
is not linear in the size of the constraint store. Using garbage collection we can get the
right space complexity. However, in most Prolog systems, garbage collection has a time
complexity linear in the number of live cells. This may result in a severe time complexity
penalty.

In [Sneyers et al., 2006] we have tackled this problem by introducing memory reuse
techniques called in-place updates and suspension reuse, inspired by compile-time garbage

178



Chapter 6

collection [Mazur, 2004]. These optimizations improve the space complexity by eliminating
garbage, with only a small constant factor worst-case time overhead. The basic idea of
suspension reuse is to store the representation of a removed constraint in a cache. Later,
when a new constraint has to be inserted, a representation from the cache is used to build
the new constraint representation. In-place updates are a special case where both the
removal and the insertion are in the same rule, eliminating the need for an intermediate
cache.

Lemma 6.3.7. Using suspension reuse with unlimited cache size, the following holds: If
during a particular execution, the maximal number of constraints in the store is Smax,
then at any point in the execution, S + C  Smax, where S is the number of constraints
in the store and C is the number of elements in the cache.

Proof. Execution consists of a sequence of insertion and removal operations. We denote
the store size after the i-th operation with Si, the cache size with Ci, and their sum with
Mi = Si + Ci. Initially both the store and the cache are empty: S0 = C0 = 0. Insertion
increments the store size and decrements the cache size if it is not already empty (otherwise
it simply remains empty). Removal decrements the store size and increments the cache
size. We proceed by induction on the sequence length. For zero-length sequences the
property holds trivially. Assuming the property holds for any sequence of length n, we
show that it also holds for sequences of length n+1. Because of the induction hypothesis:

8x  n : Mx  max
in

Si  max
in+1

Si = Smax

We now only have to show that Mn+1  Smax. If the last operation in the sequence is a
removal, then Mn+1 = (Sn�1)+(Cn+1) = Mn  Smax. Assuming the last operation is an
insertion, there are two cases: if Cn > 0, then Mn+1 = (Sn + 1) + (Cn � 1) = Mn  Smax;
otherwise Cn = 0 and Mn+1 = Sn+1  Smax. This concludes the proof.

With an unlimited cache size, no constraint representation ever becomes garbage (from
the point of view of the underlying host language in which the CHR system is imple-
mented): all constraint representations are alive, either because they are in the store or
because they are in the cache. The above lemma shows that the right space complexity
can be achieved for all CHR programs — without having to resort to run-time garbage
collection in the host language.

Complexity meta-theorem

We now state the main result of this section:

Theorem 11. Given a CHR program P and a !t derivation d of length T which has a
corresponding !r derivation, for which the maximal store size is S, m is the maximum
dependency rank of the active occurrences in P, and p is the number of propagation rule
applications in d; assuming the host language constraints used in the guards and bodies of
the rules of P can be evaluated in constant time; the Leuven CHR system compiles P to
hProlog code which has, for the given derivation d, a time complexity O(TSm+1) and a
space complexity O(S + p).

Proof. Assume the derivation d consists of s Solve steps, i Introduce steps, and a Apply
steps: T = s+i+a. The cost of finding a rule match for an active occurrence is O(Sm) since
this process basically boils down to nested iteration over the constraints in the store, where
the nesting depth is the dependency rank. Indeed, determined partners only contribute a

179



6.3. Complexity-wise Completeness

constant factor to this cost. Checking and extending the propagation history can be done
in constant time if the history is implemented as a hash table. The Apply steps take
O(a) time plus the time to find rule matches. The latter has to be taken into account even
if no rule matches are found and no rule is applied, so we attribute it to the Introduce
and Solve steps. The Introduce steps take O(iSm) time: for every active occurrence
of the introduced constraint, a matching rule is sought; for a fixed CHR program, the
number of occurrences is bound by a constant. Every Solve step potentially triggers all
the O(S) constraints in the store, so the Solve steps may take up to O(sSm+1) time.
Since s, i, and a are all O(T ), the total time complexity is O(TSm+1). The O(S+p) space
complexity can be achieved using suspension reuse with unlimited cache size, as shown in
Lemma 6.3.7.

Theorem 12. If in the previous theorem, the CHR program is ground (i.e. all constraint
arguments are ground), then O(TSm) time complexity can be achieved.

Proof. See the previous proof. Constraints are never triggered in ground programs. This
reduces the complexity of one Solve step to a constant.

Formulating the above result in terms of CHR machines we get:

Corollary 6.3.8. A ground CHR machine without propagation rules, with time complexity
T and space complexity S, can be simulated on a RAM machine with time complexity
O(TSm) and space complexity O(S), where m is the maximum dependency rank of the
active occurrences in the program of the CHR machine.

6.3.3 Complexity-wise completeness

Now we use the general result of Corollary 6.3.8 to analyze the time and space complexity
of the RAM simulation (compiler-generated code) of the CHR machine Mram, which
itself simulates RAM machines.

Theorem 13. The CHR machine Mram with program RAMSIMUL, with time complexity
T and space complexity S can be simulated on a RAM machine with time complexity O(T )
and space complexity O(S).

Proof. It can be easily verified that the dependency rank for all occurrences of c/1 is zero
given the join ordering strategy used in the Leuven CHR system (cf. Example 6.3.5).
For the other occurrences this is slightly less straightforward. Valid goals have exactly
one c/1 constraint. All rules remove one c/1 constraint and optionally insert another one
in the body (indirectly in the case of the rule for the init instruction). Hence, there is
never more than one c/1 constraint — in other words, c/1 has a set semantics functional
dependency on the empty key. If the join order strategy does the lookup of c/1 first, the
remaining partners become determined.

Since the dependency rank is zero for all occurrences, applying Corollary 6.3.8 (with
m = 0) results in the desired complexities.

We conclude that “everything can be done e�ciently in CHR”:

Corollary 6.3.9. For every (RAM machine) algorithm which uses at least as much time
as it uses space, a CHR program exists which can be executed in the Leuven CHR system in
hProlog, with time and space complexity within a constant from the original complexities.

180



Chapter 6

Figure 6.4: Relationships between Turing, RAM, and CHR machines

Proof. Consider any algorithm which can be expressed as a RAM machine program with
a program of P lines, and let its time and space complexities be T and S, respectively.
Because of Theorem 10, a CHR(Prolog) machine Mram with program RAMSIMUL exists,
which simulates that RAM machine in O(S) space and O(T ) time, since P is a constant
and S is O(T ). Now, because of the above Theorem 13, executing RAMSIMUL in the
Leuven CHR system also takes O(T ) time and O(S) space.

One may expect to pay some performance penalty for using a very high-level language
like CHR, so it is comforting that at least we can always get the asymptotic complexities
right.

Discussion

We have investigated the complexity of Constraint Handling Rules by introducing the CHR
machine, a model of computation based on the operational semantics of CHR. Besides the
expected result that CHR is a Turing-equivalent language, we have demonstrated the
much stronger result that every RAM machine program can be implemented as a CHR
program which has the same asymptotic time and space complexities if executed in the
Leuven CHR system. In other words, the current state-of-the-art in CHR compilation
allows CHR programmers to implement any algorithm with the best possible complexity.
As far as we know, CHR is the first declarative language for which such a complexity-wise
completeness result has been proven to hold within the pure part of the language, i.e.
without imperative extensions to the language — see also Section 6.3.4.

Figure 6.4 summarizes the results. It gives an overview of the relationships between
three models of computation: Turing machines, RAM machines, and CHR machines. An
arrow between A and B indicates that A can be simulated on B. Labels indicate the
relevant section or theorem and the time complexity of simulating a T -time, S-space A on
B. Note that the Õ((TSm+1)4) bound for simulating a CHR machine on a Turing machine
can be obtained by simulating the CHR machine on a RAM machine, and then simulating
that RAM machine on a Turing machine.

181



6.3. Complexity-wise Completeness

Listing 6.4: Alternative register initialization, using the !r semantics

prog (L , i n i t ,A) , m(A,B) , m(B, ) \ pc (L) <=> pc (L+1).
prog (L , i n i t ,A) , m(A,B) \ pc (L) <=> m(B, 0 ) , pc (L+1).

Register initialization

Our definition of the space complexity of a RAMmachine (see Definition 6.1.8 on page 166)
is based on that of Savitch [1978]. It counts all registers in the used address range, whether
or not each individual register was e↵ectively used. In the literature, other definitions of
RAM machine space complexity only take the used registers into account [van Emde Boas,
1990]. If we would use such a definition, the above results no longer hold in general: for a
program that uses the registers in a sparse way, the RAM machine simulator RAMSIMUL
of Listing 6.3 would use more space (and thus possibly also more time) than the original
RAM machine. The reason is that the simulator initializes the entire register range.

However, by relying on the refined operational semantics, we can implement the init
instruction in a di↵erent way — see Listing 6.4. The auxiliary constraints maxm/1 and
initm/3 are not needed in this version of the simulator. Of course, this alternative program
is no longer confluent; its correctness depends on the order of rule applications enforced
by the refined semantics. Indeed, under the !r semantics the second rule is applied only if
the first rule cannot be applied because of the absence of a corresponding m/2 constraint.
Checking for absence of constraints cannot be done in a confluent way — see also the work
on extending CHR with negation-as-absence (cf. Section 1.6.2).

Related and future work

We have already mentioned the complexity meta-theorem by Frühwirth 2002b, 2002a in
Section 1.2. Since it assumes a very naive implementation of CHR, the resulting bounds
are rather crude. For the RAM machine simulator program RAMSIMUL simulating a T -
time RAM machine, the upper bound predicted by Frühwirth [2002b] is O(T 6) — quite
far from the O(T ) bound of Lemma 13.

We have explicitly decoupled the two steps in the approach of Frühwirth by introducing
CHR machines. If suitable termination orders can be found, they can be used to show an
upper bound on the complexity of the CHR machine. This is the first step. However, for
programs that are non-terminating in general, like the RAM simulator, or for which no
ranking can be found, other techniques have to be used to prove complexity properties.
For example, we have shown that the steps of the CHR machine Mram correspond to the
steps of the RAM machine it simulates, terminating or not. The second step corresponds
to the question of how e�ciently a CHR machine can be executed in practice. Recent
work on optimizing compilation of CHR has allowed us to achieve much tighter bounds.

Future work. It is an open problem whether a result similar to the the linear speedup
theorem [Hartmanis and Stearns, 1965] can be demonstrated for CHR machines. To
improve the time complexity of a CHR machine, one could try to reduce the number
of Apply steps by combining rules, and the number of Introduce steps by combining
constraints. It is not clear whether such a reduction is possible in general. This is somewhat
related to partial evaluation techniques.

Although we are convinced that every algorithm can be implemented with an elegant
CHR program, it remains a useful research topic to construct good CHR implementations

182



Chapter 6

of existing (or new!) algorithms (cf. [Sneyers, 2008b], chapter 5).
The RAM machine simulator is a ground CHR program without propagation rules.

In a sense, our result implies that non-ground constraints (which may be triggered) and
propagation rules (that require checking and maintaining a propagation history) are not
strictly needed for complexity-wise completeness. However, since non-ground constraints
and propagation rules are widely used (especially in the traditional constraint solver pro-
grams), improving the complexity of their implementation is still very useful.

6.3.4 Other declarative languages

Many Turing-complete programming languages have the complexity-wise completeness
property we have shown for X = CHR(hProlog): “every algorithm can be implemented
in language X with the right time and space complexity”. For instance, in all imperative
languages that we are aware of, it is a straightforward exercise to construct a RAMmachine
simulator and show that it has the right complexity. After all, the basic ingredients needed
for a RAM machine simulator are directly available in most imperative languages.

However, for higher level, declarative languages, the complexity-wise completeness
property is far less trivial. The time and space complexity of a program depends more
crucially on optimizing compilation.

In this section we briefly investigate whether some other declarative languages allow an
e�cient implementation of a RAM machine simulator, given the current state of the art.
To keep this section concise, we will only consider one well-known (and supposedly repre-
sentative) language for each of these declarative paradigms: logic programming (Prolog),
functional programming (Haskell), term-rewriting (Maude), and rule-based programming
(Jess).

Whether or not the complexity-wise completeness result holds for some language clearly
depends largely on the properties of its compiler. A pathological compiler can be con-
ceived that detects the pattern of a ‘RAM machine simulator program’ as a special case
and produces special, hardwired output with the desired complexity properties. Such ‘op-
timizations’ have to be ruled out since they are not applicable to a large class of programs.
However, where exactly to draw the line between ‘cheating’ and ‘benign’ optimizations
is not straightforward. In this section we only consider the ‘pure’ fragments of the dif-
ferent declarative languages. Some of the languages also have imperative extensions (e.g.
setarg/3 in Prolog) but we consider those a form of ‘cheating’ — for the CHR(Prolog)
complexity-wise completeness result we did not need any extensions of CHR, and the com-
piler optimizations we needed are ‘benign’ in the sense that they are applicable to a large
class of CHR programs.

Su�cient ingredients

By closely investigating the definition of RAM machines (see Section 6.1.1), we can identify
the crucial programming language features needed to obtain a complexity-wise complete-
ness result in the same way as in the previous section, that is, by constructing a RAM
machine simulator. An e�cient RAM machine simulator can be implemented if the fol-
lowing ingredients can be implemented:

1. A mechanism for iteration, such that iterating n times takes O(nTs) time and O(Ss)
space if evaluating the stop condition takes Ts time and Ss space;

2. The arithmetic operations, with the same complexity as the corresponding RAM
machine arithmetic operations;

183



6.3. Complexity-wise Completeness

3. An if-then-else language construct and evaluation of (syntactic) equality and in-
equality conditions, both in constant time and zero space;

4. Dynamically growing arrays which allow n insertion, g lookup, and s update opera-
tions in O(n+ g + s) time and O(n) space.

Most declarative languages do not o↵er iteration (the first ingredient) as a basic lan-
guage construct, but many implementations convert tail recursion to iteration, so the first
ingredient will not be the problem. The second and third ingredient are directly and/or
implicitly available in all the languages we consider.

Arrays in declarative languages

The remaining ingredient, an e�cient dynamically growing array, is the one that seems to
be the most di�cult to implement. In this section we try to implement, as e�ciently as
possible, the functionality of arrays in several declarative languages, and we construct cor-
responding RAM machine simulator programs. In the next section we will experimentally
compare the performance of the resulting programs.

Logic programming languages. We use the term pure Prolog to denote the Prolog
language as described by Clocksin and Mellish [1984], without the assert and retract
built-ins. Clearly, if non-pure Prolog extensions — for example global variables, mutable
terms, and assert/retract — are allowed, there is an e�cient RAM machine simulator
implementation: consider, for instance, the code the CHR(hProlog) compiler generates for
the RAMSIMUL program.

To the extent of our knowledge, there is no Prolog system which allows an e�cient
pure Prolog implementation of dynamically growing arrays. Association lists, available
in many Prolog systems as a standard module called assoc, can be used instead. The
implementation of assoc that is used in hProlog is based on an implementation by Mats
Carlsson (which was based on an implementation by Richard O’Keefe) based on AVL-trees
[Adelson-Velsky and Landis, 1962]. Lookup, insertion and update take O(log n) worst-case
time. Listing A.3 in [Sneyers, 2008b] gives a Prolog program which uses association lists
to implement a RAM simulator. Association lists are used to represent both the RAM
machine program and the memory cells.

Mercury. Mercury [Somogyi et al., 1996] is a strongly-typed, high-performance logic
programming language. The Mercury system includes an array module. However, the
procedures of this module are not written in the Mercury language itself, but directly in
the target languages (C, C#, and Java).

In an experimental development branch of Mercury, compile-time garbage collection
(CTGC) has been added by Mazur [2004]. This allows automatic structure reuse in a large
class of Mercury programs. Perhaps CTGC allows a reasonably e�cient pure Mercury
implementation of growing arrays: using AVL-trees and with in-place updates thanks
to CTGC, it should be possible to perform n insertions, g lookups, and s updates in
O((n+g+s) log n) time and O(n) space. We have not been able to test Mercury programs
experimentally since CTGC is not yet available in the main release of the Mercury system.

Functional programming languages. Haskell [Hudak et al., 2007] is a modern typed,
lazy, purely functional language. Most Haskell systems include the Data.Array module

184



Chapter 6

in their standard libraries. This module e�ciently implements arrays, but it is not imple-
mented in Haskell itself. The fastest pure Haskell implementation of arrays we could find
is available in the standard Data.IntMap module, which is based on an implementation
of Patricia trees [Morrison, 1968] by Okasaki and Gill [1998]. This data structure allows
memory cell look-ups, updates, and insertion (initialization) in O(min(n,W )) time, where
W is the number of bits in an Int. On our test platform, W = 32 so the operations
can be considered to be constant-time. However, since the updates are not done in-place,
the space complexity is O(n + s) instead of O(n). Listing A.4 in [Sneyers, 2008b] gives
the Haskell program we have tested. We have tested both a “lazy” version and a “strict”
version. The latter naively forces all lazy thunks immediately to weak head normal form
(WHNF); it di↵ers from the lazy version on two accounts only. Firstly, the fields of the
Instr datatype are declared to be strict. Secondly, each function application f e is trans-
formed into let x=e in x ‘seq‘ f x, which forces the subexpression e to WHNF before
evaluating the main expression f e.

Term-rewrite systems. Maude4 [Clavel et al., 2002] is a system for declarative pro-
gramming in rewriting logic. It features e�cient rewriting of terms with associative-
commutative (AC) operators using the stripper-collector matching algorithm of Eker [2003].
Listing A.5 in [Sneyers, 2008b] gives the Maude program we have tested. This program is
directly derived from the CHR rules. As in CHR, the collection data structures and the
operations on them are implicit. In this sense CHR and Maude are higher level languages
than Prolog and Haskell.

Unfortunately, for the rules of Listing A.5 in [Sneyers, 2008b], the current implemen-
tation of Maude is not able to use its most e�cient matching algorithm. By making the
data structure operations more explicit (using the Map{Int,Int} module) we obtain a
more e�cient program in which memory cell lookups take only logarithmic time. It is
given in Listing A.6 in [Sneyers, 2008b].

Rule engines. Jess5 [Friedman-Hill, 2003] is considered to be one of the fastest rule
engines. Like its ancestor CLIPS [Giarratano and Riley, 1994], it uses the RETE algorithm
of Forgy [1982]. Listing A.7 in [Sneyers, 2008b] gives the Jess program we have tested.

In a sense, Jess is higher level than Prolog and Haskell because the data structures are
implicit. It is lower level than CHR and Maude (as in the Maude program of Listing A.5
in [Sneyers, 2008b]) because the data structure operations (assert, retract, and modify)
are explicit. Moreover, as far as we know, Jess does not have the join ordering optimization.
We have picked the best possible order of rule heads in the simulator program of Listing
A.7 in [Sneyers, 2008b]. If the heads are written in a di↵erent order, performance su↵ers.
This is another sense in which Jess can be considered to be a lower level language than
CHR — thanks to automatic join ordering, CHR programmers do not have to worry about
the order of the head constraints.

Experimental results

To test the performance of the RAM machine simulator, we have executed the simulator
for three benchmark RAM machine programs (see Table 6.3). The results are shown in
Table 6.4, which lists the execution times of running the RAM simulator benchmarks of
Table 6.3 in di↵erent RAM simulator implementations.

4 Maude home page: http://maude.cs.uiuc.edu/
5 Jess home page: http://www.jessrules.com/

185



6.3. Complexity-wise Completeness

Figure 6.5: Results of the “NLoop” benchmark (cf. Table 6.4)

Benchmark 1: “Loop”. The first benchmark, “Loop”, performs O(n) operations and
uses only three memory cells. The space usage is constant in CHR, Prolog, Maude, and
strict Haskell, but not in lazy Haskell: in this example, lazy evaluation creates O(n) lazy
thunks so it needs O(n) space. The time complexity is linear in all systems. The Jess
program is the slowest: it takes more than twice the time of the naive Maude program.
The naive Maude program is roughly three times slower than the one that uses Map, which
is about as fast as CHR. The CHR program with type detail6 level 2 is almost four times
faster than the CHR programs with type detail level 1 or 0, about twice as slow as the
Prolog version and four times slower than strict Haskell.

Benchmark 2: “MFib”. In the second benchmark, “MFib”, O(n) memory cells are
used. Naive Maude and CHR without type information do not get the time complexity
right: the O(n) lookups seem to take Õ(n2) time. Prolog, Haskell, and Maude with Map

get the time complexity almost right: Õ(n) instead of O(n). Both Prolog and Haskell
use too much space. In the case of Prolog and strict Haskell, garbage collection takes an
increasingly higher proportion of the runtime. In lazy Haskell, even garbage collection does
not prevent running out of memory. CHR with type detail level 1 and Jess get the right
time and space complexity; Jess is more than ten times slower and also uses significantly
more space.

Benchmark 3: “NLoop”. The last benchmark, “NLoop”, performs O(n2) updates on
O(n) memory cells. As expected from the results of the previous benchmark, only CHR
with type detail level > 0 and Jess get the O(n2) time complexity completely right. CHR
is between 10 and 30 times faster than Jess. Prolog, (strict) Haskell and Maude with Map

achieve Õ(n2) time complexity.
To aid us in interpreting the benchmark results, we have plotted the runtimes divided

by the expected complexity O(n2) in Figure 6.5. If the resulting curve is horizontal, the

6 See Table 7.1 in [Sneyers, 2008b]. Type detail level 2 corresponds to types and modes (crucially,
+dense int for the first argument of m/2); detail level 1 corresponds to modes only (all ground); detail
level 0 corresponds to no argument information.

186



Chapter 6

(a) Loop

i(1,add,1,3)
i(2,sub,1,2)
i(3,cjmp,2,5)
i(4,jmp,1)
i(5,halt)

m(1,1)
m(2,n)
m(3,0)
c(1)

(b) MFib

i(1,init,3)
i(2,imv,1,6)
i(3,imv,2,7)
i(4,mul,6,7)
i(5,mvi,7,3)
i(6,add,5,1)
i(7,add,5,2)
i(8,add,5,3)
i(9,sub,5,4)
i(10,cjmp,4,12)
i(11,jmp,1)
i(12,halt)

m(1,8)
m(2,9)
m(3,10)
m(4,n)
m(5,1)
m(6,0)
m(7,0)
m(8,1)
m(9,1)
c(1)

(c) NLoop

i(1,mov,2,3)
i(2,add,1,3)
i(3,init,3)
i(4,mvi,4,3)
i(5,sub,4,3)
i(6,mov,3,5)
i(7,sub,1,5)
i(8,cjmp,5,10)
i(9,jmp,3)
i(10,mov,2,3)
i(11,add,1,3)
i(12,imv,3,5)
i(13,add,4,5)
i(14,mvi,5,3)
i(15,sub,4,3)

i(16,mov,3,5)
i(17,sub,1,5)
i(18,cjmp,5,20)
i(19,jmp,12)
i(20,sub,4,2)
i(21,cjmp,2,23)
i(22,jmp,10)
i(23,halt)

m(1,10)
m(2,n)
m(3,0)
m(4,1)
m(5,0)
c(1)

Table 6.3: Example RAM simulator queries used for benchmarking

expected complexity is achieved. Both in constant factors and unwanted non-constant
factors, the strict Haskell version is better than the Prolog version, which is in turn better
than the Maude version.

Summary

We can classify the languages as shown in Table 6.5:

• Jess and CHR (with modes) achieve optimal time and space complexity;

• Maude with Map has optimal space complexity (as far as we can tell) and gets within
a (large) polylogarithmic factor from optimal time complexity;

• CHR without type declarations and naive Maude have optimal space complexity,
but they do not achieve optimal time complexity;

• Prolog and strict Haskell have a time complexity which is within a polylogarithmic
factor from optimal, but their space complexity is not optimal;

• lazy Haskell does not get close to optimal space complexity, and this ruins its time
complexity.

For the declarative programming languages we have tested in this section, the apparent
inability to obtain optimal complexity in the pure language is not really a problem in
practice. If needed, programmers can use non-pure language elements like the setarg/3

built-in in Prolog and the array modules in Mercury and Haskell. It is not clear to us
whether and how pure logic or functional programming languages can be implemented in
a way that allows an e�cient implementation of a RAM simulator.

6.3.5 Constant factors

We have shown the complexity-wise completeness of CHR — every algorithm can be
implemented in CHR with the right asymptotic time and space complexity. However, the
constant factors hidden behind the notion of asymptotic complexities could be huge. In
fact, they could be so huge as to be completely paralyzing in practice. In this section we
investigate these constants experimentally.

187



6.3. Complexity-wise Completeness

Query CHR(Prolog) Prolog Haskell Maude Jess
n 2 1 0 lazy strict naive Map

Loop
10ˆ4 0.09 0.32 0.32 0.05 0.05 0.02 1.01 0.37 3.48
10ˆ5 0.88 3.23 3.10 0.44 0.41 0.21 10.09 3.48 24.07
10ˆ6 8.70 32.42 29.93 4.46 5.40 2.05 100.43 35.32 231.13
10ˆ7 86.95 324.91 298.11 42.88 mem 20.41 987.28 371.54 2266.33
MFib
10ˆ3 0.03 0.07 2.20 0.05 0.04 0.02 32.00 0.24 3.08
10ˆ4 0.26 0.69 434.09 0.60 1.19 0.16 4772.70 3.69 10.22
10ˆ5 2.61 7.39 — 7.40 mem 1.82 — 52.12 98.72
10ˆ6 26.76 76.43 89.37 19.69 1650.49 mem
NLoop
2ˆ7 0.18 0.44 4.02 0.26 0.17 0.08 57.05 1.08 4.75
2ˆ8 0.71 1.72 26.81 1.10 0.73 0.34 419.54 4.68 19.59
2ˆ9 2.79 6.86 192.55 4.83 9.43 1.16 3677.66 21.51 77.81
2ˆ10 11.16 27.57 1475.77 20.49 mem 4.82 — 111.13 295.20
2ˆ11 44.28 108.87 11620.42 90.04 20.37 530.60 1258.71
2ˆ12 178.22 434.48 — 380.78 85.27 2604.68 4997.12
2ˆ13 709.89 1744.55 1678.73 356.29 11474.24 20147.51
2ˆ14 2864.56 7050.31 7272.05 1500.36 51573.71

Table 6.4: Benchmarks for several RAM simulator implementations

Language Time Space Complexity-wise complete?
CHR [0] not optimal optimal space-only
CHR [1] optimal optimal yes
CHR [2] optimal optimal yes
Prolog almost optimal not optimal almost (time-only)

Haskell (strict) almost optimal not optimal almost (time-only)
Haskell (lazy) not optimal not optimal no
Maude (naive) not optimal optimal space-only
Maude (Map) almost optimal optimal almost

Jess optimal optimal yes

Table 6.5: Language classification in terms of complexity-wise completeness

188



Chapter 6

movl $1, %eax
movl $1000000, %ecx
movl $0, %edx

.L1: addl %eax, %edx
subl %eax, %ecx
je .L5
jmp .L1

.L5:

m(1,1),
m(2,1000000),
m(3,0),
i(1, add, 1, 3),
i(2, sub, 1, 2),
i(3, cjmp, 2, 5),
i(4, jmp, 1),
i(5, halt),
c(1).

Figure 6.6: Assembler code and corresponding RAM machine query

Complexity-wise completeness in practice

In principle, every algorithm can be implemented in CHR using the RAM simulator pro-
gram. Of course, this does not result in a natural and elegant CHR program, but at least
the resulting CHR program has the right time and space complexity.

Consider the following very simple C program:

long a=1, b=1000000, c=0;

while(b != 0) {

c += a;

b -= a;

}

This C program corresponds to the Intel assembler code shown in Figure 6.6 (on the
left hand side). The assembler code can also be seen as a query for the RAM machine
program RAMSIMUL, as shown in the right hand side of Figure 6.6. The observant reader
will notice that this is in fact just the “Loop” benchmark that was discussed in the previous
section.

By translating assembler code to a RAM simulator query, we get a CHR program with
the same asymptotic time and space complexity: in this example, both the CHR program
and the assembler code take linear time and constant space.

Although the CHR(Prolog) RAM simulator executes such RAM programs with the
correct asymptotic complexity, the execution time is about ten thousand times larger than
that of the original assembler code program for this example: the RAM simulator takes
about 10 seconds while the assembler program runs in 1.6 milliseconds. In other words,
the computational power of a Pentium 4 is reduced to that of a Commodore 64.

Of course no sane programmer would write CHR programs in this way — not just
because of the debilitating slowdown: such programs also lack desirable properties of CHR
programs (conciseness, readability, adaptability, incrementality, concurrency, . . . ) that are
often obtained naturally in hand-written CHR programs. Hence, it remains necessary to
manually construct CHR programs.

Experimental evaluation

Chapter 5 of [Sneyers, 2008b] discussed several CHR programs that implement classical
algorithms. In this section we investigate the performance of two of these hand-written
CHR programs. We compare their performance to that of an e�cient reference imple-
mentation, in the low-level language C, of the same algorithms. The goal is to obtain an
estimate of the (constant factor) performance penalty for using CHR.

189



6.3. Complexity-wise Completeness

Figure 6.7: Results of the “Union-find” benchmark

As we have seen in Chapter 3, the Leuven CHR system allows the programmer to
specify optional type and mode declarations for the constraint arguments (see also Table
7.1 in [Sneyers, 2008b]). The information is used for optimizing compilation. The
original CHR system in SICStus Prolog, by Holzbaur and Frühwirth [1998], does not
have a mechanism to provide such declarations. In the Java CHR system, precise type
declarations are obligatory since Java is a typed language.

Union-find. Consider again the union-find program of Schrijvers and Frühwirth [2006].
Table B.6 in [Sneyers, 2008b] lists the execution times for this CHR program in the di↵erent
CHR systems. We compare these results against a very e�cient C implementation7. In
order to achieve the optimal complexity, type detail level 1 is needed (see Table 7.1 in
[Sneyers, 2008b]). With type detail level 2, the high-level CHR(hProlog) implementation
is roughly 10 times slower than the direct low-level implementation in C. The results are
plotted in Figure 6.7. The benchmark consists of performing n make operations, followed
by n random union operations and n random find operations.

To get an idea of the constant factors involved in space usage, consider the following
numbers. The C program uses only one array to represent the entire data structure; every
element takes one word (4 bytes): positive integers represent the index of the parent,
negative integers represent the rank of a root. In contrast, the CHR(hProlog) program
uses 9 words to represent an element: two arrays are used (one for roots, one for non-roots),
which contain pointers to 7-word suspension terms: one word for the wrapper functor, two
for the constraint arguments, one for the identifier, three for the state (see also [Sneyers,
2008b], chapter 4.2.1). Hence, for the union-find algorithm, the CHR version uses about
ten times as much space as the C version.

Dijkstra’s algorithm with Fibonacci heaps. In [Sneyers, 2008b], chapter 5.2, we
have discussed a CHR implementation of the shortest path algorithm of Dijkstra [1959],

7 Written by Ariel Faigon, based on a version by Robert Sedgewick. The source code is available at
http://www.yendor.com/programming/minauto/ufind.c

190



Chapter 6

Figure 6.8: Results of the “Dijkstra” benchmark

which uses the Fibonnacci heaps data structure of Fredman and Tarjan [1987]. We have
compared the performance of the DIJKSTRA program to that of a C implementation8 by
Cherkassky et al. [1996]. The results are listed in Table B.7 in [Sneyers, 2008b] and they
are plotted in Figure 6.8.

Note the overall resemblance between Figure 6.8 and Figure 6.7. Again, type de-
tail level 1 (see Table 7.1 in [Sneyers, 2008b]) is needed to achieve optimal complexity.
Without any information, the program exhibits a quadratic time complexity, because the
default data structure does not allow constant time look-ups of ground constraints. When
groundness information is available, the optimal O(n log n) time complexity is achieved.
The time gap between the hProlog CHR program (type detail level 2) and the C program
is — again — a constant factor of about 10.

The di↵erence in space usage is less pronounced than for the union-find algorithm.
The CHR program uses about three times more space than the C program: for an input
size of 256k nodes, the C program uses 23 megabytes, while the CHR(hProlog) program
needs 63 megabytes.

Conclusion: CHR(hProlog) / C ⇡ 10

The above results indicate that the constant time factor separating CHR(hProlog) from
C is approximately 10. In terms of space usage, the constraint representation has a fixed
overhead: in programs using very light-weight data representations (e.g. union-find),
this results in a relatively large constant space factor (e.g. 10); in programs with more
complicated representations (e.g. Fibonacci heaps), the constant space factor is smaller
(e.g. 3). Future and ongoing work in CHR compiler optimization will further reduce these
factors. In particular, the space overhead can be much reduced by further specializing the
constraint representation.

Extrapolating from the above examples, combined with the results of the previous
section, we can summarize our results as follows: “The current state of the art in CHR
and Prolog systems su�ces to implement any algorithm in CHR(Prolog), in a natural and

8 The source code is available at: http://www.avglab.com/andrew/soft.html

191



6.3. Complexity-wise Completeness

high-level way, with a time and space complexity which is within a constant factor of 10
from the best-known implementation in any other programming language.” Clearly, the
notion of “natural and high-level” is rather vague and open for interpretation, so unlike
the complexity-wise completeness result of Corollary 6.3.9, the above statement cannot be
proved mathematically.

Future work. More empirical evidence can be gathered by implementing more algo-
rithms in CHR and comparing the performance with that of implementations in low-level
programming languages. One could for instance attempt to implement, in CHR, a (large)
subset of the algorithms described in classic books on algorithms, for example [Knuth,
1997-1998]. Perhaps this approach allows to make conclusions about the kind of algo-
rithms for which CHR is more or less suitable.

A more direct approach would be to construct a direct translation of some (subset)
of an imperative language (e.g. some subset of Java) to CHR, and measure the constant
factor gap — knowing that this gap will be larger for a general translation scheme than
for hand-tailored ‘free translations’.

192



Chapter 6

Bibliography

George M. Adelson-Velsky and E. M. Landis. An algorithm for the organization of infor-
mation. Doklady Akademii Nauk SSSR, 146:263–266, 1962.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathe-
matics, 160(2):781–793, 2004.

Alfred V. Aho, John E. Hopcroft, and Je↵rey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley Longman, 1975.

Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest paths algorithms:
Theory and experimental evaluation. Mathematical Programming, 73:129–174, 1996.

Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, et al. Maude: Specification
and programming in rewriting logic. Theoretical Computer Science, 285(2):187–243,
2002.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer, 1984. ISBN 0-387-
15011-0.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(4):269–271, 1959.

Gregory J. Duck and Tom Schrijvers. Accurate functional dependency analysis for
Constraint Handling Rules. In T. Schrijvers and Th. Frühwirth, editors, CHR’05,
K.U.Leuven, Dept. Comp. Sc., Technical report CW421, pages 109–124, Sitges, Spain,
2005. URL http://www.cs.kuleuven.be/~dtai/projects/CHR/biblio/chr2005/

duck_schr_accurate_funcdep_chr05.ps.

Steven Eker. Associative-commutative rewriting on large terms. In Robert Nieuwenhuis,
editor, RTA’03: Rewriting Techniques and Applications, volume 2706 of LNCS, pages
14–29, Valencia, Spain, June 2003. Springer.

Charles L. Forgy. Rete: A fast algorithm for the many pattern / many object pattern
match problem. Artificial Intelligence, 19(1):17–37, 1982.

Michael Fredman and Robert Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596–615, 1987.

Ernest Friedman-Hill. Jess in Action: Java Rule-Based Systems. Manning, 2003.

Thom Frühwirth. As time goes by II: More automatic complexity analysis of concurrent
rule programs. In A. Di Pierro and H. Wiklicky, editors, QAPL’01: Proc. First Intl.
Workshop on Quantitative Aspects of Programming Languages, volume 59(3) of ENTCS,
Florence, Italy, 2002a.

Thom Frühwirth. As time goes by: Automatic complexity analysis of simplification rules.
In D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors, KR’02:
Proc. 8th Intl. Conf. Princ. Knowledge Representation and Reasoning, pages 547–557,
Toulouse, France, April 2002b. Morgan Kaufmann.

Maurizio Gabbrielli, Jacopo Mauro, Maria Chiara Meo, and Jon Sneyers. Decidability
properties for fragments of chr. TPLP, 10(4-6):611–626, 2010.

193



Bibliography

Joseph C. Giarratano and Gary Riley. Expert Systems: Principles and Programming. PWS
Publishing Co., 1994. ISBN 0534937446.

Juris Hartmanis and Richard E. Stearns. On the computational complexity of algorithms.
Trans. American Mathematical Society, 117:285–306, May 1965.

Christian Holzbaur and Thom Frühwirth. Constraint Handling Rules reference manual,
release 2.2. Technical Report TR-98-01, Österreichisches Forschungsinstitut für Artificial
Intelligence, Vienna, Austria, 1998.

John E. Hopcroft, Rajeev Motwani, and Je↵rey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley Longman, 2001.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell:
Being lazy with class. In HOPL-III: Proc. 3rd ACM SIGPLAN Conf. History of Pro-
gramming Languages, pages 1–55, San Diego, CA, USA, June 2007.

Donald E. Knuth. The Art of Computer Programming, Volumes 1–3. Addison-Wesley,
1997-1998.

Nancy Mazur. Compile-time Garbage Collection for the Declarative Language Mercury.
PhD thesis, K.U.Leuven, Belgium, May 2004.

Marvin L. Minsky. Computation: finite and infinite machines. Prentice Hall, 1967.

Donald R. Morrison. PATRICIA – Practical Algorithm To Retrieve Information Coded
in Alphanumeric. J. ACM, 15(4):514–534, 1968. ISSN 0004-5411. doi: http://doi.acm.
org/10.1145/321479.321481.

Chris Okasaki and Andy Gill. Fast mergeable integer maps. In Workshop on ML, pages
77–86, Baltimore, MD, USA, September 1998.

John E. Savage. Models of Computation. Addison-Wesley Longman, 1998.

Walter J. Savitch. The influence of the machine model on computational complexity. In
J.K. Lenstra, A.H.G. Rinnooy Kan, and P. van Emde Boas, editors, Interfaces between
Computer Science and Operations Research, volume 99 of Mathematical Centre Tracts,
pages 1–32. 1978.

Tom Schrijvers and Thom Frühwirth. Optimal union-find in Constraint Handling Rules.
TPLP, 6(1–2):213–224, 2006. ISSN 1471-0684. doi: http://dx.doi.org/10.1017/
S1471068405002541.

Jon Sneyers. Turing-complete subclasses of CHR. In Maŕıa Garćıa de la Banda and
Enrico Pontelli, editors, ICLP’08, LNCS, pages 759–763, Udine, Italy, December 2008a.
Springer.

Jon Sneyers. Optimizing Compilation and Computational Complexity of Constraint Han-
dling Rules. PhD thesis, K.U.Leuven, Leuven, Belgium, November 2008b.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. Memory reuse for CHR. In S. Etalle
and M. Truszczynski, editors, ICLP’06, volume 4079 of LNCS, pages 72–86, Seattle,
Washington, August 2006. Springer.

194



Chapter 6

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of Mer-
cury, an e�cient purely declarative logic programming language. J. Logic Programming,
29(1-3):17–64, 1996.

Alan M. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 2(42):230–265, 1936.

Peter van Emde Boas. Machine models and simulations. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume A: Algorithms and Complexity. Elsevier,
1990.

195





Chapter 7

Complexity Analysis of CHRrp

Programs

Author: Leslie De Koninck
Thesis Title: Execution Control for Constraint Handling Rules
School: K.U.Leuven, Belgium
Publication Year: 2008

Foreword

This chapter investigates the relationship between the Logical Algorithms language (LA)
of Ganzinger and McAllester and Constraint Handling Rules. We present a translation
schema from LA to CHRrp, and show that the meta-complexity theorem for LA can be
applied to a subset of CHRrp via inverse translation. Inspired by the high-level imple-
mentation proposal for Logical Algorithms by Ganzinger and McAllester and based on a
new scheduling algorithm, we propose an alternative implementation for CHRrp that gives
strong complexity guarantees and results in a new and accurate meta-complexity theorem
for CHRrp. It is furthermore shown that the translation from Logical Algorithms to CHRrp

combined with the new CHRrp implementation, satisfies the required complexity for the
Logical Algorithms meta-complexity result.

This chapter is part of a line of research on deriving theoretical properties of CHR
programs. It studies the derivation of the time complexity of CHR programs and has
a similar aim as [Frühwirth, 2002a,b]. Sneyers et al. [2008] derives the time and space
complexity of a RAM machine simulator in CHR and as such shows that any algorithm can
be implemented in CHR with the best known time and space complexity. The derivation
of other theoretical properties of CHR programs have been studied in other work, most
notably confluence [Abdennadher, 1997, Duck et al., 2007] and termination [Frühwirth,
2000, Pilozzi et al., 2007, Voets et al., 2007]. Also related is work on theoretical properties
of CHR as a language. We already mentioned [Sneyers et al., 2008] but also refer to
[Sneyers, 2008, Di Giusto et al., 2009, Gabbrielli et al., 2010, 2009] which discuss the
expressiveness of various subsets and extensions of CHR.

7.1 Introduction

Sneyers et al. [2008] have shown that any algorithm can be implemented in CHR while
preserving both time and space complexity.



7.1. Introduction

In “Logical Algorithms” (LA) [Ganzinger and McAllester, 2002] (and based on pre-
vious work in [Ganzinger and McAllester, 2001, McAllester, 1999]), a bottom-up logic
programming language is presented for the purpose of facilitating the derivation of com-
plexity results of algorithms described by logical inference rules. This problem is far from
trivial because the runtime is not necessarily proportional to the derivation length (i.e.,
the number of rule applications), but also includes the cost of pattern matching for multi-
headed rules, as well as costs related to high-level execution control which is specified
using rule priorities in the Logical Algorithms language. The language of Ganzinger and
McAllester resembles CHR in many ways and has often been referred to in the discussion
of complexity results of CHR programs [Christiansen, 2005, Frühwirth, 2002b, Schrijvers
and Frühwirth, 2006, Sneyers et al., 2006a]. In particular, Christiansen [2005] uses the
meta-complexity theorem that accompanies the Logical Algorithms language, and notes
that the CHR system used (SICStus CHR by Holzbaur and Frühwirth [1998]) does not
always exhibit the right complexity because previously computed partial rule matches are
not stored.

The aim of this chapter is to investigate the relationship between both languages.
More precisely, we look at how the meta-complexity theorem for Logical Algorithms can
be applied to (a subset of) CHR, and how CHR can be used to implement Logical Algo-
rithms with the required complexity. First, we present a translation schema from Logical
Algorithms to CHRrp. Logical Algorithms derivations of the original program correspond
to CHRrp derivations in the translation and vice versa. We also show how to translate a
subclass of CHRrp programs into Logical Algorithms. This allows us to apply the meta-
complexity theorem for Logical Algorithms to these CHRrp programs as well. Because
the Logical Algorithms meta-complexity theorem is based on an optimized implementa-
tion, it gives more accurate results than the implementation independent meta-complexity
theorem of Frühwirth 2002a, 2002b while being more general than the ad-hoc complexity
derivations in [Schrijvers and Frühwirth, 2006, Sneyers et al., 2006a].

Our current implementation of CHRrp as presented in Chapter 4 does not o↵er the
complexity guarantees required for the meta-complexity theorem for Logical Algorithms
to hold via translation to CHRrp. Another issue is that the translation from CHRrp to
Logical Algorithms is restricted to a subset of CHRrp. Therefore, we propose a new im-
plementation of CHRrp, designed such that it supports a new meta-complexity theorem
for the complete CHRrp language, while also ensuring that LA programs translated into
CHRrp are executed with the required complexity. We note that this alternative imple-
mentation is not optimized for average case performance, but is designed to achieve certain
complexity guarantees.

