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Abstract

Visualisation or animation of a certain topic is an attractive method that can aid one’s
understanding of the concept behind such topic. This can be beneficial in the program-
ming world, where for a certain implementation of an algorithm, one can follow its flow
through its graphical representation. For this work, two fundamental algorithms as well
as three grid-based ones are visualised through an implementation written using CHR
with Prolog acting as a host language. The graphical aspect of the implementations is
achieved using Prolog’s tool kit XPCE.
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Chapter 1

Introduction

Generally, the human brain is capable of imagining scenarios shown through images in
motion, better than being presented only with written text or static pictures. A well-
animated and easy-to-follow representation of an algorithm can aid one’s understanding
of such algorithm, since a static drawing or typed piece of code is not sufficient to de-
scribe its behaviour. There have been multiple works, for example [4] and [5], interested
in such a concept. Usually, the idea is to employ a programming language with graphical
capabilities, in some cases more than one language, to animate algorithms. In this work,
the main focus is on visualising algorithms written in Constraint Handling Rules (CHR).

CHR is a high-level language based on logic and applying constraints through dif-
ferent kinds of rules as will be explained later in more detail through section 2.1. When
introducing CHR to students, it is very important that they understand how the rules
work and which commands are being performed, based on the choices made according
to applying the constraints. For someone with no previous knowledge of such concept,
presenting a visualisation of a certain CHR program can aid its comprehension and that
is the aim of this thesis. This is done through visualising five chosen CHR algorithms
as explained further in chapter 4.

In 1991, Thom Frithwirth introduced the idea of CHR through [6]. Then later on in
his book[7], the concrete syntax of CHR was used with Prolog, acting as a host language,
to officially introduce CHR’s programming capabilities. One of the aims of this work is
to follow the same approach of using the advanced and stable Prolog implementation of
CHR from K.U. Leuven, and exploit it to visualise the algorithms. However, since Prolog
on its own does not own any graphical capabilities[8], different possibilities of producing
such visualisations are investigated and a suitable approach, that helps maintain the
stability of the implementation for this work, is chosen. The five visualised algorithms
are:

1. Finding the minimum of a set of given numbers
2. Wolfram’s Cellular Automaton: Rule 110

Calculating the N** value of the Fibonacci series

- w

Solving the N-Queens problem

5. Finding the solution of a Sudoku puzzle
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This thesis is divided into five chapters starting with this introduction. Chapter 2
discusses previous works that have influenced parts of this work, as well as an intro-
duction to CHR and an overview on how each of the five algorithms works. In chapter
3, different graphical approaches that can be considered for Prolog are explored and
presented, along with the choice made of the one to be used for the implementation
part of this work. Also, the approach of the graphical representation of each algorithm
is discussed on the same chapter. As for chapter 4, using the chosen implementation
approach, each algorithm’s implementation is explained in more detail as well as men-
tioning some related work. Finally, chapter 5 concludes the work that has been done
throughout the thesis in addition to presenting ideas for future work.



Chapter 2

Background

This chapter is divided into three sections covering the researched material required for
preparation purposes of this work. First, CHR is introduced alongside its three types
of rules. Second, a section defines each of the five algorithms to be visualised, either
mathematically or conceptually. Finally, a literature section summing up any influential
or related works to this thesis’s topic and interest.

2.1 Constraint Handling Rules

CHR is a concurrent constraint-based programming language which one can employ
to impart user-defined constraints to a host language. It was originally embedded in
Prolog, hence it is the most recommended and commonly-used implementation of CHR
so far[7]. However, a wide range of languages today also support CHR implementations,
such as Haskell, Java and C. Generally, for any CHR program, it is possible to mix the
CHR code with the host language’s statements.

Syntax and Semantics

A CHR constraint is represented in the same way a Prolog predicate is, i.e through
a functor/arity pair where functor is the constraint name and arity is the number of
arguments it carries. In order to introduce CHR and how such constraints are employed,
we first introduce the syntax of the three types of rules that CHR offers[9]:

1. Simplification rules:

hi,....hi <= g1,...9; | b1, ..bx (2.1)

2. Propagation rules:
hi,....;hi = g1,...9; | b1, ...bk (2.2)

3. Simpagation rules:
hi, .y \ higa,...hi <= g1,...9; | b1, ...bg (2.3)
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A CHR rule consists of a set of head constraints hq, ..., h;, an optional set of guards
g1, -.-gj, covering any checks that need to be made, and a set of body constraints by, ...b,
where 4,5, k, 1 > 1.

During execution, whenever a constraint is encountered it becomes active. A con-
straint is matched if it is found to be an instance of the head of a rule. Next, if the
head(s) of the rule is(are) matched and a guard is present, then the rule is applied if the
guard is met. Such rule is said to be fired. Otherwise if the constraint is not matched for
this rule, the active constraint tries the next head matching. If no rule is applicable for
the current constraint, then it becomes passive. A passive constraint is thrown into the
constraint store which is a data structure for holding constraints throughout the CHR
program execution.

The head constraints of a propagation rule as well as the head constraints hq, ..., h; of
a simpagation rule are called kept constraints. On the other hand, the head constraints
of a simplification rule and the head constraints h;y1,..., h; of a simpagation rule are
called removed constraints. Such naming was chosen because, for example, when a
simplification rule is fired, its head constraints are removed from the constraint store.
Whereas, when a propagation rule is fired, the head constraints are still kept in the
constraint store. The same is applied to the kept and removed head constraints of a
simpagation rule when it is fired. This will be explained further through the following
example.

:— use_module(library(chr)).
:— chr_constraint cat/1, pet_owner/2, cat_owner/2.

simplification @ cat(X) , pet_owner(X,Y) <=> cat_owner(X,Y).
propagation @ cat(X) , pet_owner(X,Y) ==> cat_owner(X,Y).

simpagation @ pet_owner(X,Y) \ cat(Z) <=> X=Z | cat_owner(X,Y).

In order to write a CHR program, the first line must be added before any CHR code
to load the CHR library. Also, in order to use any constraint, it must be declared first
using the chr_constraint keyword as in the second line. For this short CHR program,
there are three user-defined constraints; cat/1, pet_owner/2 and cat_owner/2, where
in a logical sense, a pet_owner can be, but not necessarily, a cat_owner. The labelling
of the rules, “simplification” , “propagation” and “simpagation”, are optional and
are added to this example to aid referencing the different rules. Such labelling can also
be used as an identity of its rule.

1. Simplification

The first rule is a simplification rule where querying the two-part head simplifies
into the constraint cat_owner; where a pet_owner Y with a pet X that is also a
cat, is a cat_owner. When a simplification rule is fired, the constraints of the
head are removed from the constraint store and replaced by the newly-thrown
constraint(s) through executing the body of the rule, as previously explained in
2.1.

2. Propagation

This type works similar to the simplification rule except that here, as mentioned
before in 2.2, the constraints of the head are kept in the constraint store as well as
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throwing in new ones. This makes it possible to compute all different combinations
of an owner having different cats or a cat having more than one owner, e.g a cat
that belongs to a family means that it belongs to each member of it.

3. Simpagation
A simpagation rule is a mixture between the other two rules. The last rule is a
simpagation rule that corresponds to the case of a pet owner having one or more
cats. The rule is only fired when there is a cat Z and a pet_owner X with a pet Y

and the condition X=Z is satisfied. Then, The constraints are handled as illustrated
before in 2.3.

2.2 Algorithms

2.2.1 Minimum of a Set of Numbers

Given a set of numbers, the algorithm’s purpose is to find the minimum number among
them. The idea is to compare each number with the current minimum-so-far. Initially,
the first number is set as the minimum since no other is there to compare with yet.
The first two numbers are compared together and whichever is less than the other, is
marked as the minimum-so-far. Then, that number is compared with the third input
number and so on. The algorithm terminates whenever all of the input numbers have
been tested and compared with the marked number. Thus, the minimum number of the
set will eventually be marked. An abstract idea of how the algorithm code looks like is
shown through Algorithm 1.

Algorithm 1 Minimum of a set

10

min_so_far <+ set|[i|

141+ +

while i < set.length() do
if set[i] < min_so_far then

min_so_far + set[i]

end if
14 i+ +

end while

Note that set is an array of numbers the algorithm is performed on and min_so_far is
the number marked to be the minimum.