More precisely, the implementation is based on the high-level implementation proposal
for Logical Algorithms as given by Ganzinger and McAllester [2002], and on a new schedul-
ing data structure proposed for this purpose, and described in detail in [De Koninck, 2007].
The implementation is described by means of translation to regular CHR. By using a CHR
system with advanced indexing support, such as the K.U.Leuven CHR system [Schrijvers
and Demoen, 2004], our implementation achieves the complexity required to enable a new
and accurate meta-complexity result for the whole CHRrp language.

Overview The rest of this chapter is organized as follows. In Section 7.2, the syntax and
semantics of the Logical Algorithms language is reviewed and the known meta-complexity
theorems for both LA and CHR are presented. In Section 7.3 a translation of LA programs
to CHRrp programs is presented and in Section 7.4, the opposite is done for a subset of
CHRrp. Section 7.5 proposes an alternative implementation for CHRrp which enables a

198



Chapter 7

new meta-complexity theorem for this language, given in Section 7.6. Some concluding
remarks are given in Section 7.7.

7.2 Logical Algorithms and CHR
rp

In this section, we give an overview of the syntax and semantics of Logical Algorithms
(Section 7.2.1) and review the meta-complexity results that are known for both LA and
CHR (Section 7.2.2).

7.2.1 Logical Algorithms

This subsection gives an overview of the syntax and semantics of the Logical Algorithms
language.

Syntax

A Logical Algorithms program P = {r1, . . . , rn} is a set of rules. Ganzinger and McAllester
[2002] use a graphical notation to represent rules. We use a new textual representation
that is closer to the syntax of CHR. A Logical Algorithms rule is an expression

r @ p : A1, . . . , An ) C

where r is the rule name, the atoms Ai (for 1  i  n) are the antecedents and C is the
conclusion, which is a conjunction of atoms whose variables appear in the antecedents.
Rule r has priority p where p is an arithmetic expression whose variables (if any) occur
in the first antecedent A1. If p contains variables, then r is called a dynamic priority rule.
Otherwise, it is called a static priority rule. In the graphical notation of Ganzinger and
McAllester [2002], the above rule is represented as shown below.

A1
...
An

(r, p)
C

The arguments of an atom are either Herbrand terms or (integer) arithmetic expressions.
There are two types of atoms: comparisons and user-defined atoms. A comparison has the
form x < y, x  y, x = y or x 6= y with x and y arithmetic expressions or, in case of (=)/2
and ( 6=)/2, Herbrand terms. Comparisons are only allowed in the antecedents of a rule
and all variables in a comparison must appear in earlier antecedents. A user-defined atom
can be positive or negative. A negative user-defined atom has the form del(A) where A
is a positive user-defined atom. A ground user-defined atom is called an assertion.

Example 7.2.1. An example rule (from Dijkstra’s shortest path algorithm as presented
in [Ganzinger and McAllester, 2002]) with name d2 and priority 1 is

d2 @ 1 : dist(V,D1), dist(V,D2), D2 < D1 => del(dist(V,D1)).

The antecedent D2 < D1 is a comparison, the atoms dist(V, D1) and dist(V, D2) are positive
user-defined antecedents. The negative ground atom del(dist(a, 5)) is an example of a
negative assertion.

199



7.2. Logical Algorithms and CHRrp

1. Apply �
LA⇢P � [ ✓(C) if there exists a (renamed apart) rule r in P of priority p of the

form
r @ p : A1, . . . , An ) C

and a ground substitution ✓ such that for every antecedent Ai,

• D |= ✓(Ai) if Ai is a comparison

• ✓(Ai) 2 � and del(✓(Ai)) /2 � if Ai is a positive user-defined atom

• ✓(Ai) 2 � if Ai is a negative user-defined atom

Furthermore, ✓(C) * � and no rule of priority p0 and substitution ✓0 exists with ✓0(p0) <
✓(p) for which the above conditions hold.

Table 7.1: The Logical Algorithms operational semantics

Operational Semantics

A Logical Algorithms execution state � consists of a set of (positive and negative) as-
sertions. A state can simultaneously contain the positive assertion A and the negative
assertion del(A). Let D be the usual interpretation for the comparisons. Table 7.1 shows
the (single) transition of the Logical Algorithms operational semantics for a given program
P .

A state is called final if no more transitions apply to it. A non-final state has priority
p if the next firing rule instance has priority p. The condition ✓(C) * � ensures that no
rule instance fires more than once and prevents trivial non-termination. This condition,
combined with the fact that each transition only creates new assertions, causes the con-
secutive states in a derivation to be monotone increasing. Although the priorities restrict
the possible derivations, the choice of which rule instance to fire from those with equal
priority is non-deterministic.

Di↵erences compared to CHRrp

Logical Algorithms di↵ers from CHRrp in the following ways:

• A Logical Algorithms state is a set of ground assertions, while the CHR constraint
store is a multi-set and may also contain non-ground constraints.

• In Logical Algorithms, built-in constraints are restricted to ask constraints and only
include comparisons; CHRrp supports any kind of built-in constraints.

• A removed CHR constraint may be reasserted and can then participate again in rule
firings whereas a removed LA assertion cannot be asserted again.

• A Logical Algorithms rule may contain negated heads. In contrast, CHRrp requires
all heads to be positive.1

• In the Logical Algorithms language, the priority of a dynamic priority rule is deter-
mined by the variables in the left-most head, whereas in CHRrp it may depend on
multiple heads.

We note that rules for which the priority depends on more than one head, can easily be
transformed into the correct form as follows. Given a Logical Algorithms rule of the form

r @ p : A1, . . . , Am, Am+1, . . . , An ) C

1See [Van Weert et al., 2006] for an extension of CHR with negation as absence.

200



Chapter 7

where the priority expression p is fully determined by the variables from the antecedents
A1, . . . , Am. This rule can be transformed into the equivalent rules

r1 @ 1 : A1, . . . , Am ) priority(r, p)

r2 @ p : priority(r, p), A1, . . . , Am, Am+1, . . . , An ) C

where priority/2 is a new user-defined predicate. Now the first head of the dynamic
priority rule determines the rule priority. Note that this transformation does not increase
overall complexity: it only results in the first m heads to be matched with twice.

7.2.2 Meta-Complexity Results for LA and CHR
rp

The Logical Algorithms language was designed with a meta-complexity result in mind.
Such a result has also been formulated for CHR. In this subsection, we review both results
and give a first intuition on how they relate to each other.

The Logical Algorithms Meta-Complexity Result

A prefix instance of a Logical Algorithms rule r @ p : A1, . . . , An ) C is a tuple h✓(r), ii
with ✓ a ground substitution defined on the variables occurring in A1, . . . , Ai and 1 
i  n. Its antecedents are ✓(A1), . . . , ✓(Ai). A strong prefix firing is a prefix instance
whose antecedents hold in a state with priority lower or equal to the prefix’ rule priority.2

The time complexity for running Logical Algorithms programs is given by Ganzinger and
McAllester [2002] as O(|�0|+ Ps + (Pd +Ad) · logN) where �0 is the initial state and |�0|
is its size. Ps is the number of strong prefix firings of static priority rules and Pd is the
number of strong prefix firings of dynamic priority rules; Ad is the number of assertions
that may participate in a dynamic priority rule instance; and N is the number of distinct
priorities. The following example is adapted from [Ganzinger and McAllester, 2002].

Example 7.2.2 (Dijkstra’s Shortest Path). Listing 7.1 shows an implementation of Dijk-
stra’s single-source shortest path algorithm in LA.

d1 @ 1 : source(V) => dist(V,0).
d2 @ 1 : dist(V,D1), dist(V,D2), D2 < D1 => del(dist(V,D1)).
d3 @ D+2 : dist(V,D), e(V,C,U) => dist(U,D+C).

Listing 7.1: Dijkstra’s shortest path algorithm in Logical Algorithms

The code is very similar to the CHRrp code of Listing 4.2. A source(v) fact means that
v is the (unique) source node for the algorithm. A dist(v, d) fact means that the shortest
path distance from the source node to node v does not exceed d. Finally, an e(v, c, u) fact
means there is an edge from node v to node u with cost (weight) c. Given an initial state
consisting of one source/1 fact and e e/3 facts, we can derive that the number of strong
prefix firings is O(1) for rule d1, and O(e) for both rules d2 and d3. This result is based
on the fact that at priority 2 and lower, there is at most one (positive) dist/2 fact for
each node, and each of these facts represent the shortest path distance from the source
node to this node. This means that at most e dist/2 facts are ever created. Using the
meta-complexity theorem, we find that the total complexity is O(e log e).

2In [Ganzinger and McAllester, 2002], also the concept of a weak prefix firing is defined, but it is of no
importance for our purposes.

201



7.2. Logical Algorithms and CHRrp

The “As Time Goes By” Approach

In [Frühwirth, 2002a,b], an upper-bound on the worst case time complexity of a CHR
program P is given as

O
 
D
X

r2P

(cnr
max (OHr +OGr) + (OCr +OBr))

!
(7.1)

where D is the maximal derivation length (i.e., the maximal number of rule applications),
cmax is the maximal number of CHR constraints in the store, and for each rule r 2 P :

• nr is the number of heads in r

• OHr is the cost of head matching, i.e. checking that a given sequence of nr constraints
match with the nr heads of rule r

• OGr is the cost of checking the guard

• OCr is the cost of adding built-in constraints after firing

• OBr is the cost of adding and removing CHR constraints after firing

For programs with simplification and simpagation rules only, the maximal derivation length
can be derived using an appropriate ranking on constraints that decreases after each rule
application [Frühwirth, 2000]. We note that finding such a ranking is not trivial. The meta-
complexity result is based on a very naive CHR implementation, and therefore on the one
hand gives an upper-bound on the time complexity for any reasonable implementation of
CHR, but on the other hand often largely overestimates the worst case time complexity on
optimized implementations.3 The following example is adapted from [Frühwirth, 2002a].

Example 7.2.3 (Boolean). The rules below implement the Boolean and(x, y, x ^ y) con-
straint given that 1 represents true and 0 represents false.

and(0,Y,Z) <=> Z = 0. and(X,0,Z) <=> Z = 0.
and(X,1,Z) <=> X = Z. and(1,Y,Z) <=> Y = Z.
and(X,X,Z) <=> X = Z. and(X,Y,1) <=> X = 1, Y = 1.

Let the rank of an and/3 constraint be one, then the rank of the head of each rule equals
one, and the rank of the body equals zero.4 For a goal consisting of n and/3 constraints,
the derivation length is n, which is also the maximal number of CHR constraints in the
store. The cost of head matching, (implicit) guard checking, removing CHR constraints
and asserting built-in constraints can all be considered constant. Then using (7.1), we
derive that the total runtime complexity is O(n2).

A First Comparison

Although at this point we do not intend to make a complete comparison between both
results, we can already show that the Logical Algorithms result is in a sense at least
as accurate as Frühwirth’s approach for programs without built-in tell constraints. The

3Built-in constraints may lead to a worse complexity in practical optimized implementations if many
constraints are repeatedly reactivated without this resulting in new rule applications. We return to this
issue in Section 7.6.3.

4Built-in constraints have a rank of zero by definition.

202



Chapter 7

reasoning is as follows. In each derivation step, a constant number of atoms (constraints)
are asserted. Let cmax be the maximal number of (strictly) positive atoms in the database
in any given state. Furthermore assume rules have positive heads only, then each of the
asserted atoms can participate in at most

P
r2P

�
nr · cnr�1

max

�
strong prefix firings. Because

only O(c+D) constraints are ever asserted where c is the number of CHR constraints in
the initial goal and D is the derivation length, the total number of strong prefix firings
Ps + Pd is

O
 
(c+D) ·

X

r2P

cnr�1
max

!

and because c = O(cmax) we also have the following bound

O
 
D ·

X

r2P

cnr
max

!
(7.2)

In the absence of (dynamic) priorities, the total runtime complexity according to the
Logical Algorithms meta-complexity result is bounded by the same formula (7.2) and
hence is at least as accurate as the result of Frühwirth [2002b] given that the cost of both
head matching (OHr) and adding and removing CHR constraints (OBr) is constant for
each rule r.

7.3 Translating Logical Algorithms into CHR
rp

In this section, we show how Logical Algorithms programs can be translated into CHRrp

programs. CHR states of the translated program can be mapped onto LA states of the
original. With respect to this mapping, both programs have the same derivations.

7.3.1 Translation Schema

The translation of a LA program P is denoted by T (P ) = TS+D(P )[TR(P ). The definitions
of TS+D(P ) and TR(P ) are given below.

Set and Deletion Semantics

We represent Logical Algorithms assertions as CHR constraints consisting of the assertion
itself and an extra argument, called the mode indicator, denoting whether it is positively
asserted (‘p’), negatively asserted (‘n’) or both (‘b’). For every user-defined predicate
a/n occurring in P , TS+D(P ) contains the following rules to deal with a new positive or
negative assertion:

1 :: ar(X̄,M) \ a(X̄) () M 6= n | true
1 :: ar(X̄, n), a(X̄) () ar(X̄, b)

2 :: a(X̄) () ar(X̄, p)

1 :: ar(X̄,M) \ del(a(X̄)) () M 6= p | true
1 :: ar(X̄, p), del(a(X̄)) () ar(X̄, b)

2 :: del(a(X̄)) () ar(X̄, n)

If a representation already exists, one of the priority 1 rules updates this representation.
Otherwise, one of the priority 2 rules generates a new representation. At lower priorities,
it is guaranteed that every assertion, whether asserted positively, negatively or both, is
represented by exactly one constraint in the store.

203



7.3. Translating Logical Algorithms into CHRrp

Rules

Given a LA rule r 2 P of the form

r @ p : A1, . . . , An ) C

We first split up the antecedents into user-defined antecedents and comparison antecedents
by using the split function defined below.

split([A|T ]) =
(
h[A|Au], Aci if A is a user-defined atom

hAu, [A|Ac]i if A is a comparison

where split(T ) = hAu, Aci
split(✏) =h✏, ✏i

In the Logical Algorithms language, a given assertion may participate multiple times in
the same rule instance, whereas in CHR all constraints in a single rule instance must be
di↵erent. To overcome this semantic di↵erence, a single LA rule is translated as a set of
CHR rules such that every CHR rule covers a case of syntactically equal head constraints.
Let hAu, Aci = split([A1, . . . , An]) with Au = [Au

1 , . . . , A
u
m] and Ac = [Ac

1, . . . , A
c

l
]. Let

P be the set of all partitions of {1, . . . ,m}.5 For a given partition ⇢ 2 P , the following
function returns the most general unifier that unifies all antecedents {Ai | i 2 S} for every
S 2 ⇢ where mgu(S) is the most general unifier of all elements in S.

partition to mgu(⇢, [Au

1 , . . . , A
u

m]) = �
S2⇢

mgu({Au

i | i 2 S})

Let PU = {h⇢, ✓i | ⇢ 2 P ^ ✓ = partition to mgu(⇢, Au) ^ D |= 9̄;✓(Ac)}. PU contains all
partitions for which partition to mgu is defined and for which the comparison antecedents
Ac are still satisfiable after applying the unifier. The next step is to filter out antecedents
so that every set in the partition has only one representative. This is done by computing
filter(✓(Au), ⇢) for each h⇢, ✓i 2 PU where the filter function is as follows:

filter([✓(Au

i )|T ], ⇢) =
(
[✓(Au

i
)|filter(T, ⇢)] if 9S 2 ⇢ : i = min(S)

filter(T, ⇢) otherwise

filter(✏, ) =✏

Finally, we add mode indicators to all remaining user-defined antecedents:

modes([Au
0 |T ]) =

(
h[ar(X̄, p)|Am], Ni if Au

0
= a(X̄)

h[ar(X̄,N 0)|Am], [N 0 6= p|N ]i if Au
0
= del(a(X̄))

where hAm, Ni = modes(T )

modes(✏) =h✏, ✏i

The modes function returns both the resulting antecedents and the necessary conditions
on the mode indicators of these antecedents. For every h⇢, ✓i 2 PU , the CHR translation
TR(P ) contains a rule

p+ 2 :: r⇢ @ H =) g1, g2 | C 0

where hH, g1i = modes(filter(✓(Au), ⇢)), g2 = ✓(Ac) and C 0 = ✓(C).

5
P contains Bm elements in the worst case with Bm the mth Bell number.

204



Chapter 7

Examples

We illustrate the translation schema on some examples.

Example 7.3.1. The translation of the LA implementation of Dijkstra’s shortest path
algorithm given in Listing 7.1 is given in Listing 7.2.

1 :: er(V,C,U,M) \ e(V,C,U) <=> M \= n | true.
1 :: er(V,C,U,n) , e(V,C,U) <=> er(V,C,U,b).
2 :: e(V,C,U) <=> er(V,C,U,p).

1 :: er(V,C,U,M) \ del(e(V,C,U)) <=> M \= p | true.
1 :: er(V,C,U,p) , del(e(V,C,U)) <=> er(V,C,U,b).
2 :: del(e(V,C,U)) <=> er(V,C,U,n).

... % (similar rules for source/1 and dist/2 )

3 :: d11 @ sourcer(V,p) ==> dist(V,0).
3 :: d21/2 @ distr(V,D1,p), distr(V,D2,p) ==> D2 < D1 | del(dist(V,D1)).

D+4 :: d31/2 @ distr(V,D,p), er(V,C,U,p) ==> dist(U,D+C).

Listing 7.2: Translation to CHRrp of the program of Listing 7.1

Example 7.3.2. The following rule is part of the union-find implementation given in
[Ganzinger and McAllester, 2002].

uf4 @ 1 : union(X,Y), find(X,Z), find(Y,Z) => del(union(X,Y)).

Because antecedents find(X, Z) and find(Y, Z) are unifiable, their translation to CHRrp is
as follows:

3 :: uf41/2/3 @ unionr(X,Y,p), findr(X,Z,p), findr(Y,Z,p) ==> del(union(X,Y)).
3 :: uf41/23 @ unionr(X,X,p), findr(X,Z,p) ==> del(union(X,X)).

7.3.2 Correspondence between LA and !p Derivations

In this subsection, we show that every derivation of the original program under the Logical
Algorithms semantics, corresponds to a derivation of the translation under the !p semantics
of CHRrp. In order to do so, we introduce a mapping function chr to la between reachable
CHR execution states and Logical Algorithms states.6 Reachability is considered with
respect to initial states of the form hG, ;, true, ;in where the user-defined constraints in G
are of the form a(X̄) and del(a(X̄)) and do not include constraints of the form ar(X̄,M).

chr to la(�) = {a(X̄) | a(X̄) 2 A _ (ar(X̄,M) 2 A ^M 6= n)}
[ {del(a(X̄)) | del(a(X̄)) 2 A _ (ar(X̄,M) 2 A ^M 6= p)}

where � = hG,S,B, T in and A = G [ chr(S). The mapping function also takes into
account the constraints that are still in the goal and those for which the set and deletion
semantics rules have not yet fired. In the rest of this section, we first show how CHR
execution states are normalized and then show that in a Logical Algorithms state and its
corresponding normalized CHR execution state, corresponding rule instances can fire. We
start by defining a pre-normal form.

6See [Duck et al., 2007] for a formal definition of reachability.

205



7.3. Translating Logical Algorithms into CHRrp

Definition 7.3.3 (Pre-normal Form). A (reachable) state � is in pre-normal form if and
only if � = h;, S, true, T in, all constraints in S are of the form ar(X̄,M)#i, and if
ar(X̄,M1)#i1 2 S and ar(X̄,M2)#i2 2 S then i1 = i2 (and consequently M1 = M2).

The following lemma shows that every reachable state is pre-normalized before rules
are tried with priority > 2.

Lemma 7.3.4 (Pre-normalization). For every reachable state �, there exists a finite

derivation D = �
!p⇢⇤

T (P ) �
⇤ such that �⇤ is in pre-normal form, chr to la(�)=chr to la(�⇤),

and all rules fired in D have priority 1 or 2. Every state has a unique pre-normal form
with respect to the chr to la mapping function.

Proof. We introduce the following ranking function on CHR states:

k�k = 2 ·
��{a(X̄) | a(X̄) 2 A} ] {del(a(X̄)) | del(a(X̄)) 2 A}

��+ |G|

where � = hG,S, true, T in, A = G] chr(S) and if X is a (multi-)set, |X| is its cardinality.
Clearly, the rank of any state is positive, and if k�k = 0, state � is in pre-normal form. If

� is not in pre-normal form, then there exists at least one transition �
!p⇢T (P ) �

0. We show
that for all such transitions chr to la(�) = chr to la(�0) and k�0k < k�k, which ensures
termination.

If the goal G is not empty, then only the Introduce transition is applicable. Every
application of this transition moves a CHR constraint from the goal to the CHR constraint
store, so k�0k = k�k � 1. By definition, chr to la(�0) = chr to la(�) because the chr to la
function does not distinguish between the goal and the CHR constraint store.

If the goal G is empty then given that � is not in pre-normal form, chr(S) contains a
constraint of the form a(X̄) or del(a(X̄)). We look into detail to the case of a(X̄) 2 chr(S);
the case of del(a(X̄)) 2 chr(S) is similar. We start by showing that at least one rule of
priority 1 or 2 is applicable. Next, we show that each rule application decreases the norm
and maintains the invariance with respect to the chr to la function.

Assume a(X̄) 2 chr(S). If ar(X̄, p) 2 chr(S) or ar(X̄, b) 2 chr(S) then the following
rule of T (P ) is applicable:

1 :: ar(X̄,M) \ a(X̄) () M 6= n | true

If ar(X̄, n) 2 chr(S) then the rule below applies:

1 :: ar(X̄, n), a(X̄) () ar(X̄, b)

Finally, if no rule of priority 1 can be applied, which implies that no constraint of the form
ar(X̄,M) 2 chr(S), then the following T (P ) rule can fire:

2 :: a(X̄) () ar(X̄, p)

This covers all possibilities. Now we look at what happens after firing one of the priority
1 or 2 rules. The rule

1 :: ar(X̄,M) \ a(X̄) () M 6= n | true

removes a constraint a(X̄)#i from S and has an empty body, so k�0k = k�k � 2. Since
M 6= n the removed constraint was already represented by the ar(X̄,M) constraint and
so chr to la(�0) = chr to la(�). Firing

1 :: ar(X̄, n), a(X̄) () ar(X̄, b)

206



Chapter 7

causes the removal of two constraints from S, namely ar(X̄, n)#i and a(X̄)#j. Further-
more, it adds a new constraint ar(X̄, b) to G. This results in k�0k = k�k � 1. The
new constraint represents the combined mode of both removed constraints and hence
chr to la(�0) = chr to la(�). Finally, the rule

2 :: a(X̄) () ar(X̄, p)

is only applicable if chr(S) does not contain a constraint of the form ar(X̄,M). It removes
a constraint a(X̄)#i from S and adds a new constraint ar(X̄, p) to G, resulting in k�0k =
k�k � 1. The new representation covers the positive assertion and so chr to la(�0) =
chr to la(�).

In summary, if the goal is empty and � is not in pre-normal form, a rule of priority
1 or 2 can fire and so no rule with lower priority is applicable. All applicable transitions
strictly decrease the value of the ranking function and so the pre-normalization terminates.
Finally, none of the possible transitions changes the value of chr to la.

The state �⇤ is called a pre-normalization of �.

Definition 7.3.5 (Implied Rule Instance). A rule instance ✓(r) is implied in a state � if
✓(C) ✓ chr to la(�) with ✓(C) the conclusion of ✓(r).

Lemma 7.3.6 (Normalization). Let there be given a pre-normalized state � = h;, S,
true, T in. If there exists a transition �

!p⇢T (P ) �
0 in which an implied rule instance

fires, then the pre-normalization of �0 has the form h;, S, true, T 0in0 with T 0 ) T . In other
words chr to la(�) = chr to la(�0) and the CHR constraint store after pre-normalization is
unchanged from the one before the implied rule instance fired while the propagation history
is increased.

Proof. Let ✓(r) be the implied rule instance with conclusion ✓(C). As ✓(C) ✓ chr to la(�)
with � = h;, S, true, T in, we have �0 = h✓(C), S, true, T [ {t}in and chr to la(�) =
chr to la(�0) with t the propagation history tuple corresponding to ✓(r). The goal G of �0

equals ✓(C) and so it holds that if a(X̄) 2 G then ar(X̄, p) 2 chr(S) or ar(X̄, b) 2 chr(S)
and if del(a(X̄)) 2 G then ar(X̄, n) 2 chr(S) or ar(X̄, b) 2 chr(S). Now all constraints
in the goal are first introduced in the CHR constraint store. Next, the newly introduced
CHR constraints are removed one by one using one of the following rules:

1 :: ar(X̄,M) \ a(X̄) () M 6= n | true
1 :: ar(X̄,M) \ del(a(X̄)) () M 6= p | true

These rules remove all the constraints that were introduced from the goal and do not
change the rest of the CHR constraint store, hence after pre-normalization, the CHR
constraint store equals that of state � again.

Because the CHR constraint store remains unchanged after firing an implied rule in-
stance and pre-normalizing the resulting state, only finitely many such rule instances can
fire before either reaching a final execution state, or a state in which a non-implied rule
instance can fire. We call such a state normalized.

Definition 7.3.7 (Normal Form). A pre-normalized CHR execution state � is in normal

form if it is a final state (�
!p

6⇢T (P )) or there exists a transition �
!p⇢T (P ) �

0 such that
chr to la(�0) + chr to la(�), i.e., in which a non-implied rule instance is fired.

207



7.3. Translating Logical Algorithms into CHRrp

Lemma 7.3.8. For every Logical Algorithms state �LA and every normalized CHR ex-
ecution state � = h;, S, true, T in such that �LA = chr to la(�), there exists a transition

�LA
LA⇢P �0LA if and only if there exists a transition �

!p⇢T (P ) �
0 firing a non-implied rule

instance such that �0LA = chr to la(�0).

Proof. A transition of �LA to �0LA implies there exists an applicable rule instance ✓(r) of
a rule r in P with priority p of the form

r @ p : A1, . . . , An ) C

Let hAu, Aci = h[Au

1 , . . . , A
u
m], [Ac

1, . . . , A
c

l
]i = split([A1, . . . , An]) where we use the split

function defined in Section 7.3.1. The user-defined antecedents can be partitioned into
sets of syntactically equal antecedents with respect to the matching substitution ✓. The
following function returns this partition:

substitution to partition(✓, [Au

1 , . . . , A
u

m]) = {S1, . . . , Sm}

where Si = {j | ✓(Au

i
) = ✓(Au

j
)}. Let ⇢ = substitution to partition(✓, Au). From the

partition, we find the most general unifier ✓0 that unifies all antecedents {Au

i
| i 2 S} for

every S 2 ⇢: ✓0 = partition to mgu(⇢, Au) with partition to mgu as defined in Section 7.3.1.
Clearly, ✓0 exists and is more general than ✓. The applicability of the Apply transition
means that for all comparison antecedents Ac

i
with 1  i  l, D |= ✓(Ac

i
) and so it holds

that D |= 9̄;✓0(Ac

1 ^ . . .^Ac

l
) and consequently a rule r⇢ exists. This rule looks as follows:

p+ 2 :: r⇢ @ H1, . . . , Hk =) g1, g2 | C 0

with h[H1, . . . , Hk], g1i = modes(Af ), Af = [Af

1 , . . . , A
f

k
] = filter(✓0(Au), ⇢), g2 = ✓0(Ac)

and C 0 = ✓0(C). The modes and filter functions are as defined in Section 7.3.1.
Let ✓00 be a ground matching substitution such that ✓ = ✓00|vars(✓) � ✓0 where ✓00|vars(✓)

is the projection of ✓00 on the variables in ✓. Since ✓0 is more general than ✓, ✓00 exists.
For all i 2 {1, . . . , k}, if Af

i
= a(X̄) then Hi = ar(X̄, p). Because of the applicability

of Logical Algorithms rule r in state �LA, ✓00(a(X̄)) 2 �LA and ✓00(del(a(X̄))) /2 �LA, so
H 0

i
= ✓00(ar(X̄, p))#idi 2 S and ✓00(Hi) = chr(H 0

i
). Similarly, if Af

i
= del(a(X̄)) then

Hi = ar(X̄,N) and g1 contains N 6= p; ✓00(del(a(X̄))) 2 �LA and as a result H 0

i
=

✓00(ar(X̄,N 0))#idi 2 S with N 0 = n or N 0 = b. Since N only appears in Hi and the guard
N 6= p, we can further impose that ✓00(N) = N 0 and then ✓00(Hi) = chr(H 0

i
).

All ✓00(Af

i
) are di↵erent for 1  i  k, and therefore, all idi must be di↵erent. From

D |= 9̄;✓(Ac

i
) for 1  i  l and because ✓00(g1) = [N1 6= p, . . . , No 6= p] with Nj = n or

Nj = b for 1  j  o, D |= true ! 9̄;✓00(g1 ^ g2). We conclude that ✓00 is a ground
matching substitution that matches the head with constraints from S and for which the
guard is entailed.

It is not possible that hid(H), ✏, r⇢i 2 T because chr to la grows monotonically, which
implies that ✓(C) = ✓00(C 0) 2 chr to la(�) = �LA which contradicts with the applicability
of ✓(r) in �LA.

If we ignore rule priorities, all conditions are satisfied so that rule instance ✓(r⇢) can
fire. The resulting state �0 has the form h✓(C), S, true, T [ {hid(H), ✏, r⇢i}in. Clearly, if
�LA = chr to la(h;, S, true, T in) and �0LA = �LA [ ✓(C) then �0LA = chr to la(�0). We
now prove that every CHR transition firing a non-implied rule instance corresponds to a
Logical Algorithms transition, also ignoring rule priorities. Both results combined give us
that the priority of the highest priority rule instance is equal in both � and �LA.

208



Chapter 7

�i

h�i, ;, true, ;i1
!p⇢⇤

T (P ) �
0
i

!p⇢⇤
T (P ) �

0
i⇤

�i
LA⇢P �j

�0
i⇤

!p⇢T (P ) �
0
j

�i
LA
6⇢P

�0
i⇤

!p

6⇢T (P )

Figure 7.1: Correspondence between derivations in Logical Algorithms and CHRrp

A transition of � = h;, S, true, T in to �0 implies that T (P ) contains a rule

p+ 2 :: r⇢ @ H =) g1, g2 | C 0

and so the Logical Algorithms program P contains a rule

r @ p : A1, . . . , An ) C

Let hAu, Aci = split([A1, . . . , An]) and ✓ = partition to mgu(⇢, Au). If Ai = a(X̄) 2 Au

then ✓(ar(X̄, p)) 2 H. If Ai = del(a(X̄)) 2 Au then ✓(ar(X̄,N)) 2 H and (N 6= p) 2 g1.
Finally, if Ai 2 Ac then ✓(Ai) 2 g2. There exists a (ground) matching substitution ✓0 such
that ✓0(H) 2 chr(S) and D |= 9̄;✓0(g1 ^ g2).

Let ✓00 = ✓0 � ✓ and let �LA = chr to la(�). Because ✓0 is a ground substitution,
D |= 9̄;✓0(g1 ^ g2) implies that for all Ai 2 Ac, D |= ✓00(Ai). For all positive user-defined
antecedents Ai = a(X̄) 2 Au, we have that ✓00(ar(X̄, p)) 2 chr(S) and so ✓00(Ai) 2 �LA
and del(✓00(Ai)) /2 �LA. For all negative user-defined antecedents Ai = del(a(X̄)) 2 Au,
we have that ✓00(ar(X̄,N)) 2 chr(S) with N = b or N = n and so ✓00(Ai) 2 �LA. We have
assumed that ✓0(r⇢) is not an implied rule instance and so ✓0(C 0) = ✓00(C) * �LA.

If we again ignore rule priorities, all conditions are satisfied so that rule instance
✓00(r) can fire in state �LA and it holds that �0LA = �LA [ ✓00(C) = chr to la(�0) since
�0 = h✓0(C 0), S, true, T [ {hid(H), ✏, r⇢i}in. Now we have that both the original program
P and its translation T (P ) can fire corresponding rule instances if we ignore priorities,
and so their highest priority rule instances also correspond.

Theorem 14. For every reachable CHRrp state �, if �
!p⇢T (P ) �

0 then it holds that either

chr to la(�) = chr to la(�0) or chr to la(�)
LA⇢P chr to la(�0).

Proof. Implied by Lemmas 7.3.4, 7.3.6 and 7.3.8.

Theorem 15. For every Logical Algorithms state �i and reachable CHRrp state �0
i
such

that chr to la(�0
i
) = �i, there exists a finite CHRrp derivation �0

i

!p⇢⇤

T (P ) �
0

i⇤ for which holds

that chr to la(�0
i⇤) = �i such that if �i

LA⇢P �j then �0
i⇤

!p⇢T (P ) �
0

j
with chr to la(�0

j
) = �j

and if �i is a final state then �0
i⇤ is also a final state.

Proof. Implied by Lemmas 7.3.4, 7.3.6 and 7.3.8.

Given a Logical Algorithms state �, we can use h�, ;, true, ;i1 as initial state for the
CHRrp derivation. Theorem 15 is illustrated by Figure 7.1.

209



7.4. Translating a subset of CHRrp into Logical Algorithms

7.3.3 Relation with Weak Bisimilarity

To capture the meaning of the above correspondence results, we relate them to the notion of
(weak) bisimulation. A bisimulation is a relation between the states of a labeled transition
system (LTS). A relation R ✓ S1 ⇥ S2 between the states in S1 and those in S2 is a
bisimulation if p R q and p

↵! p0 implies that q
↵! q0 with p0 R q0, and similarly, p R q

and q
↵! q0 implies that p

↵! p0 with p0 R q0. Here, ↵ is the label of the transition p
↵! p0

from state p to state p0. If a transition from p to p0 has no observable e↵ect, it is called a
silent transition and denoted by p

⌧! p0. A relation R ✓ S1 ⇥ S2 is a weak bisimulation if
p R q and p

↵! p0 implies that q
⌧!⇤

q⇤
↵! q0⇤

⌧!⇤

q0 with p0 R q0, and vice versa with the

roles of p and q swapped. Here p
⌧!⇤

p0 means p and p0 are linked by zero or more silent
transitions.

Let S1 be the set of valid Logical Algorithms states for program P and let S2 =

{chr to la(�) | hG, ;, true, ;i1
!p⇢⇤

T (P ) �^G 2 S1}, i.e., S2 is found by applying the chr to la

mapping function to all reachable CHRrp states for program T (P ). We transform the
state transition systems for Logical Algorithms and CHRrp to labeled transition systems

as follows: a Logical Algorithms transition �
LA⇢P �0 corresponds to an LTS transition

�
↵! �0 with ↵ = �0 \ �, i.e., ↵ represents the state change from � to �0. A CHRrp

transition �
!p⇢T (P ) �

0 corresponds to an LTS transition chr to la(�)
↵! chr to la(�0) with

↵ = chr to la(�0) \ chr to la(�) if this set is not empty and ↵ = ⌧ otherwise.

Corollary 7.3.9. The equality relation between the states of S1 and S2 is a weak bisimu-
lation.

7.4 Translating a subset of CHRrp into Logical Algorithms

In the previous section, we have shown that Logical Algorithms programs can be translated
into equivalent CHRrp programs. In this section, we show how to do the opposite, i.e.,
how CHRrp programs can be translated into equivalent Logical Algorithms programs. This
allows us to apply the meta-complexity theorem for Logical Algorithms to the translation
of these CHRrp programs.

We need to impose some restrictions on the CHRrp programs that can be translated.
These restrictions result from the fact that the Logical Algorithms language does not
have the concept of an underlying constraint solver that o↵ers both ask and tell built-in
constraints. The following two properties are required:

1. In all reachable states � = hG,S,B, T in: vars(S) = ;. In words, all (stored) CHR
constraints are ground.

2. All built-in constraints are comparisons; there are no built-in tell constraints.

The first property holds if the initial goal is ground and all rules are variable restricted,
which means that all variables in the body of a rule also appear in one of the rule heads.
The second property implies that all reachable states are of the form hG,S, true, T in, i.e.,
the built-in constraint store is always equivalent to true.

To simplify the presentation, we also assume that the priority of dynamic priority rules
is determined by the arguments of its left-most head. In general, we can use the transfor-
mation schema given in Section 7.2.1 to ensure that the resulting Logical Algorithms rules
have the correct syntactical form.

210



Chapter 7

7.4.1 Translation Schema

We now show how the rules of a CHRrp program P are transformed into Logical Algo-
rithms rules that form a program T (P ). To increase readability, we distinguish between
simplification and simpagation rules on the one hand, and propagation rules on the other.
A simpagation rule of the form

p :: r @ H1, . . . , Hm�1\Hm, . . . , Hn () g | B1, . . . , Bl

is transformed into

r0 @ p : H id
1 , . . . , H

id
n ,Alldi↵, g, next id(Idnext))

del(H id
m), . . . , del(H id

n ), del(next id(Idnext)),

Bid
1 , . . . , B

id
l
, next id(Idnext + l)

where H id
i

= c(X̄, Id i) if Hi = c(X̄), Bid
i

= c(X̄, Idnext + i � 1) if Bi = c(X̄) and
Alldi↵ = {(Id i 6= Id j) | D |= 9̄;Hi = Hj ^ g}. The disequalities in Alldi↵ are between
the identifiers of those heads that are unifiable and for which the guard is still satisfiable
after this unification. The case of a simplification rule is very similar. A propagation rule
of the form

p :: r @ H1, . . . , Hn =) g | B1, . . . , Bl

is transformed into the following two rules

r01 @ p : H id
1 , . . . , H

id
n ,Alldi↵, g ) token([Id1, . . . , Idn], r)

r02 @ p : H id
1 , . . . , H

id
n ,Alldi↵, g, token([Id1, . . . , Idn], r), next id(Idnext))

del(token([Id1, . . . , Idn], r)), del(next id(Idnext)),

Bid
1 , . . . , B

id
l
, next id(Idnext + l)

where H id
i
, Bid

i
and Alldi↵ are as before. The first of these rules generates a token. This

token is removed by the second rule. The tokens are needed to prevent a given rule instance
from firing more than once. Note that the transformation into two rules and the use of
tokens does not increase the complexity compared to the original rule, as there is only one
token for each combination of rule and constraint identifiers as well as only one next id/1
fact in any state.

The initial database consists of the goal, where each constraint is extended with a
unique identifier, and a next id(Idnext) assertion, with Idnext the next free identifier.

Example 7.4.1 (Merge Sort). Listing 7.3 shows a CHRrp implementation of the merge
sort algorithm. Its input consists of a series of n (a power of 2) number/1 constraints.
Its output is a sorted list of the numbers in the input, represented as arrow/2 constraints,
where arrow(x, y) indicates that x is right before y. The Logical Algorithms translation is
shown in Listing 7.4.

1 :: ms1 @ arrow(X,A) \ arrow(X,B) <=> A < B | arrow(A,B).
2 :: ms2 @ merge(N,A), merge(N,B) <=> A < B | merge(2*N+1,A), arrow(A,B).
3 :: ms3 @ number(X) <=> merge(0,X).

Listing 7.3: A CHRrp implementation of merge sort

Note that in rules ms1 and ms2, the guard prevents the constraints matching the heads
from being equal, and so there are no disequality constraints between the CHR constraint

211



7.4. Translating a subset of CHRrp into Logical Algorithms

ms10 @ 1 : arrow(X,A,Id1), arrow(X,B,Id2), A < B, next_id(NId) =>
del(arrow(X,B,Id2)), del(next_id(NId)),
arrow(A,B,NId), next_id(NId+1).

ms20 @ 2 : merge(N,A,Id1), merge(N,B,Id2), A < B, next_id(NId) =>
del(merge(N,A,Id1)), del(merge(N,B,Id2)), del(next_id(NId)),
merge(2*N+1,A,NId), arrow(A,B,NId+1), next_id(NId+2).

ms30 @ 3 : number(X,Id), next_id(NId) => del(number(X,Id)),
del(next_id(NId)), merge(0,X,NId), next_id(NId+1).

Listing 7.4: The Logical Algorithms translation of Listing 7.3

identifiers in these rules. Using the Logical Algorithms meta-complexity result, we can
derive that the total runtime of the translated merge sort algorithm is O(n log n). A detailed
analysis is given in Section 7.6.1 where we analyze the CHRrp implementation directly
using a new meta-complexity theorem for CHRrp.

Example 7.4.2 (Less-or-Equal). We illustrate the translation of propagation rules by
translating the transitivity rule from the leq program, shown below. Its translation is
shown in Listing 7.5.

2 :: transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

transitivity01 @ 2 : leq(X,Y,Id1), leq(Y,Z,Id2), Id1 \= Id2 =>
token([Id1,Id2],transitivity).

transitivity02 @ 2 : leq(X,Y,Id1), leq(Y,Z,Id2), Id1 \= Id2,
token([Id1,Id2],transitivity), next_id(NId) =>

del(token([Id1,Id2],transitivity)), del(next_id(NId)),
leq(X,Z,NId), next_id(NId+1).

Listing 7.5: LA translation of the transitivity rule from leq

Note that since in the original rule, the two heads leq(X, Y) and leq(Y, Z) are unifiable
and there is furthermore no guard to prevent them matching the same constraint, we have
to add an explicit disequality between the constraint identifiers for these heads: Id1 6= Id2.

7.4.2 Correspondence between !p and LA Derivations

In this subsection, we prove that a CHRrp program and its translation to Logical Algo-
rithms are operationally equivalent. Again we introduce a mapping function:

la to chr(�) = h;, S, true, T in

where the CHR constraint store S = {c(X̄)#Id | c(X̄, Id) 2 � ^ del(c(X̄, Id)) /2 �}, the
propagation history T = {hIds, ✏, ri | del(token(Ids, r)) 2 �}, and the next free identifier
n is such that next id(n) 2 � and del(next id(n)) /2 �. In the following, we consider a
Logical Algorithms state � reachable with respect to program T (P ) if it can be derived from
an initial state consisting of CHR constraints extended with unique identifiers, and a single
next_id/1 assertion with as argument the next free identifier. In this case, reachability
amongst others implies that there can be only one (strictly) positive next_id/1 assertion
in the database in any state, and no two CHR constraint representations share their
identifier.

212



Chapter 7

Theorem 16. For every reachable LA state �i it holds that if �i
LA⇢T (P ) �j, then ei-

ther la to chr(�i) = la to chr(�j) or there exists a finite CHR derivation la to chr(�i) =

h;, S, true, T in
!p⇢P hC, S0, true, T 0in

!p⇢⇤

P
h;, S00, true, T 0in0 = la to chr(�j) consisting of

an Apply transition, followed by zero or more Introduce transitions.

Proof. Consider a transition �i
LA⇢T (P ) �j . The only type of transition in Logical Algo-

rithms is the Apply transition which fires a rule. If la to chr(�i) = la to chr(�j), then this
rule must be of the form

r01 @ p : H id
1 , . . . , H

id
m,Alldi↵ , g ) token([Id1, . . . , Idm], r)

because all other types of rules either delete the representation of a CHR constraint which
changes the CHR constraint store, or remove a token which results in an extended propa-
gation history. We call such a rule a token generation rule.

Assume la to chr(�i) 6= la to chr(�j) and the rule fired is of the form

r0 @ p : H id
1 , . . . , H

id
m,Alldi↵ , g, next id(Idnext))

del(H id
l
), . . . , del(H id

m), del(next id(Idnext)),

Bid
1 , . . . , B

id
o , next id(Idnext + o)

which corresponds to a simplification (l = 1) or simpagation (l > 1) rule. We further
assume the case of a simpagation rule; the case of a simplification rule is similar. If
r0 2 T (P ) (with l > 1), then P contains a rule

p :: r @ H1, . . . , Hl�1\Hl, . . . , Hm () g | B1, . . . , Bo

Since the conditions for the Logical Algorithms Apply transition are satisfied, there exists
a ground matching substitution ✓ such that for each antecedent H id

i
= c(X̄, Idi) (1  i 

m) it holds that ✓(H id
i
) 2 � and del(✓(H id

i
)) /2 � and so by definition of the la to chr

function, ✓(Hi#Idi) 2 S where la to chr(�i) = �0
i
= h;, S, true, T in. For each comparison

gi 2 g, it holds that D |= ✓(gi) and so D |= true ! 9̄;✓(g). Since r is a simpagation
rule, the propagation history T does not contain any element of the form h , , ri. Ignoring
priorities for the moment, all conditions are satisfied such that the rule instance ✓(r) can
fire in state �0

i
. We return to the issue of priorities further on.

After firing ✓(r) in state �0
i
, the resulting state equals h✓(B1 ^ . . . ^ Bo), S0, true, T in

where S0 = S \ {✓(Hl#Idl), . . . , ✓(Hm#Idm)}. In this state, the only applicable transition
is the Introduce transition, which is applied o times before reaching a state with an empty
goal. There are o! possible orders in which the introductions can be applied, but the one
we need is the order in which the Bi constraints appear in the rule body. Following this
order, the state resulting from the introductions equals �0

j
= h;, S00, true, T i(n+o) where

S00 = S0 [ {✓(B1)#n, . . . , ✓(Bo)#(n + o � 1)}. It is easy to see that this state �0
j
equals

la to chr(�j), the state resulting from firing Logical Algorithms rule instance ✓(r0) in state
�i.

If la to chr(�i) 6= la to chr(�j) and the rule fired is not of the form shown above, then
it must have the following form

r02 @ p : H id
1 , . . . , H

id
m,Alldi↵ , g, token([Id1, . . . , Idm], r), next id(Idnext))

del(token([Id1, . . . , Idm], r)), del(next id(Idnext)),

Bid
1 , . . . , B

id
o , next id(Idnext + o)

213



7.4. Translating a subset of CHRrp into Logical Algorithms

The corresponding CHRrp rule in P looks like

p :: r @ H1, . . . , Hm =) g | B1, . . . , Bo

Again, since the conditions for the Logical AlgorithmsApply transition are satisfied, there
exists a ground matching substitution ✓ such that for each antecedent H id

i
= c(X̄, Idi)

(1  i  m) in rule r02 it holds that ✓(H id
i
) 2 � and del(✓(H id

i
)) /2 � and so by definition

of the la to chr function, ✓(Hi#Idi) 2 S where la to chr(�i) = �0
i
= h;, S, true, T in. For

each comparison gi 2 g, it holds that D |= ✓(gi) and so D |= true ! 9̄;✓(g). The
propagation history T cannot contain h✓([Id1, . . . , Idm]), ✏, ri because by definition of the
la to chr function this would imply that the atom token(✓([Id1, . . . , Idm), r) was deleted
in some earlier state, which contradicts with the applicability of rule instance ✓(r02). If we
again ignore the issue of priorities, all conditions are satisfied such that ✓(r) can fire in
state �0

i
.

After firing ✓(r) in state �0
i
, the resulting state equals h✓(B1 ^ . . . ^ Bo), S, true, T 0in

where T 0 = T [ {h[Id1, . . . , Idm], ✏, ri}. In this state, the only applicable transition is the
Introduce transition, which is applied o times before reaching a state with an empty goal.
Given again that these introductions are applied in the order in which the Bi constraints
appear in the rule body, then the resulting state equals �0

j
= h;, S0, true, T 0i(n+o) where

S0 = S [ {✓(B1)#n, . . . , ✓(Bo)#(n + o � 1)}. It is again easy to see that this state �0
j

equals la to chr(�j), the state resulting from firing Logical Algorithms rule instance ✓(r02)
in state �i.

This proves the theorem if we ignore priorities. Theorem 17 (see next) shows that
each CHRrp rule firing has a corresponding Logical Algorithms rule firing. Under the
assumption that this theorem also holds ignoring rule priorities, we have that the highest
priority rule instances are the same in both programs given corresponding states and
ignoring token generation rules.

Theorem 17. For every reachable CHRrp state �i and reachable Logical Algorithms state

�0
i
with la to chr(�0

i
) = �i, there exists a finite Logical Algorithms derivation �0

i

LA⇢⇤

T (P ) �
0

i⇤

with la to chr(�0
i⇤) = �i such that if �i = h;, S, true, T in

!p⇢P hC, S0, true, T 0in
!p⇢⇤

P

h;, S00, true, T 0in0 = �j where the derivation consists of a single Apply transition, followed

by zero or more Introduce transitions, then �0
i⇤

LA⇢T (P ) �
0

j
with la to chr(�0

j
) = �j and if

�i is a final state then �0
i⇤ is also a final state.

Proof. Let there be given a reachable LA state �0
i
with la to chr(�0

i
) = �i. Because of

Theorem 16, state �i is also reachable in CHRrp with respect to program P . Assume �i =

h;, S, true, T in
!p⇢P hC, S0, true, T 0in

!p⇢⇤

P
h;, S00, true, T 0in0 = �j where the derivation

consists of a single Apply transition, followed by zero or more Introduce transitions,
and let ✓(r) be the CHRrp rule instance that fired in state �i. If r is simplification (l = 1)
or simpagation (l > 1) rule

p :: r @ H1, . . . , Hl�1\Hl, . . . , Hm () g | B1, . . . , Bo

then ✓(Hi)#idi 2 S for 1  i  m with idi 6= idj if i 6= j, and D |= 9̄;✓(g). Furthermore,
T (P ) contains a rule

r0 @ p : H id
1 , . . . , H

id
m,Alldi↵ , g, next id(Idnext))

del(H id
l
), . . . , del(H id

m), del(next id(Idnext)),

Bid
1 , . . . , B

id
o , next id(Idnext + o)

214



Chapter 7

Now let ✓0 be a ground matching substitution such that ✓0|vars(✓) = ✓ where ✓0|vars(✓) is the
projection of ✓0 on the variables in ✓, and such that both ✓0(Idi) = idi for 1  i  m and
✓0(Idnext) = n. Since for 1  i  m, H id

i
= c(X̄, Id i) ifHi = c(X̄), it holds that ✓0(H id

i
) 2 �0

i

and del(✓0(H id
i
)) /2 �0

i
. Also, D |= 9̄;✓(g) implies D |= ✓(gi) for each comparison gi 2 g.7

The Alldi↵ conditions hold because ✓0(Id i) = ✓0(Id j) implies that i = j. Because of the
reachability of state �0

i
, there is exactly one strictly positive next_id/1 assertion in �0

i

whose argument equals n. Finally, the rule conclusion cannot be already included in the
state �0

i
because it includes amongst others the deletion of at least one of the antecedents.

Ignoring priorities, all conditions are satisfied such that rule instance ✓0(r0) can fire in state
�0
i
, resulting in a state �0

j
= la to chr(�j). As stated earlier in the proof of Theorem 16,

the combination of Theorems 16 and 17 without taking into account the priorities, implies
that the highest priority applicable rule instances are the same in corresponding states,
ignoring token generation rules.

Now assume that in the CHRrp state �i, a rule instance ✓(r) fires where r is a propa-
gation rule:

p :: r @ H1, . . . , Hm =) g | B1, . . . , Bo

In this case the Logical Algorithms translation T (P ) contains the following rules:

r01 @ p : H id
1 , . . . , H

id
n ,Alldi↵ , g ) token([Id1, . . . , Idn], r)

r02 @ p : H id
1 , . . . , H

id
n ,Alldi↵ , g, token([Id1, . . . , Idn], r), next id(Idnext))

del(token([Id1, . . . , Idn], r)), del(next id(Idnext)),

Bid
1 , . . . , B

id
l
, next id(Idnext + l)

A similar analysis as above shows that there exists a matching substitution ✓0 with
✓0|vars(✓) = ✓ and both ✓0(Idi) = idi for 1  i  m and ✓0(Idnext) = n, such that rule instance
✓0(r01) can fire (ignoring priorities) if token([id1, . . . , idn], r) /2 �0

i
and ✓0(r02) otherwise. If

✓0(r01) fires then the resulting state �0
i⇤ equals �0

i
[ {token([id1, . . . , idn], r)} and clearly

la to chr(�0
i⇤) = la to chr(�0

i
). Moreover, in state �0

i⇤ , rule instance ✓
0(r02) can fire and for the

resulting state �0
j
it holds that la to chr(�0

j
) = �j . If already token([id1, . . . , idn], r) 2 �0i

then the same reasoning holds with �0
i
= �0

i⇤ .
Finally, assume that CHRrp state �i is a final state. If �0

i
is not a final Logical Al-

gorithms state, then because of Theorem 16, the only applicable rules are those that do
not change the result of the la to chr function. Only the token generation rules satisfy
this property. Since they only generate tokens and these tokens do not appear in their
antecedents, these rules can fire only finitely many times before a final Logical Algorithms
state �i⇤ is reached.

7.5 Implementing CHR
rp, the Logical Algorithms Way

This section presents a new implementation for CHRrp, based on the implementation
proposal for Logical Algorithms by Ganzinger and McAllester [2002], as well as on the
scheduling algorithm presented in [De Koninck, 2007]. The purpose of this implementa-
tion is not to replace our existing CHRrp implementation as presented in Chapter 4, but
to support a new meta-complexity theorem for CHRrp, based on the result for Logical
Algorithms, and extended towards the full CHRrp language. This includes in particular
support for non-ground constraints and a built-in constraint theory. We note that a better
worst case complexity for certain operations is not always worthwhile in practice due to

7Because ✓(g) is ground, there is no existential quantification.

215



7.5. Implementing CHRrp, the Logical Algorithms Way

larger constant factors in the average case. Also, the proposed implementation may not
always achieve a better complexity than the existing implementation. The main purpose
remains to have a relatively straightforward way to derive for a given CHRrp program, a
bound that is guaranteed to be an upper-bound for at least the implementation proposed.
Since the meta-complexity result is insensitive to constant factors, we can present the new
implementation as a source-to-source transformation to regular CHR.

The proposed implementation consists of the compilation of the CHRrp rules of the
input program into regular CHR rules in which matching is made explicit, combined with
a scheduler module that is responsible for the execution control. The implementation is
correct if it is executed according to the refined operational semantics of CHR. We have
based our implementation on the high-level implementation proposal for Logical Algo-
rithms by Ganzinger and McAllester [2002], extended where necessary to support general
built-in constraints. By using a CHR implementation with advanced indexing support,
such as the K.U.Leuven CHR system [Schrijvers and Demoen, 2004], our implementation
also o↵ers strong complexity guarantees that facilitate a new meta-complexity theorem for
CHRrp, similar to the one for Logical Algorithms (see Section 7.6). In the following, we
make use of Prolog as CHR’s host language, but the implementation can easily be adapted
to work with a di↵erent host language.

7.5.1 Overview

The implementation is based on a form of lazy (on-demand) matching with retainment of
previously computed partial matches. It combines the concept of alpha and beta memories
from the RETE algorithm [Forgy, 1982], with lazy matching as for example implemented
by the LEAPS algorithm [Miranker et al., 1990].8 The basic idea is as follows. A new
constraint can function both as a single headed partial or full match, and as an extension
of an existing partial match into either a new (larger) partial match or a full match. In
order to extend partial matches, all previously computed matches are stored. A scheduler
decides which partial match is extended with which constraint, or which full match has its
corresponding rule instance fired. More details on the scheduler are given in Section 7.5.3.

First, to simplify the presentation, we propose an alternative syntax for CHRrp rules.
An intermediate form CHRrp rule looks as follows:

p :: r @ s1A1, . . . , snAn () B

where si 2 {+,�, ?} and Ai is an atom for 1  i  n. If si = + or si = � then Ai must be
a CHR constraint and if si =? then Ai must be a built-in constraint. An intermediate form
CHRrp rule corresponds to a regular CHRrp rule as follows: a term +A corresponds to a
kept head A, a term �A corresponds to a removed head A, and a term ?A corresponds
to a conjunct of the rule guard. The main advantage of the intermediate form is that
it supports specifying a join order for the heads, as well as an evaluation order for the
guards. In particular it supports specifying the evaluation of part of the guard after having
computed only a partial rule match. The intermediate form gives us the same syntactical
flexibility as exists in the Logical Algorithms language where comparisons are interleaved
with the (kept and removed) user-defined antecedents.

Consider, in general, a simpagation rule of the form

p :: r @ H1, . . . , Hi\Hi+1, . . . , Hn () g | B
8Most current CHR systems, including the K.U.Leuven CHR system and the CHRrp system use a

variant of the LEAPS algorithm for rule matching.

216



Chapter 7

where the guard g is a conjunction of atomic guards g1, . . . , gm. We can rewrite this rule
in intermediate form syntax (amongst others) as follows:

p :: r @ +H1, . . . ,+Hi,�Hi+1, . . . ,�Hn, ?g1, . . . , ?gm () B

In the following, we assume that all rules have the following form

p :: r @ ±H1, ?g1,±H2, ?g2, . . . ,±Hn, ?gn () B

where ± means + or �. Each gi (1  i  n) can be a conjunction of primitive built-in
constraints, and can in particular also be equal to true. The transformation from regular
CHRrp syntax to intermediate form syntax can be done automatically using the above
transformation schema, or by hand.

Using terminology similar to that of Ganzinger and McAllester [2002], we refer to a
partial match, matching the headsH1, . . . , Hi and satisfying the partial guard g1^. . .^gi�1,
as a suspended strong prefix firing. If also the partial guard gi is satisfied, we speak of
a regular (or non-suspended) strong prefix firing. A constraint matching the next head
Hi+1 is called a prefix extension of such a (regular) strong prefix firing. A prefix firing
that consists of all heads is (also) called a (suspended or regular) rule firing.9 Every
prefix firing contains the left-most head and hence determines the rule priority. In our
implementation, we assume that all guards are monotone, i.e., once they are entailed by
the built-in constraint store, they remain entailed in any later state. This is in fact required
by the CHR operational (and declarative) semantics, although most current CHR systems
also support non-monotone (impure) guards like for example var/1 in CHR on top of
Prolog.

7.5.2 Program-Dependent Part

The program-dependent part of our implementation (i.e., the part that depends on the
actual program to be implemented) consists of rules for

• generating a representation for CHR constraint occurrences and deleting them when
the represented constraint is removed;

• generating and scheduling constraints representing prefix firings, prefix extensions
and rule firings and deleting them when a constituent constraint is removed;

• matching prefix firings with prefix extensions, firing rule instances, and managing
suspended prefix and rule firings.

The di↵erent types of rules of the program-dependent part are illustrated by using a
running example program, namely Dijkstra’s shortest path algorithm, already given in the
Logical Algorithms language in Example 7.2.2 and given here in CHRrp intermediate form
syntax. To illustrate non-trivial head matching, we have added a rule d1 that removes
simple loops from the input graph.

1 :: d1 @ -e(V,_,V), ?true <=> true.
1 :: d2 @ +source(V), ?true <=> dist(V,0).
1 :: d3 @ -dist(V,D1), ?true, +dist(V,D2), ?(D2 < D1) <=> true.

D + 2 :: d4 @ +dist(V,D), ?true, +e(V,C,U), ?true <=> dist(U,D+C).

9A rule firing actually means a rule instance that is applicable. To avoid confusion, we refer to the
actual firing of such a rule firing as firing a rule instance.

217



7.5. Implementing CHRrp, the Logical Algorithms Way

Constraint Occurrence Representation

Although CHRrp constraints and CHR constraints obviously have the same syntax and
semantics (i.e., multi-set semantics with non-monotone deletion), we introduce a new
representation for them to allow unambiguous reference, reduce work in case of constraint
reactivation, and support the e�cient deletion of those prefix firings, prefix extensions,
and rule firings in which they participate (see further). For each CHRrp constraint of
predicate c/n, we create a set of unique occurrence representations c_occ_i/(n + 1), one
for each occurrence of the predicate in a rule head. The arguments of a c_occ_i/(n + 1)
constraint consist of the arguments of the original c/n constraint, together with a unique
constraint identifier that is shared by all occurrence representations. This identifier is an
uninstantiated variable as long as the constraint is in the store and is instantiated the
moment that the constraint is to be deleted. For each user-defined constraint predicate
c/n with m occurrences, the occurrence representations are generated using rules of the
following form.

c(X1,...,Xn) <=> c_occ_1(X1,...,Xn,Id), ..., c_occ_m(X1,...,Xn,Id).

For the example program, these rules look as follows.

source(V) <=> source_occ_1(V,Id).
dist(V,D) <=> dist_occ_1(V,D,Id), dist_occ_2(V,D,Id), dist_occ_3(V,D,Id).
e(V,C,U) <=> e_occ_1(V,C,U,Id), e_occ_2(V,C,U,Id).

RETE Memory Constraints

Regular and suspended prefix firings as well as prefix extensions are represented as CHR
constraints. We call them RETE memory constraints because they coincide with the alpha
and beta memories of the RETE algorithm. The RETE memory constraints contain all
arguments of their constituent CHR constraints, as well as their identifiers. Each RETE
memory constraint moreover has its own unique identifier. We use the following functors
for RETE memory constraints:

• r_pf_i for a regular (non-suspended) prefix firing of rule r, consisting of i heads, and
r_pf_i_suspended for its suspended version

• r_pe_i for a prefix extension, consisting of the (i+ 1)th head of rule r

• r_rf for a (regular) rule firing of rule r and r_rf_suspended for its suspended
version.

If in a rule r, the partial guard after the ith head equals true, then there is no suspended
version of the i-headed prefix firings of r, or of its rule firings if r is an i-headed rule. In
the example program, the following prefix firings, prefix extensions and rule firings are
defined:

• d1_rf/4

• d2_rf/3

• d3_pf_1/4, d3_pe_1/3, d3_rf/6 and d3_rf_suspended/6

• d4_pf_1/4, d4_pe_1/4 and d4_rf/7

218



Chapter 7

Suspended Prefix and Rule Firings

Suspended prefix and rule firings are converted into regular prefix and rule firings as soon
as the relevant part of the guard is entailed. If on the other hand this partial guard is
disentailed, the suspended prefix or rule firing is removed. Given a rule in intermediate
form syntax

p :: r @ ±H1, ?g1,±H2, ?g2, . . . ,±Hn, ?gn () B

we generate the following rules:

• For each i-headed suspended prefix firing:

r_pf_i_suspended(X1,...,Xm,Id1,...,Idi,SId) <=>
g i | r_pf_i(X1,...,Xm,Id1,...,Idi,SId),
schedule_pf(r_i(Y1,...,Yl),p,SId).

r_pf_i_suspended(X1,...,Xm,Id1,...,Idi,SId) <=> \+ g i | true.

where Y1, . . . ,Yl are those variables in X1, . . . ,Xm that also appear in Hi+1

• For each rule firing:

r_rf_suspended(X1,...,Xm,Id1,...,Idn,SId) <=> gn |
r_rf(X1,...,Xm,Id1,...,Idn,SId), schedule_rf(p,SId).

r_rf_suspended(X1,...,Xm,Id1,...,Idn,SId) <=> \+ gn | true.

Note that if gi or gn equals true, then we can apply unfolding to replace occurrences of
respectively r_pf_i_suspended/(m+i+1) and r_rf_suspended/(m+n+1) by the bodies
of the corresponding rules above (see [Tacchella et al., 2007]). After this unfolding step,
some of the above rules may be removed. In the example program, only a rule firing of
rule d3 can be suspended.

d3_rf_suspended(V,D1,D2,Id1,Id2,SId) <=>
D2 < D1 | d3_rf(V,D1,D2,Id1,Id2,SId), schedule_rf(1,SId).

d3_rf_suspended(V,D1,D2,Id1,Id2,SId) <=> \+ (D2 < D1) | true.

In each second rule, \+ C is a safe approximation of the negation of constraint C, i.e., it
is only entailed if constraint C cannot possibly hold. In the Prolog context, the built-in
negation as failure can be used.

Suspended constraints are attached to all guarded variables so that they are reactivated
whenever one of these variables is a↵ected by a built-in constraint. We assume that both
attaching and detaching can be done in constant time, although certain current CHR
implementations like the K.U.Leuven CHR system do not support detaching in constant
time.

Scheduling

Each constraint occurrence corresponds to a (potentially suspended) rule firing if it is
the only head of a single-headed rule, a (potentially suspended) prefix firing if it is the
first head of a multi-headed rule, and a prefix extension in all other cases. A conversion
between constraint occurrence and rule firing, prefix firing or prefix extension is made as
soon as the constraint in question matches with the head. If such a match is shown to be

219



7.5. Implementing CHRrp, the Logical Algorithms Way

impossible, the constraint occurrence is discarded. Let there be given a head constraint
c(X1, . . . , Xn). The following function is used to construct a head match.

head match([X|X̄]) =

(
h[X|Ȳ ], gi if X is a variable and X /2 vars(X̄)

h[Y |Ȳ ], (Y = X) ^ gi otherwise
where hȲ , gi = head match(X̄)

head match(✏) =h✏, truei

Now, for each rule in intermediate form syntax

p :: r @ ±H1, ?g1,±H2, ?g2, . . . ,±Hn, ?gn () B

and for 1  i  n we generate the rules below where Hi = c(X 0

1, . . . , X
0
n) is the jth

occurrence of the user-defined constraint predicate c/n, h[X1, . . . , Xn], gi = head match(
[X 0

1, . . . , X
0
n]), and {Y1, . . . , Ym} = vars(Hi) \ vars({H1, . . . , Hi�1}).

• If i = n = 1:

c_occ_j(X1,...,Xn,Id) <=> g | r_rf_suspended(Y1,...,Ym,Id,SId).
c_occ_j(X1,...,Xn,Id) <=> \+ g | true.

• If i = 1 and n > 1:

c_occ_j(X1,...,Xn,Id) <=> g | r_pf_1_suspended(Y1,...,Ym,Id,SId).
c_occ_j(X1,...,Xn,Id) <=> \+ g | true.

• Otherwise, if i > 1:

c_occ_j(X1,...,Xn,Id) <=> g | r_pe_i� 1(Y1,...,Ym,Id,SId),
schedule_pe(r_i� 1(Z1,...,Zl),SId).

c_occ_j(X1,...,Xn,Id) <=> \+ g | true.

where {Z1, . . . , Zl} = vars(Hi) \ vars({H1, . . . , Hi�1}).

In the above, if g = true then the second rule of each pair of rules can be discarded. The
suspended prefix and rule firings can sometimes be replaced with regular prefix and rule
firings by unfolding.

In the example program, only the first occurrence of the e/3 constraint has a non-trivial
head match (the first and last argument must be the same). All single-headed prefix and
rule firings are followed by the trivial guard true and so we only generate regular prefix and
rule firings. They are scheduled using the schedule_pf/3 and schedule_rf/2 predicates.

source_occ_1(V,Id) <=> d2_rf(V,Id,SId), schedule_rf(1,SId).

dist_occ_1(V,D,Id) <=> d3_pf_1(V,D,Id,SId), schedule_pf(d3_1(V),1,SId).
dist_occ_2(V,D,Id) <=> d3_pe_1(D,Id,SId), schedule_pe(d3_1(V),SId).
dist_occ_3(V,D,Id) <=> d4_pf_1(V,D,Id,SId), schedule_pf(d4_1(V),D+2,SId).

e_occ_1(V,C,U,Id) <=> V = U | d1_rf(V,C,Id,SId), schedule_rf(1,SId).
e_occ_1(V,C,U,Id) <=> \+ (V = U) | true.
e_occ_2(V,C,U,Id) <=> d4_pe_1(C,U,Id,SId), schedule_pe(d3_1(V),SId).

220



Chapter 7

Prefix firings and extensions are scheduled using a key containing their shared variables.
For example for the prefix firings consisting of the first head of rule d3 and the corre-
sponding prefix extensions consisting of the second head of the same rule, the key equals
d3_1(V).

Similar to the suspended prefix and rule firings, the constraint occurrences are attached
to all guarded variables. We again assume that both attaching and detaching can be done
in constant time.

Matching and Firing

The scheduler initiates the firing of a rule instance by asserting a fire/1 constraint, and
the matching of a prefix firing with a prefix extension by asserting a match/2 constraint.
These constraints have as arguments the identifiers of the corresponding RETE memory
constraints. After matching a prefix firing with a prefix extension, a new suspended prefix
or rule firing is generated. For a given n-headed rule r with n > 1 and for 1  i  n� 2,
we generate the following rule

r_pf_i(X1,...,Xm,Id1,...,Idi,SId1), r_pe_i(Xm+1,...,Xl,Idi+1,SId2) \
match(SId1,SId2) <=> Idi+1 \== Id1, ..., Idi+1 \== Idi |

r_pf_i+ 1_suspended(X1,...,Xl,Id1,...,Idi+1).

and similarly for i = n� 1:

r_pf_n� 1(X1,...,Xm,Id1,...,Idn�1,SId1), r_pe_n� 1(Xm+1,...,Xl,Idn,SId2) \
match(SId1,SId2) <=> Idn \== Id1, ..., Idn \== Idn�1 |

r_rf_suspended(X1,...,Xl,Id1,...,Idn).

A rule firing of an n-headed rule r with body B is fired as follows:

r_rf_i(X1,...,Xm,Id1,...,Idn,SId), fire(SId) <=>
Idr(1) = dead, ..., Idr(l) = dead, B.

where r(1), . . . , r(l) are the indices of the removed heads of the rule (if any). We fur-
thermore add the following rules at the end of the code, to make sure the CHR compiler
detects that the match/2 and fire/1 constraints are never to be stored.

match(_,_) <=> true.
fire(_) <=> true.

For the example program, the generated code is as follows:

d1_rf(V,C,Id,SId), fire(SId) <=> Id = dead.
d2_rf(V,Id,SId), fire(SId) <=> dist(V,0).
d3_pf_1(V,D1,Id1,SId1), d3_pe_1(D2,Id2,SId2) \ match(SId1,SId2) <=>

Id2 \== Id1 | d3_rf_suspended(V,D1,D2,Id1,Id2,SId).
d3_rf(V,D1,D2,Id1,Id2,SId), fire(SId) <=> Id1 = dead.
d4_pf_1(V,D,Id1,SId1), d4_pe_1(C,U,Id2,SId2) \ match(SId1,SId2) <=>

Id2 \== Id1 | d4_pf(V,D,C,U,Id1,Id2,SId), schedule_rf(D+2,SId).
d4_rf(V,D,C,U,Id1,Id2,SId), fire(SId) <=> dist(U,D+C).

match(_,_) <=> true.
fire(_) <=> true.

221



7.5. Implementing CHRrp, the Logical Algorithms Way

Clean-up

Whenever a constraint’s identifier variable is instantiated, its occurrence representations,
as well as those RETE memory constraints in which it participates, are removed. The
rules look as follows.

• For the ith occurrence representation for constraint predicate c/n:

c_occ_i(X1,...,Xn,Id) <=> nonvar(Id) | true.

• For an i-headed suspended prefix firing of rule r:

r_pf_i_suspended(X1,...,Xm,Id1,...,Idi,SId) <=> nonvar(Id1) | true.
...
r_pf_i_suspended(X1,...,Xm,Id1,...,Idi,SId) <=> nonvar(Idi) | true.

• For an i-headed regular prefix firing of rule r:

r_pf_i(X1,...,Xm,Id1,...,Idi,SId) <=> nonvar(Id1) | remove_pf(SId).
...
r_pf_i(X1,...,Xm,Id1,...,Idi,SId) <=> nonvar(Idi) | remove_pf(SId).

• For a prefix extension of an i-headed prefix firing of rule r:

r_pe_i(X1,...,Xm,Id,SId) <=> nonvar(Id) | remove_pe(SId).

• For a suspended rule firing of an n-headed rule r:

r_rf_suspended(X1,...,Xm,Id1,...,Idn,SId) <=> nonvar(Id1) | true.
...
r_rf_suspended(X1,...,Xm,Id1,...,Idn,SId) <=> nonvar(Idn) | true.

• For a regular rule firing of an n-headed rule r:

r_rf(X1,...,Xm,Id1,...,Idn,SId) <=> nonvar(Id1) | remove_rf(SId).
...
r_rf(X1,...,Xm,Id1,...,Idn,SId) <=> nonvar(Idn) | remove_rf(SId).

The predicates remove_pf/1, remove_pe/1 and remove_rf/1 remove respectively a prefix
firing, prefix extension and rule firing from the schedule. The following clean-up rules are
generated for the example program.

source_occ_1(V,Id) <=> nonvar(Id) | true.
dist_occ_1(V,D,Id) <=> nonvar(Id) | true.
dist_occ_2(V,D,Id) <=> nonvar(Id) | true.
dist_occ_3(V,D,Id) <=> nonvar(Id) | true.
e_occ_1(V,C,U,Id) <=> nonvar(Id) | true.
e_occ_2(V,C,U,Id) <=> nonvar(Id) | true.

d1_rf(V,C,Id,SId) <=> nonvar(Id) | remove_rf(SId).
d2_rf(V,Id,SId) <=> nonvar(Id) | remove_rf(SId).
d3_pf_1(V,D1,Id1,SId) <=> nonvar(Id1) | remove_pf(SId).
d3_pe_1(D2,Id2,SId) <=> nonvar(Id2) | remove_pe(SId).
d3_rf(V,D1,D2,Id1,Id2,SId) <=> nonvar(Id1) | remove_rf(SId).
d3_rf(V,D1,D2,Id1,Id2,SId) <=> nonvar(Id2) | remove_rf(SId).
d4_pf_1(V,D,Id1,SId) <=> nonvar(Id1) | remove_pf(SId).
d4_pe_1(C,U,Id2,SId) <=> nonvar(Id2) | remove_pe(SId).
d4_rf(V,D,C,U,Id1,Id2,SId) <=> nonvar(Id1) | remove_rf(SId).

222



Chapter 7

d4_rf(V,D,C,U,Id1,Id2,SId) <=> nonvar(Id2) | remove_rf(SId).

d3_rf_suspended(V,D1,D2,Id1,Id2,SId) <=> nonvar(Id1) | true.
d3_rf_suspended(V,D1,D2,Id1,Id2,SId) <=> nonvar(Id2) | true.

7.5.3 Program-Independent Part: The Scheduler

The scheduler implements the schedule_rf/2, schedule_pf/3 and schedule_pe/2 pred-
icates. It furthermore implements the execute/0 predicate which retrieves and executes
the highest priority scheduled task. This task either is the firing of a rule instance by
asserting a fire/1 constraint, or the matching of a prefix firing with a prefix extension by
asserting a match/2 constraint. The execute/0 predicate recursively calls itself until no
more tasks are scheduled. It is first called after processing the initial goal.

For the implementation of the scheduler, we use a variant of the scheduling algorithm
presented in [De Koninck, 2007]. In this work, we present a data structure representing
schedules which are sets of elements and nodes. It supports the following operations: cre-
ating a new schedule, adding a new element or a new node to a given schedule, deleting
an element or a node from its schedule, merging two schedules (after which the resulting
schedule contains the elements and nodes of both original schedules), and finally, gener-
ating a new match. A match is the combination of an element and a node, both of which
belong to the same schedule. The algorithm ensures that no match is generated twice.
Furthermore, it only fails to generate a new match if all elements and nodes belonging to
any single schedule have already been matched. The algorithm ensures that all defined
operations take quasi-constant time.

We can use our algorithm to maintain which prefix firings are still to match with
which prefix extensions. Here, a prefix firing is mapped to a schedule’s element, and a
prefix extension is mapped to a schedule’s node. A schedule of [De Koninck, 2007] roughly
corresponds to an W(r, t) data structure of [Ganzinger and McAllester, 2002]. These
W(r, t) data structures consist of a series (implemented as a linear linked list) of prefix
blocks, which are sets of prefix firings and (apart from the last one) are associated with a
prefix extension.

The semantics of the W(r, t) data structure is that the prefix firings of a given prefix
block are still to match with the prefix extension associated to it, as well as with all prefix
extensions associated to subsequent prefix blocks. The last prefix block has no associated
prefix extension, and represents those prefix firings that have been matched with all prefix
extensions and hence are passive (or completed using the terminology of Ganzinger and
McAllester [2002]). Whenever a prefix extension is deleted, its prefix block is merged with
the next prefix block.

There is one W(r, t) data structure for each prefix length of each rule and for each
combination of arguments shared between a prefix firing and prefix extension. Each prefix
block is represented as a (local) priority queue whose items are the block’s prefix firing.
The highest priority item of each prefix block, together with its associated prefix extension,
is also represented in a global priority queue. This prefix block representative is updated
whenever the highest priority prefix firing of the prefix block is removed, a new prefix firing
has the highest priority, or the associated prefix extension is removed. The global priority
queue furthermore contains a representative for each rule firing. The reason for using two
layers of priority queues is to reduce the amount of work needed when the prefix firings
of a prefix block all become passive due to a prefix extension removal. It is the global
priority queue that determines the next task to perform, i.e., matching a prefix firing with

223



7.5. Implementing CHRrp, the Logical Algorithms Way

a prefix extension, or firing a rule instance.
In the context of CHRrp, built-in constraint (in particular equality constraints) on the

arguments shared between a prefix firing and extension, may require merging of W(r, t)
data structures. The data structure of De Koninck [2007] supports schedule merges in quasi
constant time. The most notable di↵erence with the W(r, t) data structure of Ganzinger
and McAllester [2002] is that the prefix blocks form a circular linked list. Using this
representation, merging schedules consists of cross-linking the circular lists and reactivating
the prefix firings that were passive before the merge. Special care is taken to prevent both
that a prefix firing is being matched with the same prefix extension more than once, and
that a prefix firing ‘misses’ a prefix extension.

One consequence of using a circular linked list instead of a linear one to represent the
prefix blocks, is that it is unclear (or more precisely, too expensive to decide) which prefix
firings become passive whenever a prefix extension is deleted. Therefore, this decision is
postponed until the scheduler tries to match the prefix firing with the next prefix extension
in line. For complexity reasons, it is important that all prefix firings that have simulta-
neously been reactivated, and have not been matched with a prefix extension since this
reactivation, are simultaneously made passive in time independent of the number of prefix
firings a↵ected. In [De Koninck, 2007], a so-called element schedule based on a stack is
proposed to supports this. In our context, we need an element schedule that is based on
priority queues. It works as follows.

We use three types of priority queues. The first one is a single global priority queue
which contains an item for each rule firing, for each active prefix firing that either has not
been passive before or has been matched with at least one prefix extension since its last
activation, and finally, for each set of prefix firings that have been simultaneously activated
and have not been matched with a prefix extension since. A second type of priority queues
is called a local queue and represents the above mentioned sets of prefix firings. Finally,
the third type of queues is the passive queue which contains an item for each passive
(completed) prefix firing. There is one passive queue for each schedule. Essentially, we
again use two layers of priority queues. Whenever a set of previously passive prefix firings,
represented as a passive priority queue, is reactivated because of a new prefix extension
or because of a schedule merge, this passive priority queue becomes a local priority queue
and has a representative inserted into the global priority queue. If such a representative
is the highest priority item in the global priority queue, and an execute/0 call is made,
then the highest priority prefix firing of the represented local queue is removed and dealt
with as an ordinary prefix firing. The representatives of local priority queues are updated
(and potentially removed) similarly to how this is done in the W(r, t) data structure of
[Ganzinger and McAllester, 2002].

Example 7.5.1. Figure 7.2 illustrates the prefix blocks, the di↵erent types of priority
queues, and their contents. The global queue, which is shared by all schedules, contains
the rule firings RF1 and RF2, the prefix firings PF1, PF4, PF5 and PF8 (the last of which
belongs to another schedule), and the local queue representative LQ1. The represented local
queue contains the prefix firings PF2 and PF3 which are by definition also in the same prefix
block. The schedule’s passive queue contains the prefix firings PF6 and PF7. The schedule
has two prefix blocks, which are associated with respectively the prefix extensions PE1 and
PE2.

Using our approach, the cost of deleting items from the global priority queue can be
amortized to one of the following events: a new rule firing, a new prefix firing, a new prefix
extension (for each representative of a local priority queue), or a match between a prefix

224



Chapter 7

rule firing

prefix blockglobal queue

PF1

RF1

LQ1

PF4

PF8

PF5

RF2

{PF1,PF2,PF3}

{PF4,PF5}

passive queuelocal queue

PF2

PF3

PF6

PF7

PE1

PE2

Figure 7.2: Example schedule with global, local and passive priority queues

firing and a prefix extension (which corresponds to either a new larger prefix firing, or a
rule firing).

In [Ganzinger and McAllester, 2002], retrieving the schedule for a given prefix firing
or prefix extension is done by hashing. In our approach, we use a variant of hashing,
which we call non-ground hashing and which consists of first replacing all variables by a
unique identifier, and then using the resulting (ground) term for hashing. Unifications
may require rehashing the a↵ected keys and potentially also the merging of schedules.

7.5.4 Priority Queues

A priority queue or heap is a data structure that contains a set of prioritized items and
supports the following operations: inserting and removing an item, finding a highest prior-
ity item and merging with another queue. The implementation proposal by Ganzinger and
McAllester [2002] suggests the use of two types of priority queues, one for the fixed pri-
orities, where each of the supported operations takes constant time, and Fibonacci heaps
for the dynamic priorities.

Fibonacci heaps [Fredman and Tarjan, 1987] are a type of priority queue that o↵er O(1)
amortized time insertion, heap merging and finding a highest priority item, and O(log n)
amortized time item removal with n the number of items in the queue. It is suggested by
Ganzinger and McAllester [2002] that by using only one node per priority, using linked
lists to represent the items that share this priority, the item removal cost can be reduced to
O(logN) with N the number of distinct priorities. However, this increases the cost of heap
merging from O(1) for a single merge operation to a total cost of O(n logN) for merging
heaps when there are n items in total and N distinct priorities. A CHR implementation of
Fibonacci heaps is described by Sneyers et al. [2006a]. It can easily be extended to support
multiple heaps that can be merged and to use only one node for each distinct priority per
heap.

7.6 A New Meta-Complexity Result for CHR
rp

In this section, we give a new meta-complexity result for CHRrp. It extends the result via
translation to Logical Algorithms, by also supporting built-in constraints and non-ground
CHR constraints. In the following, we assume that hash tables support O(1) insertion,
removal, and retrieval of all elements that match a given (ground) key. This assumption
is also made by Ganzinger and McAllester [2002] and holds on average as long as the hash

225



7.6. A New Meta-Complexity Result for CHRrp

function is good enough. Our scheduling data structure of [De Koninck, 2007] makes use of
the union-find algorithm, which results in a factor ↵(n) in the complexity of its operations,
where ↵ is the inverse of the Ackermann function. Since this inverse is positive and less
than 5 for all practical values of n, we ignore this factor in our complexity result.

We start by looking at the complexity of the di↵erent operations supported by our
scheduler.

Lemma 7.6.1 (Scheduler Costs). Let N be the number of distinct priorities, and assume
that a priority queue merge takes some abstract time T , then the schedule operations have
the following amortized cost:

• O(1) and O(logN) for each schedule pf/3, remove pf/1, remove pe/1,
remove rf/1 and execute/0 operation involving respectively a static and dynamic
priority rule

• O(T +1) and O(T + logN) for each schedule pe/2 operation involving respectively
a static and dynamic priority rule

• O(1) for each schedule merge and schedule rf/2 operation

Proof. We only consider the costs related to the priority queue operations. The other
costs are shown to be (quasi) constant in [De Koninck, 2007]. We now look at the di↵erent
operations in detail:

• A schedule_pf/3 call consists of inserting the new prefix firing into the global prior-
ity queue. We also account to this event, the cost of making the new prefix instance
passive the first time. That operation consists of a removal from the global priority
queue and an insertion into the schedule’s passive queue. The total cost is O(1) if
the element has a static priority, and O(logN) if it has a dynamic priority.

• A schedule_pe/2 call requires the insertion of a new representative for the local
priority queue of reactivated prefix firings, into the global priority queue. We also
take into account here, the cost of making all the reactivated prefix firings passive
that have not been matched with a prefix extension since the reactivation. That
operation consists of removing the representative and merging the local priority
queue with the schedule’s passive queue. The cost is O(T + 1) for a static priority
rule and O(T + logN) time for a dynamic priority one.

• A schedule_rf/2 call requires an insertion into the global priority queue which takes
O(1) time.

• A remove_pf/1 call consists of deleting the prefix firing from the global priority
queue, from a local priority queue or from a passive queue. A deletion from a local
queue may moreover require an update of the global queue (removal and insertion).
In total, this takes O(1) time for a static priority rule and O(logN) time for a
dynamic priority rule.

• A remove_pe/1 call does not require any priority queue operations, and so the cost
is O(1).

• A remove_rf/1 call requires a removal from the global priority queue which takes
O(1) time if it involves a static priority rule and O(logN) time if it involves a
dynamic priority rule.

226



Chapter 7

• An execute/0 call requires retrieval and potential removal (if the retrieved item
corresponds to a rule firing, or to a prefix firing that becomes passive) of the highest
priority item in the global priority queue. If the retrieved item represents a prefix
firing or set of prefix firings that need to be made passive, the cost of this operation
is already accounted for by a previous schedule_pf/3 or schedule_pe/2 operation.
In such case, we call the execute/0 call unsuccessful. An unsuccessful execute/0
call is followed by another execute/0 call until either such a call is successful, or
the global priority queue is empty and thus a final state is reached. The cost of
all unsuccessful execute/0 calls can be amortized to previous events. If in case
of a successful execute/0 call, the item retrieved from the global priority queue
corresponds to the representative of a local priority queue, the operation requires a
removal of the highest priority item (prefix firing) from this local queue, an insertion
of the prefix firing into the global priority queue, and potentially the insertion of a
new representative for the local queue into the global queue. The cost of a successful
execute/0 call therefore equals O(1) if it involves a static priority rule and O(logN)
otherwise.

• A schedule merge requires the reactivation of the passive prefix firings of the merged
schedules. The cost analysis is similar to that of a schedule_pe/2 call. More-
over, each schedule merge can be accounted for by at least one schedule_pf/3 or
schedule_pe/2 call as the resulting schedule contains at least one prefix firing or
extension more than each of the original schedules, and so the number of schedule
merges is bounded by the number of prefix firings and extensions. Therefore, the
cost of a single schedule merge can be considered constant.

In the above lemma, we have made abstraction of the cost of priority queue merge
operations. Such merges take place when the prefix firings in a local priority queue all
become passive. In such an event, the local priority queue is merged with the schedule’s
passive queue. It is easy to see that the cost of merging priority queues for static priorities
takes constant time per merge operation. In Section 7.5 a bound is given on the total cost
of merging Fibonacci heaps with one node per distinct priority, given the number of items
ever inserted into the heaps. The following lemma makes use of this result.

Lemma 7.6.2 (Fibonacci Heap Merging Cost). The total cost of Fibonacci heap merges
is O((Pd +Ad) · logN) where Pd is the number of strong prefix firings of dynamic priority
rules, Ad is the number of constraints that may participate in a dynamic priority rule
instance, and N is the number of distinct rule priorities.

Proof. We count the number of items ever inserted into the local and passive Fibonacci
heaps, and then apply the result of Section 7.5. A local priority queue basically is the
same as a passive priority queue in which items are no longer inserted. Therefore, a merge
between a local queue and a passive queue can be seen as a special case of a merge between
two passive queues and so we only need to consider these passive priority queues. Each
item inserted in such a queue is either a prefix firing that has never been passive before,
or a prefix firing that has been matched with a prefix extension at least once since its last
activation. The total number of these items is O(Pd +Ad) because each prefix firing that
has been matched with a prefix extension is by definition a strong prefix firing, and each
new prefix firing either results from matching a (smaller) strong prefix firing and extension
and hence corresponds to a (potentially suspended) strong prefix firing, or consists of a

227



7.6. A New Meta-Complexity Result for CHRrp

single head in which case it corresponds to a constraint assertion. Now given the number
of items ever inserted into the passive priority queues, the total cost of merging Fibonacci
heaps hence is O((Pd +Ad) · logN)).

We are now ready to formulate the new meta-complexity theorem.

Theorem 18. Let As and Ad be the number of assertions of constraints with an occurrence
in respectively a static and dynamic priority rule. Let Ps and Pd be the number of strong
prefix firings of respectively static and dynamic priority rules. The time complexity of a
CHRrp program executed using our implementation is

O(Cask · (As + Ps + (Ad + Pd) · logN) +B · Ctell · (K + Cask · S))

where N is the number of distinct priorities, Cask is the cost of evaluating a built-in ask
constraint, Ctell is the cost of solving a built-in tell constraint, and B is the number of
built-in tell constraints asserted in rule bodies; K is the maximum number of distinct
combinations (keys) of arguments shared between prefix firings and extensions in which
any given variable occurs, and S is the maximum number of suspended strong prefix firings
(i.e., those that are followed by a non-trivial guard) and suspended instances of constraint
occurrences (i.e., whose arguments are not mutually distinct variables) in which any given
variable occurs.

Proof. Each new CHR constraint causes the creation of constraint occurrences which are
converted into RETE memory constraints as soon as the implicit guard on the constraint
arguments is entailed (i.e., the constraint matches the head in question). These RETE
memory constraints are scheduled using schedule_pf/3 for the single-headed prefix fir-
ings, schedule_rf/2 for the single-headed rule firings, and schedule_pe/2 for the prefix
extensions. The total cost of these operations, including the cost of priority queue merges
(for the schedule_pe/2 calls), equals O(Cask ·(As+(Ad+Pd) logN)). Each constraint dele-
tion causes the deletion of those RETE memory constraints in which the deleted constraint
participated. The total cost related to deletion therefore is O(As + Ps + (Ad + Pd) logN).
Each prefix firing is inserted into its schedule at most once and hence it can also be re-
moved from this schedule only once (when one of its constituent constraints is removed).
Those prefix firings that consist of at least two heads, correspond to a strong prefix firing
as they are generated at a priority higher than or equal to that of the highest priority rule
firing. Thus, using Lemma 7.6.1 and including the cost of checking the relevant parts of the
guard, the cost for inserting (and deleting) these prefix firings is O(Cask · (Ps +Pd logN)).

A built-in tell constraint is processed as follows. The keys used to identify the schedules
and that are a↵ected by the built-in constraint, are rehashed. If the built-in constraint
causes two or more schedules to have the same key, these schedules are merged. The cost of
rehashing is proportional to the number of a↵ected keys and the cost of a schedule merge
is constant by Lemma 7.6.1. A built-in constraint moreover requires the reactivation of
the suspended prefix firings and rule firings, as well as those constraint occurrences for
which it is not decided whether they match with the corresponding head or not. The
reactivated prefix and rule firings have their guard checked and are potentially scheduled
as regular (non-suspended) prefix and rule firings. The reactivated constraint occurrences
also have their (implicit) guard checked, and are potentially scheduled as single-headed
prefix firings, single-headed rule firings, or prefix extensions. The cost of the scheduling
operations was already taken into account above. The remaining cost per built-in tell
constraint is O(Ctell · (K + Cask · S)).

228



Chapter 7

Because the values of S and K might be di�cult to determine in practice, we propose
the following bounds: S = O(As + Ad + Ps + Pd) and K = O(As + Ad). We have used
the cost of solving a built-in tell constraint as an upper-bound on the number of variables
that are a↵ected. Note that in absence of built-in constraints, the theorem given here is
essentially the same as the one for Logical Algorithms.10

7.6.1 Examples

We illustrate the meta-complexity theorem on some examples, and compare with the
results obtained by using the approach of Frühwirth [2002b].

Example 7.6.3 (Less-or-Equal). A first example is the leq program, given in CHRrp by
Listing 4.1. We use a slightly di↵erent priority assignment compared to that version to
simplify the analysis. In particular, we have given the idempotence rule a higher priority.

1 :: idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
2 :: reflexivity @ leq(X,X) <=> true.
2 :: antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
3 :: transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

Given an initial goal consisting of n leq/2 constraints where the arguments are taken from
a set of n distinct variables, we derive the following values for the parameters:

• Ps: the number of strong prefix firings is O(n2) for the idempotence rule, O(n)
for the reflexivity rule, O(n2) for the antisymmetry rule, and O(n3) for the
transitivity rule. These numbers are found by looking at the degrees of freedom
for each constraint occurrence, based on the domain of the arguments, and given
those arguments that are already fixed by the left-most heads. For example for the
transitivity rule, we know that there are O(n2) constraints matching the first
head, and O(n) constraints matching the second head, given the first. Our reasoning
is based on the fact that at priority 2 and lower, all leq/2 constraints have set
semantics because of the idempotence rule.11

• As: the number of leq/2 constraints asserted is O(n3) (by the transitivity rule).

• B: the number of built-in constraints is bounded by the number of rule firings of the
antisymmetry rule, and hence is O(n2).

• K: the schedule keys are the combination of X and Y in both the antisymmetry rule
and the idempotence rule, and Y in the transitivity rule. There are at most O(n)
di↵erent keys in which any given variable occurs.

• S: for any variable, and in a state in which a built-in constraint can be asserted,
there are up to O(n) suspended instances of the leq/2 occurrence in the reflexivity
rule. There can be no suspended prefix or rule firings.

• Cask and Ctell: the cost of evaluating a built-in ask constraint and the cost of solving
a built-in tell constraint is constant (at least for the given query pattern).

10The Logical Algorithms result makes use of the size of the initial database instead of the number of
assertions. We have that As = O(|�0|+ Ps + Pd).

11We assume here that the idempotence rule always removes the most recently asserted duplicate.

229



7.6. A New Meta-Complexity Result for CHRrp

Filling in these parameters in the formula given by Theorem 18 gives us a worst case time
complexity of

O(1 · (n2 + n3) + (0 + 0) · log 1) + n2 · 1 · (n+ 1 · n)) = O(n3)

This corresponds to the actual worst-case complexity for an initial goal of the form

{leq(X1, X2), . . . , leq(Xn�1, Xn), leq(Xn, X1)}

The approach of Frühwirth [2002b] does not apply since the transitivity rule is a prop-
agation rule and hence no suitable ranking function can be found.

Example 7.6.4 (Merge Sort). Consider the CHRrp implementation of the merge sort
algorithm, first given in Example 7.4.1 (Section 7.4) and repeated here for easy reference.

1 :: ms1 @ arrow(X,A) \ arrow(X,B) <=> A < B | arrow(A,B).
2 :: ms2 @ merge(N,A), merge(N,B) <=> A < B | merge(2*N+1,A), arrow(A,B).
3 :: ms3 @ number(X) <=> merge(0,X).

We show that the total runtime of the algorithm is O(n log n) given an initial goal consisting
of n number/1 constraints.

No new number/1 constraints are ever asserted. Rule ms3 converts one number/1
constraint into one merge/2 constraint each time it fires. The number of (strong) prefix
firings for rule ms3 hence is O(n). Rule ms2 decreases the number of merge/2 constraints
by one and so it can fire n�1 times. In any state, there are at most two merge/2 constraints
with the same first argument. This invariant holds in the initial state because there are
no merge/2 constraints in the initial goal and rule ms2 can fire after each new merge/2
constraint assertion, enforcing the invariant. Because of the invariant, the number of
prefix firings for rule ms2 is limited to O(n).

Using similar reasoning it holds that in any state, there are at most two arrow/2
constraints in the store with the same first argument. Now we define that in a given
state, two numbers x1 and xm are connected by a chain of length m � 1 if the constraint
store contains arrow(x1, x2), arrow(x2, x3), . . . , arrow(xm�1, xm). At priority 2 it holds
that for each merge(m,x) constraint in the store, the maximal length of a chain starting
in x is m. Indeed, this holds for the initial merge(0, ) constraints and if it holds for
merge(m, ) constraints, it also holds for merge(2 ·m+1, ) constraints, because when such
a constraint is asserted, two chains of length m are linked with an extra arrow/2 constraint
and merged by up to 2 ·m firings of rule ms1. Two merge(m, ) constraints are combined
into a merge(2·m+1, ) constraint, so the n merge(0, ) constraints asserted by rule ms3 are
replaced by n/2 merge(1, ) constraints, which in turn are combined into n/4 merge(3, )
constraints and so on until finally 1 merge(n� 1, ) constraint remains. The sum of all m
in these merge(m, ) constraints is O(n log n). Rule ms1 fires O(m) times after every new
merge(m, ) constraint assertion and because there are at most two arrow/3 constraints
with the same first argument, there are O(n log n) strong prefix firings of rule ms1.

In conclusion, for an input database consisting of n number/1 constraints, there are
O(n log n) strong prefix firings for rule ms1, O(n) for rule ms2 and O(n) for rule ms3.
Using the meta-complexity theorem, which simplifies to the one for Logical Algorithms
because there are no built-in tell constraints, the total runtime is O(n log n), which is also
a tight complexity bound. We now compare this result with the result found by using the
meta-complexity theorem of Frühwirth [2002b].

230



Chapter 7

Using a similar analysis as above, we can derive that D = O(n log n) and cmax = O(n)
where n is the number of number/1 constraints in the query.12 The cost of head matching
(OHr), guard checking (OGr), adding built-in constraints (OCr), and adding and removing
CHR constraints (OBr), can all be assumed constant. The number of heads nr of a rule
r 2 P is at most 2. Filling in these numbers, we derive a total worst case complexity of
O(n3 log n), which is clearly suboptimal.

7.6.2 Comparison with the LA Meta-Complexity Result

In this subsection, we show that our translation from Logical Algorithms to CHRrp of
Section 7.3, combined with the CHRrp implementation presented in Section 7.5, satisfies
the complexity requirements needed for the Logical Algorithms meta-complexity result to
hold. We assume here that the comparison antecedents in Logical Algorithms programs
are scheduled after the corresponding user-defined antecedents in the translation, and that
the guards on the mode indicators (these have the form N 6= p) are scheduled right after
the head to which they apply.

Theorem 19. The time complexity of Logical Algorithms programs executed by first trans-
lating them into CHRrp programs using the translation schema of Section 7.3, and then
executing the resulting CHRrp program using the implementation of Section 7.5, is O(|�0|+
Ps + (Pd +Ad) · logN) with �0, Ps, Pd, Ad and N as defined in Section 7.2.1.

Proof. The translation of a Logical Algorithms program P consists of two parts as defined
in Section 7.3. The first part, denoted by TS+D(P ), contains for each user-defined predicate
a/n the following rules:

1 :: ar(X̄,M) \ a(X̄) () M 6= n | true
1 :: ar(X̄, n), a(X̄) () ar(X̄, b)

2 :: a(X̄) () ar(X̄, p)

1 :: ar(X̄,M) \ del(a(X̄)) () M 6= p | true
1 :: ar(X̄, p), del(a(X̄)) () ar(X̄, b)

2 :: del(a(X̄)) () ar(X̄, n)

It is easy to see that for an initial goal containing no constraints of the form ar(X̄,M)
and since these are the only rules that assert such a constraint, in any state it holds that
if ar(X̄,M1)#i1 and ar(X̄,M2)#i2 are in the CHR constraint store, then i1 = i2 and
M1 = M2. This implies that the number of strong prefix firings for these rules is bounded
by the number of assertions of a(X̄) or del(a(X̄)).

The second part of the translation, denoted by TR(P ), contains for each Logical Algo-
rithms rule

r @ p : A1, . . . , An ) C

a set of rules
p+ 2 :: r⇢ @ H =) g1, g2 | C 0

as shown in the translation schema of Section 7.3.1. Amongst these rules is one, say r⇢0 ,
with a maximal number of heads, namely as many as there are user-defined antecedents in

12In Theorem 4.2 of [Frühwirth, 2002b] a worst case upper-bound of cmax = O(c+D) is used, with c the
number of constraints in the query, which becomes cmax = O(n log n) in this example. The bound we use
is tight, i.e., cmax = ⇥(n).

231



7.6. A New Meta-Complexity Result for CHRrp

A1, . . . , An. Because the (implicit and explicit) guards on the mode indicators of the head
constraints are scheduled as soon as they are decidable, and because the comparisons are
scheduled at corresponding places, it is easy to see that the number of strong prefix firings
of rule r⇢0 is the same as the number of strong prefix firings of Logical Algorithms rule r.
The other r⇢ rules are restricted versions of r⇢0 and therefore have at most as many strong
prefix firings as r⇢0 .

The assertions with occurrences in dynamic priority rules are of the form ar(X̄, ). The
set and deletion semantics rules ensure that the number of these assertions is the same in
the original program and in its translation. Now using our new meta-complexity result
for CHRrp (Theorem 18), we derive that the total runtime complexity of the translated
program is O(|�0|+ Ps + (Pd +Ad) · logN).13

7.6.3 Comparison with the “As Time Goes By” Approach

In Section 7.2.2 we already briefly compared the LA meta-complexity result with the
theorem given by Frühwirth [2002b]. In this subsection, we make the comparison complete
by also considering built-in constraints, using the new meta-complexity theorem presented
in Section 7.6.

Let there be given a CHRrp program P in which each rule has the same (static) priority.
Theorem 3 in Section 4.3.3 states that such a CHRrp program and its corresponding
CHR program (which is found by removing the rule priorities) have the same derivations.
Therefore, such programs are suitable for comparing the result of [Frühwirth, 2002b] with
the result of Theorem 18 in Section 7.6. In Section 7.2.2 we have already shown that the
number of strong prefix firings is O

�
D ·
P

r2P
cnr
max

�
where D is the derivation length (i.e.,

the number of rule firings), and cmax is the maximal number of CHR constraints in the
store in any state. The number of constraint assertions is O(cmax + D). If we assume
that the initial goal does not contain any built-in constraints (as is done in [Frühwirth,
2002b]), then the number of built-in constraints is O(D). The number of suspended prefix
firings is bounded by O

�P
r2P

cnr
max

�
in any state and the number of suspended assertions

by O(cmax). Now, filling in these parameters in the CHRrp meta-complexity result gives
us that the total runtime complexity is

O
 
OC ·D

X

r2P

(cnr
max ·OGr)

!
(7.3)

where OC =
P

r2P
(OCr). This formula strongly resembles the result of Frühwirth [2002b]

which, assuming the cost of head matching OHr and adding and removing CHR constraints
OBr is constant, equals

O
 
D
X

r2P

(cnr
max ·OGr +OCr)

!
(7.4)

The di↵erence lies in how built-in tell constraints are dealt with. In our CHRrp implemen-
tation, as well as in any CHR implementation based on the refined operational semantics
of CHR, a built-in tell constraint causes the constraints or matches whose variables are
a↵ected, to be reconsidered.14 Because each individual (atomic) built-in constraint is dealt
with separately, this may cost more in total than the naive approach taken in [Frühwirth,
2002b] in which after each rule firing, all constraints or matches are reconsidered once.

13Since As = O(|�0|+ Ps + Pd).
14Which constraints are reactivated depends on the wake-up policy used for the Solve transition, see

also [Schrijvers, 2005, Section 5.4.2].

232



Chapter 7

So, while in certain rather exceptional cases, a naive approach to dealing with built-in
tell constraints might in fact be better than the usual approach of selective reactivation
(as can be seen by comparing Formulas (7.3) and (7.4)), in general we expect the lat-
ter approach to be an improvement over the naive one. Moreover, in these exceptional
cases, the meta-complexity theorem of [Frühwirth, 2002b] does not apply to optimized
CHR implementations such as the K.U.Leuven CHR system, i.e., in these cases it does
not overestimate the actual worst case time complexity.

7.7 Conclusions

In this chapter, we have investigated the relationship between the Logical Algorithms
language and Constraint Handling Rules. We have presented an elegant translation schema
from Logical Algorithms to CHRrp. The original program and its translation are shown to
be essentially weakly bisimilar. However, our current CHRrp system (see Chapter 4) does
not give the complexity guarantees needed for the Logical Algorithms meta-complexity
theorem to hold via this translation.

As a first step towards applying the Logical Algorithms meta-complexity result to
CHRrp programs, we have shown how a subclass of CHRrp can be translated into Logical
Algorithms. By using this translation, we can directly apply the meta-complexity theorem
for Logical Algorithms to the translated CHRrp programs. A drawback is that the CHRrp

programs that can be translated this way, are restricted to those that do not make use of
an underlying constraint solver.

In order to remedy both the limitation that the translation from Logical Algorithms
to CHRrp does not exhibit the required complexity when executing translated Logical Al-
gorithms programs using our CHRrp system, and the restriction of those CHRrp programs
that can be translated to Logical Algorithms and hence to which the Logical Algorithms
meta-complexity result can be applied, we have proposed a new implementation for the
complete CHRrp language that gives strong complexity guarantees. The implementation
is based on the high-level implementation proposal of Ganzinger and McAllester [2002] as
well as on the scheduling data structure of De Koninck [2007], and consists of the compila-
tion of CHRrp rules into (regular) CHR rules, combined with a scheduler that controls the
execution. The implementation supports a new and accurate meta-complexity theorem
for CHRrp. When combining the translation from Logical Algorithms to CHRrp with the
new implementation, the new meta-complexity theorem implies the Logical Algorithms
meta-complexity result. Moreover, it is shown that in general15 the new theorem is at
least as accurate as the meta-complexity result for CHR given by Frühwirth [2002b]. This
is illustrated on two non-trivial examples, one of which contains both built-in constraints
and propagation rules and therefore cannot be analyzed using the Logical Algorithms
approach or Frühwirth’s result.

7.7.1 Related Work

The time complexity of programs is in general expressed in terms of the number of ele-
mentary operations, e.g., the number of logical inferences in Prolog, function applications
in a functional programming language, or rule applications in a language such as CHR.
However, while in most languages, these elementary operations all take constant time,16

15Apart from some rather exceptional cases, see Section 7.6.3.
16Prolog unification takes more than constant time in general, but not under certain restrictions such as

those imposed in Mercury [Somogyi et al., 1996].

233



Bibliography

this is not the case in a language like CHR where each rule application results from a
complex matching phase.

In this work, we have made a mapping from the number of elementary operations (like
prefix and rule firings or constraint assertions) to time complexity. To the best of our
knowledge, and apart from the results in [McAllester, 1999, Ganzinger and McAllester,
2001, 2002] and [Frühwirth, 2002a,b], there is no other work with a similar goal. There are
many other formalisms though in which elementary operations take more than constant
time. One such formalism is term rewriting, as implemented by the Maude system [Clavel
et al., 1999] or the ACD term rewriting language [Duck et al., 2006]. It is known that AC
matching, which is used by most of these languages, is NP-complete. Another formalism
is that of production rule systems like Drools [Proctor et al., 2007] or Jess [Friedman-Hill,
2007]. Production rules are in many ways similar to Constraint Handling Rules. However
unlike CHR, these systems are not often used as general purpose programming language,
and therefore, algorithmic complexity has never been much of a concern. More work exists
on the derivation of the number of elementary operations. In the context of CHR, this
mostly concerns the number of rule firings, which is often derived as part of termination
analysis [Frühwirth, 2000, Pilozzi et al., 2007, Voets et al., 2007].

Another related topic is that of space complexity, an issue that is not dealt with in
this chapter. In the context of CHR, the memory reuse techniques developed by Sneyers
et al. [2006b] are crucial to achieve optimal space complexity as is shown in [Sneyers et al.,
2008]. The latter also introduces a space complexity meta-theorem for CHR, stating that
the space complexity is O(D+ p) where D is the derivation length and p is the number of
propagation rule firings (which takes into account the size of the propagation history).

Bibliography

Slim Abdennadher. Operational semantics and confluence of constraint propagation rules.
In Gert Smolka, editor, 3rd International Conference on Principles and Practice of
Constraint Programming, volume 1330 of Lecture Notes in Computer Science, pages
252–266. Springer, 1997.

Henning Christiansen. CHR grammars. Theory and Practice of Logic Programming, 5
(4-5):467–501, 2005.

Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, and Jose F. Quesada. The Maude system. In Paliath Narendran and Michaël
Rusinowitch, editors, 10th International Conference on Rewriting Techniques and Ap-
plications, volume 1631 of Lecture Notes in Computer Science, pages 240–243. Springer,
1999.

Leslie De Koninck. Mergeable schedules for lazy matching. Technical Report CW 505,
Department of Computer Science, K.U.Leuven, 2007.

Cinzia Di Giusto, Maurizio Gabbrielli, and Maria Chiara Meo. Expressiveness of multiple
heads in CHR. In Mogens Nielsen, Antońın Kucera, Peter Bro Miltersen, Catuscia
Palamidessi, Petr Tuma, and Frank D. Valencia, editors, 35th Conference on Current
Trends in Theory and Practice of Computer Science, volume 5404 of Lecture Notes in
Computer Science, pages 759–763. Springer, 2009.

Gregory J. Duck, Peter J. Stuckey, and Sebastian Brand. ACD term rewriting. In Sandro
Etalle and Miroslaw Truszczynski, editors, 22nd International Conference on Logic Pro-

234



Chapter 7

gramming, volume 4079 of Lecture Notes in Computer Science, pages 117–131. Springer,
2006.

Gregory J. Duck, Peter J. Stuckey, and Martin Sulzmann. Observable confluence for Con-
straint Handling Rules. In Veronica Dahl and Ilkka Niemelä, editors, 23rd International
Conference on Logic Programming, volume 4670 of Lecture Notes in Computer Science,
pages 224–239. Springer, 2007.

Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19(1):17–37, 1982.

Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

Ernest Friedman-Hill. JESS 7.0p2: The rule engine for the Java platform, 2007.
http://herzberg.ca.sandia.gov/jess.

Thom Frühwirth. Proving termination of constraint solver programs. In Krzysztof R. Apt,
Antonis C. Kakas, Eric Monfroy, and Francesca Rossi, editors, Joint ERCIM/Compulog
Net Workshop on New Trends in Constraints: Selected papers, volume 1865 of Lecture
Notes in Computer Science, pages 298–317. Springer, 2000.

Thom Frühwirth. As time goes by: Automatic complexity analysis of simplification rules.
In Dieter Fensel, Fausto Giunchiglia, Deborah L. McGuinness, and Mary-AnneWilliams,
editors, 8th International Conference on Principles of Knowledge Representation and
Reasoning, pages 547–557. Morgan Kaufmann, 2002a.

Thom Frühwirth. As time goes by II: More automatic complexity analysis of concurrent
rule programs. In Quantitative Aspects of Programming Languages: Selected Papers,
volume 59 of Electronic Notes in Theoretical Computer Science. Elsevier, 2002b.

Maurizio Gabbrielli, Jacopo Mauro, and Maria Chiara Meo. On the expressive power of
priorities in CHR. In 11th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, pages 267–276. ACM, 2009.

Maurizio Gabbrielli, Jacopo Mauro, Maria Chiara Meo, and Jon Sneyers. Decidability
properties for fragments of chr. Theory and Practice of Logic Programming, 10(4-6):
611–626, 2010.

Harald Ganzinger and David A. McAllester. A new meta-complexity theorem for bottom-
up logic programs. In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, 1st
International Joint Conference on Automated Reasoning, volume 2083 of Lecture Notes
in Computer Science, pages 514–528. Springer, 2001.

Harald Ganzinger and David A. McAllester. Logical algorithms. In Peter J. Stuckey,
editor, 18th International Conference on Logic Programming, volume 2401 of Lecture
Notes in Computer Science, pages 209–223. Springer, 2002.

Christian Holzbaur and Thom Frühwirth. Constraint Handling Rules reference manual,
release 2.2. Technical Report TR-98-01, Österreichisches Forschungsinstitut für Artificial
Intelligence, 1998.

David A. McAllester. On the complexity analysis of static analyses. In Agostino Cortesi
and Gilberto Filé, editors, 6th International Symposium on Static Analysis, volume 1694
of Lecture Notes in Computer Science, pages 312–329. Springer, 1999.

235



Bibliography

Daniel P. Miranker, David A. Brant, Bernie Lofaso, and David Gadbois. On the perfor-
mance of lazy matching in production systems. In 8th National Conference on Artificial
Intelligence, pages 685–692. AAAI Press / The MIT Press, 1990.

Paolo Pilozzi, Tom Schrijvers, and Danny De Schreye. Proving termination of CHR in
Prolog: A transformational approach. In Dieter Hofbauer and Alexander Serebrenik,
editors, 9th International Workshop on Termination, pages 30–33, 2007.

Mark Proctor, Michael Neale, Michael Frandsen, Sam Gri�th, Jr, Edson Tirelli, Fer-
nando Meyer, and Kris Verlaenen. Drools Documentation, Version 4.0.3, 2007.
http://www.jboss.com/products/rules.

Tom Schrijvers. Analyses, Optimizations and Extensions of Constraint Handling Rules.
PhD thesis, K.U.Leuven, 2005.

Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: implementation and
application. In Thom Frühwirth and Marc Meister, editors, 1st Workshop on Constraint
Handling Rules: Selected Contributions, volume 2004-01 of Ulmer Informatik-Berichte,
pages 1–5. Universität Ulm, 2004.

Tom Schrijvers and Thom Frühwirth. Optimal union-find in Constraint Handling Rules.
Theory and Practice of Logic Programming, 6(1&2), 2006.

Jon Sneyers. Turing-complete subclasses of CHR. In Maria Garcia de la Banda and Enrico
Pontelli, editors, 24th International Conference on Logic Programming, volume 5366 of
Lecture Notes in Computer Science, pages 759–763. Springer, 2008.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. Dijkstra’s algorithm with Fibonacci heaps:
An executable description in CHR. In Michael Fink, Hans Tompits, and Stefan Woltran,
editors, 20th Workshop on Logic Programming, INFSYS Research Report 1843-06-02,
pages 182–191. TU Wien, 2006a.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. Memory reuse for CHR. In Sandro Etalle
and Miroslaw Truszczynski, editors, 22nd International Conference on Logic Program-
ming, volume 4079 of Lecture Notes in Computer Science, pages 72–86. Springer, 2006b.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complex-
ity of Constraint Handling Rules. To appear in ACM Transactions on Programming
Languages and Systems, 2008.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of
Mercury, an e�cient purely declarative logic programming language. Journal of Logic
Programming, 29(1-3):17–64, 1996.

Paolo Tacchella, Maria Chiara Meo, and Maurizio Gabbrielli. Unfolding in CHR. In
Michael Leuschel and Andreas Podelski, editors, 9th ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming, pages 179–186. ACM, 2007.

Peter Van Weert, Jon Sneyers, Tom Schrijvers, and Bart Demoen. Extending CHR with
negation as absence. In Tom Schrijvers and Thom Frühwirth, editors, 3rd Workshop on
Constraint Handling Rules, Report CW 452, pages 125–140. Department of Computer
Science, K.U.Leuven, 2006.

236



Chapter 7

Dean Voets, Paolo Pilozzi, and Danny De Schreye. A new approach to termination anal-
ysis of Constraint Handling Rules. In Khalil Djelloul, Gregory J. Duck, and Martin
Sulzmann, editors, 4th Workshop on Constraint Handling Rules, pages 77–89. U.Porto,
2007.

237





Chapter 8

A Complete and Terminating
Operational Semantics

Author: Frank Raiser
Thesis Title: Graph Transformation Systems in Constraint Handling

Rules: Improved Methods for Program Analysis
School: Ulm University, Germany
Publication Year: 2010

Foreword

This chapter is a part of the PhD thesis by Raiser [2010]. It summarizes recent research on
simplifying the formal definitions of CHR’s operational semantics. To this end, equivalence
between CHR states is investigated and then used as a basis for defining CHR as a rewriting
system over equivalence classes.

The resulting operational semantics can be defined via a single inference rule, due to
the abstraction from state equivalence. As opposed to other definitions, the equivalence
of states is a very intuitive subject such that one seldomly needs to make explicit use of
the underlying equivalence axioms. Instead, the core task of analyzing a CHR program’s
behavior under its operational semantics becomes significantly simpler due to only having
to consider a single inference rule rather than the traditional involved case distinction.

Later in this chapter, an alternative approach to the treatment of propagation rules
is presented. It is based on persistent resources, roughly corresponding to linear logic.
The resulting operational semantics, hence, provide an execution model for CHR that is
much closer to logic than the approach based on a propagation history. Its practicability
is shown through an implementation based on !p.

Finally, the simplified view on CHR as a rewriting system of equivalence classes is
investigated further. This leads to a number of tools suitable for the formal analysis of
CHR programs, which have been applied to great success in [Raiser, 2010].

The results given in this chapter stem from a recent dissertation, and hence, have
not yet been superseded by other works. However, the simplified definition of CHR’s
operational semantics has already been presented and well-received at several international
occassions, including the ICLP 2010 conference and the 2010 CHR summer school.

The chapter further assumes familiarity with the traditional operational semantics of
CHR. In particular, the theoretical operational semantics !t is explained in Section 1.1.5
and the very abstract operational semantic !va is given in [Frühwirth, 2009]. The latter



8.1. Introduction

is a simplified formulation of !t, and hence, the chapter can also be followed without
consulting [Frühwirth, 2009].

8.1 Introduction

While CHR is known as a language that combines e�ciency with declarativity, publications
in the field display a tendency to favor one of these aspects over the other. We observe a
spectrum of research directions ranging from the analytical to the pragmatic.

On the analytical end of the spectrum, emphasis is put on CHR as a mathematical
formalism, declarativity, and the understanding of its logical foundations and theoretical
properties. Several formalizations of the operational semantics, found in [Frühwirth, 1998]
and [Frühwirth and Abdennadher, 2003], belong to this side of the spectrum.

On the downside, these operational semantics are detached from practical implemen-
tation in that they are oblivious to questions of e�ciency and termination. Particularly,
the class of rules called propagation rules causes trivial non-termination in both of them.
Hence, it is safe to say that the existing analytical formalizations of the operational se-
mantics lack a terminating execution model.

Example 8.1.1 (Lack of Termination with !va). Consider the following propagation rule,
which is part of a lower-equal solver (cf. Example 1.1.1) and corresponds to the transitivity
relation

leq(A,B), leq(B,C) =) leq(A,C)

The main idea behind this rule is that in some cases creating an additional leq-constraint
may help to further simplify the store. However, under the very abstract operational se-
mantics !va, we witness the following infinite derivation.

hleq(A,B) ^ leq(B,C)i
⇢va hleq(A,B) ^ leq(B,C) ^ leq(A,C)i
⇢va hleq(A,B) ^ leq(B,C) ^ leqA,C) ^ leq(A,C)i
⇢⇤

va hleq(A,B) ^ leq(B,C) ^ leq(A,C) ^ leq(A,C) ^ leq(A,C) ^ . . .i
⇢⇤

va . . .

This contrasts with most work on the pragmatic side of the spectrum, which empha-
sizes practical implementation and e�ciency over formal reasoning. It originates with
Abdennadher [1997], who proposed a token-based approach in order to avoid trivial non-
termination: Every propagation rule is applicable only once to a specific combination of
constraints. Thus, a terminating execution model for the full segment of CHR is provided,
which however, lacks completeness.

Example 8.1.2 (Lack of Completeness with !t). Consider the following two rules and
their execution under the theoretical operational semantics !t.

r1 @ a =) b
r2 @ b, b , c

We know that in the abstract definition of CHR it should be possible with these rules to
derive a c-constraint, when starting with a single a-constraint. Clearly, there exists a
derivation under !va to achieve this, however, we cannot ever reach a c-constraint under

240



Chapter 8

!t, as the following derivation shows.

ha; ;;>; ;i;0
⇢t h;; a#0;>; ;i;1
⇢r1

t
hb; a#0;>; (r1, 0)i;1

⇢t h;; a#0, b#1;>; (r1, 0)i;2
6⇢t

The final state demonstrates the essence of the e↵ect of propagation tokens: Termination
of rule r1 for the identified constraint a#0 is ensured at the cost of completeness.

In this chapter, we present the development of the operational semantics !!, which pro-
vides a complete and terminating execution model for CHR. We begin in Section 8.2 with
an investigation of equivalence of CHR states. It turns out, that an axiomatic formula-
tion of state equivalence tremendously simplifies the formulation of analytical operational
semantics of CHR. In that section, we hence introduce !e, which is defined as a rewriting
system of equivalence classes and is compatible with !va [Frühwirth, 2009].

Next, Section 8.3 introduces so-called persistent constraints. They enable us to extend
!e into the operational semantics !!, which provides a complete and terminating execution
model.

Building on the equivalence-based formulations of the operational semantics, we present
a merge operator in Section 8.4, which is a useful tool in program analysis. Then, in
Section 8.5, we discuss the di↵erences between !! and existing operational semantics and
present an implementation of !! via a source-to-source transformation. Finally, we discuss
related work and future research paths in Section 8.6.

8.2 Equivalence-based Operational Semantics

While equivalence of states is an elementary concept in Constraint Handling Rules (CHR),
the community has never agreed on a standard definition of that concept up to now. A
plethora of definitions of state equivalence has been introduced in various areas of applica-
tion (cf. Section 8.2.1). For example, the operational equivalence algorithm [Abdennadher
and Frühwirth, 1999] compares two final states of di↵erent programs for equivalence. State
equivalence is the basis for invariants such as in [Raiser and Frühwirth, 2009]. Several def-
initions have been introduced in the context of confluence considerations.

As the various authors had di↵erent intentions, the resulting definitions of state equiv-
alence vary considerably. There is a general agreement that, from an operational point
of view, any notion of state equivalence should be compliant with rule applications, i.e.
for equivalent states the same rules are applicable and lead to equivalent results. How-
ever, this property has never been proven for any of the previously proposed definitions.
Another general agreement is that from a declarative point of view the logical reading of
equivalent states should also be equivalent.

Our aim is therefore to develop a definition of state equivalence that satisfies both the
operational and the declarative view. Instead of defining a notion of state equivalence
for a fixed problem setting, we intend a notion for which these generally agreed-upon
properties hold. By construction, our definition of state equivalence then is compliant
with rule application and the logical reading of states. Thus, it becomes a generic proof
technique that can be applied to specific problems with the additional knowledge that the
above-mentioned properties are satisfied.

241



8.2. Equivalence-based Operational Semantics

In Section 8.2.1, we investigate equivalence of CHR states and provide an axiomatic
definition, as well as a decidable criterion, for it. Then, Section 8.2.2 presents the opera-
tional semantics !e based on rewriting of equivalence classes.

8.2.1 State Equivalence

In this section, we first justify a set of desirable properties for a general notion of state
equivalence in Section 8.2.1 and present them in the form of example cases. Then, we
give a concise overview of the existing definitions of state equivalence and compare their
behavior with respect to these example cases. We show that none of the existing definitions
satisfies all of the example cases.

Next, Section 8.2.1 introduces an axiomatic definition of state equivalence along with
several useful properties following from that definition. We show that it satisfies all the
previously investigated example cases. Finally, we present a necessary, su�cient, and
decidable criterion for determining equivalence of states in Section 8.2.1.

Existing State Equivalence Definitions

In this section, we evaluate existing definitions of state equivalence and postulate desirable
properties of an equivalence relation over CHR states. To this end, we present several
prototypical example cases of equivalent and non-equivalent CHR states. We concisely
introduce the di↵erent notions of state equivalence that have been proposed so far, before
we investigate how these notions apply to our example states.

In favor of a unified presentation, we will use the definition of !e states throughout
this section. It clearly separates the three components that each have to be treated di↵er-
ently by state equivalence. We accordingly adapt existing definitions and results to this
definition.

Definition 8.2.1 (!e State). An !e state is a tuple

hG;B;Vi.

• The goal G is a multiset of CHR constraints.

• The built-in constraint store B is a conjunction of built-in constraints.

• V is a set of global variables.

We use �,�0,�1, . . . to denote !e states and ⌃e to denote the set of all !e states. We
denote the state h;;>; ;i as �;.

We sometimes also use ⌃ to denote the set of all states, in cases where multiple op-
erational semantics may apply. For example, many results of our proposed operational
semantics presented in Section 8.3 equally apply to ⌃e.

Examples of Equivalences of CHR States Let us now consider the following exam-
ples of equivalent and non-equivalent states to highlight the di↵erences between existing
definitions of state equivalence. The relation ⌘ is used here as a generic equivalence rela-
tion with our desired properties. We will refer to our equivalence relations, defined later,
as ⌘e and ⌘! instead.

242



Chapter 8

hc(X);>; ;i ⌘ hc(Y );>; ;i (8.1)

hc(X);X = 0; {X}i ⌘ hc(0);X = 0; {X}i (8.2)

h>;X � 0 ^X  0 ^ Y = 0; {X}i ⌘ h>;X = 0; {X}i (8.3)

hc(0);>; {X}i ⌘ hc(0);>; ;i (8.4)

hc(X);>; {X}i 6⌘ hc(Y );>; {Y }i (8.5)

The equivalences (8.1)-(8.3) are motivated by the fact that the same rules are appli-
cable to these states. Specifically, equivalence (8.1) covers renaming of local variables,
equivalence (8.2) the substitution of variables with terms, and equivalence (8.3) built-in
stores that are logically equivalent under the constraint theory CT . Included in equiva-
lence (8.3), are built-in constraints over strictly local variables 1 (Y = 0), which may be
removed due to not a↵ecting logical equivalence in any way (9Y.Y = 0 is a tautology).

As the states in equivalence (8.4) have the same logical reading c(0), we require them to
be equivalent. Unused global variables can practically occur, for example, when applying
rule c(X), c(0) to the state hc(X);>; {X}i. Concerning non-equivalence (8.5), note that
X,Y are free variables and therefore the logical readings c(X) and c(Y ) are not equivalent.

Existing Definitions Over the last decade, the CHR community proposed various def-
initions for state equivalence. The following list identifies six distinct categories of equiv-
alence definitions in the literature:

1. Definitions based on variable renaming [Abdennadher et al., 1999, Frühwirth et al.,
2002, Duck, 2005, Meister, 2008] are often as simple as stating that two states are
equivalent (or variants) if they can be obtained by variable renaming only. These
definitions arose from the notion of variance on terms.

2. In [Raiser and Tacchella, 2007] a definition is given that is based on renaming of
local variables as well as logical equivalence of built-in stores.

3. In [Haemmerlé and Fages, 2007] a similar definition is given for arbitrary binary
relations rather than for CHR states only.

4. Duck et al. [2006] give another definition based on the refined operational semantics
[Duck et al., 2004] of CHR.

5. Duck et al. [2007] – a follow-up to [Duck et al., 2006] – extends the definition with
the usage of a unifier instead of variable renaming.

6. In [Abdennadher et al., 1999, Abdennadher, 2001] a normalization function is de-
fined. While we emphasize that this definition was not targeted towards determining
state equivalence, we include it in this work due to its clear structure that is similar
to our proposed definition. When we talk about equivalence with respect to nor-
malization we implicitly assume that two states are equivalent if and only if their
normalizations are syntactically equivalent.

1In a state hG;B;Vi the variables in B that do not occur in G and V are referred to as strictly local.

243



8.2. Equivalence-based Operational Semantics

(8.1) (8.2) (8.3) (8.4) (8.5)
Def. Type 1 ⌘ 6⌘ 6⌘ 6⌘ ⌘
Def. Type 2 ⌘ 6⌘ ⌘ ⌘ 6⌘
Def. Type 3 ⌘ 6⌘ ⌘ ⌘ 6⌘
Def. Type 4 ⌘ 6⌘ ⌘ 6⌘ 6⌘
Def. Type 5 ⌘ ⌘ ⌘ 6⌘ 6⌘
Def. Type 6 6⌘ ⌘ ⌘ 6⌘ 6⌘
Desired ⌘ ⌘ ⌘ ⌘ 6⌘

Table 8.1: Comparison of Di↵erent State Equivalence Definitions

Comparison of Existing Equivalence Definitions We have applied each of the ex-
isting definitions to each of the example cases. The results are presented in Table 8.1.
Each entry shows whether the two corresponding example states are considered equivalent
or not, according to the definition type used in that row. The last row presents the results
that we deem desirable.

Table 8.1 reveals that definition types 1 to 4 do not satisfy the desired result for
equivalence 8.2, which is the important substitution of variables with terms. Definition
type 6 also shows two di↵erences to our desired properties. However, the definition of Duck
et al. [2007] closely corresponds to the properties we would like to see in an equivalence
relation. The only di↵erence is in equivalence (8.4), which allows removal of unused global
variables. In most applications this kind of equivalence may be unnecessary though, such
that the definition given in [Duck et al., 2007] seems to be a viable candidate.

However, the formulation used for the equivalence relation in [Duck et al., 2007] is
very involved. It includes a unifier that has to be determined and its application in proofs
quickly becomes complicated by that. Furthermore, in a personal correspondence with the
authors of [Duck et al., 2007], we were informed that the formulation given in their work
was obtained through a trial and error method. This can also be seen from the fact that
[Duck et al., 2006] used a slightly di↵erent, but faulty, formulation (cf. Table 8.1, Def.
Type 4).

Therefore, none of the previously published definitions of state equivalence respects all
of the example cases.

Excursion: Detailed Discussion of Comparison
In this excursion, we discuss in more detail, why the individual definitions do not meet
our desired results.

The definitions of type 1 lack any means to handle equivalent representations of built-
ins. This problem arises in its purest form in case (8.3). Furthermore, they usually neglect
to consider global variables, hence, case (8.5) fails as well.

Definitions of type 2 extend the variable renaming by built-in equivalence, which allows
them to correctly treat case (8.3). Straightforward consideration of global variables solves
case (8.5) satisfactorily as well.

However, all definitions of types 1, 2, 3, and 4 fail to consider more complex interactions
between built-in equivalence and variable renaming, such that they fail for case (8.2). In
that case, we substitute a variable X for its value, if the built-ins imply that X = c for
some value.

244



Chapter 8

In fact, we will later see that the condition of permitting variable renaming is too weak.
Case (8.2) revealed, that it cannot handle substitution and we will show that substitution
and built-in equivalence actually subsume variable renaming. This is also the reason, why
in our axiomatic definition of equivalence (cf. Definition 8.2.2) we have no axiom for
variable renaming.

This problem of supporting substitutions has been discovered by Duck et al. [2006]
as well and they resolved it by adapting their definition in [Duck et al., 2007], which is
the definition type 5. As explained above, the definition turned out to be very involved
and it still fails on case (8.4) in that it considers unused global variables as important.
Intuitively, it appears to make more sense though to only care about elements relevant to
the two states when determining their equivalence.

Finally, the normalization function, as it is defined in [Abdennadher, 2001] and repre-
sented by definition type 6 in Table 8.1, fails to yield the same normal forms for a local
variable, thus failing case (8.1).

Novel Axiomatic Definition of State Equivalence

In this section, we introduce our axiomatic definition of equivalence that satisfies all de-
sirable properties we identified in the previous section.

Definition 8.2.2 (Equivalence of !e States). Equivalence between !e states is the smallest
equivalence relation ⌘e over CHR states that satisfies the following conditions:

1. (Equality as Substitution)

hG;X = t ^ B;Vi ⌘e hG [X/t] ;X = t ^ B;Vi

2. (Transformation of the Constraint Store) If CT |= 9s̄.B$ 9s̄0.B0 where s̄, s̄0 are the
strictly local variables of B,B0, respectively, then:

hG;B;Vi ⌘e hG;B0;Vi

3. (Omission of Non-Occurring Global Variables) If X is a variable that does not occur
in G or B then:

hG;B; {X} [ Vi ⌘e hG;B;Vi

4. (Equivalence of Failed States)

hG;?;Vi ⌘e hG0;?;V0i

Names of local variables in CHR states are chosen arbitrarily upon execution. Hence,
considering these names invariant with respect to state equivalence suggests itself. In
combination, axiom 1 and axiom 2 guarantee this desired property (cf. Lemma 8.2.3:1).

Axiom 1 and axiom 2 are furthermore invariant with respect to rule applicability and
comply with logical equivalence of the logical readings. The same holds for axiom 4: On
the logical level, inconsistent logical readings are of course logically equivalent.

Axiom 3 suggests itself with regard to logical readings, since adding or removing global
constraints results in syntactically identical, and therefore indistinguishable, logical read-
ings. Operationally, unused global variables have no e↵ect, so it stands to reason to
consider them redundant.

245



8.2. Equivalence-based Operational Semantics

Lemma 8.2.3 states several properties that follow from Definition 8.2.2.

Lemma 8.2.3 (Properties of State Equivalence). The equivalence relation ⌘e over CHR
states given in Def. 8.2.2 has the following properties:

1. (Renaming of Local Variables) Let X,Y be variables such that X,Y 62 V and Y does
not occur in G or B:

hG;B;Vi ⌘e hG [X/Y ] ;B [X/Y ] ;Vi

2. (Partial Substitution) Let G [X o t] be a multiset where some occurrences of X are
substituted with t:

hG;X = t ^ B;Vi ⌘e hG [X o t] ;X = t ^ B;Vi

3. (Logical Equivalence) If
hG;B;Vi ⌘e hG0;B0;V0i

then CT |= 9ȳ.G ^ B $ 9ȳ0.G0 ^ B0, where ȳ, ȳ0 are the local variables of hG;B;Vi,
and hG0;B0;V0i, respectively.

Proof.

Property 1: By transformation of the constraint store, we have that hG;B;Vi is equiva-
lent to hG;X = Y ^B;Vi. We apply equality as substitution and get hG [X/Y ] ;X =
Y ^ B;Vi which by transformation is equivalent to hG [X/Y ] ;B [X/Y ] ;Vi.

Property 2: By substitution, we have that both hG;B;Vi and hG [X o t] ;X = t ^ B;Vi
are equivalent to hG [X/t] ;X = t ^ B;Vi, because ⌘e is symmetric and transitive.

Property 3: All conditions given in Def. 8.2.2 correspond to valid logical equivalences:

Definition 8.2.2:1 preserves logical equivalence since

G ^X = t$ G [X/t] ^X = t

Definition 8.2.2:2: As CT |= 9s̄.B$ 9s̄0.B0 and the variables in s̄, s̄0 do not occur
in G,G0, we have

CT |= 9ȳ.B ^G$ 9ȳ0.B0 ^G

Definition 8.2.2:3: For a variable X that does not occur in B or G we obviously
have

CT |= 9X.9ȳ.B ^G$ 9ȳ.B ^G

Definition 8.2.2:4 preserves logical equivalence due to the ex falso quodlibet prop-
erty.

As logical equivalence is reflexive, transitive, and symmetric, Prop. 3 holds.

Example 8.2.4. In this example, we show that the state equivalence relation ⌘e corre-
sponds to our desired ⌘ relation. We refer to the four axioms given in Definition 8.2.2
via ⌘1

e,⌘2
e,⌘3

e, and ⌘4
e.

246



Chapter 8

• Equivalence 8.1:
hc(X);>; ;i ⌘2

e hc(X);X = Y ; ;i ⌘1
e hc(Y );X = Y ; ;i ⌘2

e hc(Y );>; ;i

• Equivalence 8.2 follows directly from ⌘1
e.

• Equivalence 8.3 follows directly from ⌘2
e.

• Equivalence 8.4 follows directly from ⌘3
e.

• Equivalence 8.5: Using an axiomatic definition for ⌘e makes it di�cult to prove non-
equivalence. While an equivalence proof requires a sequence of axiom applications,
proving non-equivalence requires us to show that no such sequence exists. Therefore,
we delay the proof that ⌘e satisfies the non-equivalence 8.5, until we have the decision
criterion, developed in the following section, available.

Deciding State Equivalence

The decision problem for state equivalence is: given two states �1 and �2 decide whether
�1 ⌘e �2. In the positive case of two equivalent states, this can be decided by finding
suitable applications of the axioms of Definition 8.2.2 that transform one state into the
other. However, given two non-equivalent states, an axiom-based proof would require
showing that no such applications can exist. As this is hard to automate, we would like
to have a better criterion for a decision algorithm.

Logical equivalence between 9ȳ.G^B and 9ȳ0.G0^B0 is a necessary but not a su�cient
condition for state equivalence between hG;B;Vi and hG0;B0;V0i (cf. Lemma 8.2.3:3).
This is due to the fact that unlike logical equivalence, state equivalence preserves the
multiplicities of logically equivalent user-defined constraints. A similar condition, which
is also su�cient can be formulated in linear-logic [Betz and Frühwirth, 2005].

Theorem 20 gives a necessary and su�cient criterion for deciding state equivalence.
Due to its preconditions, it technically decides a smaller relation than ⌘e, because it only
applies to the case that local variables are renamed apart and the set of global variables
is unchanged.

However, this restriction is not problematic for deciding equivalence in general. By
Lemma 8.2.3 we are free to rename local variables apart and by Def. 8.2.2:3 we can adjust
the sets of global variables to match. Therefore, Theorem 20 gives us a necessary and
su�cient criterion for equivalence of arbitrary states: first we transform the states into
equivalent states that satisfy the preconditions, then we apply the theorem. The trans-
formation is straightforward and equivalence-preserving, hence, the result we get from the
theorem applies to the original states by transitivity of ⌘e. Finally, decidability of our
criterion is a direct consequence of decidability of CT .

Theorem 20 (Criterion for ⌘e). Let � = hG;B;Vi,�0 = hG0;B0;Vi be !e states with local
variables ȳ, ȳ0 that have been renamed apart.

� ⌘e �0

if and only if
CT |= 8(B! 9ȳ0.((G = G0) ^ B0)) ^ 8(B0 ! 9ȳ.((G = G0) ^ B))

Proof. Let C be a binary predicate on CHR states such that C(hG;B;Vi, hG0;B0;Vi) holds
i↵

CT |= 8(B! 9ȳ0.((G = G0) ^ B0)) ^ 8(B0 ! 9ȳ.((G = G0) ^ B))

247



8.2. Equivalence-based Operational Semantics

):
We show that each of the three implicit conditions – reflexivity, symmetry, and tran-

sitivity – as well as the four explicit conditions of Def. 8.2.2 are sound w.r.t. criterion
C.

Reflexivity: Reflexivity is given as the following judgment is clearly true:

CT |= 8(B! 9ȳ.((G = G) ^ B)) ^ 8(B! 9ȳ.((G = G) ^ B))

Symmetry: Symmetry of C is obvious.

Transitivity: Assume three states � = hG;B;Vi,�0 = hG0;B0;Vi,�00 = hG00;B00;Vi with
distinct local variables ȳ, ȳ0, ȳ00 such that C(�,�0) and C(�0,�00). By definition, we
have:

CT |= 8(B! 9ȳ0.((G = G0) ^ B0)) (i)
CT |= 8(B0 ! 9ȳ.((G = G0) ^ B)) (ii)
CT |= 8(B0 ! 9ȳ00.((G0 = G00) ^ B00)) (iii)
CT |= 8(B00 ! 9ȳ0.((G0 = G00) ^ B0)) (iv)

From (i) and (iii) follows:

CT |= 8(B! 9ȳ00.((G = G00) ^ B00))

From (ii) and (iv) follows:

CT |= 8(B00 ! 9ȳ.((G = G00) ^ B))

Consequently, C(�,�00) holds.

Equality as Substitution: Assume two states � = hG;X = t^B;Vi,�0 = hG [X/t] ;X =
t ^ B;Vi with local variables ȳ, ȳ0. As CT |= 8(X = t ! (G = G [X/t])), we have
C(�,�0).

Transformation of the Constraint Store: Assume two states � = hG;B;Vi and �0 =
hG;B0;Vi with local variables ȳ, ȳ0 and strictly local variables s̄, s̄0 such that CT |=
9s̄.B$ 9s̄0.B0. This implies the following judgment:

CT |= 8(B! 9ȳ0.((G = G) ^ B0)) ^ 8(B0 ! 9ȳ.((G = G) ^ B))

Hence, C(�,�0) holds.

Omission of Non-Occurring Global Variables: Does not apply since � and �0 share
the set V of global variables.

Equivalence of Failed States: For any two failed states, they are of the form hG;?;Vi
and hG0;?;Vi. The following judgment proves C(hG;?;Vi, hG0;?;Vi):

CT |= 8(? ! 9ȳ0.((G = G0) ^ ?)) ^ 8(? ! 9ȳ.((G = G0) ^ ?))

(:
We consider two CHR states � = hG;B;Vi,�0 = hG0;B0;Vi with disjunct local variables

ȳ and ȳ0. We assume that

CT |= 8(B! 9ȳ0.((G = G0) ^ B0)) ^ 8(B0 ! 9ȳ.((G = G0) ^ B))

248



Chapter 8

If there does not exist a pairwise matching G = G0, we have B = B0 = ?, which proves
that � ⌘e �0 by Def. 8.2.2:4. In the following, we assume that a pairwise matching G = G0

does exist.

It follows from 8(B! 9ȳ0.((G = G0) ^ B0) by Def. 8.2.2:2 that:

� ⌘e hG;G = G0 ^ B ^ B0;Vi

By Def. 8.2.2:1 we have:

� ⌘e hG0;G = G0 ^ B ^ B0;Vi

From 8(B0 ! 9ȳ.((G = G0) ^ B)) we get by Def. 8.2.2:2 that:

� ⌘e hG0;B0;Vi = �0

Example 8.2.5. We can now use Theorem 20 to prove our desired non-equivalence (8.5).
Let � = hc(X);>; {X}i and �0 = hc(Y );>; {Y }i, then we first consider two states with the
same global variables as follows:

�1 ::= hc(X);>; {X,Y }i ⌘e �

�2 ::= hc(Y );>; {X,Y }i ⌘e �
0

According to the above theorem, �1 ⌘e �2 holds if and only if

CT |= 8X,Y.> ! (c(X) = c(Y )) ^ 8X,Y.> ! (c(X) = c(Y )).

However, it clearly holds that CT 6|= 8X,Y.c(X) = c(Y ), such that Theorem 20 proves
�1 6⌘e �2, and because ⌘e is an equivalence relation, this proves � 6⌘e �0.

Intuitively, the theorem tries to find out if the two multisets of CHR constraints can
be made syntactically equivalent (G = G0). However, we may only consider existential
quantification for local variables, which subsumes variable renaming and substitution. In-
terpreting G = G0 as a unification, we must additionally ensure that the required bindings
satisfy the other state’s built-in store.

Theorem 20 is indeed suitable for implementation. Such an implementation has been
given in [Langbein et al., 2010], where it was used as the foundation of a confluence checker.

8.2.2 State Transition System

In this section, we first define an operational semantics for CHR based on our axiomatic
definition of state equivalence. We then discuss its equivalence to the traditional definition,
hence showing that state equivalence is indeed compliant with rule application. Finally,
we introduce a novel view of the CHR transition system: Given the compliance of state
equivalence with rule application, we can integrate this knowledge into the formulation of
the operational semantics, hence, interpreting CHR as a rewriting system of equivalence
classes.

249



8.2. Equivalence-based Operational Semantics

r @ H1 \H2 , G | Bc, Bb

hH1 ]H2 ]G;G ^ B;Vi⇢r

e hH1 ]Bc ]G;G ^Bb ^ B;Vi

�0 ⌘ � �⇢r ⌧ ⌧ ⌘ ⌧ 0

�0⇢r

e ⌧
0

Table 8.2: State Transition System !e

Equivalence-based Transition System

In this section, we present a formulation of the operational semantics based on state
equivalence. Our definition is not only based on the traditional definition, but is also
provably equivalent. Integrating the notion of state equivalence permits removing the
matching that has traditionally been hidden in the complex formula H1 = H 0

1 ^H2 = H 0

2.
Furthermore, imposing a guard condition on CT becomes dispensable, leading to the
following simplified operational semantics:

Definition 8.2.6 (Operational Semantics !e). For a CHR program P we define the state
transition system (⌃e,⇢e), referred to as !e , as given in Table 8.2. The transition is
based on a variant of a rule r in P such that its local variables are disjoint from the
variables occurring in the pre-transition state.

When the rule r is clear from the context or not important, we may write ⇢e rather
than ⇢r

e. By ⇢⇤
e, we denote the reflexive-transitive closure of ⇢e.

Example 8.2.7. Consider the example for computing the greatest common divisor, which
consists of the following two rules.

gcd1 @ gcd(0) , >
gcd2 @ gcd(N)\ gcd(M) , M � N ^N > 0 | gcd(L), L = M%N

Given the transition system ⇢e, we can now derive the greatest common divisor of 6 and
15 as follows:

hgcd(6), gcd(15);>; ;i
⌘e hgcd(N), gcd(M);M � N ^N > 0 ^N = 6 ^M = 15; ;i
⇢gcd2

e hgcd(N), gcd(L);M � N ^N > 0 ^ L = M%N ^N = 6 ^M = 15; ;i
⌘e hgcd(6), gcd(3);>; ;i
⌘e hgcd(N), gcd(M);M � N ^N > 0 ^N = 3 ^M = 6; ;i
⇢gcd2

e hgcd(N), gcd(L);M � N ^N > 0 ^ L = M%N ^N = 3 ^M = 6; ;i
⌘e hgcd(3), gcd(0);>; ;i
⇢gcd1

e hgcd(3);>; ;i

We can see from the above derivation that there were three rule applications. We reuse the
variables N,M in the derivation above, because they can be removed from the state after
the rule application, by applying the equivalence relation.

The most significant di↵erence of this formulation of the operational semantics to
previous ones is that the rule head is required to exist within the state exactly as is.
Traditionally, we require constraints in the state that are similar to the ones in the rule

250



Chapter 8

head. They are then matched via a substitution. With Definition 8.2.6 however, this is
outsourced into the equivalence relation. We still have to prove that the current state
contains the required rule head, but the formulation of the operational semantics itself is
simplified.

Another advantage can be seen in the previous example: during a derivation we can
use the equivalence relation to freely switch to di↵erent representations of a state. This,
for example, allows us to constantly simplify the built-in store. When we compare this to
!va,!t, and !p, we find that in !va there is no formal means to ever simplify a built-in
store again, while !t and !p may only simplify the built-in store during a Solve transition.

Example 8.2.8. To demonstrate the tremendous simplification gained by !e let us con-
sider the previous derivation for computing the greatest common divisor of 6 and 15 for
!t. For space reason, we denote L1 = 3 ^N2 = L1 ^M2 = 6 ^M2 � N2 ^N2 > 0 as B in
the below derivation.

hgcd(6), gcd(15); ;;>; ;i;0
⇢Introduce

t hgcd(15); gcd(6)#0;>; ;i;1
⇢Introduce

t h;; gcd(6)#0, gcd(15)#1;>; ;i;2
⇢gcd2

t hL1 = M1%N1, gcd(L1); gcd(6)#0;N1 = 6 ^M1 = 15 ^M1 � N1 ^N1 > 0); (gcd2, [0, 1])i
;
2

⇢Solve
t hgcd(L1); gcd(6)#0;L1 = 3; (gcd2, [0, 1])i

;
2

⇢Introduce
t h;; gcd(6)#0, gcd(L1)#2;L1 = 3; (gcd2, [0, 1])i

;
3

⇢gcd2
t hL2 = M2%N2, gcd(L2); gcd(L1)#2;B; (gcd2, [0, 1]), (gcd2, [2, 0])i;3

⇢Solve
t hgcd(L2); gcd(L1)#2;L1 = 3 ^ L2 = 0; (gcd2, [0, 1]), (gcd2, [2, 0])i

;
3

⇢Introduce
t h;); gcd(L1)#2, gcd(L2)#3;L1 = 3 ^ L2 = 0; (gcd2, [0, 1]), (gcd2, [2, 0])i

;
4

⇢gcd1
t h;; gcd(L1)#2;L1 = 3 ^ L2 = 0; (gcd2, [0, 1]), (gcd2, [2, 0]), (gcd1, [3])i

;
4

Apart from the higher complexity of this derivation, there is an important point about the
resulting final state: For the above, one often reads abbreviated derivations like

hgcd(6), gcd(15); ;;>; ;i;0⇢⇤

t h;; gcd(3)#i;B;Ti;n,

for some i,B,T, and n. However, the above statement is in fact wrong, because there
exist no such derivations according to Definition 1.1.5. Instead there only exists a con-
straint gcd(L1)#3 and the built-in L1 = 3. With !t we are not given any means to change
this into a constraint of the form gcd(3).

The same problem exists with !va, in that we also cannot get a gcd(3) constraint in
the resulting final state. In fact, the situation is worse for !va, as there is no built-in
simplification possible at all, whereas !t at least has the Solve transition available.

Compliance to Rule Application

Definition 8.2.6 implicitly assumes that when we can apply a rule to a state, we can also
apply it to all equivalent states. Furthermore, the resulting states of the rule application
are then assumed to be equivalent as well. This is by no means a trivial assumption. While
it is a property that we would intuitively expect from a proper equivalence relation, it has
not been proven before the introduction of !e in [Raiser et al., 2009].

The following theorem from [Raiser et al., 2009] proves the equivalence of !e and
!va. This implicitly proves the above desired property. Hence, it e↵ectively serves as
justification for the viability of Definition 8.2.6.

Theorem 21 (Equivalence of the Definitions). For a CHR state � we have

1. If �⇢r
e ⌧ then there exists a state ⌧ 0 ⌘ ⌧ with �⇢r

va ⌧
0

2. If �⇢r
va ⌧

0 then there exists a state ⌧ ⌘ ⌧ 0 with �⇢r
e ⌧

Proof. see [Raiser et al., 2009].

251



8.3. Constraint Handling Rules with Persistent Constraints

r @ H1 \H2 , G | Bc ]Bb

[hH1 ]H2 ]G;G ^ B;Vi]⇢r

e [hH1 ]Bc ]G;G ^Bb ^ B;Vi]

Table 8.3: State Transition System !e with Equivalence Classes

Rewriting of Equivalence Classes

By now, we have introduced an axiomatic definition of state equivalence and shown its
compliance with rule applications. Definition 8.2.6 of !e can therefore be abstracted fur-
ther. The second inference rule allows us to freely switch between equivalent states during
a derivation. Therefore, the actual syntactical representation of a state is of no importance
anymore, which leads to a di↵erent view on the transition system: instead of considering
all syntactical representations as di↵erent states, we propose the following reformulation
based on equivalence classes of states. In this work, [�] denotes the equivalence class of a
state � 2 ⌃e, i.e. [�] ::= {�0 2 ⌃e | �0 ⌘e �}. When rewriting such equivalence classes, we
consider an equivalence class as a state of our state transition system. Hence, the set of
all states becomes ⌃e/⌘e.

Definition 8.2.9 (Operational Semantics !e). For a CHR program P, the state transition
system (⌃e/⌘e,⇢e) is given in Table 8.3. The transition is based on a variant of a rule r in
P such that its local variables are disjoint from the variables occurring in the representant
of the pre-transition state.

We consider both, Definition 8.2.6 and Definition 8.2.9, as the operational semantics !e.
They clearly are equivalent and the brackets used to denote equivalence classes ensure there
is no disambiguity. However, as Definition 8.2.9 abstracts over equivalence, the remainder
of this work will mostly refer to it, when discussing !e.

Example 8.2.10. Reconsider the previous example for computing the greatest common
divisor of 6 and 15. Using Definition 8.2.9, we can present the derivation in the following
concise way:

[hgcd(6), gcd(15);>; ;i]
⇢gcd2

e [hgcd(6), gcd(3);>; ;i]
⇢gcd2

e [hgcd(3), gcd(0);>; ;i]
⇢gcd1

e [hgcd(3);>; ;i]

In [Raiser, 2010] it is demonstrated, that the equivalence-based operational seman-
tics !e facilitates formal proofs. It allows us to switch to the most convenient representa-
tion of a CHR store at any time and to neglect other equivalent states, because it often
su�ces to show a property for one state in order to proof it for all equivalent states.

8.3 Constraint Handling Rules with Persistent Constraints

Recent work on linear-logical algorithms [Simmons and Pfenning, 2008] and the close
relation of CHR to linear-logic [Betz and Frühwirth, 2005] suggest a novel approach that
emphasizes aspects from both sides of the spectrum to a useful degree: In [Betz et al.,
2009], we introduce the notion of persistent constraints to CHR, a concept reminiscent
of unrestricted or “banged” propositions in linear-logic. Persistent constraints provide a
finite representation of the result of any number of propagation rule firings.

252



Chapter 8

We furthermore introduce a state transition system based on persistent constraints,
which is explicitly irreflexive. In combination, the two ideas solve the problem of trivial
non-termination while retaining declarativity and preserving the potential for e↵ective
concurrent execution. This state transition system requires no more than two rules. As
every transition step corresponds to a CHR rule application, it facilitates formal reasoning
over programs.

In this work, we show that the resulting operational semantics !! is sound and complete
with respect to !e. We show that !! can be faithfully embedded into the operational se-
mantics !p, thus e↵ectively providing an implementation in the form of a source-to-source
transformation. All operational semantics developed with an emphasis on pragmatic as-
pects lack this completeness property. Therefore, it is possible to implement CHR soundly
and completely with respect to its abstract foundations, whilst featuring a terminating
execution model for propagation rules.

Example 8.3.1. Consider the following straightforward CHR program for computing the
transitive hull of a graph represented by edge constraints e/2:

t @ e(X,Y ), e(Y, Z) =) e(X,Z)

This most intuitive formulation of a transitive hull is not a suitable implementation in
most existing operational semantics. In fact, for goals containing cyclic graphs it is non-
terminating in all aforementioned existing semantics. In this work we show that execution
in our proposed semantics !! correctly computes the transitive hull whilst guaranteeing
termination.

8.3.1 State Equivalence

In this section, we present the operational semantics !! with persistent constraints, origi-
nally proposed in [Betz et al., 2009]. It is based on the following ideas:

1. In !e, the body of a propagation rule can be generated any number of times, pro-
vided that the corresponding head constraints are present in the store. In order to
give consideration to this theoretical behavior, we introduce those body constraints
as so-called persistent constraints. A persistent constraint is a finite representation
of a large, though unspecified number of identical constraints. For a proper dis-
tinction, constraints that are not persistent constraints are henceforth called linear
constraints.

2. As a secondary consequence, arbitrary generation of rule bodies in !e a↵ects other
types of CHR rules as well. Consider the following program:

r1 @ a =) b
r2 @ b , c

When executed with goal a, this program can generate an arbitrary number of
b-constraints. As a consequence of this, it can also generate arbitrarily many c-
constraints. To take these indirect consequences of propagation rules into account,
we introduce a rule’s body constraints as persistent, whenever its removed head can
be matched completely with persistent constraints.

3. As a persistent constraint represents an arbitrary number of identical constraints,
we consider multiple occurrences of a persistent constraint as idempotent. Thus, we
implicitly apply a set semantics to persistent constraints.

253



8.3. Constraint Handling Rules with Persistent Constraints

4. We adapt the execution model such that a transition takes place only if the post-
transition state is not equivalent to the pre-transition state. This entails two benefi-
cial consequences: Firstly, in combination with the set semantics on persistent con-
straints, it avoids trivial non-termination of propagation rules. Secondly, as failed
states are equivalent, it enforces termination upon failure.

We adapt the definition of !! states with respect to !e. The goal store G of !e states
is split into a store L of linear constraints and a store P of persistent constraints.

Definition 8.3.2 (!! State). A !! state is a tuple of the form hL;P;B;Vi, where L and
P are multisets of CHR constraints called the linear (CHR) store and persistent (CHR)
store, respectively. B is a conjunction of built-in constraints and V is a set of variables
called the global variables. We use ⌃! to denote the set of all !! states.

The following definition of state equivalence is adapted to comply with Definition 8.3.2
and to handle idempotence of persistent constraints.

Definition 8.3.3 (Equivalence of !! States). Equivalence between !! states is the smallest
equivalence relation ⌘! over !! states that satisfies the following conditions:

1. (Equality as Substitution)

hL;P;X = t ^ B;Vi ⌘! hL [X/t] ;P [X/t] ;X = t ^ B;Vi

2. (Transformation of the Constraint Store) If CT |= 9s̄.B$ 9s̄0.B0 where s̄, s̄0 are the
strictly local variables of B,B0, respectively, then:

hL;P;B;Vi ⌘! hL;P;B0;Vi

3. (Omission of Non-Occurring Global Variables) If X is a variable that does not occur
in L, P, or B then:

hL;P;B; {X} [ Vi ⌘! hL;P;B;Vi

4. (Equivalence of Failed States)

hL;P;?;Vi ⌘! hL0;P0;?;V0i

5. (Contraction)
hL;P ] P ] P;B;Vi ⌘! hL;P ] P;B;Vi

The following definition presents an auxiliary concept that we use to formulate a cri-
terion for !! equivalence, in analogy to Theorem 20. Intuitively, G ./ G0 holds, if after
converting G and G0 to sets by eliminating duplicates, the two sets are identical.

Definition 8.3.4 (./). The relation ./ over multisets of constraints is defined as

G ./ G0 if and only if (8c 2 G.9c0 2 G0.c = c0) ^ (8c0 2 G0.9c 2 G.c = c0)

Theorem 22 (Criterion for ⌘!). Let � = hL;P;B;Vi, �0 = hL0;P0;B0;Vi be !! states with
local variables ȳ, ȳ0 that have been renamed apart.

� ⌘! �0

if and only if
CT |= 8(B! 9ȳ0.((L = L0) ^ (P ./ P0) ^ B0)) ^ 8(B0 ! 9ȳ.((L = L0) ^ (P ./ P0) ^ B))

254



Chapter 8

Proof.

’(’: We consider two !! states � = hL;P;B;Vi,�0 = hL0;P0;B0;Vi with local variables ȳ
and ȳ0. We furthermore assume that:

CT |= 8(B! 9ȳ0.((L = L0) ^ (P ./ P0) ^ B0)) ^ 8(B0 ! 9ȳ.((L = L0) ^ (P ./ P0) ^ B))

If CT |= ¬9((L = L0) ^ (P ./ P0)), we have CT |= B = B0 = ? such that Def. 8.3.3:4
proves � ⌘! �0. In the following, we assume that a matching (L = L0) ^ (P ./ P0) exists.

It follows from 8(B! 9ȳ0.((L = L0) ^ (P ./ P0) ^ B0)) by Def. 8.3.3:2 that:

� ⌘! hL;P; (L = L0) ^ (P ./ P0) ^ B ^ B0;Vi

Def. 8.3.3:1 gives us:

� ⌘! hL0;P00; (L = L0) ^ (P ./ P0) ^ B ^ B0;Vi

where P00 equals P0 modulo multiplicities. By Def. 8.3.3:5 we thus get:

� ⌘! hL0;P0; (L = L0) ^ (P ./ P0) ^ B ^ B0;Vi

From 8(B0 ! 9ȳ.((L = L0) ^ (P ./ P0) ^ B)) follows by Def. 8.3.3:2 that:

� ⌘! hL0;P0;B0;Vi = �0

’)’: To prove the forward direction, we have to show the compliance of the conditions in
Def. 8.3.3:1 to Def. 8.3.3:5 with our criterion. For Def. 8.3.3:1 to Def. 8.3.3:4, compliance
is analogous to Thm. 20. Hence, we now consider Def. 8.3.3:5:

Let � = hL;P ] P ] P;B;Vi,�0 = hL;P ] P;B;Vi 2 ⌃! with local variables ȳ, ȳ0. As,
(P ] P ] P) ./ (P ] P), the following is a tautology:

CT |= 8(B! 9ȳ0.((L = L) ^ ((P ] P ] P) ./ (P ] P)) ^ B))^
8(B! 9ȳ.((L = L) ^ ((P ] P ] P) ./ (P ] P0)) ^ B))

8.3.2 State Transition System

Based on the definition of !e, we define the operational semantics !! below. Since body
constraints may be introduced either as linear or as persistent constraints, uniform rule
application is replaced by two distinct application modes. An important restriction is that
!! is only defined for range-restricted programs (cf. Section 8.5.2 for details). A range-
restricted rule is one, whose body and guard only contain variables from the head and a
CHR program is range-restricted, if all its rules are.

Definition 8.3.5 (!! Transitions). For a range-restricted CHR program P, the state tran-
sition system (⌃!/⌘!,⇢!), referred to as !! , is given in Table 8.4.

When the rule r is clear from the context or not important, we may write ⇢! rather
than ⇢r

! . By ⇢⇤

! , we denote the reflexive-transitive closure of ⇢!.

255



8.3. Constraint Handling Rules with Persistent Constraints

ApplyLinear:

r @ (H l

1 ]Hp

1 )\(H
l

2 ]Hp

2 ), G | Bc, Bb H l

2 6= ; [�] 6= [⌧ ]

[�] = [hH l

1 ]H l

2 ] L;Hp

1 ]Hp

2 ] P;G ^ B;Vi]
⇢r

! [hH l

1 ]Bc ] L;Hp

1 ]Hp

2 ] P;G ^ B ^Bb;Vi] = [⌧ ]

ApplyPersistent:

r @ (H l

1 ]Hp

1 )\H
p

2 , G | Bc, Bb [�] 6= [⌧ ]

[�] = [hH l

1 ] L;Hp

1 ]Hp

2 ] P;G ^ B;Vi]
⇢r

! [hH l

1 ] L;Hp

1 ]Hp

2 ]Bc ] P;G ^ B ^Bb;Vi] = [⌧ ]

Table 8.4: State Transition System !!

Example 8.3.6. Again consider the transitive edge program from Example 8.3.1 and an
initial state that contains a cyclic graph. For such an initial state the program is non-
terminating for all previous operational semantics presented in this work. However, with
!!, we get the following terminating derivation.

[�] = [he(A,B), e(B,A); ;;>; {A,B}i]
⇢! [he(A,B), e(B,A); e(A,A);>; {A,B}i]
⇢! [he(A,B), e(B,A); e(A,A), e(B,B);>; {A,B}i]
⇢! [he(A,B), e(B,A); e(A,A), e(B,B), e(A,B);>; {A,B}i]
⇢! [he(A,B), e(B,A); e(A,A), e(B,B), e(A,B), e(B,A);>; {A,B}i] = [⌧ ]

All four state transitions are made via the ApplyPersistent inference rule and add the
resulting constraints to the persistent store. Irreflexivity of (⌃!/⌘!,⇢!) ensures that such
a persistent constraint cannot be generated again. Therefore, after all four possible edges
have been generated as persistent constraints, no further rule applications are possible.

This operational semantics !! fills a gap left by the existing operational semantics: It
is, on the one hand, complete, i.e. every computation that is possible under the operational
semantics !e corresponds to one in !!. On the other hand, it o↵ers general termination
for propagation rules, which !e lacks and caused the token-based operational semantics !t

to be developed, which in turn lacks completeness.

This situation is easily demonstrated via a propagation rule a) b and an initial state
that contains an a-constraint. With !e it is possible to apply the rule any number of times.
In particular, we get a non-terminating derivation which keeps generating b-constraints.
In the more pragmatic operational semantics !t instead, we can only derive a single b-
constraint. While we have termination in that case, we lack completeness in that we are
unable to generate a second or third b-constraint.

The operational semantics !!, however, fixes these problems with a best-of-both-worlds
approach: in a single derivation step a persistent b-constraint is derived, hence, we have
termination. Furthermore, this persistent constraint can be used in lieu of any number of
linear b-constraints. If we add to the above rule, the rule a, b, b, c, then !! allows a second
derivation that yields a linear c-constraint. Again, !t fails due to its lack of completeness
to ever derive a c-constraint, and !e still allows the non-terminating derivation, but also
terminating derivations that yield a c-constraint.

256



Chapter 8

Of course, !! is also sound with respect to !e, i.e. all derivations made in !! correspond
to derivations in !e. For a formal treatment of the soundness and completeness of !! with
respect to !e we refer the reader to [Betz et al., 2010].

Excursion: Proverbial Example
This excursion demonstrates the potential of persistent constraints in a less serious way.
Consider the following well-known Chinese proverb, which we want to model as a CHR
program.

Give a man a fish and you feed him for a day. Teach a man to fish and you
feed him for a lifetime.

First of all, there are implicit facts in this proverb, namely, that there can be hungry
men and that eating a fish saturates them. This is straightforwardly expressed in CHR as

r1 @ hungry(M), fish, saturated(M).

Assuming days roughly correspond to rule applications, the above rule nicely captures
the idea that you can give a fish to a man M in order to feed him. Of course, he eventually
gets hungry again:

r2 @ saturated(M), hungry(M).

Now, we can consider the input hhungry(M), fish; ;;>; {M}i, and unsurprisingly, this
is a case of starvation – on the one hand, because we can only apply each of the two rules
once, on the other hand, because the poor man has no more fish to eat.

Next, let us model what happens, if a man is taught to fish. We assume that the man
is saturated, when we teach him to fish, and the result is clear: The man becomes a fisher.

r3 @ saturated(M)\ teach(M), fisher(M).

Of course, any fisher can follow his profession and go fishing. At this point, we make
the forgivable assumption that our fisher is as extraordinary as the supply of fish, such
that he can catch a fish whenever he wants to.

r4 @ fisher(M) =) fish

We have now successfully modeled the second sentence of the above proverb: Given a
man and someone willing to teach him to fish (hsaturated(M), teach(M); ;;>; {M}i), that
man can feed himself for a lifetime (non-terminating computation).

Our model is quite realistic, as it also accounts for other phenomenons:

• What if the man refuses to be taught? By non-determinism and rule r2, the man
will become hungry, and at this point he has a serious starvation problem.

• What happens if one tries to teach a hungry man? As none of the rules is applicable
in that case, he will simply starve. So we should at least bring one fish along to be
safe.

Finally, when we consider several hungry men, we realize that our model solves the
problem of nourishing the world’s population: All we need is a single fisher – and if he is
fair, he will even feed the immortals.

257



8.4. Merge Operator

8.4 Merge Operator

In this section, we present the merge operator ⇧ that combines two CHR states. It is
a beneficial tool in formal program analysis and di↵erent applications can be found in
[Raiser, 2010]. Here, we analyze its properties in Section 8.4.1, before we discuss its implied
partial order on states in Section 8.4.2. All results given in this section are formulated for
!!, but work equally for !e, when simply considering a projection of states that ignores
the persistent store.

Definition 8.4.1 (Merge Operator ⇧). Let �1 = hL1;P1;B1;V1i and �2 = hL2;P2;B2;V2i
such that local variables of one state are disjunct from all variables in the other state.
Then for a set V of variables

�1 ⇧V �2 ::= hL1 ] L2;P1 ] P2;B1 ^ B2; (V1 [ V2) \ Vi.

We further lift this definition to equivalence classes. In that case, the merge operation
assumes that two representants with accordingly disjunct variables are selected:

[�1] ⇧V [�2] ::= [�1 ⇧V �2].

For V = ;, we write �1 ⇧ �2 and [�1] ⇧ [�2], respectively.

Applying the merge operator on equivalence classes assumes that two representants
are selected that satisfy the above condition for their variables. Lemma 8.2.3 shows that
renaming of local variables keeps equivalence of states, hence, such representants are guar-
anteed to exist.

Example 8.4.2. Merging hc(X); ;;>; ;i and h;; ;;X = 1; ;i should result in hc(X); ;;X =
1; ;i. However, when considering equivalence classes we would instead get [hc(X); ;;>; ;i],
because h;; ;;X = 1; ;i ⌘! h;; ;;>; ;i.

For that reason, the above definition restricts local variables to one state and allows
turning global variables into local variables during the merge operation. Hence, we can
perform the following merge operation:

[hc(X); ;;>; {X}i] ⇧{X} [h;; ;;X = 1; {X}i] = [hc(X); ;;X = 1; ;i]

8.4.1 Properties of the Merge Operator

Lifting the merge operator ⇧ to equivalence classes is justified by the following lemma,
which shows that it maintains state equivalence.

Lemma 8.4.3 (⇧V maintains Equivalence). Let �1 ⌘! �2, then (�1 ⇧V ⌧) ⌘! (�2 ⇧V ⌧) for
all V.

Proof. W.l.o.g. let �i = hLi;Pi;Bi;V0i for i = 1, 2 and let ⌧ = hL;P;B; V̂i such that the
variables are disjunct according to Def. 8.4.1. Let ȳ1, ȳ2 be the local variables of �1 and
�2 respectively. We know by Thm. 22 that:

CT |= 8(B1 ! 9ȳ2.((L1 = L2) ^ (P1 ./ P2) ^ B2))^
8(B2 ! 9ȳ1.((L1 = L2) ^ (P1 ./ P2) ^ B1))

Let x̄ = (V0 \ V), then

CT |= 8(B1 ! 9ȳ29x̄.((L1 = L2) ^ (P1 ./ P2) ^ B2))^
8(B2 ! 9ȳ19x̄.((L1 = L2) ^ (P1 ./ P2) ^ B1))

258



Chapter 8

As (L = L) and (P ./ P) are tautologies, we can extend (L1 = L2) to ((L1]L) = (L2]L))
and analogously for P. Similarly, B! B is a tautology, and therefore we have for z̄ being
the local variables of ⌧ combined with V̂ \ V:

CT |= 8(B1 ^ B! 9ȳ29x̄9z̄.(((L1 ] L) = (L2 ] L)) ^ ((P1 ] P) ./ (P2 ] P)) ^ B2 ^ B))^
8(B2 ! 9ȳ19x̄9z̄.(((L1 ] L) = (L2 ] L)) ^ ((P1 ] P) ./ (P2 ] P)) ^ B1 ^ B))

As the local variables of �1 ⇧V ⌧ are x̄ [ ȳ1 [ z̄, and analogously for �2 ⇧V ⌧ , we conclude
by Thm. 22:

�1⇧V⌧ = hL1]L;P1]P;B1^B; (V0[V̂)\Vi ⌘! hL2]L;P2]P;B2^B; (V0[V̂)\Vi = �2⇧V⌧.

An important property for program analysis is monotonicity. The following lemma
formulates monotonicity of CHR derivations using the merge operator.

Lemma 8.4.4 (Monotonicity). If [�]⇢! [⌧ ] then [�] ⇧V [�0]⇢! [⌧ ] ⇧V [�0] for all V.

Proof. Let [�]⇢! [⌧ ] via rule r of the form H1\H2 , G | Bc, Bb.
Case ApplyLinear: w.l.o.g. let � = hH l

1 ]H l

2 ] L;Hp

1 ]Hp

2 ] P;G ^ B;V1i. Then

[�]⇢! [hH l

1 ]Bc ] L;Hp

1 ]Hp

2 ] P;G ^ B ^Bb;V1i] = [⌧ ]

and therefore for �0 = hL0;P0;B0;V0i with w.l.o.g. disjunct local variables:

[�] ⇧V [�0] = [� ⇧V �0]
= [hH l

1 ]H l

2 ] L ] L0;Hp

1 ]Hp

2 ] P ] P0;G ^ B ^ B0; (V1 ] V0) \ Vi]
⇢! [hH l

1 ]Bc ] L ] L0;Hp

1 ]Hp

2 ] P ] P0;G ^ B ^Bb ^ B0; (V1 [ V0) \ Vi]
= [⌧ ⇧V �0] = [⌧ ] ⇧V [�0]

Case ApplyPersistent: w.l.o.g. let � = hH l

1 ] L;Hp

1 ]Hp

2 ] P;G ^ B;V1i. Then

[�]⇢! [hH l

1 ] L;Hp

1 ]Hp

2 ] P ]Bc;G ^ B ^Bb;V1i] = [⌧ ]

and therefore for �0 = hL0;P0;B0;V0i with w.l.o.g. disjunct local variables:

[�] ⇧V [�0] = [� ⇧V �0]
= [hH l

1 ] L ] L0;Hp

1 ]Hp

2 ] P ] P0;G ^ B ^ B0; (V1 ] V0) \ Vi]
⇢! [hH l

1 ] L ] L0;Hp

1 ]Hp

2 ] P ]Bc ] P0;G ^ B ^Bb ^ B0; (V1 [ V0) \ Vi]
= [⌧ ⇧V �0] = [⌧ ] ⇧V [�0]

By definition, the merge operator is commutative and closed on ⌃!. For V = ;, the
merge operator ⇧V is also associative on ⌃!, as the following lemma shows. Finally, the
state �; ::= h;; ;;>; ;i is the neutral element of ⇧ (for V = ;). In general however,
� ⇧V �; 6= �, because � may have global variables that also occur in V.

Lemma 8.4.5. (⌃!/⌘!, ⇧) is a commutative monoid.

259



8.4. Merge Operator

Proof. Totality of the merge operator and the neutral element [�;] are clear. Commutativ-
ity is inherited from commutativity of the operators used in Def. 8.4.1, hence, it remains
to show associativity of ⇧:

Let �i = hLi;Pi;Bi;Vii for i = 1, 2, 3, with w.l.o.g. suitably named variables, such that
the below ⇧ operations are defined.
⇧ on ⌃!:

(�1 ⇧ �2) ⇧ �3 =
hL1 ] L2;P1 ] P2;B1 ^ B2;V1 [ V2i ⇧ �3 =

hL1 ] L2 ] L3;P1 ] P2 ] P3;B1 ^ B2 ^ B3;V1 [ V2 [ V3i =
�1 ⇧ hL2 ] L3;P2 ] P3;B2 ^ B3;V2 [ V3i =

�1 ⇧ (�2 ⇧ �3)

⇧ on ⌃!/⌘!:

([�1] ⇧ [�2]) ⇧ [�3] =
[�1 ⇧ �2] ⇧ [�3] =
[(�1 ⇧ �2) ⇧ �3] =
[�1 ⇧ (�2 ⇧ �3)] =
[�1] ⇧ [�2 ⇧ �3] =
[�1] ⇧ ([�2] ⇧ [�3])

Example 8.4.6. For di↵ering V and V0 we have no associativity for the general case:
(�1 ⇧V �2) ⇧V0 �3 6= �1 ⇧V (�2 ⇧V0 �3). This can be seen via the following example:

�1 = hc(X); ;;>; {X}i
�2 = h;; ;;>; ;i
�3 = h;; ;;X = 1; {X}i
V = {X}
V0 = ;

9
>>>>=

>>>>;

)

(�1 ⇧V �2) ⇧V0 �3 = undefined
�1 ⇧V (�2 ⇧V0 �3) = hc(X); ;;X = 1; ;i
([�1] ⇧V [�2]) ⇧V0 [�3] = [hc(Y ); ;;X = 1; {X}i]
[�1] ⇧V ([�2] ⇧V0 [�3]) = [hc(X); ;;X = 1; {X}i]

Nevertheless, we have the following technical lemma:

Lemma 8.4.7. Let �1,�2,�3 2 ⌃! such that no local variable of a state occurs in another
state. Then it holds for all V that

�1 ⇧V (�2 ⇧ �3) = (�1 ⇧ �2) ⇧V �3

and

[�1] ⇧V ([�2] ⇧ [�3]) = ([�1] ⇧ [�2]) ⇧V [�3]

Proof. As all local variables of �1,�2, and �3 are disjunct, the second expression is well-
defined and follows directly from the first. Therefore, only the first expression has to be
shown. However, this follows directly from the associativity of the operators ],[, and
^ used in the definition of operator ⇧ – observe that the global variables of the resulting
representant state are (V1 [ V2 [ V3) \ V in both cases.

260



Chapter 8

8.4.2 Partial Order on States

As the merge operator (with V = ;) is a commutative monoid, there exists an implied
preordering. Furthermore, it is also antisymmetric, hence, we arrive at the following partial
order.

Lemma 8.4.8 (Partial Order �). The commutative monoid (⌃!/⌘!, ⇧) implies a partial
order � defined as follows, with �,�0 2 ⌃:

[�]� [�0] if and only if 9[�̂].[�] ⇧ [�̂] = [�0]

Proof. Every commutative monoid implies a preorder according to the above definition of
�. Therefore, it su�ces to show antisymmetry:

Let [�1]� [�2] and [�2]� [�1], then there exist [�̂1] and [�̂2] as follows:

[�2] = [�1] ⇧ [�̂1]
[�1] = [�2] ⇧ [�̂2]

�
) [�1] = ([�1] ⇧ [�̂1]) ⇧ [�̂2] = [�1] ⇧ ([�̂1] ⇧ [�̂2])

It follows that [�̂1]⇧ [�̂2] equals [�;], hence, [�̂1] = [�̂2] = [�;] and therefore, [�1] = [�2].

However, special care has to be taken for states that contain local variables, because
the resulting partial order may become counter-intuitive, as the following example shows.

Example 8.4.9. Let �1 = hc(X); ;;>; {X}i, �2 = hc(X); ;;X = 1; {X}i, then [�1]� [�2]
(via �̂ = h;; ;;X = 1; {X}i).

However, for �01 = hc(X); ;;>; ;i and �02 = hc(X); ;;X = 1; ;i we do not have [�01] �
[�02]. No �̂ can exist according to the definition of �, because the variable restriction in
Def. 8.4.1 for the merge operator ⇧ prohibits usage of the local variable X in �̂.

This partial order combines well with monotonicity: Given that [�]�[�0] and [�]⇢⇤ [⌧ ],
we have that 9[�̂].[�]⇧ [�̂] = [�0] and [�0]⇢⇤ [⌧ ]⇧ [�̂]. Furthermore, we find that the neutral
element [�;] is also the least element of the partial order.

8.5 Discussion

8.5.1 Formulations of State Transition System

In this section, we provide an overview of di↵erent formulations available for the CHR
state transition system. For both, !e and !!, we identify three formulations that are so
closely related, that we may freely switch between them. This gives us the freedom to
select the most appropriate formulation at any time.

We begin with !e, for which Table 8.5 shows the di↵erent formulation possibilities
for (⌃e,⇢e). For brevity, Table 8.5 and the following tables, omit additional textual
requirements found in the corresponding definitions, for example, that we consider rule
variants with a certain restriction on local variables, or that we assume local variables to
be renamed such that the given merge operations are well-defined.

Variant I was our first formulation of the equivalence-based operational semantics,
given in Definition 8.2.6. Its Equivalence rule resembles the compliance of state equiv-
alence with rule application given by Theorem 21. Reducing the Apply rule, such that
it is based on a rule state, yields Variant I⇧. While it makes Apply more compact, this
comes at the cost of a third inference rule to handle merges. This Merge rule makes
monotonicity explicitly part of the transition system (cf. Lemma 8.4.4). The implicitly
required state splitting operation is discussed in more detail in [Raiser, 2010, Section 13.3].

261



8.5. Discussion

Variant I: (⌃e,⇢e)

Apply:
r @ H1 \H2 , G | Bc, Bb

hH1 ]H2 ]G;G ^ B;Vi⇢r

e hH1 ]Bc ]G;G ^Bb ^ B;Vi

Equivalence:
�0 ⌘ � �⇢r ⌧ ⌧ ⌘ ⌧ 0

�0⇢r

e ⌧
0

Variant I⇧: (⌃e,⇢e) with ⇧

Apply:
r @ H1 \H2 , G | Bc, Bb

hH1 ]H2;G;Vi⇢r

e hH1 ]Bc;G ^Bb;Vi

Equivalence:
�0 ⌘ � �⇢r ⌧ ⌧ ⌘ ⌧ 0

�0⇢r

e ⌧
0

Merge:
�⇢r

e ⌧

� ⇧V �⇢r

e ⌧ ⇧V �

Table 8.5: Di↵erent Formulations of the Operational Semantics !e over ⌃e

Variant II: (⌃e/⌘e,⇢e)

Apply:
r @ H1 \H2 , G | Bc, Bb

[hH1 ]H2 ]G;G ^ B;Vi]⇢r

e [hH1 ]Bc ]G;G ^Bb ^ B;Vi]

Variant II⇧: (⌃e/⌘e,⇢e) with ⇧

Apply:
r @ H1 \H2 , G | Bc, Bb

[hH1 ]H2;G;Vi]⇢r

e [hH1 ]Bc;G ^Bb;Vi]

Merge:
[�]⇢r

e [⌧ ]

[�] ⇧V [�]⇢r

e [⌧ ] ⇧V [�]

Table 8.6: Di↵erent Formulations of the Operational Semantics !e over ⌃e/⌘e

Abstracting over state equivalence yields Variant II in Table 8.6, which is based on
equivalence classes. Due to directly rewriting the set of all equivalent states, it no longer
requires the Equivalence rules from Table 8.5. Finally, Variant II⇧ analogously makes
monotonicity explicit via the Merge rule.

Clearly, all formulations given in Table 8.5 and Table 8.6 are sound and complete with
respect to each other and !va. For the remainder of this work, we will mostly apply
Variant II, as it is the most succinct formulation. When discussing program analysis
methods, however, we often refer to Variant II⇧ due to the importance of the merge
operator in that context. We further found the direct rewriting of equivalence classes,
instead of their single representant states, to be beneficial in the context of this work.
Hence, the first two variants are rarely applied in the remaining chapters.

Analogously to Table 8.5 and Table 8.6, we list di↵erent formulations of the operational
semantics !! in Table 8.7 and Table 8.8. We again find Theorem 21 in the form of the
Equivalence rule and Lemma 8.4.4 corresponds to the Merge rule.

262



Chapter 8

Variant I: (⌃!,⇢!)

ApplyLinear:
r @ (H l

1 ]Hp

1 )\(H
l

2 ]Hp

2 ), G | Bc, Bb H l

2 6= ; � 6⌘! ⌧

� = hH l

1 ]H l

2 ] L;Hp

1 ]Hp

2 ] P;G ^ B;Vi
⇢r

! hH l

1 ]Bc ] L;Hp

1 ]Hp

2 ] P;G ^ B ^Bb;Vi = ⌧

ApplyPersistent:
r @ (H l

1 ]Hp

1 )\H
p

2 , G | Bc, Bb � 6⌘! ⌧

� = hH l

1 ] L;Hp

1 ]Hp

2 ] P;G ^ B;Vi
⇢r

! hH l

1 ] L;Hp

1 ]Hp

2 ]Bc ] P;G ^ B ^Bb;Vi = ⌧

Equivalence:
�0 ⌘ � �⇢r

! ⌧ ⌧ ⌘ ⌧ 0

�0⇢r

e ⌧
0

Variant I⇧: (⌃!,⇢!) with ⇧

ApplyLinear:
r @ (H l

1 ]Hp

1 )\(H
l

2 ]Hp

2 ), G | Bc, Bb H l

2 6= ; � 6⌘! ⌧

� = hH l

1 ]H l

2;H
p

1 ]Hp

2 ;G;Vi
⇢r

! hH l

1 ]Bc;H
p

1 ]Hp

2 ;G ^Bb;Vi = ⌧

ApplyPersistent:
r @ (H l

1 ]Hp

1 )\H
p

2 , G | Bc, Bb � 6⌘! ⌧

� = hH l

1;H
p

1 ]Hp

2 ;G;Vi⇢r

! hH l

1;H
p

1 ]Hp

2 ]Bc;G ^Bb;Vi = ⌧

Equivalence:
�0 ⌘ � �⇢r

! ⌧ ⌧ ⌘ ⌧ 0

�0⇢r

e ⌧
0

Merge:
�⇢r

! ⌧

� ⇧ �⇢r

! ⌧ ⇧ �

Table 8.7: Di↵erent Formulations of the Operational Semantics !! over ⌃!

263



8.5. Discussion

Variant II: (⌃!/⌘!,⇢!)

ApplyLinear:
r @ (H l

1 ]Hp

1 )\(H
l

2 ]Hp

2 ), G | Bc, Bb H l

2 6= ; [�] 6= [⌧ ]

[�] = [hH l

1 ]H l

2 ] L;Hp

1 ]Hp

2 ] P;G ^ B;Vi]
⇢r

! [hH l

1 ]Bc ] L;Hp

1 ]Hp

2 ] P;G ^ B ^Bb;Vi] = [⌧ ]

ApplyPersistent:
r @ (H l

1 ]Hp

1 )\H
p

2 , G | Bc, Bb [�] 6= [⌧ ]

[�] = [hH l

1 ] L;Hp

1 ]Hp

2 ] P;G ^ B;Vi]
⇢r

! [hH l

1 ] L;Hp

1 ]Hp

2 ]Bc ] P;G ^ B ^Bb;Vi] = [⌧ ]

Variant II⇧: (⌃!/⌘!,⇢!) with ⇧

ApplyLinear:
r @ (H l

1 ]Hp

1 )\(H
l

2 ]Hp

2 ), G | Bc, Bb H l

2 6= ; [�] 6= [⌧ ]

[�] = [hH l

1 ]H l

2;H
p

1 ]Hp

2 ;G;Vi]
⇢r

! [hH l

1 ]Bc;H
p

1 ]Hp

2 ;G ^Bb;Vi] = [⌧ ]

ApplyPersistent:
r @ (H l

1 ]Hp

1 )\H
p

2 , G | Bc, Bb [�] 6= [⌧ ]

[�] = [hH l

1;H
p

1 ]Hp

2 ;G;Vi]
⇢r

! [hH l

1;H
p

1 ]Hp

2 ]Bc;G ^Bb;Vi] = [⌧ ]

Merge:
[�]⇢r

! [⌧ ]

[�] ⇧V [�]⇢r

! [⌧ ] ⇧V [�]

Table 8.8: Di↵erent Formulations of the Operational Semantics !! over ⌃!/⌘!

8.5.2 Range-Restrictedness

As specified in Definition 8.3.5, !! requires range-restricted programs. In the following,
we explain why a naive extension to the full segment of CHR by dropping this restriction
would violate soundness.

We recall that a persistent constraint is a finite representation of an arbitrary number
of identical constraints, as generated under !e by a propagation rule from the range-
restricted segment. Under the same conditions, however, a propagation rule with local
variables would generate an arbitrary number of nearly but not quite identical constraints,
as the local variables would be renamed apart between any two of those nearly identical
constraints, which the following example demonstrates.

Example 8.5.1. Consider the following program:

r1 @ a =) b(X)
r2 @ b(X), b(X) , c

When executed with an initial a-constraint, this program causes the following infinite
derivation under !e.

[ha;>; ;i]
⇢r1

e [ha, b(X 0);>; ;i]
⇢r1

e [ha, b(X 0), b(X 00);>; ;i]⇢r1
e . . .

The variables X 0, X 00, . . . are distinct from each other and from the variable X which occurs
in the rule body. Thus, it is impossible to derive the c-constraint from the a-constraint
under !e.

264



Chapter 8

Under the current approach, we cannot finitely represent an arbitrary number of such
nearly identical constraints. A naive extension of !! to the full segment of CHR as spec-
ified above would discard the distinction between the two types of generated constraints
altogether.

Example 8.5.2. With respect to the previous example, a naive extension of !! would make
the following derivation possible:

[ha; ;;>; ;i]
⇢r1

! [ha; b(X 0);>; ;i] = [ha; b(X 0), b(X 0);>; ;i]
⇢r2

! [ha; b(X 0), b(X 0), c;>; ;i]

As the above example showed, simply applying Definition 8.3.5 to non-range-restricted
programs results in a loss of soundness.

8.5.3 Termination Behavior

The operational semantics !! is an approach to treating propagation rules in CHR that is
completely di↵erent from the previous token-based approaches. This especially results in
a di↵ering termination behavior. There exist programs that terminate in !! but not in !t

and !p, and vice versa.

Example 8.5.3. Consider again the example program for computing the transitive hull,
given in Example 8.3.1. Due to the presence of a propagation rule, it is non-terminating
under !e. Under !t and !p, termination depends on the initial goal: It is shown in
[Pilozzi and De Schreye, 2009] that it terminates for acyclic graphs. However, goals con-
taining cyclic graphs, such as he(1, 2), e(2, 1); ;;>; ;i;0, entail non-terminating behavior.
The following derivation is not exact according to !t, but uses simplified states for better
readability.

he(1, 2), e(2, 1); ;;>; ;i;0
⇢⇤

t h;; e(1, 2)#0, e(2, 1)#1;>; ;i;2
⇢t he(1, 1); e(1, 2)#0, e(2, 1)#1;>; {(t, 0, 1)}i;2
⇢t h;; e(1, 2)#0, e(2, 1)#1, e(1, 1)#2;>; {(t, 0, 1)}i;3
⇢t he(1, 2); e(1, 2)#0, e(2, 1)#1, e(1, 1)#2;>; {(t, 0, 1), (t, 2, 0)}i;3
⇢t . . .

Under !!, the previous goal terminates after computing the transitive hull.

[h{e(1, 2), e(2, 1)}; ;;>; ;i]
⇢! [h{e(1, 2), e(2, 1)}; {e(1, 1)};>; ;i]
⇢⇤

! [h{e(1, 2), e(2, 1)}; {e(1, 1), e(1, 2), e(2, 1), e(2, 2)};>; ;i] 6⇢!

The transitive hull program benefits from execution under !!. While it is the most
natural formulation of a transitivity property in terms of a CHR rule, current implemen-
tations cannot use it in that form due to its non-terminating behavior on circular input
graphs. For !!, we can instead prove termination for arbitrary inputs.

Lemma 8.5.4. Under !!, the transitive hull program terminates for every possible input.

Proof. The only rule propagates constraints of type e/2, which necessarily become persis-
tent. The propagated constraints contain only the arguments X,Z, received as arguments

265



8.5. Discussion

in the rule head. Hence, no new arguments are introduced. Any given initial state con-
tains a finite number of arguments used in e/2 constraints. From these, only finitely many
di↵erent e/2 constraints can be built. As rule application is irreflexive, the computation
therefore has to stop after a finite number of transition steps.

Nevertheless, program termination in !! is not strictly stronger than that in !t or !p,
as the following counterexample shows.

Example 8.5.5. Consider the following exemplary CHR program.

r1 @ a =) b
r2 @ c(X), b , c(X+1)

The program terminates in !t (and !p): As there can only be a finite number of
a-constraints in the initial goal, rule r1 will create a finite number of b-constraints as
well. These will be consumed by rule r2 in finite time, followed by quiescence. We again
simplified the following states for better readability.

ha, c(X); ;;>; ;i{X}

0

⇢⇤
t h;; a#0, b#1, c(X)#2;>; (r1, 0)i{X}

3

⇢r2
t
hc(X+1); a#0;>; (r1, 0)i{X}

3

⇢t h;; a#0, c(X+1)#3;>; (r1, 0)i{X}

4 6⇢t

In contrast, the same program exhibits non-terminating behavior in !!, as the following
infinite derivation shows:

[ha, c(X); ;;>; {X}i]
⇢r1

! [ha, c(X); b;>; {X}i]
⇢r2

! [ha, c(X+1); b;>; {X}i]
⇢r2

! [ha, c(X+2); b;>; {X}i]
⇢r2

! . . .

This di↵erence in termination behavior is neither good nor bad. It only shows that
our approach of persistent constraints is an entirely di↵erent one from the token-based
approaches. Therefore, programs developed for either operational semantics should not
naively be executed in the other, lest results may change unexpectedly.

8.5.4 Expressivity

In this section we compare expressivity of the operational semantics !e,!t,!p, and !!.
Section 8.5.4 first introduces how we formally compare expressivity of di↵erent operational
semantics, before Section 8.5.4 presents the results of our comparison.

Expressivity of Operational Semantics

As all of the compared operational semantics are Turing-complete [Sneyers et al., 2009],
expressivity is compared in the literature via the concept of acceptable encoding. This
concept originates from Shapiro [Shapiro, 1989] and was first applied to CHR by Gabbrielli
et al. [2009]. It relies on the notion of answer defined below.

In order to distinguish linear and persistent constraints when considering goals, we in-
troduce for each CHR constraint symbol c/n, denoting a linear constraint, a corresponding

266



Chapter 8

fresh symbol !c/n, denoting a persistent constraint. For a multisetM = {c1(t̄1), . . . , cn(t̄n)}
let !M = {!c1(t̄1), . . . , !cn(t̄n)}.

In the literature answers are usually defined as logical formulas, expressing the declar-
ative reading of a final state. We found it more suitable to define them as !e states for two
reasons: Firstly, unlike logical formulas, !e states are aware of multiplicities of constraints.
Secondly, !e states enable us to exploit ⌘e when comparing answers.

Definition 8.5.6 (Answers). Let G ^ B be a goal with CHR constraints G and built-in
constraints B. Then the set of equivalence classes of !e states AP(G^B) for a program P
is called the (set of) answers and is defined as follows:

• for !e: Ae

P
(G ^B) = {[⌧ ] | [hG;B; vars(G ^B)i]⇢⇤

e [⌧ ] 6⇢e}

• for !t: At

P
(G ^B) = {[hchr(G);B; vars(G ^B)i] | hG,B; ;;>; ;ivars(G^B)

0 ⇢⇤
t

h;;G;B;T ivars(G^B)
n 6⇢t}

• for !p: Ap is defined analogously to At.

• for !!: A!
P
(G^B) = {[hL]!P;B; vars(G^B)i] | G = L]!P^hL;P ;B; vars(G^B)i⇢⇤

!
hL;P;B; vars(G ^B)i 6⇢!}

The following definition is based on the definition of Gabbrielli et al. [2009] for an
acceptable encoding for CHR operational semantics.

Definition 8.5.7 (Acceptable Encoding). Let !1,!2 be two operational semantics, Pi the
set of all !i programs, and Gi the set of all !i goals for i = 1, 2. An acceptable encoding
of !1 into !2 is a pair of mappings J K : P1 ! P2 and J Kg : G1 ! G2 which satisfy the
following conditions:

• P1 and P2 share the same constraint theory CT ;

• for any goal G 2 G1 let c, d 2 G be CHR constraints, then Jc, dKg = JcKg ] JdKg. For
any built-in constraint b 2 G we have JbKg = b.

• Answers are preserved, i.e., 8G 2 G1.8P 2 P1.A2
JPK(JGKg) = JA1

P
(G)Kg holds.

Comparison Results

Figure 8.1 orders the di↵erent operational semantics by expressivity. As shown by Gab-
brielli et al. [2009], there exists an acceptable encoding to embed !t into !p, but not vice
versa. Thus, !p is strictly more expressive than !t, denoted by the corresponding arrow
in Figure 8.1. In this work, we furthermore show that !p is strictly more expressive than
!! and that !e is strictly less expressive than both !t and !!.

Concerning the embedding of !e into !!, we assume range-restricted programs only.
Concerning the acceptable encodings of !! into !t and !p, we require that the respective
programs do not contain pathological rules, according to the following definition.

Definition 8.5.8 (Pathological Rules). A CHR rule

r @ H1\H2 , G | Bc, Bb

is called pathological if and only if

9B.hH2;B ^G; ;i ⌘e hBc;Bb; ;i

It is called trivially pathological i↵ B = >. A CHR program P is called pathological if it
contains at least one pathological rule.

267



8.5. Discussion

!p

!t

77

!!

gg

oo_ _ _ _ _ _ _

!e

XX FF

Figure 8.1: Acceptable encodings between di↵erent operational semantics

The range-restriction requirement on !e programs is due to the fact that Defini-
tion 8.3.5 for !! is only defined on range-restricted programs. The restriction to non-
pathological programs for embeddings of !! into !t and !p ensures ApplyLinear transi-
tions never fail due to irreflexivity, according to the following Lemma.

Concerning the relationship of !t and !!, we found that no acceptable encoding of !t

into !! exists. We did find an acceptable encoding of !! into !t. However, a thusly encoded
program might exhibit a di↵erent termination behavior from the original !! program (cf.
Example 8.5.16), as visualized by the dashed arrow in Figure 8.1. We currently do not
know whether an acceptable encoding without that limitation exists.

The definition of pathological rules is chosen such as to coincide with those rules that
cause redundant rule applications – modulo state equivalence – in !e.

Lemma 8.5.9. Let P be a non-pathological CHR program. Then for all !e states �, ⌧ 2 ⌃e

where [�]⇢e [⌧ ], we have � 6⌘e ⌧ .

Proof. We first show a property of Def. 8.5.8: Let hH2;B^G; ;i ⌘e hBc;Bb; ;i, w.l.o.g. let
the respective local variables ȳ, ȳ0 be renamed apart. Then by Thm. 20:

CT |= 8(B ^G! 9ȳ0.((H2 = Bc) ^Bb)) and
CT |= 8(Bb ! 9ȳ.((H2 = Bc) ^ B ^G)

This is logically equivalent to

CT |= 8(B ^G! 9ȳ0.((H2 = Bc) ^Bb ^ B ^G)) and
CT |= 8(Bb ^ B ^G! 9ȳ.((H2 = Bc) ^ B ^G))

Therefore, again by Thm. 20, we have that

hH2;G ^ B; ;i ⌘e hBc;Bb; ;i ⌘e hBc;Bb ^G ^ B; ;i

Now let r be a rule r @ H1 \ H2 , G | Bc, Bb such that [�] ⇢r
e [⌧ ]. It follows that

� ⌘e hH1 ]H2 ]G;G ^ B;Vi and ⌧ ⌘e hBc ]H1 ]G;Bb ^G ^ B;Vi.
Assume that � ⌘e ⌧ . As H1 and G occur in both states, the corresponding states with

those multisets removed are also equivalent. Similarly, the same states with ; instead of
V for global variables are equivalent. Therefore,

hH2;G ^ B; ;i ⌘e hBc;Bb ^G ^ B; ;i

This implies that there exists a B according to Def. 8.5.8, which is a contradiction to the
program being non-pathological. Hence, � 6⌘e ⌧ .

268



Chapter 8

The following lemmata are proofs for the arrows present in Figure 8.1.

Lemma 8.5.10 (!t ! !p). There exists an acceptable encoding of !t into !p.

Proof (sketch). Set all rules to priority 1.

Lemma 8.5.11 (!p 6! !t). There exists no acceptable encoding of !p into !t.

Proof. Follows directly from Gabbrielli et al. [2009].

Lemma 8.5.12 (!e ! !t). There exists an acceptable encoding of !e into !t.

Proof (sketch). Replace propagation rules with simplification rules that contain a copy of
the head in their bodies.

Lemma 8.5.13 (!t 6! !e). There exists no acceptable encoding of !t into !e.

Proof. For any program P 0 if � = hG0;B0; ;i with [�] 2 Ae

P 0(G), no rule in P 0 is applicable
to [�]. Consider the !t program P = (a) b). SinceAt

P
(a) = {[ha, b;>; ;i]} andAt

P
(a, b) =

{[ha, b, b;>; ;i]}, an acceptable encoding has to satisfy Ae

JPK(JaKg) = {[hJa, bKg;>; ;i]} and

Ae

JPK(Ja, bKg) = {[hJa, b, bKg;>; ;i]} = {[hJaKg ] JbKg ] JbKg;>; ;i]} 6= {[hJaKg ] JbKg;>; ;i]} =

{[hJa, bKg;>; ;i]} which contradicts our earlier observation.

Lemma 8.5.14 (!t 6! !!). There exists no acceptable encoding of !t into !!.

Proof. Analogously to Lemma 8.5.13.

Lemma 8.5.15 (!! ! !t). There exists an acceptable encoding of !! into !t.

Proof. We show how to encode any !! program P in !t. For every n-ary constraint
c/n in P, there exists an (n + 1)-ary constraint c/n + 1 in the encoding. In the follow-
ing, for a multiset of user-defined !!-constraints M = {c1(t̄1), . . . , cn(t̄n)} let l(M) ::=
{c1(l, t̄1), . . . , cn(l, t̄n)} and p(M) ::= {c1(p, t̄1), . . . , cn(p, t̄n)}.

The encoded program JPK is constructed as follows:

1. For every rule r @ H1 \ H2 , G | B in P, and all multisets H l

1, H
p

1 , H
l

2, H
p

2 s.t.
H l

1 ]Hp

1 = H1 and H l

2 ]Hp

2 = H2 and H l

2 6= ;, the following rule is in JPK:

l(H l

1) ] p(Hp

1 ) ] p(Hp

2 ) \ l(H
l

2), G | l(Bc), Bb

2. For every rule r @ H1\H2 , G | Bc, Bb in P, and all multisets H l

1, H
p

1 s.t. H l

1]H
p

1 =
H1, the following rule is in JPK:

l(H l

1) ] p(Hp

1 ) ] p(H2)) G | p(Bc), Bb

3. For every rule {c(p, t̄), c(p, t̄0)}]H1 \H2 , G | B in JPK, add also the following rule:

{c(p, t̄)} ]H1 \H2 , t̄ = t̄0 ^G | B

4. For every user-defined constraint declaration cn in P, there is a rule

c(p, t̄) \ c(p, t̄), >

269



8.5. Discussion

The translation of goals is defined as:

JL]!PKg ::= l(L) ] p(P)

Soundness: Let S! be a function mapping from !t states to ⌃! such that for �t =
hl(L) ] p(P) ] B0; S;B;TiV

k
where chr(S) = l(L0) ] p(P0) for some L0,P0,

S!(�t) ::= [hL ] L0;P ] P0;B ^ B0;Vi]

In the following, we will show that for all �t, ⌧t 2 ⌃t, �t⇢⇤
t ⌧t implies S!(�t)⇢⇤

! S!(⌧t).
It is clear from the definition that both the Introduce and Solve transitions of !t are

invariant to the S! function. ConcerningApply, we proceed stepwise w.r.t. the application
of the four types of rules present in the encoding JPK.

1. The rules introduced in construction step 1 represent ApplyLinear transitions in
P.

Let r be a variant of a rule l(H l

1) ] p(Hp

1 ) ] p(Hp

2 ) \ l(H l

2) , G | l(Bc) ] Bb in
JPK with fresh variables ȳ. By definition of the encoding, r has a corresponding rule
r0 @ H l

1 ]H
p

1 \H l

2 ]H
p

2 , G | Bc ]Bb in P. We assume w.l.o.g. that the goal store of �t
is empty. Hence let �t = h;; l(L)] p(P);B;TiVk and assume that �t⇢r

t ⌧t. From Def. 1.1.5
follows that CT |= 8(B ! 9ȳ.(l(H l

1) ] l(H l

2) ] l(L0) = l(L) ^ p(Hp

1 ) ] p(Hp

2 ) ] p(P0) =
p(P) ^G)) for some L0,P0. Hence, S!(�t) = [hH l

1 ]H l

2 ] L0;Hp

1 ]Hp

2 ] P0; (H l

1 ]H l

2 ] L0 =
L) ^ (Hp

1 ]Hp

2 ] P0 = P) ^G ^ B;Vi]. Using Def. 1.1.5 and Def. 8.3.5, we now have that
S!(�t)⇢r

0
! S!(⌧t) or S!(�t) = S!(⌧t).

2. The rules introduced in step 2 representApplyPersistent transitions. Analogously
to step 1, we have that �t ⇢r

t ⌧t implies S!(�t) ⇢r
0

! S!(⌧t) for some rule r0 2 P or
S!(�t) = S!(⌧t).

3. Step 3 introduces further rules for both ApplyLinear and ApplyPersistent tran-
sitions where a single persistent constraint in the store matches with several head con-
straints.

For example, the rule c(X), c(Y ) , d(X,Y ) is applicable to the state [h;; c(0);>; ;i]
in !!, since h;; c(0);>; ;i ⌘! h;; c(0), c(0);>; ;i. Step 2 of the embedding introduces the
rule c(p,X), c(p, Y ) , d(p,X, Y ) and step 3 furthermore introduces c(p,X) , X =
Y |d(p,X, Y ), which matches with the !t state h;; c(p, 0);>; ;iV

k
. Strengthening of the

guard might result in a redundant rule: For the rule c(X), c(Y ) , X > Y | d(X,Y ), the
rule c(p,X), ?|d(p,X, Y ) is introduced which cannot be fired by definition.

To proof soundness, let � = hL; {c(p, t̄), c(p, t̄0)}]P;B;Vi and �0 = hL; {c(p, t̄)}]P;B;Vi
such that [�] ⇢r

! [⌧ ] for some ⌧ . If CT |= 8(B ! t̄ = t̄0), we have � ⌘! �0, and hence
[�0] ⇢r

! [⌧ ]. The soundness of the rules introduced in step 3 is thus reduced to the
soundness of those from step 1 and step 2.

4. The rules introduced in step 4 enforce a minimal representation of the persistent
store. As S!(hG; {c(t̄), c(t̄)} ] P;B;TiV

k
) = S!(hG; {c(t̄)} ] P;B;TiV

k
), they are invariant to

soundness.
From 1-4 follows that �t⇢⇤

t ⌧t implies S!(�t)⇢⇤

! S!(⌧t).
Now assume that ⌧t is a fixed point w.r.t. JPK. This implies that for every possible

match (if any) between sequences of constraints H1, H2 in ⌧t and a rule r in JPK, there
is a token (r, id(H1) + id(H2)) in the propagation history T⌧ inhibiting the firing of r. It
follows that r is of the form r @ l(H l

1) ] p(Hp) ) G | p(Bc) ] Bb and that p(Bc) and Bb

are already contained in ⌧t from an earlier firing of r. Hence, for every possible match (if
any) between constraints in S!(⌧t) and a rule r0 in P, the firing of r0 is inhibited by the
irreflexivity condition. Thus, S!(⌧t) also is a fixed point w.r.t. P.

270



Chapter 8

So finally, if from �t = hl(L) ] p(P) ] B; ;;>; ;iV0 we can derive a fixed point ⌧t =
h;; S;B0;TiVn where chr(S) = l(L0) ] p(P0), then from the !! state [hL;P;B;Vi] we can
derive a fixed point [hL0;P0;B0;Vi]. It follows by Def. 8.5.6 that for any goal G,B, we have
At

JPK(JG,BKg) ✓ JA!
P
(G,B)Kg.

Completeness: The Introduce and Solve rules of !t guarantee that for every �t 2 ⌃t

there exists T, k such that

S!(�t) = [hL;P;B;Vi] ) �t⇢⇤

t h;; S;B;TiVk s.t. chr(S) = l(L) ] p(P) (8.6)

With respect to ApplyLinear, assume �t = h;; S;B;TiV
k
, �! = hL;P;B;Vi, ⌧! such

that chr(S) = l(L) ] p(P), and a rule r @ H l

1 ] Hp

1 \ H l

2 ] Hp

2 , G | Bc, Bb such that
[�!]⇢r

! [⌧!].
From [�!]⇢r

! [⌧!] follows that �! ⌘! �0! = hH l

1 ]H l

2 ] L0;Hp

1 ]Hp

2 ] P0;G ^ B0;Vi and
⌧! ⌘! ⌧ 0! = hH l

1 ]Bc ]L0;Hp

1 ]H
p

2 ]P0;G^B0 ^Bb;Vi, where H l

2 6= ; and ȳ, ȳ0 are the local
variables of �!,�0!. We assume w.l.o.g. that ȳ, ȳ0 are disjoint. Hence, Thm. 22 implies:

CT |= 8(B! 9ȳ0.((L = H l

1 ]H l

2 ] L0) ^ (P ./ Hp

1 ]Hp

2 ] P0) ^ B0 ^G))) (8.7)

CT |= 8((B0 ^G)! 9ȳ.((L = H l

1 ]H l

2 ] L0) ^ (P ./ Hp

1 ]Hp

2 ] P0) ^ B))) (8.8)

By step 1 of our encoding, JPK contains a rule

r0 @ l(H l

1) ] p(Hp

1 ) ] p(Hp

2 ) \ l(H
l

2), G | l(Bc), Bb

We aptly decompose L into three components L = H l

1
0 ]H l

2
0 ] L00 such that:

L = H l

1 ]H l

2 ] L0 ) (H l

1
0

= H l

1) ^ (H l

2
0

= H l

2) ^ (L00 = L0) (8.9)

It is not guaranteed that P ./ Hp

1 ]H
p

2 ]P0 ) (Hp

1 ]H
p

2 ) ✓ P. However, we can decompose
P into two components P = Hp0 ] P00 such that

P ./ Hp

1 ]Hp

2 ] P0 ) (Hp0 ./ Hp

1 ]Hp

2 ) ^ (Hp0 ✓ Hp

1 ]Hp

2 ) (8.10)

Step 3 then guarantees that JPK contains a rule

r00 @ l(H l

1) ] p(Hp) \ l(H l

2), G0 ^G | l(Bc), Bb

such that
CT |= G0 $ Hp ./ Hp

1 ]Hp

2 (8.11)

and
P ./ Hp

1 ]Hp

2 ] P0 ) Hp0 = Hp (8.12)

Applying (8.12),(8.10), and (8.11) gives us

CT |= (P ./ Hp

1 ]Hp

2 ] P0)! G0 (8.13)

Hence, from (8.7), we get

CT |= 8(B! 9ȳ0.((L = H l

1 ]H l

2 ] L0) ^ (P ./ Hp

1 ]Hp

2 ] P0) ^G0 ^ B0 ^G)))

By Def. 1.1.5, we can thus derive �t⇢r
00

t ⌧t for

⌧t = hl(Bc) ]Bb; S0;B ^ (B̃ ^G0 ^ B0 ^G;T0iV
k

271



8.5. Discussion

for some T0 and where chr(S0) = l(H l

1
0]L00)]p(Hp0]P00) and B̃ = (L = H l

1]H l

2]L0)^(P ./
Hp

1 ]Hp

2 ] P0). Consequently,

S!(⌧t) = [hH l

1
0 ] L00 ]Bc;H

p0 ] P00;B ^ B̃ ^G0 ^ B0 ^G ^Bb;Vi]

Applying (8.9) and Def. 8.3.3:1 gives us:

S!(⌧t) = [hH l

1 ] L0 ]Bc;H
p0 ] P00;B ^ B̃ ^G0 ^ B0 ^G ^Bb;Vi]

Since P = Hp0 ] P00, we can apply the matching (P ./ Hp

1 ]Hp

2 ] P0) we find in the guard
to get

S!(⌧t) = [hH l

1 ] L0 ]Bc;H
p

1 ]Hp

2 ] P0;B ^ B̃ ^G0 ^ B0 ^G ^Bb;Vi]

As the variables in ȳ, ȳ0 are disjoint, we apply (8.8), (8.13), and Def. 8.3.3:2 to receive:

S!(⌧t) = [hH l

1 ] L0 ]Bc;H
p

1 ]Hp

2 ] P0;B0 ^G ^Bb;Vi] = [⌧!]

We proceed similarly for ApplyPersistent. Hence, for any �t 2 ⌃t, ⌧! 2 ⌃! such that
S!(�t)⇢r

! [⌧!], there exists a ⌧t 2 ⌃t s.t. �t⇢t ⌧t and S!(⌧ 0t) = [⌧!].
Fixed points: Assume that �! = hL;P;B;Vi is a fixed point in !!. According to Def. 8.3.5,
one of the following applies: (1) There is no rule r @ H l

1 ] Hp

1 \ H l

2 ] Hp

2 , G | Bc, Bb

in P such that �! ⌘! hH l

1 ] Hp

1 ] L0;Hp

1 ] Hp

2 ] P0;G ^ B0;Vi. (2) For every such rule
that exists, its application violates the non-reflexivity condition, i.e. for a hypothetical
follow-up state [⌧!], we have [�!] = [⌧!].

Now consider a state �t s.t. S!(�t) = [�!]. Hence, it is of the form �t = h;; S;B;TiVk
s.t. chr(S) = l(L) ] p(P). In case (1), no rules in JPK are applicable to �t = h;; l(L) ]
p(P);B;TiV

k
, except for those of the form c(t̄) \ c(t̄) , >. The program will quiesce in

a state �0t s.t. S!(�0t) = [�!] after finitely many applications of such rules. In case (2)
– assuming a non-pathological CHR program – all possible applications are of the type
ApplyPersistent (cf. Lemma 8.5.9) . Consequently, all rules applicable to �t in JPK are
of the form r0 @ l(H l

1) ] p(Ĥp)) G | p(Bc) ]Bb or c(t̄) \ c(t̄), >.
For each such rule r0 @ l(H l

1) ] p(Ĥp) ) G | p(Bc) ] Bb, we can tell by �! ⌘! ⌧! that
p(Bc) is contained in p(P) and Bb is contained in B. Hence, we can apply r0 to �t, followed
by finitely many applications of rules of the form c(t̄) \ c(t̄), > to finitely derive a state
⌧t = h;; S;B0;T0iV

k0 such that S!(�t) = S!(⌧t) and r0 is not applicable to ⌧t. We repeat
this for every applicable rule r0. After finitely many such sequences of derivation steps,
no such rule remains applicable. Thus, we can finally derive a fixed point ⌧t0 such that
S!(�t) = S!(⌧t0).

It follows by Def. 8.5.6 that for any goal G,B, we have JA!
P
(G,B)Kg ✓ At

JPK(JG,BKg).

Example 8.5.16 (Termination Correspondence). The termination behavior of !! pro-
grams encoded in !t, via the encoding used to prove Lemma 8.5.15, changes. Consider
a program P consisting only of the rule a =) a that is clearly terminating in !!. Its
corresponding encoded program JPK is given below.

r1 @ a(l) =) a(p)
r2 @ a(p) =) a(p)
r3 @ a(p)\a(p) , >

272



Chapter 8

It is an acceptable encoding according to Definition 8.5.7, and hence, answers are
preserved. Nevertheless, there exists the following infinite computation.

� = ha(l); ;;>; ;i;0
⇢t h;; a(l)#0;>; ;i;1
⇢r1

t
ha(p); a(l)#0;>; (r1, 0)i;1

⇢t h;; a(l)#0, a(p)#1;>; (r1, 0)i;2
⇢r2

t
ha(p); a(l)#0, a(p)#1;>; (r1, 0), (r2, 1)i;2

⇢t h;; a(l)#0, a(p)#1, a(p)#2;>; (r1, 0), (r2, 1)i;3
⇢r2

t
ha(p); a(l)#0, a(p)#1, a(p)#2;>; (r1, 0), (r2, 1), (r2, 2)i;3

⇢t . . .

The reason for this di↵erence is found in rules r2 and r3: they enforce set semantics
on the constraints, supposedly corresponding to irreflexivity in !!. However, the non-
determinism of !t seems to hinder proper enforcing of irreflexivity via rules.

Lemma 8.5.17 (!p 6! !!). There exists no acceptable encoding of !p into !!.

Proof. Follows from [Gabbrielli et al., 2009]. Gabbrielli et al. [2009] consider only data
su�cient answers, however, as there exists no acceptable encoding of the program given
in their proof, the negative result carries over to the generic case of answers.

Lemma 8.5.18 (!! ! !p). There exists an acceptable encoding of !! into !p.

Proof. We show how to encode any !! program P in !p. For every n-ary constraint
c/n in P, there exists a constraint c/(n + 1) in JPK. In the following, for a multiset of
user-defined !!-constraints M = {c1(t̄1), . . . , cn(t̄n)} let l(M) ::= {c1(l, t̄1), . . . , cn(l, t̄n)},
p(M) ::= {c1(p, t̄1), . . . , cn(p, t̄n)}, and c(M) ::= {c1(c, t̄1), . . . , cn(c, t̄n)}. The encoded
program JPK is constructed as follows:

Apply rules 1-3 from the proof of Lemma 8.5.15, but in rule 2 replace p(Bc) with c(Bc).
Assign to each of these rules the constant priority 3. Additionally, add the following rules
to JPK for each constraint c/n where t̄ is a sequence of n di↵erent variables:

1 :: c(p, t̄)\c(c, t̄), >
2 :: c(c, t̄), c(p, t̄)

The translation of goals is defined as JL]!PKg ::= l(L) ] p(P).
Soundness: Let S! : ⌃p ! ⌃!, �p = hl(L)] p(P)] c(Pc)]B0; S;B;TiV

k
7! hL]L0;P] P0 ]

Pc ]P0
c;B^B0;Vi where chr(S) = l(L0)] p(P0)] c(P0

c). In the following, we will show that
for all �p, ⌧p 2 ⌃p, �p⇢⇤

p ⌧p implies S!(�p)⇢⇤

! S!(⌧p).
The proof is analogous to Lemma 8.5.15 for the rules of priority 3. As c(t̄) ./ c(t̄)]c(t̄)

rules of priority 1 and 2 are invariant to S!.
Now assume ⌧p is a fixed point w.r.t. JPK. Analogously to Lemma 8.5.15, S!(⌧p) is a

fixed point w.r.t. P. The only di↵erence being c(Bc) in the body instead of p(Bc), but
rules of priority 1 and 2 would then be applicable to convert c(Bc) into p(Bc) modulo set
semantics. Therefore, it follows that Ap

JPK(JGKg) ✓ JA!
P
(G)Kg.

Completeness: Analogously to Lemma 8.5.15, we have that for any �p 2 ⌃p, ⌧! 2 ⌃!

such that S!(�p) ⇢r

! [⌧!], there exists a ⌧p 2 ⌃p such that �p ⇢⇤
p ⌧p and S!(⌧p) = [⌧!].

The only change to the proof is that after applying a rule of the encoded program we also
apply all possible Introduce and Solve transitions, as well as all rule applications with
priorities 1 and 2 (all these operations are invariant to S!). Hence, the resulting state ⌧p

273



8.5. Discussion

contains only identified constraints whose first argument is either l or p. All constraints
with argument c are either replaced by the corresponding one with argument p by the rule
of priority 2, or they are removed, because a corresponding constraint already exists.

Now assume �! = hL;P;B;Vi is a fixed point of P, then there exists �p 2 ⌃p with
S!(�p) = [�!]. There are two possible cases:

1. [�!] is not applicable to any rule r 2 P (when disregarding irreflexivity)

2. all rule applications would violate irreflexivity

In case 1, �p clearly is a fixed point as well (otherwise the above soundness result violates
the assumption).

Therefore, consider case 2. We assume non-pathological programs, so that, according
to Lemma 8.5.9, ApplyLinear never violates irreflexivity. Hence, there exists a rule in
JPK:

3 :: r0 @ l(H l) ] p(Hp) =) G | c(Bc), Bb

In the following, for a set M of constraints let #M denote the corresponding set
of identified constraints. Assume �p is no fixed point, then �p = h;; #l(Ĥ l) [ #p(Ĥp) [
S;B;TiV

k
and CT |= 8(B! (A^G)) with �p⇢r

0
p ⌧p = hc(Bc)]Bb; #l(Ĥ l)[#p(Ĥp)[S;B^

A;T0iV
k
, where A ::= chr(#l(Ĥ l)) = l(H l) ^ chr(#p(Ĥp)) = p(Hp). Applying Introduce

and Solve, we get ⌧p⇢⇤
p h;; #l(Ĥ l) [#p(Ĥp) [ S [#c(Bc);B ^Bb ^A;T0iVm.

The rule r0 corresponds to a rule r in P and �! is applicable to r, except for irreflex-
ivity (this follows from soundness). The irreflexivity and Theorem 22 imply CT |= B !
9x̄.(Hp ./ Hp ]Bc)^B^Bb. Therefore, CT |= (B^Bb ^A)! (Ĥp ./ Ĥp ]Bc). It follows
that CT |= (B ^Bb ^A)! 8c(c, t̄) 2 c(Bc).9c(p, t̄0) 2 p(Ĥp).t̄ = t̄0.

Therefore, for each c(c, t̄) 2 c(Bc) we can apply the corresponding rule

1 :: c(p, t̂)\c(c, t̂), >,

as CT |= 8(B ^ Bb ^ A ! 9x̄.(chr(c(p, t̄0)) = c(p, t̂) ^ chr(c(c, t̄)) = c(c, t̂))). Therefore,
each constraint in c(Bc) is removed by rules of priority 1 and we get �p ⇢⇤

p h;; #l(Ĥ l) [
#p(Ĥp) [ S;B;T0iVm = ⌧ 0p, such that the above rule application is prohibited by T0.

Hence, we can w.l.o.g. choose ⌧ 0p as �p above and repeat the argument. Therefore, we
get a state in which the token store prohibits firing any more propagation rules. As no
other rules are applicable either, this state is a fixed point corresponding to �! as well.

Lemma 8.5.19 (!! 6! !e). There exists no acceptable encoding of !! into !e.

Proof. Consider the !! program P = (a =) b). Since A!
P
(a) = {[ha, !b;>; ;i]}, an ac-

ceptable encoding has to satisfy Ae

JPK(JaKg) = {[hJa, !bKg;>; ;i]} = {[hJaKg ] J!bKg;>; ;i]}.
Therefore, [hJaKg;>; ;i] ⇢+

e [hJaKg ^ J!bKg;>; ;i] where the result state has to be a final
state, which is a contradiction to monotonicity of !e.

Lemma 8.5.20 (!e ! !!). There exists an acceptable encoding of !e into !!.

Proof (sketch). Replace propagation rules with simplification rules that contain a copy of
the head in their bodies.

274



Chapter 8

8.5.5 Implementation

In this section, we discuss the implementation of a CHR system that adheres to the opera-
tional semantics !!. Currently, no direct implementation exists, so that we only discuss how
it would di↵er from existing implementations. Afterwards, we present a source-to-source
transformation that allows us to simulate !! execution in !p. The existing implemen-
tation of !p can therefore be used for performing derivations following the operational
semantics !!.

Correspondence to Existing Implementations

The overall behavior of !! is not significantly di↵erent from !t and !r. Clearly, !! is
formally a non-deterministic system like !t, so that a refinement similar to !r may be
considered. However, we consider it an allowed freedom of implementations to perform
a fixed rule and constraint selection. Therefore, even without formally refining !!, an
implementation may, for example, try rule applications in textual order.

The treatment of built-in and CHR constraints remains almost unchanged. Persistent
constraints can be implemented just like linear CHR constraints, when labeling them as
persistent. Additionally, an implementation should detect duplicates of persistent con-
straints and eliminate them.

Slightly more e↵ort is required to adjust the code responsible for matching CHR con-
straints to rule heads. Firstly, while linear CHR constraints can only be used to match
one head constraint, !! requires that a persistent constraint can match multiple head con-
straints. Secondly, a case distinction is required to distinguish between ApplyLinear and
ApplyPersistent rule applications, as the resulting body constraints have to be inserted
either linearly or persistently.

Finally, the main di↵erence to existing implementations is the irreflexive transition
system used for !!. However, in terms of an implementation, the required e↵ort is reduced
by the following insight: If the post-transition CHR state is considered as a rule, with all
CHR constraints in its head and the conjunction of built-ins as guard, one can simply try
to match the pre-transition state to that rule. The necessary code can be reused from
the normal matching required for rule applications. If there is such a match, then the
CHR constraints are equivalent and the pre-transition built-in store already implies the
post-transition built-in store, hence, irreflexivity would be violated.

Additional e↵ort needs to be invested to ensure that persistent constraints are equiv-
alent in the pre- and post-transition states. For example, the rule a =) a turns a linear
a-constraint into a persistent a-constraint, but the distinction between these two is lost,
when only considering an a-constraint in a rule head. So a minor adjustment to the match-
ing code is required to ensure that persistent and linear constraints match each other, when
testing the irreflexivity condition.

Implementation via Source-to-Source Transformation

In this section, we provide an implementation of the operational semantics !! in the form of
a source-to-source transformation. A CHR program P is transformed into a program JPK
such that JPK’s execution in !p is sound and complete with respect to the execution of
P in !!. This transformation is based on Lemma 8.5.18 and assumes a CHR program P
without pathological rules.

For every n-ary constraint c/n in P, there exists a constraint c/(n+ 1) in JPK. In the
following, for a multiset of user-defined !!-constraints M = {c1(t̄1), . . . , cn(t̄n)} let

275



8.5. Discussion

• l(M) ::= {c1(l, t̄1), . . . , cn(l, t̄n)},

• p(M) ::= {c1(p, t̄1), . . . , cn(p, t̄n)}, and

• c(M) ::= {c1(c, t̄1), . . . , cn(c, t̄n)}.

The rules of JPK are constructed via the following source-to-source transformation.

1. For every rule r @ H1 \ H2 , G | B in P, and all multisets H l

1, H
p

1 , H
l

2, H
p

2 s.t.
H l

1 ]Hp

1 = H1 and H l

2 ]Hp

2 = H2 and H l

2 6= ;, the following rule is in JPK:

3 :: l(H l

1) ] p(Hp

1 ) ] p(Hp

2 ) \ l(H
l

2), G | l(Bc), Bb

2. For every rule r @ H1\H2 , G | Bc, Bb in P, and all multisets H l

1, H
p

1 s.t. H l

1]H
p

1 =
H1, the following rule is in JPK:

3 :: l(H l

1) ] p(Hp

1 ) ] p(H2) =) G | c(Bc), Bb

3. For every rule {c(p, t̄), c(p, t̄0)}]H1 \H2 , G | B in JPK, add also the following rule:

3 :: {c(p, t̄)} ]H1 \H2 , t̄ = t̄0 ^G | B

4. For every user-defined constraint c/n in P, add the following rules, where t̄ is a
sequence of n di↵erent variables:

1 :: c(p, t̄)\c(c, t̄), >
2 :: c(c, t̄), c(p, t̄)

Example 8.5.21 (Encoding of Transitive Hull). We consider the transitive hull program
from Example 8.3.1:

t @ e(X,Y ), e(Y, Z) =) e(X,Z)

According to the encoding given above, the program is transformed as follows:

3 :: e(l,X, Y ), e(l, Y, Z) =) e(c,X, Z)
3 :: e(l,X, Y ), e(p, Y, Z) =) e(c,X, Z)
3 :: e(p,X, Y ), e(l, Y, Z) =) e(c,X, Z)
3 :: e(p,X, Y ), e(p, Y, Z) =) e(c,X, Z)

3 :: e(p,X, Y ) =) X = Y ^ Y = Z | e(c,X, Z)

1 :: e(p,X, Y )\e(c,X, Y ) , >
2 :: e(c,X, Y ) , e(p,X, Y )

The grouping of the rules above reflects the transformation steps 2, 3, and 4. Transforma-
tion step 1 is not productive in this example. The fifth rule above is operationally equivalent
to 3 :: e(p,X,X) =) e(c,X,X), and hence, is redundant, as the resulting constraint will
immediately be removed again by the rule with priority 1. Furthermore, transformation
step 3 also adds an additional symmetric version of the fifth rule, which was omitted here,
as it is operationally equivalent as well.

276



Chapter 8

Execution of a transformed program in !p is equivalent to execution of the original
program in !!, as the above is the acceptable encoding used in the proof of Lemma 8.5.18.
As opposed to the acceptable encoding into !t, this encoding also preserves fixed points,
which makes it suitable for our implementation via source-to-source transformation.

Example 8.5.22 (Example Runs of !p and !! Programs). The following example deriva-
tion shows how the translated program terminates with a state that corresponds to the
result of an execution of the original program in !!. For clarity’s and brevity’s sake, we
do not show all intermediate states and we do not give the states’ respective token stores
explicitly.

he(l, A,B), e(l, B,A); ;;>; ;i{A,B}
0

⇢⇤
p h;; e(l, A,B)#0, e(l, B,A)#1;>; ;i{A,B}

2

⇢⇤
p h;; e(l, A,B)#0, e(l, B,A)#1, e(c, A,A)#2;>; . . .i{A,B}

3

⇢⇤
p h;; e(l, A,B)#0, e(l, B,A)#1, e(p,A,A)#3;>; . . .)i{A,B}

4

⇢⇤
p h;; e(l, A,B)#0, e(l, B,A)#1, e(p,A,A)#3, e(c, B,B)#4;>; . . .i{A,B}

5

⇢⇤
p h;; e(l, A,B)#0, e(l, B,A)#1, e(p,A,A)#3, e(p,B,B)#5;>; . . .)i{A,B}

6

⇢⇤
p h;; e(l, A,B)#0, e(l, B,A)#1, e(p,A,A)#3, e(p,B,B)#5, e(c, A,B)#6;>; . . .i{A,B}

7

⇢⇤
p h;; e(l, A,B)#0, e(l, B,A)#1, e(p,A,A)#3, e(p,B,B)#5, e(p,A,B)#7;>; . . .)i{A,B}

8

⇢⇤
p h;; e(l, A,B)#0, e(l, B,A)#1, e(p,A,A)#3, e(p,B,B)#5, e(p,A,B)#7, e(c, B,A)#8;>; . . .i{A,B}

9

⇢⇤
p h;; e(l, A,B)#0, e(l, B,A)#1, e(p,A,A)#3, e(p,B,B)#5, e(p,A,B)#7, e(p,B,A)#9;>; . . .)i{A,B}

10

⇢⇤
p h;; e(l, A,B)#0, e(l, B,A)#1, e(p,A,A)#3, e(p,B,B)#5, e(p,A,B)#7, e(p,B,A)#9;>; . . .)i{A,B}

24
6⇢p

The above computation corresponds to the following execution in !!:

[�] = [he(A,B), e(B,A); ;;>; {A,B}i]
⇢t

! [he(A,B), e(B,A); e(A,A);>; {A,B}i]
⇢t

! [he(A,B), e(B,A); e(A,A), e(B,B);>; {A,B}i]
⇢t

! [he(A,B), e(B,A); e(A,A), e(B,B), e(A,B);>; {A,B}i]
⇢t

! [he(A,B), e(B,A); e(A,A), e(B,B), e(A,B), e(B,A);>; {A,B}i]
6⇢!

The above example demonstrates that a direct implementation of !! performs less com-
putation steps than its simulation via !p. Therefore, the source-to-source transformation
is important in that it allows us to directly experiment with !! programs, but ultimately,
a direct implementation is more desirable.

8.6 Related and Future Work

We have already discussed di↵erent available operational semantics for CHR in Chapter 1
and seen that they tend to be either analytical or pragmatic, i.e. implementation-oriented.
Our operational semantics !! fills this gap, as it has a strong declarative foundation and
is implementable in a terminating fashion.

In particular, all operational semantics that are based on the token-store approach to
deal with the trivial non-termination problem (cf. for example [Abdennadher, 1997, Duck
et al., 2004]), su↵er from incompleteness. In contrast, our approach based on persistent
constraint o↵ers a more natural way that better corresponds to the abstract operational
semantics !va.

The set-based operational semantics !set given by Sarna-Starosta and Ramakrishnan
[2007], on the other hand, avoids the token-store in favor of a low-level change in the
implementation. From an analytical point of view this change is undesirable, because it
leads to an undetermined number of propagation rule applications. In !set, execution is
similar to !r, in that an active constraint is selected and has to find partner constraints
for rule applications. Once such a constraint finds no more possible rule applications, it

277



8.6. Related and Future Work

becomes inactive, but can later be awakened again due to changes in the built-in store.
This leads to a reactivation, which in turn may lead to another firing of a propagation
rule. This overall process is hard to deal with in a declarative way, because it requires a
detailed observation of the runtime behavior.

Sneyers et al. [2005] already showed that CHR is Turing-complete, even for various
subclasses of the language [Sneyers, 2008, Gabbrielli et al., 2010]. Hence, our operational
semantics !! is Turing-complete as well, due to it being sound and complete with respect
to !va. In order to compare it with the existing operational semantics, we continued along
the lines of Gabbrielli et al. [2009] by showing its relative expressivity with respect to
!va,!t, and !p. This also yielded a source-to-source transformation that can be used to
implement !! via !p. For the future, a direct implementation of !! would be preferable
though.

The current formulations of !! and !e promise to be beneficial in future CHR research.
In [Raiser, 2010], we demonstrate its viability and wherever previous work exists, we can
see that !e allows for more succinct and clear formulations. Our axiomatic definition of
state equivalence from [Raiser et al., 2009] has already been reused in [Sneyers et al., 2010].

For the operational semantics !! it might be possible to include the following additional
axiom for state equivalence

hL ] L;L ] P;B;Vi ⌘! hL;L ] P;B;Vi.

Intuitively, this means that a linear constraint is superseded by its persistent vari-
ant. We initially decided against this axiom, because it widens the gap to linear-logic,
in which a persistent constraint is not equivalent to itself and a linear copy. However,
if one accepts this limitation, the above axiom would help to simplify the formulation of
the operational semantics significantly. Given this axiom, we can for example ensure that
each ApplyLinear transition involves exclusively linear constraints. However, we cannot
simply include this axiom, but need to reevaluate our above proofs, especially soundness
and completeness of the resulting operational semantics.

Another advantage of such an axiom would be more intuitive results for confluence.
Consider the following rule under the current definition of !!.

a, b, c

Given the initial state ha, b; a;>; ;i we can apply the rule in two di↵erent ways, either
with the linear or persistent copy of the a-constraint. This results in the following two
states, which are not equivalent without the above axiom, but would be equivalent if it
was included.

hc; a;>; ;i 6⌘! ha, c; a;>; ;i

In our algebraic investigation of the merge operator we found it to form a commutative
monoid together with the set of equivalence classes of states. This was just a first foray
into this line of research, namely the algebraization of CHR. We believe it is possible to
profit from the abundance of results available in this field, when further investigating the
algebraic structures underlying CHR.

For example, the CHR transition system might be expressible as a category, allowing
us to investigate category theoretical constructions for CHR, like pushouts or pullbacks.
Similarly, the previously mentioned commutative monoid can be extended to an abelian
group, for example via the Grothendieck group construction. This would add inverses of
states, or in other words, gives us the algebraic option of subtracting from states. This

278



Chapter 8

could provide a formalism that allows us to undo operations, like binding of variables, and
hence, extend CHR to a non-committed-choice language, similar to CHR_.

On a more pragmatic note, associativity of the merge operator makes it a suitable for-
malism for investigating parallelism in CHR. If a part of a CHR state allows a computation
while being independent from the rest of the state, we can express this as [�] = [�0] ⇧ [�0].
Applying this idea to all independent parallel computations possible in a state, then yields

[�] = [�0] ⇧ [�1] ⇧ . . . ⇧ [�n] ⇧ [�0],

which clearly separates n independent parallel computations.

Bibliography

Slim Abdennadher. Operational Semantics and Confluence of Constraint Propagation
Rules. In G. Smolka, editor, CP ’97, volume 1330 of Lecture Notes in Computer Science,
pages 252–266. Springer-Verlag, November 1997.

Slim Abdennadher. Rule-based Constraint Programming: Theory and Practice. Habilita-
tionsschrift, Institute of Computer Science, LMU, Munich, Germany, July 2001.

Slim Abdennadher and Thom Frühwirth. Operational Equivalence of CHR Programs and
Constraints. In J. Ja↵ar, editor, CP ’99, volume 1713 of Lecture Notes in Computer
Science, pages 43–57. Springer-Verlag, October 1999.

Slim Abdennadher, Thom Frühwirth, and Holger Meuss. Confluence and Semantics of
Constraint Simplification Rules. Constraints, 4(2):133–165, 1999.

Hariolf Betz and Thom Frühwirth. A Linear-Logic Semantics for Constraint Handling
Rules. In P. van Beek, editor, CP ’05, volume 3709 of Lecture Notes in Computer
Science, pages 137–151. Springer-Verlag, October 2005.

Hariolf Betz, Frank Raiser, and Thom Frühwirth. Persistent Constraints in Constraint
Handling Rules. In U. Geske and A. Wolf, editors, WLP ’09, pages 155–166. Univer-
sittsverlag Potsdam, September 2009.

Hariolf Betz, Frank Raiser, and Thom Frühwirth. A Complete and Terminating Execution
Model for Constraint Handling Rules. Theory and Practice of Logic Programming, 10
(4–6):597–610, 2010.

Gregory J. Duck. Compilation of Constraint Handling Rules. PhD thesis, University of
Melbourne, Melbourne, Australia, December 2005.

Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian Holzbaur.
The Refined Operational Semantics of Constraint Handling Rules. In B. Demoen and
V. Lifschitz, editors, ICLP ’04, volume 3132 of Lecture Notes in Computer Science,
pages 90–104. Springer-Verlag, September 2004.

Gregory J. Duck, Peter J. Stuckey, and Martin Sulzmann. Observable Confluence for
Constraint Handling Rules. In T. Schrijvers and T. Frühwirth, editors, CHR ’06, pages
61–76. K.U.Leuven, Department of Computer Science, Technical report CW 452, July
2006.

279



Bibliography

Gregory J. Duck, Peter J. Stuckey, and Martin Sulzmann. Observable Confluence for
Constraint Handling Rules. In V. Dahl and I. Niemelä, editors, ICLP ’07, volume 4670
of Lecture Notes in Computer Science, pages 224–239. Springer-Verlag, September 2007.

Thom Frühwirth. Theory and Practice of Constraint Handling Rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming, 37(1–3):95–138, 1998.

Thom Frühwirth. Constraint Handling Rules. Cambridge University Press, 2009. ISBN
0-521-87776-8.

Thom Frühwirth and Slim Abdennadher. Essentials of Constraint Programming. Springer-
Verlag, 2003. ISBN 3-540-67623-6.

Thom Frühwirth, Alessandra Di Pierro, and Herbert Wiklicky. Probabilistic Constraint
Handling Rules. Electronic Notes in Theoretical Computer Science, 76:1–16, 2002.

Maurizio Gabbrielli, Jacopo Mauro, and Maria Chiara Meo. On the Expressive Power
of Priorities in CHR. In A. Porto and F. J. López-Fraguas, editors, PPDP ’09, pages
267–276. ACM Press, September 2009.

Maurizio Gabbrielli, Jacopo Mauro, Maria Chiara Meo, and Jon Sneyers. Decidability
Properties for Fragments of CHR. Theory and Practice of Logic Programming, 10(4-6):
611–626, 2010.

Rémy Haemmerlé and François Fages. Abstract Critical Pairs and Confluence of Arbitrary
Binary Relations. In F. Baader, editor, RTA ’07, volume 4533 of Lecture Notes in
Computer Science, pages 214–228. Springer-Verlag, June 2007.

Johannes Langbein, Frank Raiser, and Thom Frühwirth. A State Equivalence and Con-
fluence Checker for CHR. In P. Van Weert and L. De Koninck, editors, CHR ’10, pages
1–8. K.U.Leuven, Department of Computer Science, Technical report CW 588, July
2010.

Marc Meister. Advances in Constraint Handling Rules. PhD thesis, Ulm University, Ulm,
Germany, 2008.

Paolo Pilozzi and Danny De Schreye. Proving Termination by Invariance Relations. In
P. M. Hill and D. S. Warren, editors, ICLP ’09, volume 5649 of Lecture Notes in Com-
puter Science, pages 499–503. Springer-Verlag, July 2009.

Frank Raiser. Graph Transformation Systems in Constraint Handling Rules: Improved
Methods for Program Analysis. PhD thesis, Ulm University, November 2010.

Frank Raiser and Thom Frühwirth. Strong Joinability Analysis for Graph Transforma-
tion Systems in CHR. Electronic Notes in Theoretical Computer Science – TERM-
GRAPH ’09: Proc. 5th Intl. Workshop Computing with Terms and Graphs, 253(4):
91–111, 2009.

Frank Raiser and Paolo Tacchella. On Confluence of Non-Terminating CHR Programs. In
K. Djelloul, G. J. Duck, and M. Sulzmann, editors, CHR ’07, pages 63–76, September
2007.

Frank Raiser, Hariolf Betz, and Thom Frühwirth. Equivalence of CHR States Revisited.
In F. Raiser and J. Sneyers, editors, CHR ’09, pages 34–48. K.U.Leuven, Department
of Computer Science, Technical report CW 555, July 2009.

280



Chapter 8

Beata Sarna-Starosta and C.R. Ramakrishnan. Compiling Constraint Handling Rules for
E�cient Tabled Evaluation. In M. Hanus, editor, PADL ’07, volume 4354 of Lecture
Notes in Computer Science, pages 170–184. Springer-Verlag, January 2007.

Ehud Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM Com-
puting Surveys, 21(3):413–510, 1989.

Robert J. Simmons and Frank Pfenning. Linear Logical Algorithms. In L. Aceto,
I. Damg̊ard, L. Ann Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz,
editors, ICALP ’08, volume 5126 of Lecture Notes in Computer Science, pages 336–347.
Springer-Verlag, July 2008.

Jon Sneyers. Optimizing Compilation and Computational Complexity of Constraint Han-
dling Rules. PhD thesis, K.U.Leuven, Leuven, Belgium, November 2008.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The Computational Power and Complex-
ity of Constraint Handling Rules. In T. Schrijvers and T. Frühwirth, editors, CHR ’05,
pages 3–17. K.U.Leuven, Department of Computer Science, Technical report CW 421,
October 2005.

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The Computational Power and Complex-
ity of Constraint Handling Rules. ACM Transactions on Programming Languages and
Systems, 31(2):1–42, 2009.

Jon Sneyers, Wannes Meert, Joost Vennekens, Yoshitaka Kameya, and Taisuke Sato.
CHR(PRISM)-based Probabilistic Logic Learning. Theory and Practice of Logic Pro-
gramming, 10(4-6):433–447, 2010.

281





Chapter 9

Abstract Interpretation

Author: Tom Schrijvers
Thesis Title: Analyses, Optimizations and Extensions of Constraint Han-

dling Rules
School: K.U.Leuven, Belgium
Publication Year: 2005

Foreword

Optimized compilation is made up of two parts: 1) a program analysis, and 2) a program
transformation. The analysis identifies the opportunity or validity of the optimization and
the transformation applies it. Generally, both are described in an adhoc fashion in the
CHR literature. This chapter provides a more principled approach to program analysis for
CHR. Abstract interpretation [Cousot and Cousot, 1977] is a generic technique to derive
a program analysis framework from a language’s operational semantics. This chapter
assumes the reader is familiar with the basics of abstract interpretation.

While the chapter at hand focuses on the refined operational semantics, abstract inter-
pretation may well be the most straightforward approach to transfer existing and develop
new program analyses for the operational semantics that have arisen in recent years. How-
ever, an abstract interpretation framework does require an initial development cost, which
makes it less suitable for systems in their initial stages. To date only Duck’s HAL CHR
system and the K.U.Leuven CHR system incorporate abstract interpretation.

9.1 Introduction

Although the CHR language exists for more than ten years and has a reasonable reference
implementation in SICStus Prolog [Intelligent Systems Laboratory, 2003], the number of
people involved in optimized compilation of and program analysis for CHR has been limited
until the recent appearance of new CHR systems [Holzbaur et al., 2005, Schrijvers and
Demoen, 2004b]. The need to communicate and compare between di↵erent CHR systems
has resulted in the formulation of the more deterministic refined operational semantics
[Duck et al., 2004b] shared among CHR compilers.

Apart from the common semantics to be implemented by CHR compilers, there is also
a need to formalize program analyses. As the complexity of CHR compilers increases we
need a better understanding of current analyses and ways to extend and combine them.



9.2. The Refined Denotational Semantics !d

Most of the currently available analyses were formulated in an ad hoc way and very few
formal proofs of correctness were constructed.

Abstract interpretation [Cousot and Cousot, 1977] is a general methodology for pro-
gram analysis by abstractly executing the program code. Abstract interpretation provides
a remedy for the current di�culties in correctly analyzing CHR programs, and should
enable optimizing CHR compilers to realize more complex analyses.

In this chapter we bring the general methodology of abstract interpretation to CHR:
we formulate an abstract interpretation framework over the refined denotational semantics
of CHR. The formulation of an abstract interpretation framework is non-obvious since the
framework needs to handle the highly non-deterministic execution of CHRs. The use of
the framework is illustrated with two instantiations: the CHR-specific late storage analysis
and the more widely known groundness analysis. In addition, we discuss optimizations
based on these analyses and present experimental results.

The rest of this chapter is structured as follows. Section 9.2 presents the refined
denotational semantics of CHR that will be abstractly interpreted. The general abstract
interpretation framework is then defined in Section 9.3. Two instances of the framework,
late storage analysis and groundness analysis, illustrate the framework in Sections 9.4 and
9.5 respectively. The implementation and experimental evaluation of these analyses are
reported on in Section 9.6. We conclude in Section 9.7.

9.2 The Refined Denotational Semantics !d

In this section we present the refined denotational semantics !d. It is a variant of the
refined operational semantics !r [Duck et al., 2004b] designed to make the formulation of
analyses simpler.

We introduce the refined denotational semantics for CHR to make the number of
abstract goals to be considered finite. For the same reason logic programs are not directly
analyzed in terms of their derivations-based operational semantics, but instead a call-based
denotational semantics was introduced (see e.g. [Marriott et al., 1994]).

It is shown in [Duck et al., 2004a] that an intermediate form between !r and !d, a call-
based refined operational semantics !c, and !r are equivalent. It should be straightforward
to establish that !c and !d are equivalent.

The main di↵erence between the !d and !r semantics lies in their formulation. The
transition system of !r linearizes the dynamic call-graph of CHR constraints into the
execution stack of its execution states. In !d constraints are treated as procedure calls:
each newly added active constraint searches for possible matching rules in order, until
all matching rules have been executed or the constraint is deleted from the store. As
with a procedure, when a matching rule fires other CHR constraints may be executed
as subcomputations and, when they finish, the execution returns to finding rules for the
current active constraint. The latter semantics is much closer to the procedure-based
target languages, like Prolog and HAL.

We believe this closeness to target languages makes the !d semantics much more suit-
able for reasoning about optimizations. After all, optimizations are typically formulated
at the level of the generated code in the target language.

We will use a numbered notation for CHR programs so that it is easier to refer to
occurrences of constraints: to every head constraint we add its occurrence number in
brackets as a subscript.

284



Chapter 9

Example 9.1 The numbered version of a gcd program, similar to Example 1, is

gcd(0)[1] <=> true.

gcd(I)[3] \ gcd(J)[2] <=> J >= I | K is J - I, gcd(K).

The rest of this section is structured as follows. In Sections 9.2.1 and 9.2.2 we present
the execution state and semantic function of !d. Section 9.2.3 illustrates the semantics on
an example.

9.2.1 Execution State of !d

Formally, the execution state of the refined denotational semantics is represented by the
tuple hG,A, S,B, T in . The di↵erent components of the execution state are defined in a
similar way as those of the !r semantics: The execution stack of !r is more or less split
into the goal and execution stack components of the !d semantics. The goal corresponds
to the current “procedure call”, whereas the execution stack corresponds to the “ancestor
calls”. Due to the use of recursion in the semantic function (defined in Section 9.2.2) it is
not necessary to maintain all the information of !r’s execution stack in either !d’s goal or
!d’s execution stack.

The goal G is either a sequence of (possibly occurrenced and identified) CHR con-
straints and built-in constraints or just a single constraint. If it is a single constraint,
that constraint is called the active constraint and it corresponds to the active constraint
of the !r semantics. The execution stack A is a sequence of constraints c, identified CHR
constraints c#i and occurrenced identified CHR constraints c#i : j. The remaining com-
ponents are the same as in !r: The CHR store S is a set of identified CHR constraints.
The built-in constraint store B contains any built-in constraint that has been passed to
the underlying solver. The propagation history T is a set of sequences, each recording
the identities of the CHR constraints which fired a rule, and the name of the rule itself.
Finally, the next free identity n represents the next integer which can be used to number
a CHR constraint.

We denote the domain of execution states by ⌃ and elements of ⌃ as
�,�0,�1, . . . Given initial goal G, the initial state is hG,2, ;, true, ;i1 .

The function pp returns the program point of an execution state:

pp(hG,A, S,B, T in) = pp(G)
pp(c) = builtin (c built-in)

pp(p(x1, . . . , xn)) = p/n
pp(p(x1, . . . , xn)#i) = p/n

pp(p(x1, . . . , xn)#i : j) = p/n : j
pp([c1, . . . , cn]) = [pp(c1), . . . , pp(cn)]

Traditionally a program point corresponds to a location in the program code. Also,
the current program point of an execution of the program is maintained at all times in a
part of the execution state called the program counter. However, in the execution of CHR
the coupling between the program code and the execution states is less explicit. In many
execution states it is not necessary to know the program in order to proceed.

Hence, instead of defining locations in a CHR program P, the program points of pp
relate execution states to locations in the code of the compilation schema: The program

285



9.2. The Refined Denotational Semantics !d

point p/n corresponds to the code for the Activate transition of constraint p/n and the
program point p/n : i corresponds to the code for occurrence i (see [Schrijvers, 2005a,
Section 5.2.1]. If also programs points concerning built-in constraints are of interest, e.g.
for optimizing these, the special value builtin should probably be replaced with a more
informative value.

9.2.2 Semantic Function of !d

The e↵ect of executing a CHR program on an execution state � is to change � into a final
execution state. This e↵ect is captured by the semantic function S, a partial function on
execution states. Given an execution state, it returns a final execution state:

S : Prog! (⌃ ,! ⌃)

The definition of the semantic function is given in Table 9.1. Apart from their recursive
nature, most of the cases of the semantic function correspond directly to the transition
rules of !r. The Simplify and Propagate cases di↵er somewhat from the transitions of
the same name in !r. They combine the behavior of the transitions of the same name
with that of the Default transition of !r. In addition the Simplify case applies at once
the e↵ect of successive Default transitions and a final Drop transition when the current
constraint is removed by the simplification. The Propagate case di↵ers also from the
Propagate transition in that it applies all possible successive Propagate transitions at
once (through a call to the SProp function). The Goal case takes care of decomposing a
goal sequence into individual sequences. This case is specific to !d, because !r does not
have a goal component in its execution states.

9.2.3 Example

The refined denotational semantics is illustrated on a small example program:

p[1] ==> q.

p[2], t[1] <=> r.

p[3], r[1] ==> true.

p[4] ==> s.

p[5], s[1] <=> true.

All the occurrences of constraints in the above program are annotated with their respec-
tive occurrence numbers. Starting from an initial goal p the application of the semantic
function of the refined denotational semantics goes as follows (for brevity we omit the
propagation history, denoted by •).

Every step is annotated with the corresponding case of the semantic function. For
both the simplification and propagation steps we annotate the step name with ¬ if the
rule did not find a match.

S[[P]](hp, [], ;, true, ;i1) (Activate)
= S[[P]](hp#1 : 1, [], {p#1}, true, •i2) (Propagate)
= S[[P]](hp#1 : 2, [], {p#1, q#2}, true, •i3) (¬Simplify)
= S[[P]](hp#1 : 3, [], {p#1, q#2}, true, •i3) (¬Propagate)
= S[[P]](hp#1 : 4, [], {p#1, q#2}, true, •i3) (Propagate)
= S[[P]](hp#1 : 5, [], {q#2}, true, •i4) (¬Simplify)
= S[[P]](hp#1 : 6, [], {q#2}, true, •i4) (Drop)
= h2, [], {q#2}, true, •i4

286



Chapter 9

1. Solve

S[[P]](hc, A, S,B, T in) =
if Db |= ¬9̄;B ^ c

then h2, A, S,B ^ c, T in
else S[[P]](hS1, A, S,B ^ c, T in)

where c is a built-in constraint and S1 = solve[[P]](S,B, c) is a subset of S satis-
fying the following conditions:

1. lower bound : For all M = H1 ++ H2 ✓ S such that there exists a rule
r 2 P

r @ H 0

1 \ H 0

2 () g | C

in P and a substitution ✓ such that
8
>><

>>:

chr(H1) = ✓(H 0

1)
chr(H2) = ✓(H 0

2)
Db 6|= B ! 9r(✓ ^ g)
Db |= B ^ c! 9r(✓ ^ g)

then M \ S1 6= ;

2. upper bound : If m 2 S1 then vars(m) 6✓ fixed(B), where fixed(B) is the set
of variables fixed by B.

The actual definition of the solve function will depend on the underlying solver.

2a. Activate

S[[P]](hc, A, S,B, T in) = S[[P]](hc#n : 1, A, {c#n} ] S,B, T i(n+1))

where c is a CHR constraint.

2b. Reactivate

S[[P]](hc#i, A, S,B, T in) = S[[P]](hc#i : 1, A, S,B, T in)

where c is a CHR constraint.

3. Drop
S[[P]](hc#i : j, A, S,B, T in) = h2, A, S,B, T in

where c#i : j is an occurrenced CHR constraint and there is no such occurrence
j in P.

Table 9.1: The refined denotational semantics of CHR

287



9.2. The Refined Denotational Semantics !d

4. Simplify
Let d be the jth occurrence of c in a (renamed apart) rule r 2 P:

r @ H 0

1 \ H 0

2, d[j], H
0

3 () g | C

then

S[[P]](hc#i : j, A, S,B, T in) =
if simplify-condition

then S[[P]](h✓(C), A,H1 ] S0, ✓ ^B, T [ {t}in)
else S[[P]](hc#i : j + 1, A, S,B, T in)

where simplify-condition is that there exists a matching substitution ✓ such that

8
>>>><

>>>>:

S = {c#i} ]H1 ]H2 ]H3 ] S0

c = ✓(d)
chr(H1) = ✓(H 0

1) ^ chr(H2) = ✓(H 0

2) ^ chr(H3) = ✓(H 0

3)
Db |= B ! 9̄r(✓ ^ g)
t = id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 62 T

5. Propagate
Let d be the jth occurrence of c in a (renamed apart) rule r 2 P:

r @ H 0

1, d[j], H
0

2 \ H 0

3 () g | C

then

S[[P]](hc#i : j, A, S,B, T in) =
if Db |= ¬9̄;Bk

then h2, A, Sk, Bk, Tkink

else S[[P]](hc#i : j + 1, A, Sk, Bk, Tkink)

where SProp[[P]](hc#i : j, A, S,B, T in) = h2, A, Sk, Bk, Tkink .
The auxiliary function SProp : Prog ! (⌃ ,! ⌃) is defined as:

SProp[[P]](hc#i : j, A, S,B, T in) =
if Db |= ¬9̄;B

then h2, A, S,B, T in
else if propagate-condition

then SProp[[P]](hc#i : j, A, S0, B0, T 0in0)
else h2, A, S,B, T in

where propagate-condition is that there exists a matching substitution ✓ such that

8
>>>>>><

>>>>>>:

S = {c#i} ]H1 ]H2 ]H3 ]R
c = ✓(d)
chr(H1) = ✓(H 0

1) ^ chr(H2) = ✓(H 0

2) ^ chr(H3) = ✓(H 0

3)
Db |= B ! 9̄✓(r)✓(g)
t = id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r] 62T
S[[P]](h✓(C), [c#i : j|A], S \H3, B, T [ {t}in) = h2, [c#i : j|A], S0, B0, T 0in0

where g and ✓(g), respectively C and ✓(C) are variants and vars(g) \ vars(✓(g)) = ;
and vars(C) \ vars(✓(C)) = ;.

288



Chapter 9

6. Goal

S[[P]](h2, A, S,B, T in) =
h2, A, S,B, T in

S[[P]](h[c|C], A, S,B, T in) =
if Db |= ¬9̄;B0

then h2, A, S0, B0, T 0in0

else S[[P]](hC,A, S0, B0, T 0in0)

where [c|C] is a sequence of built-in and CHR constraints and

S[[P]](hc, A, S,B, T in) = h2, A, S0, B0, T 0in0

For the first propagation step above, the result of the auxiliary function SProp is used:

SProp[[P]](hp#1 : 1, [], {p#1}, true, •i2)
= SProp[[P]](hp#1 : 1, [], {p#1, q#2}, true, •i3)
= h2, [], {p#1, q#2}, true, •i3

The second step in the evaluation of SProp is obtained through the evaluation of:

S[[P]](hq, [p#1 : 1], ;, {p#1}, ;i2) (Activate)
= S[[P]](hq#2 : 1, [p#1 : 1], {p#1, q#2}, true, •i3) (Drop)
= h2, [p#1 : 1], {p#1, q#2}, true, •i3

The last propagation step in the main computation is obtained through a similar evaluation
of SProp:

SProp[[P]](hp#1 : 4, [], {p#1, q#2}, true, •i3)
= SProp[[P]](hp#1 : 4, [], {q#2}, true, •i4)
= h2, [p#1 : 4], {q#2}, true, •i4

The second step in the above evaluation of SProp is obtained through:

S[[P]](hs, [p#1 : 4], ;, {p#1, q#2}, ;i3) (Activate)
= S[[P]](hs#3 : 1, [p#1 : 4], {p#1, q#2, s#3}, true, •i4) (Simplify)
= S[[P]](h2, [p#1 : 4], {q#2}, true, •i4) (Goal)
= h2, [p#1 : 4], {q#2}, true, •i4

9.3 The Abstract Interpretation Framework

In this section we present our generic abstract interpretation framework for CHR.
An abstract interpretation framework consists of:

• an abstract domain of execution states, together with an abstraction function ↵
and a concretization function � to translate from, respectively to concrete execution
states,

• an abstract operational semantics.

289



9.3. The Abstract Interpretation Framework

Our framework is generic: it does not fully specify the abstract semantics and abstract
domain, but rather imposes restrictions on actual instances that must provide a full spec-
ification. In particular, our framework formulates the abstract semantics in terms of an
abstract semantic function that must be provided by instances of the framework.

In Sections 9.3.1 and 9.3.2 we discuss how a particular instance of the framework,
i.e. an analysis domain, should specify its abstract state and abstract semantic function.
The generic, domain-independent aspects of the abstract semantics, which are provided
by the framework, are presented in Section 9.3.3. It covers how the framework applies
the abstract semantic function starting from an initial state and how the framework deals
with non-determinism.

9.3.1 Abstract State

Every instance of the abstract interpretation framework should define an abstract domain
⌃a of abstract states. The abstract domain ⌃a has to be a lattice with partial ordering
�, least upper bound t and greatest lower bound u operations.

Furthermore an abstraction function ↵ : }(⌃) ! ⌃a has to be defined from a set of
concrete states �, as defined in Section 9.2.1, to an abstract state s and a concretization
function � : ⌃a ! }(⌃) from an abstract state to a set of concrete states.

Typically we only specify ↵ and assume � to be defined as �(s) = {� | ↵({�}) = s}.
Moreover, in an abuse of syntax we denote ↵({�}) as ↵(�).

As is usual, we require that (↵, �) is a Galois connection of (}(⌃),✓) and (⌃a,�), i.e.

8S 2 }(⌃) : 8s 2 ⌃a : ↵(S) � s, S ✓ �(s)

We impose an additional restriction on �:

8s 2 ⌃a : 8�1,�2 2 �(s) : pp(�1) = pp(�2)

i.e. every abstract execution state should correspond with exactly one program point.
This allows us to extend the domain of the pp function to abstract states:

pp(s) = pp(�) with � 2 �(s)

The restriction is imposed for two reasons:

• to be able to associate analysis information contained in abstract states with the
program points, and

• to determine whether a particular abstract state s is a final state (i.e. pp(s) = 2).

The accurate program point information may complicate the abstract semantics somewhat,
but results in more accurate analyses.

The framework will only make use of the least upper bound operation s1t s2 on states
corresponding to the same program point (pp(s1) = pp(s2)). Similarly, ↵ is only applied
to a set of concrete states corresponding to the same program point. Moreover, we will
only explicitly define ↵ for a single concrete state �. The extension of ↵ to a set S of
concrete states is assumed to be:

↵(S) =
G

�2S

↵(�)

290



Chapter 9

9.3.2 Abstract Semantic Function

The abstract domain must provide an abstract semantic function AS : Prog ! (⌃a ,!
⌃a) with abstract cases AbstractSolve, AbstractActivate, AbstractReactivate, AbstractDrop,
AbstractSimplify, AbstractPropagate and AbstractGoal corresponding to the cases of the
concrete semantic function S, as given in Section 9.2.2.

In order for the abstract semantic function to be a consistent abstraction of the concrete
semantic function, we impose the connection depicted below:

�1

↵

✏✏

S[[P]]
// �2

s1
AS[[P]]

// s2

�

OO

or formally:
8S ✓ ⌃ : {S[[P]](�)|� 2 S} ✓ � �AS[[P]] � ↵(S)

9.3.3 The Generic Abstract Semantics

Here we explain the generic semantics of the framework, based on the analysis-specific
implementations of the abstract domain and the abstract semantic function.

The concrete operational semantics specifies that the semantic function is applied to
an initial state to obtain a final state. In the following we describe what initial state is
used by the framework and how the abstract semantic function should be defined. In
particular the issue of non-determinism is discussed.

Generic Initial State

For any CHR program, an infinite number of concrete initial states are possible, namely
any hG, [], ;, ;, ;i1 with G any finite list of CHR constraints and built-in constraints.

This infinite number of initial states may lead to an infinite number of abstract states,
depending on the definition of ↵. However, in the generic framework we avoid this potential
blow-up of initial states by requiring that the initial goal is a single CHR constraint c.

The requirement of a single constraint is not a restriction. It is always possible to
encode a list of multiple goals c1, . . . , cn in this way. Namely one can introduce a fresh
constraint c and a new simplification rule c, c1, . . . , cn. This new c can then serve as the
single initial goal.

Similarly, it is possible to encode arbitrary sequences of constraints, using random data
generators that return values in a particular domain. For example an arbitrary sequence
of a and b constraints may be encoded as follows:

c <=> random(X), c(X).

c(1) <=> a, c.

c(2) <=> b, c.

c(_) <=> true.

Here the predicate random/1 returns in its argument a random integer. The constraint
c serves as the initial goal.

The key issue is that the single goal should be representative with respect to the
analysis domain for all intended uses of the CHR program. This may require intimate

291



9.3. The Abstract Interpretation Framework

knowledge of both the program and the analysis domain. Hence, the developer of the
analysis domain should provide guidelines regarding the choice of the initial goal. It may
be possible to automatically derive a default goal from a program that captures all possible
uses, although a program-specific goal would yield stronger analysis results.

Non-determinism in the Simplify Case

In the Simplify case of the semantic function, either (1) a matching substitution ✓ is found
and the simplification takes place or (2) no matching substitution exists and simplification
does not take place.

An abstract semantic function may not be able to decided from an abstract execution
state s which of the above two alternatives applies. This is the case when 9�1,�2 2 �(s)
such that the first alternative applies to �1 and the second to �2.

The recommended approach in this case is to compute a least upper bound of the two
alternatives in the following way:

AS[[P]](s) = AS[[P]](s1) tAS[[P]](s2)

where

↵({h✓(C), A,H1 ] S0, ✓ ^B, T [ {t}in}|hc#i : j, A, S,B, T in 2 �(s)) � s1

and
↵({hc#i : j + 1, A, S,B, T in|hc#i : j, A, S,B, T in 2 �(s)}) � s2

and ✓, H1, S0 and t are defined in the Simplify case of S.

Non-determinism in the Choice of Partner Constraints

While the above accounts for the non-determinism in simplification matching caused by
abstraction, it does not account for the inherent non-determinism of these cases in the
concrete semantics.

Namely, for a simplification case, if more than one combination of partner constraints
is possible, the concrete semantics do not specify what particular combination is chosen.
To account for this non-determinism the formulation of the AbstractSimplify case should
capture all possible concrete possibilities. In particular, if for concrete state � there are n
di↵erent possible resulting final states �1, . . . ,�n, then

↵({�1, . . . ,�n}) � AS[[P]](↵(�))

Similarly, for a propagation transition, multiple combination transitions are possible.
In addition, for a propagation transition, multiple applications are possible in a sequence.
However, the order of the sequence is not specified by the concrete semantics either. Hence,
an abstract propagation transition has to capture all possible partner combinations and
all possible sequences in which they are dealt with.

Non-determinism in the Solve Rule

The non-determinism inherent in the concrete Solve case lies in the order of the triggered
constraints as they are put on the execution stack: all possible orderings are allowed.
Hence, an abstract domain has to provide an abstraction that takes into account all possible
orderings.

292



Chapter 9

If the abstract domain allows it, one approach would be to compute the final state so
for each possible ordering o and to combine these final states to a single final state s as
follows: s =

F
o
so.

However, this requires su�ciently concrete information about the number of triggered
constraints in the abstract domain. Typically the abstract domain cannot provide any
quantitative bound on the number of triggered constraints. Hence an infinite number of
orderings are possible: all possible permutations of constraint sequences of any integer
length.

A finite approximation of this infinite number of possibilities is to perform the following
fixedpoint computation. Say {ci|1  i  n} are all the possible distinct abstract CHR
constraints to trigger. Then, starting from abstract state s0, the final state sf after
triggering all constraints in any quantity is sk, where:

sj =
G

{sij | sij = AS[[P]](new goal(sj�1, ci)) ^ 1  i  n}

for j > 0 and k is the smallest integer such that sk = sk+1. In the above formula new goal
is the function that replaces the empty goal in a final abstract state sj�1 with a new goal
ci.

This generic approach is illustrated in the prototype groundness analysis, discussed in
Section 9.5.

Due to its generality it may cause a huge loss of precision as well as an exponential
number of intermediate states. Hence, in practice, better domain specific techniques should
be studied.

For example, in the late storage analysis discussed in the next section, the worst
possible abstract state is immediately obtained in the AbstractSolve transition, before
triggered constraints are considered. Hence there is no need to actually compute the
triggering of constraints. The outcome is already determined. This avoids substantial
overhead.

9.4 Late Storage Analysis

In this section we illustrate the use of the abstract interpretation framework for CHR with
a CHR-specific analysis: late storage. This analysis is useful in CHR compilers to enable
several optimizations.

In Section 9.4.1 we define the property that the analysis derives. Next, the abstract do-
main and abstract semantic function of the analysis are defined in Sections 9.4.2 and 9.4.3
respectively. Section 9.4.4 illustrates the application of the analysis on a small program.

9.4.1 The Observation Property

The aim of late storage analysis is to determine for an active CHR constraint whether it
can be stored later rather than stored before its rules are searched for matching. This is
done is by determining when the first possible interaction will be with the active CHR
constraint.

In general it is better to store a constraint in the constraint store as late as possible.
The reason is that if the constraint is deleted before it is actually stored, the overhead of
insertion in and removal from the constraint store are avoided.

The refined operational semantics however dictate that a constraint is inserted in the
constraint store immediately when it is at the top of the execution stack. We want to
avoid this when it does not make a di↵erence to the final state.

293



9.4. Late Storage Analysis

At the latest, a constraint that is not deleted, has to be stored after all the rules have
been tried. There are however also reasons for storing a constraint early. Namely, if a rule
applies, the body may observe whether the active constraint is in the constraint store or
not. If the active constraint may be observed, the constraint needs to be in the constraint
store. Otherwise it does not have to be in the constraint store, because its presence cannot
impact the execution.

Definition 9.1 (Observed). A constraint in the constraint store is observed, if it is trig-
gered by a built-in constraint or if it serves as a partner constraint to an active constraint.

To correctly define the analysis of “observation” as an abstract interpretation we have
to extend the refined denotational semantics to make this visible. We will only be interested
in finding the observed occurrences of constraints in the execution stack.

Denote an observed occurrence c#i : j by starring e.g. c#i : j⇤. Define

obs(c#i : j) = c#i : j⇤

obs(c#i : j⇤) = c#i : j⇤

obs([], S) = []
obs([c#i : j|G], S) = [obs(c#i : j)|obs(G,S)] , if c#i 2 S
obs([c#i : j|G], S) = [c#i : j|obs(G,S)] , if c#i 62 S

Only the Solve, Simplify and Propagate cases are a↵ected. Basically we modify the
activation stack to record which constraints have been observed by any of these transitions.
1. Solve

S[[P]](hc, A, S,B, T in) =
if Db |= ¬9̄;B ^ c

then h2, A, S,B ^ c, T in
else S[[P]](hS1, obs(A,S1), S,B ^ c, T in)

where c is a built-in constraint and S1 = solve[[P]](S,B, c) is a subset of S satisfying the
following conditions:

1. lower bound : For all M = H1 ++ H2 ✓ S such that there exists a rule r 2 P

r @ H 0

1 \ H 0

2 () g | C

in P and a substitution ✓ such that
8
>><

>>:

chr(H1) = ✓(H 0

1)
chr(H2) = ✓(H 0

2)
Db 6|= B ! 9r(✓ ^ g)
Db |= B ^ c! 9r(✓ ^ g)

then M \ S1 6= ;

2. upper bound : If m 2 S1 then vars(m) 6✓ fixed(B), where fixed(B) is the set of
variables fixed by B.

The actual definition of the solve function will depend on the underlying solver.

4. Simplify
Let d be the jth occurrence of c in a (renamed apart) rule r 2 P:

r @ H 0

1 \ H 0

2, d[j], H
0

3 () g | C

then

294



Chapter 9

S[[P]](hc#i : j, A, S,B, T in) =
if simplify-condition

then S[[P]](h✓(C), obs(A,H1 [H2 [H3), H1 ] S0, ✓ ^B, T [ {t}in)
else S[[P]](hc#i : j + 1, A, S,B, T in)

where simplify-condition is that there exists a matching substitution ✓ such that

8
>>>><

>>>>:

S = {c#i} ]H1 ]H2 ]H3 ] S0

c = ✓(d)
chr(H1) = ✓(H 0

1) ^ chr(H2) = ✓(H 0

2) ^ chr(H3) = ✓(H 0

3)
Db |= B ! 9̄r(✓ ^ g)
t = id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 62 T

5. Propagate
Let d be the jth occurrence of c in a (renamed apart) rule r 2 P:

r @ H 0

1, d[j], H
0

2 \ H 0

3 () g | C

then

S[[P]](hc#i : j, A, S,B, T in) =
if Db |= ¬9̄;Bk

then h2, A, Sk, Bk, Tkink

else S[[P]](hc#i : j + 1, A, Sk, Bk, Tkink)

where SProp[[P]](hc#i : j, A, S,B, T in) = h2, A, Sk, Bk, Tkink .
The auxiliary function SProp : Prog ! (⌃ ,! ⌃) is defined as:

SProp[[P]](hc#i : j, A, S,B, T in) =
if Db |= ¬9̄;B

then h2, A, S,B, T in
else if propagate-condition

then SProp[[P]](hc#i : j, A0, S0, B0, T 0in0)
else h2, A, S,B, T in

where propagate-condition is that there exists a matching substitution ✓ such that

8
>>>>>>>>>><

>>>>>>>>>>:

S = {c#i} ]H1 ]H2 ]H3 ]R
c = ✓(d)
chr(H1) = ✓(H 0

1) ^ chr(H2) = ✓(H 0

2) ^ chr(H3) = ✓(H 0

3)
Db |= B ! 9̄✓(r)✓(g)
t = id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r] 62T
S[[P]](h✓(C), [c#i : j|obs(A,H1 [H2 [H3)], S \H3, B, T [ {t}in) =

h2, [E|A0], S0, B0, T 0in0

E 2 {c#i : j, c#i : j⇤}

where g and ✓(g), respectively C and ✓(C) are variants and vars(g) \ vars(✓(g)) = ; and
vars(C) \ vars(✓(C)) = ;.

Example 9.2 When examining the evaluation shown in Section 9.2.3 the altered cases of
the semantic function above change the evaluation in one step. After the Simplify step
in the evaluation for s, the p in the store is observed, so the new step is

295



9.4. Late Storage Analysis

S[[P]](hs#3 : 1, [p#1 : 4], {p#1, q#2, s#3}, true, •i4) (Simplify)
= S[[P]](h2, [p#1 : 4⇤], {q#2}, true, •i4)

During the other Simplify and Propagate steps, either no rule is fired or the fired rule
is single-headed and hence no constraints are observed.

9.4.2 Abstract Domain

The domain of abstract execution states used for this analysis is rather simple. We abstract
CHR constraints by their predicate names, and built-in constraints as simply the special
predicate name builtin. The abstract state simple holds an abstraction of the goal or
active occurrenced constraint, and an abstraction of the call stack A. The abstracted call
stack is a set. It denotes the predicate occurrences which have not been observed.

Let c be a built-in constraint and p a CHR constraint, and S a set or multiset of CHR
constraints. We define the late storage abstraction ↵ls as follows:

↵ls(c) = builtin (c built-in)
↵ls(p(t1, . . . , tn)) = p

↵ls(p(t1, . . . , tn)#i) = p
↵ls(p(t1, . . . , tn)#i : j) = p : j

↵ls([]) = []
↵ls([c|G]) = [↵ls(c)|↵ls(G)]

↵ls(S) = {↵ls(c)|c 2 S} (S set)
↵ls(hG,A, , , i ) = h↵ls(G),↵ls(unobserved(A))i

where unobserved is defined as

unobserved(A) =

⇢
p

����
p(t1, . . . , tn)#i : j 2 list2set(A),
¬9p(t01, . . . , t0n)#i0 : j0⇤ 2 list2set(A)

�

list2set([]) = []
list2set([a|A]) = {a} [ list2set(A)

Note we abstract built-in constraints, and non-identified CHR constraints by keeping
the predicate. We abstract identified CHR constraints by removing the identity number
and occurrenced identified CHR constraints just keeping track of the occurrence number.
We eliminate observed constraints from the execution stack using the auxiliary function
unobserved.

The abstracted call stack is a set. It denotes the predicates which have not been
observed.

Note that program point information can easily be derived from the abstract state:

pp(hG,Ai) = G

Hence, the partial ordering and least upper bound operator are only defined for abstract
states with the same abstract goal: The partial ordering on states is hG,Ai �ls hG0, A0i i↵
G = G0 and A0 ✓ A.

For the sake of completeness, we add a top element >ls to the abstract domain, with
�(>ls) = ⌃ and 8s 2 ⌃a : s �ls >ls. The value pp(>ls) is not defined, but rather >ls

corresponds to all program points at once. Our analysis never produces >ls. If it would,
that would mean that the analysis gives up and yields no information at all.

296



Chapter 9

Clearly the abstract domain forms a lattice with the ordering relation �ls. The least
upper bound operator tls can be defined as follows:

s1 tls s2 =
if s1 = hG,A1i ^ s2 = hG,A2i

then hG, (A1 \A2)i
else >ls

9.4.3 Abstract Semantic Function

The abstract semantic function AS for the late storage domain is defined below.

AbstractSolve

AS[[P]](hbuiltin, Ain) = h2, ;i

A built-in constraint may possibly trigger any constraint in the constraint store. Hence
all the constraints in the call stack are possibly observed.

For every constraint name c, the following subcomputation needs to be run to cover
all execution paths, despite the fact that no information is carried over: AS[[P]](hc, ;i) =
h2, ;i.

Technically, the output state of one triggered constraint should become the input state
of the next according to !c. Moreover, the constraints could be run in any order. However,
this computation is a safe approximation, since every initial and final state has a known
empty A.

Abstract(Re)Activate

AS[[P]](hc, Ai) = AS[[P]](hc : 1, Ai)

where c is a CHR constraint.

AbstractDrop

AS[[P]](hc : j, Ai) = h2, Ain

Applicable if no occurrence j exists for CHR constraint c in P.

AbstractGoal

AS[[P]](h[ck1 , . . . , ckn ], Ai) = h2, A0in

where

AS[[P]](hcki , Ai) = h2, Aii

and A0 =
T

n

i=1Ai

Technically, the output state of one goal should become the input state of the next
according to the concrete refined denotational semantics. However, this definition here
captures the meaning of possibly observed too: If a constraint in the call stack is possibly
observed by any goal in a conjunction, it is possibly observed by the entire conjunction.

297



9.4. Late Storage Analysis

AbstractSimplify
Let d be the jth occurrence of c in a (renamed apart) rule r 2 P:

r @ H 0

1 \ H 0

2, d[j], H
0

3 () g | C

then

AS[[P]](hc : j, A0i) =
if unconditional-simplify

then s1
else s1 tls s2

where 8
<

:

s1 = AS[[P]](h↵ls(C), A1)
s2 = AS[[P]](hc : j + 1, A0i)
A1 = A0 \ ↵ls(H 0

1 [H 0

2 [H 0

3)

The condition unconditional-simplify holds if r is an unconditional simplification rule, i.e.
of the form c(x̄), C with all x 2 x̄ distinct variables. Namely, the rule application only
fails when the active constraint is not in the constraint store, this leads to a state h2, A0i
which when lubbed with s1 gives s1 because only more constraint may become possibly
observed and not less. The abstract execution state A1 marks the partner constraints of
c as possibly observed.

Otherwise (the rule is not an unconditional simplification rule) the rule application
either succeeds and observes constraints, or execution proceeds with the next occurrence.

AbstractPropagate
Let d be the jth occurrence of c in a (renamed apart) rule r 2 P:

r @ H 0

1, d[j], H
0

2 \ H 0

3 () g | C

then
AS[[P]](hc : j, A0in) = AS[[P]](hc : j + 1, A4i)

where 8
>><

>>:

A1 = A0 \ ↵ls(H1 [H2 [H3)
A2 = A1 [ {c}

h2, A3i = AS[[P]](h↵ls(C), A2i)
A4 = A3 \ ({c} \A1)

The abstract execution stack A1 takes into account the lookup of the partner constraints:
they are observed now. In A2 the active constraint c has been pushed onto the abstract
execution stack for the execution of the body of the rule. A3 is the resulting abstract
execution stack after the execution of the body. In A4 the constraint c is removed again
from the execution stack (if some copy of c was not already present prior to A2).

Note that the active constraint c may have been observed in the execution of C i↵
c 62 A3. Also note that here we treat the rule as if it always could have fired. This is
clearly safe.

9.4.4 Example Analysis

Consider the execution of the goal p with respect to the following (numbered) CHR pro-
gram

298



Chapter 9

p[1] ==> r.

p[2] ==> s.

p[3], s[1] <=> true.

The evaluation of the abstract semantic function is shown below.

AS[[P]](hp, ;i) (AbstractActivate)
= AS[[P]](hp : 1, ;i) (AbstractPropagate)
= AS[[P]](hp : 2, ;i) (AbstractPropagate)
= AS[[P]](hp : 3, ;i) (AbstractSimplify)
= AS[[P]](h2, ;i) tls AS[[P]](hp : 4, ;i) (AbstractGoal,AbstractDrop)
= h2, ;i tls h2, ;i
= h2, ;i

For the first abstract propagation step above, the result of the abstract execution of the
first rule’s body is used:

AS[[P]](hr, {p}}i) (AbstractActivate)
= AS[[P]](hr : 1, {p}i) (AbstractDrop)
= h2, {p}i

and A1 = A0 = ;, A2 = A1[{p} = {p} and A4 = A3 \ ({p}\A1) = {p}\ ({p}\;) = ;. For
the second abstract propagation step in the main computation, the result of the abstract
execution of the second rule’s body is used:

AS[[P]](hs, {p}}i) (AbstractActivate)
= AS[[P]](hs : 1, {p}i) (AbstractSimplify)
= AS[[P]](h2, ;i) tls AS[[P]](hs : 2, {p}i) (AbstractGoal,AbstractDrop)
= h2, ;i tls h2, {p}i
= h2, ;i

and A1 = A0 = ;, A2 = A1 [ {p} = {p} and A4 = A3 \ ({p} \A1) = ; \ ({p} \ ;) = ;. Note
that p is only possibly observed in the this last evaluation of s. Hence we can safely delay
storage of p until just before the execution of the second rule’s body.

9.5 Groundness analysis

In this section we illustrate the use of the abstract interpretation framework by lifting the
classical groundness analysis for Prolog to CHR.

In the groundness analysis for CHR we capture the groundness of variables in the scope
of rules and arguments of constraints. Variables that only occur in the constraint stores
are not tracked.

Unlike typical analyses for Prolog we do not go as far as capturing groundness relations
between all variables.

Sections 9.5.1 and 9.5.2 present the abstract domain and the abstract semantic function
respectively. The analysis is illustrated by means of an example in Section 9.5.3.

9.5.1 Abstract Domain

While abstracting groundness properties of a CHR execution we will be interested in three
parts of the concrete state, the goal, the CHR constraint store, and the built-in constraint
store.

299



9.5. Groundness analysis

Groundness is not directly a↵ected by CHR constraints, but only through built-in
constraints of the underlying constraint domain D. Hence, we assume that we have an ab-
stract domain G for tracking groundness of the underlying constraint domain D, providing
the following:

• the operations ↵G ,�G ,tG , . . .

• the abstract conjunction, denoted by ^G joins two abstract descriptions

• the function AaddG joins an abstract description with a concrete constraint

• the function groundsG(D), which returns the set of variables grounded by abstract
description D

• the abstract projection function 9̄G
V
F which abstracts the projection 9̄V F the pro-

jection of F onto the variables V .

We abstract the state to an abstract goal, an abstract CHR store and an abstract built-
in store. The abstract goal only removes occurrence numbers. The abstract CHR store
stores for each CHR constraint the least upper bound of the underlying domain’s ground-
ness descriptions of the CHR constraint instances in the store. The abstract underlying
store is an element of the domain G that is restricted to the variables in the goal.

↵g(c) = c (c is built-in)
↵g(p(t1, . . . , tn)) = p(t1, . . . , tn)

↵g(p(t1, . . . , tn)#i) = p(t1, . . . , tn)
↵g(p(t1, . . . , tn)#i : j) = p(t1, . . . , tn) : j

↵g([]) = []
↵g([c|G]) = [↵g(c)|↵g(G)]

↵g(S) = {↵g(c)|c 2 S} (S set or multiset)

↵g(p(t1, . . . , tn)#i, B) = p(x1, . . . , xn) D
where D = 9̄Gx1,...,xn

↵G(B ^ x1 = t1 ^ · · · ^ xn = tn)

↵g(S,B) = snf ({↵g(c, B)|c 2 S}) (S set or multiset)
↵g(hG, , S,B, i ) = h↵g(G),↵g(S,B), 9̄G

vars(G)↵G(B)i

where the function snf creates a normal form of the groundness description of the CHR
constraint store, by ensuring there is at most one entry for every CHR predicate. It is
defined as follows:

snf (;) = ;
snf ({p(x̄) D1} ] S) = snf ({p(x̄) D1 tG D2} ] S0)

where S = {p(x̄) D2} ] S0

snf ({p(x̄) D1} ] S) = {p(x̄) D1} ] snf (S),
where ¬9p(x̄) D2 2 S

We define pred as follows:

pred(p(x1, . . . , xn)) = p
pred(p(x1, . . . , xn) D) = p

pred([]) = []
pred([c|G]) = [pred(c)|pred(G)]

300



Chapter 9

The partial ordering �g on states is

hG,S,Bi �g hG0, S0, B0i
,

G ⇠ G0 ^ 9✓ : ✓(G0) ⌘ G ^B �G ✓(B0)^
(8p(x̄) D 2 S : 9p(x̄) D0 2 ✓(S0) : D �G D0)

where ✓ is a substitution.
For the sake of completeness, we add a top element >g to the abstract domain, with

�(>g) = ⌃ and 8s 2 ⌃a : s �g >g. The value pp(>g) is not defined, but rather >g

corresponds to all program points at once. Similarly as for the late storage analysis, the
groundness analysis never produces >g.

It is possible to verify that the abstract domain forms a lattice with the ordering
relation �g. It follows form the definition of partial ordering that all variants of the same
abstract execution state are considered equal.

The least upper bound operator tg can be defined as follows:

s1 tg s2 =
if s1 = hG,S,Bi ^ s2 = hG0, S0, B0i ^G ⇠ G0 ^ 9✓ : G ⌘ ✓(G0)

then hG, snf (S [ ✓(S0)), B tG ✓(B0)i
else >g

where ✓ is a substitution.

9.5.2 Abstract Semantic Function

The abstract semantic function AS for the groundness domain is defined below.

AbstractSolve
AS[[P]](hc, Sa ] Sb, Bi) = h2, Sk,AaddG(c, B)i

Applicable when c is a built-in constraint. Define Sa = {p(x̄)  D | x̄ ✓ groundsG(D)}
and Sb = {pi(x̄i) Di | 1  i  n}.

Let

S0 = Sa ] Sb

sj = hc, Sa ] Sb, Bi , j = 0
sj = h2, Sj , i =

F
g
{si

j
| si

j
= AS[[P]](hpi(x̄i), Sj�1, Dii) ^ 1  i  n}, j � 1

and be k the smallest positive integer such that sk = sk�1.

Abstract(Re)Activate

AS[[P]](hc, S,Bi) = AS[[P]](hc : 1, snf ({↵g(c, B)} [ S), Bi)

where c is a CHR constraint.

AbstractDrop
AS[[P]](hc : j, S,Bi) = h2, S,Bin

where no occurrence j exists for CHR constraint c in P.

301



9.5. Groundness analysis

AbstractGoal

AS[[P]](h[c|G], S0, B0i) = AS[[P]](hG,S,B0 ^G B2i)

where B1 = 9̄vars(c)B0 and

AS[[P]](hc, S0, B1i) = h2, S,B2i

AbstractSimplify
Let d be the jth occurrence of c in a (renamed apart) rule r 2 P:

r @ H 0

1 \ H 0

2, d[j], H
0

3 () g | C

then

AS[[P]](hc : j, S,Bi) =
if unconditional-simplify

then s1 tg s2
else s1 tg s3

where there exists a ✓ such that c = ✓(dj), H1[H2[H3 ✓ S and pred(Hi) = pred(H 0

i
), 1 

i  3.

Suppose

Hi = [pi1(x̄i1) Di1, . . . , pini(x̄ini) Dini ]
✓(H 0

i
) = [pi1(t̄i1), . . . , pini(t̄ini)]

Let

Di = Aadd(^G{Dij | 1  j  ni},^ni
j=1(x̄j = t̄j))

D = 9̄vars(✓(C))Aadd((D1 ^G D2 ^G D3 ^G B), g)

Suppose that

AS[[P]](h✓(C), S,Di) = h2, S0, B0i

Then 8
<

:

s1 = h2, S0, B ^G (9̄vars(c)B0)i
s2 = h2, S,Bi
s3 = AS[[P]](hc : j + 1, S,Bi)

The condition unconditional-simplify holds if r is an unconditional simplification rule,
i.e. of the form c(x̄) , C with all x 2 x̄ distinct variables. The abstract state s1 is the
least upper bound of the unconditional application of the simplification rule and s2 is the
result if the active constraint has already been deleted. Otherwise, either the simplification
is applied (s1) or the next evaluation proceeds with the next occurrence (s3).

We find a possible match for each CHR constraint in the rule, assume that the guard
holds, and determine the abstract underlying constraint store that must exist for the body
of the rule from the matching. We execute the body of the rule with this store, without
removing any constraints from the store (since we are not sure how many copies there
are). The resulting abstract underlying store is projected back onto the active constraint
and then added to the current store.

302



Chapter 9

AbstractPropagate

Let d be the jth occurrence of c in a (renamed apart) rule r 2 P:

r @ H 0

1, d[j], H
0

2 \ H 0

3 () g | C

then
AS[[P]](hc : j, S,Bi) = s1 tg s2

where there exists a ✓ such that c = ✓(dj), H1[H2[H3 ✓ S and pred(Hi) = pred(H 0

i
), 1 

i  3.
Suppose

Hi = [pi1(x̄i1) Di1, . . . , pini(x̄ini) Dini ]
✓(H 0

i
) = [pi1(t̄i1), . . . , pini(t̄ini)]

Let
Di = Aadd(^G{Dij | 1  j  ni},^ni

j=1(x̄j = t̄j))
D = 9̄vars(✓(C))Aadd((D1 ^G D2 ^G D3 ^G B), g)

Suppose that
AS[[P]](h✓(C), S,Di) = h2, S0, B0i

Then
s1 = AS[[P]](hc : j + 1, S0, B ^G (9̄cB0)i)

is the result assuming the rule fired and

s2 = AS[[P]](hc : j + 1, S,Bi)

is the result if the rule did not fire.

9.5.3 Example Analysis

In this example analysis we will use the following simple abstract domain G:

• ↵G(c) = {x|x 2 vars(c) ^ c! ground(x)}

• D1 �G D2 , D1 ◆ D2

• D1 tG D2 = D1 \D2

• D1 ^G D2 = D1 [D2

• AaddG(D, c) = D [ {x 2 vars(c)|9D0 ✓ D : (8y 2 D0 : ground(y)) ^ c! ground(x)}

• groundsG(D) = D

• 9̄G
V
D = D \ V

The example program we will analyze is primes, see [Schrijvers, 2005b], extended with an
appropriate main/0 constraint:

main[1] <=> N = 10, candidate(N).

candidate(N)[1] <=> N = 1 | true.

candidate(N)[2] <=> prime(N), M is N - 1, candidate(M).

prime(Y)[2] \ prime(X)[1] <=> 0 =:= X mod Y | true.

303



9.5. Groundness analysis

It computes the prime numbers between 1 and 10. The abstract derivation steps for the
groundness analysis of this program are the following.

For brevity the abstract stores are shown separately:

S1 = {main:-;}
S2 = S1 [ {candidate(N):-{N}}
S3 = S2 [ {prime(N):-{N}}

AS[[P]](hmain, ;, ;i) (AbstractActivate)
= AS[[P]](hmain : 1, S1, ;i) (AbstractSimplify)
= h2, S3, ;i tg h2, S1, ;i
= h2, S3, ;i

In order to obtain the above abstract simplification result, the following evaluation of the
first rule’s body is needed:

AS[[P]](h[X = 10, candidate(X)], S1, ;i) (AbstractGoal)
= AS[[P]](h[candidate(X)], S1, {X}i) (AbstractGoal)
= h2, S3, {X}i

For the first abstract goal step, this auxiliary result is used:

AS[[P]](hX = 10, ;, S1i) (AbstractSolve)
= h2, S1, {X}i

For the second abstract goal step, this auxiliary result is used:

AS[[P]](hcandidate(X), S1, {X}i) (AbstractActivate)
= AS[[P]](hcandidate(X) : 1, S2, {X}i) (AbstractSimplify)
= AS[[P]](h2, S2, {X}i) tg AS[[P]](hcandidate(X) : 2, S2, {X}i)
= h2, S2, {X}i tg h2, S3, {X}i
= h2, S3, {X}i

which uses the result:

AS[[P]](hcandidate(X) : 2, S2, {X}i) (AbstractSimplify)
= AS[[P]](h[prime(X), Y is X � 1, candidate(Y )], S2, {X}i) tg h2, S2, {X}i)
= h2, S3, {X}i tg h2, S2, {X}i
= h2, S3, {X}i

This in turn uses:

AS[[P]](h[prime(X), Y is X � 1, candidate(Y )], S2, {X}i) (AbstractGoal)
= AS[[P]](h[Y is X � 1, candidate(Y )], S3, {X}i) (AbstractGoal)
= AS[[P]](h[candidate(Y )], S3, {X,Y }i) (AbstractGoal)
= h2, S3, {X,Y }i

The evaluation for the prime(X) goal is as follows:

AS[[P]](hprime(N), S2, {N}i) (AbstractActivate)
= AS[[P]](hprime(N) : 1, S3, {N}i) (AbstractSimplify)
= h2, S3, {N}i tg AS[[P]](hprime(N) : 2, S3, {N}i) (AbstractPropagate)
= h2, S3, {N}i tg AS[[P]](hprime(N) : 3, S3, {N}i) (AbstractDrop)
= h2, S3, {N}i tg h2, S3, {N}i)
= h2, S3, {N}i

304



Chapter 9

We omit identical evaluations for [prime(N),M is N�1, candidate(M)] and prime(N)
starting with CHR store S3 rather than S2. From this analysis we can conclude that the
CHR constraints are ground at all times in this program.

9.6 Implementation and Evaluation

We have implemented both the late storage analysis and the groundness analysis in our
K.U.Leuven CHR system (see [Schrijvers, 2005a, Chapter 6]).

We have implemented the late storage and groundness analyses to always start from
an initial goal hmain, ;i and hmain, ;, ;i respectively. The rules for the constraint main/0
in a particular benchmark define all relevant call patterns for that benchmark.

9.6.1 Late Storage Analysis

The results of this analysis are used for optimization in our CHR compiler in the following
way:

• The main philosophy in late storage is to delay constraint storage, so that some
constraints are removed before they have to be stored. For those constraints the
overhead of both storage and removal is then avoided.

The reference CHR implementation in SICStus [Intelligent Systems Laboratory,
2003] already has an approximate late storage optimization. Namely, it does not
store an activated constraint straight away, but only ensures it is stored before a
rule body of a propagation occurrence is executed. See [Schrijvers, 2005a, Chapter
6] for a more extensive treatment of late storage.

With our late storage analysis, the optimization of [Schrijvers, 2005a, Chapter 6]
is made stronger: our compiler now also avoids the storage of an active constraint
before the execution of a body of a propagation occurrence, if the constraint is not
observed during the execution of that body.

• For a particular class of constraints, our compiler derives that they are never stored.
Never stored constraints are not stored before an unconditional simplification oc-
currence. An unconditional simplification occurrence, is an occurrence in a single-
headed rule without any matching or guard. The following optimizations are possible
for never stored constraints:

– A constraint that is never stored, cannot be triggered. Hence no checks are
necessary to distinguish between activation and reactivation.

– A never stored constraint cannot be found in a constraint store. Hence if it
occurs in a multi-headed rule, its partner constraints in that rule should not
actively try to apply that rule, i.e. their occurrences are considered passive.

– A never stored constraint will not reconsider the same propagation rule twice
with the same partner constraints. Hence no history needs to be maintained
for that rule.

Hence, the code generated by our compiler is much closer to the code one would write
for a deterministic procedure in the host language than for an arbitrary constraint
without the never stored property.

305



9.6. Implementation and Evaluation

In Table 9.2 we show the speed-ups resulting from late storage analysis in hProlog. For
eight benchmarks, see [Schrijvers, 2005b], we compare immediate storage with the current
implementation of the above optimizations that are enabled by late storage analysis. The
timings for the optimized programs are given relative to those of the unoptimized programs.

Benchmark Optimized / Unoptimized
bool 17.6%
fib 72.3%
fibonacci 72.7%
leq 75.7%
mergesort 86.5%
primes 94.6%
uf 97.4%
uf opt 106.5%
wfs 95.7%
zebra 89.1%

Table 9.2: Late storage analysis: runtime results of optimized programs relative to unop-
timized programs

In Table 9.3 we show the number of dynamic constraint store insertions and deletions
for these benchmarks.1 The considerable reduction of the bool benchmark timing is
clearly explained by the drastic decrease in the number of store operations. While even
more operations have been saved in the leq benchmark, the impact on its runtime is
more modest, though still considerable. Measurement indicates that the impact of these
operations on the total runtime is less dominant and so less overall improvement can be
realized.

Benchmark Without With
Insert Delete Insert Delete

bool 359,996 359,996 8.33% 8.33%
fib 114,603 114,580 50.01% 50.00%
fibonacci 81,000 39,000 51.85% 0.00%
leq 34,280 34,280 5.16% 5.16%
mergesort 37,170 34,610 30.97% 25.86%
primes 4,999 4,632 49.99% 46.03%
wfsnew 46,800 44,800 91.03% 90.62%
uf 7,994 6,994 37.50% 28.57%
uf opt 8,004 7,004 37.50% 28.57%
zebra 56,790 130,300 37.52% 28.60%

Table 9.3: Late storage analysis: the number of store operations without and with late
storage

The analysis time for the late storage analysis is reasonable, in the range of 0 to 20
ms for the above benchmarks and mostly only a fraction of total compilation time. For

1Note that in the zebra benchmark the number of deletions is larger than the number of additions. This
is due to backtracking over deletions.

306



Chapter 9

the K.U.Leuven CHR system compiler, including 76 constraints and 144 CHR rules, the
analysis takes 500 ms or a fifth of total compilation time.

9.6.2 Groundness Analysis

Our implementation of groundness analysis uses the naive groundness domain for built-in
constraints as it is described in Section 9.5.3.

The K.U.Leuven CHR system currently only performs optimizations for constraints
that are ground in all possible states. The optimizations are enabled by groundness dec-
larations that are supplied by the programmer (see [Schrijvers, 2005a, Section 6.3]). In
order to evaluate our analysis we have used the results of the analysis to automatically
infer the groundness declarations.

We have experimentally evaluated our groundness analysis in this way on the seven
benchmarks also used in Section 3.5.3: fib, fibonacci, mergesort, primes, uf, uf opt

and wfs. To each of these benchmarks we have added a main/0 constraint representative
of the use of the particular benchmark.

It turns out that the annotations derived from the groundness analysis results are op-
timal for all but the union-find benchmarks. Optimal means that the derived annotations
are as strong as the actual calling patterns of the constraints in those benchmarks. The
speed-ups realized by the annotations were listed in Table 3.2 in Section 3.5.3.

For the union-find benchmark, the results are not optimal. The analysis does not
figure out that the first argument of find/2 and both arguments of link/2 are always
ground, because the analysis does not take into account that a find/2 is only called
on an element that already appears in a root/2 or ~>/2 constraint and never delays.
Although the derived annotations are not optimal, the speed-ups are about as good as
for the optimal annotations: for the uf benchmark we measured no di↵erence and for the
uf opt benchmark we measured a di↵erence of at most 10 ms.

The analysis time of the groundness analysis is more troublesome than that of the late
storage analysis. Times are in the range of 10 to 100 ms for the smaller benchmarks (fib,
fibonacci, mergesort, primes) with 2 to 4 CHR rules and in the range of 10,000 ms for
the larger ones (uf, uf opt and wfs with respectively 6, 7 and 44 CHR rules). In all cases
the groundness analysis dominates the total compilation time.

9.7 Conclusion

To the best of our knowledge, this is the first work on using abstract interpretation for
CHR. Many ad-hoc analyses and optimizations were developed for CHR before: delay
avoidance [Holzbaur et al., 2005, Schrijvers and Demoen, 2004a] (see [Schrijvers, 2005a,
Section 6.3.4]), late storage, continuation optimization, an index optimization [Holzbaur
et al., 2005], . . . Typically the analysis process used to obtain information that enables a
particular optimization is only discussed informally or left out altogether.

We have shown that it is possible to apply the general and structured ideas of abstract
interpretation to CHR. Based on our definition of the refined denotational semantics of
CHR, we have formulated a framework for abstract interpretation. To illustrate the frame-
work we have formulated two analyses in it: the CHR specific late storage analysis and the
groundness analysis which we have lifted from Prolog to CHR. These two domains show
that it is possible to precisely and formally state program analyses for CHR which yield
useful information for program optimization.

307



Bibliography

Our work on abstract interpretation has been published as a technical report [Duck
et al., 2004a] and accepted at the Principles and Practice of Declarative Programming
Symposium [Schrijvers et al., 2005].

9.7.1 Related and Future Work

The most closely related work we are aware of is the one on the analysis of concurrent
constraint logic (CCL) programs [Codognet et al., 1990, Codish et al., 1993]. CCL pro-
grams roughly correspond to CHR programs with only single-headed simplification rules.
The CCL semantics corresponds to the high-level operational semantics of CHR. Due
to the single-headedness of CCL programs, their analysis is not complicated by the non-
determinism of the partner constraint matchings of CHR. However, their semantics is more
non-deterministic regarding the order of rule-applications than the refined operational se-
mantics we use.

We have only presented two rather straightforward analysis domains as an illustration
of the framework. These analyses should of course be strengthened with additional control
flow information that is derived from other analyses. It is for example possible to derive the
never stored property for some constraints from the late storage analysis. This information
reduces the set of constraints that may be reactivated.

Moreover the groundness analysis has only been exploited in the case that arguments
of constraints are ground throughout their full lifetime. As an extension, one can exploit
the groundness information in other cases, i.e. when arguments are ground from a certain
occurrence on or at certain occurrences.

Many more analyses for CHR can be considered within the framework as well as the
combination of these analyses.

Several e�ciency issues have risen during the formulation of our framework, namely due
to the fixedpoint computations. It remains to be explored how much the impact of these
computations is on the overall e�ciency of analyses in our framework. Widening strategies
can be applied to avoid overly long analysis times for some domains. A comprehensive
study of the time/accuracy trade-o↵ is required.

For a specific CHR compiler the accuracy can be improved across analysis domains by
using the more specialized operational semantics of the compiler. The semantics of the
compiler will typically be a more deterministic instance of the denotational semantics.

The common abstract interpretation analysis technique may facilitate the more unified
view of host language and CHR to perform multi-language analysis. For example in
the case of CHR in Prolog, a single groundness analysis for both the Prolog code and
its embedded CHR code would obtain the strongest results since there is a reciprocal
interaction between both languages. A more unified semantics of both is necessary to
accomplish this.

Bibliography

Michael Codish, Moreno Falaschi, Kim Marriott, and William H. Winsborough. E�cient
Analysis of Concurrent Constraint Logic Programs. In ICALP’93: Proceedings of the
20th International Colloquium on Automata, Languages and Programming, pages 633–
644, London, UK, 1993. Springer Verlag.

C. Codognet, P. Codognet, and M. Corsini. Abstract Interpretation for Concurrent Logic
Languages. In S. Debray and M. Hermenegildo, editors, NACLP’90: Proceedings of the

308



Chapter 9

North American Conference on Logic Programming, pages 215–232, Cambridge, MA,
USA, 1990. MIT Press.

Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unifed Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 238–252, Los Angeles, California, 1977. ACM Press.

Gregory Duck, Tom Schrijvers, and Peter Stuckey. Abstract Interpretation for Constraint
Handling Rules. Report CW 391, K.U.Leuven, Department of Computer Science, Leu-
ven, Belgium, September 2004a.

Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian Holzbaur. The
Refined Operational Semantics of Constraint Handling Rules. In ICLP’04: Proceedings
of the 20th International Conference on Logic Programming, volume 3132 of Lecture
Notes in Computer Science, pages 90–104, St-Malo, France, September 2004b. Springer
Verlag.

Christian Holzbaur, Maŕıa Garćıa de la Banda, Peter J. Stuckey, and Gregory J. Duck.
Optimizing Compilation of Constraint Handling Rules in HAL. Theory and Practice
of Logic Programming: Special Issue on Constraint Handling Rules, 5(Issue 4 & 5):
503–531, 2005.

Intelligent Systems Laboratory. SICStus Prolog User’s Manual. PO Box 1263, SE-164 29
Kista, Sweden, October 2003.

Kim Marriott, Harald Søndergaard, and Neil D. Jones. Denotational Abstract Interpreta-
tion of Logic Programs. ACM Transactions on Programming Languages and Systems,
16(3):607–648, 1994. ISSN 0164-0925.

Tom Schrijvers. Analyses, Optimizations and Extensions of Constraint Handling Rules.
PhD thesis, Department of Computer Science, K.U.Leuven, Belgium, 2005a.

Tom Schrijvers. A Collection of Assorted CHR Benchmarks, 2005b.
http://www.cs.kuleuven.be/˜toms/Research/CHR/.

Tom Schrijvers and Bart Demoen. Antimonotony-based delay avoidance for CHR. Report
CW 385, K.U.Leuven, Department of Computer Science, July 2004a.

Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implementation and ap-
plication. In Thom Frühwirth and Marc Meister, editors, First Workshop on Constraint
Handling Rules: Selected Contributions, pages 1–5, Ulm, Germany, May 2004b.

Tom Schrijvers, Peter Stuckey, and Gregory Duck. Abstract Interpretation for Constraint
Handling Rules. In PPDP’05: Proceedings of the 7th International Symposium on Prin-
ciples and Practice of Declarative Programming, pages 218–229, Lisbon, Portugal, July
2005. ACM Press.

309



Index

234-tree, 78

Abduction, 37
Abstract Domain, 290
Abstract Interpretation, 283

Framework, 289
Abstraction Function, 290
Acceptable Encoding, 267
Active Constraint, 23, 285
Answer, 267
Applications of CHR, 35
Arrays, 184
Association Lists, 184

Bisimilarity, 210
Body, see Rule
Built-in Constraints, 16

CHR Machine, 168
Complexity, 172

CHR Syntax, 16
CHR-Only Machine, 169
CHRG, 37
Church-Turing Thesis, 164
Commutative Monoid, 259
Compilation, 54, 133

CHRrp 104
Guard, 64

Completion, 26
Complexity, 26, 165, 202

Amortized, 167
Asymptotic, 166
CHR Machines, 172
Constant Factors, 187
RAM Machines, 165
Turing Machines, 165

Computational Linguistics, 37
Computational Power, 26
Concretization Function, 290
Concurrency, 122, 123
Confluence, 25, 101
Constraint Propagators, 93

Constraint Solvers, 35
Continuation Optimization, 75

Delay Avoidance, 79
Dependency Rank, 178
Description Logic, 36
Deterministic, 22
Dijkstra’s Algorithm, 92, 190

Equivalence Relation, 245, 254
Example Programs, 29
Execution Stack, 57
Extensions of CHR, 34

Adaptive CHR, 34
Aggregates, 34
Disjunction, 34
Negation as Absence, 34, 182
Search, 34
Solver Hierarchies, 35

Functional Dependencies, 177
Functional Programming, 27, 184

Galois Connection, 290
Global Variables, 242, 254
Goal, 242
Ground Constraint, 75
Groundness Analysis, 299
Guard, see Rule, 64, 67

Halting Problem, 160
Hash

Bucket, 78
Collision, 78
Function, 78
Table, 77

Head, see Rule
Host Language, 16, 169

Implied Rule Instance, 207
Indexing, 177

Join Ordering, 73, 177



Index

Join-Calculus, 39

K.U.Leuven CHR system, 71

Late Indexing, 111
Late Storage, 74, 293
Lazy Matching, 134
Leuven CHR System, 29
Lexicographic Order, 35
Linear Constraints, 253
Linear Store, 254
Logic Programming, 27, 184
Logical Algorithms, 198, 199
Logical Semantics, 19

Match Tree, 135
Memory Reuse, 178
Merge Operator, 258
Meta-Complexity, 176, 179

CHRrp, 225
Logical Algorithms, 201

Minsky machine, 163
Mode Declaration, 30
Modularity, 26, 35
Monotonicity, 123, 259
Multi-Agent Systems, 36

Natural Language Processing, 37
Never Stored, 74
Non-Linear Constraints, 35
Normal Form, 207
Normalisation

Guard, 55
Head, 55
Program, 56

Observation, 293
Occurrence, 17, 57, 60, 109, 218

Number, 17
Passive, 112

Operational Semantics
Abstract, 20
Concurrency, 123
Denotational, 284
Derivation, 21
Equivalence-based, 250
Informal, 17
Logical Algorithms, 200
Persistent, 255
Priority-based, 91, 98, 105
Theoretical, 20

Optimization, 109, 111
OWL, 36

Partial Order, 261
Persistent Constraints, 253
Persistent Store, 254
Pre-normal Form, 206
Priority Queue, 225
Program Analysis, 25
Program Generation, 36
Program Point, 285
Propagation History, 21, 59

RAM Machine, 162
Peano-Arithmetic, 162
Standard, 163

Range-Restricted, 264
Rational Trees, 35
Refined Semantics, 22
Register Initialization, 182
RETE, 116, 218
Rule

Body, 17
Guard, 17
Head, 17
Name, 17
Propagation, 16
Simpagation, 16
Simplification, 16
Syntax, 16

Rule Engines, 185
Rule Priorities

Dynamic, 97
Static, 98

Rules
CHRrp, 98, 216
Pathological, 267

Runtime Library, 73

Scheduling, 36, 223
Semantic Function, 289

Abstract, 291
Semantic Web, 36
Soft Constraints, 35, 94
Solver Generation, 36
Space Complexity, 166
Spatio-Temporal Reasoning, 36
State Transition System

!d, 286
!p, 98

317



Index

!r, 23
!rp, 105
!!, 255
!e, 250, 252
!set, 24, 277
!r, 177
!t, 20, 21
Goal-Based, 126, 127

States
!p-State, 98
!r-State, 23
!!-State, 254
!e-State, 242
Abstract State, 290
Execution State, 21
Execution state, 285
Failure, 21
Final, 21, 130
Initial, 21, 130
Joinable, 25

Substitution, 245, 254
Sudoku, 32
Suspension

Cache, 179
Syntax, 16

Term Rewriting, 185
Termination, 25, 129, 132, 265
Testing, 38
Time Complexity, 165
Turing Machine, 160

Non-Deterministic, 161
Turing-Complete, 164, 169
Type Declaration, 30
Type Systems, 37

Variable Renaming, 246
Verification, 38

318