2.2.2 Fibonacci: Top-Down Approach with Tabling

A Fibonacci sequence is a series of numbers where every subsequent number is the sum
of the two numbers preceding it. The two base cases are 0 and 1 where the Oth and
1st element of a Fibonacci sequence is 1. For a number N, the top-down approach to
calculate the Nth element of the Fibonacci sequence starts with calculating the Ith and
Jth element of the Fibonacci sequence, where I is N-1 and J is N-2, then summing
them up. For a better understanding of the derivation of such a sequence, the following
mathematical relation defines it:

Fn = Fn—l + Fn—2 (24)



CHAPTER 2. BACKGROUND 6

where the bases cases are defined as

FO =1 and Fl =1 (25)

It is obvious from equation 2.4 how such a calculation is done recursively. Meaning,
in order to calculate the value of F},, one has to calculate the Fibonacci value of the two
numbers preceding it and so on. Following the tabling approach, the elements of the
Fibonacci sequence already calculated are kept track of. This helps avoiding doing any
re-calculations.

Algorithm 2 is equivalent to the previously mentioned mathematical relation, where
X is the number the Fibonacci is being calculated for and R is the resulting Fibonacci
number. The invoked method calculated_before on X is a boolean check on whether
the X*" value of the Fibonacci series has been calculated before or not. Find_Fibonacci
is a method that retrieves the resulting Fibonacci of a number that has already been
calculated before and returns it in RX.

Algorithm 2 Fibonacci: Top-Down Approach With Tabling

Fib(X, R){
if X =10or X =0 then
R+1
else
if X.calculated_ before then
Find_Fibonacci(X, RX)
R+ RX
else
Fib(X — 1, R1),Fib(X — 2, R2)
R+ R1+ R2
end if
end if

}

Thus, we have the final Fibonacci of a number returned in R of the first Fibonacci
call eventually.

2.2.3 Wolfram’s Cellular Automaton: Rule 110

A cellular automaton is generally a group of coloured cells in a grid-like representation.
Each cell, in a generation G, results from a set of rules being applied on a group of cells
in the previous generation G — 1. Iteratively, the rules are applied for as many steps as
requested.

The simplest case is having a one-dimensional cellular automaton. An even simpler
class of such cellular automata, is an Elementary Cellular Automaton. The cells can
only have two possibilities, 0 or 1, and the rules applied are only concerned with the
nearest neighbour cells. One of those rules introduced by Stephen Wolfram in [10], is
rule 110. Using this rule, the next colour of a cell depends only on its colour and the
immediate neighbouring cells’ colours. The number 110 from the rule’s name represents
its outcome when encoded in its binary representation; 11019 = 011011102. Figure 2.1
illustrates what the binary number represents, where the upper group of cells are the
neighbouring ones in generation G and the lower cell is the output cell in generation
G+ 1
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Figure 2.1: The 8 rule cases of Rule 110. Courtesy of [1]

As shown in the above figure, for each three neighbouring cells in the top row, the
outcome in the next generation, shown in the bottom row, depends on their colours(black
for 1 and white for 0). An example to explain how the rule works is shown next in figure
2.2, where initially only one black cell is present in the first generation, which is viewed
as a column, and the rest of the generation’s cells are white. The rules are applied
accordingly to output a few more generations.

Figure 2.2: An example of how Rule 110 works. Courtesy of [1]

2.2.4 N-Queens

The N-Queens problem is concerned with placing a number of queens on a grid such
that no queen could be attacking another. In other words, each queen must be placed in
a cell where there is no other queen in the same row, column or diagonal. The maximum
number of queens to be placed on an n x n grid/chessboard is n queens[2]. This work is
interested in visualising such a case where the maximum number of queens can be placed
on a board. There can be different permutations of the solution to such an N-Queen
problem. For example, for eight queens, there are multiple solutions as shown in figure
2.3.

2.2.5 Sudoku

The well-known Sudoku puzzle is mainly a logic puzzle where the goal is to fill in a grid
with numbers satisfying some constraints and rules. A basic “classic” Sudoku would be
a 9 x 9 square divided into nine 3 x 3 boxes. One can only use numbers from 1 to 9 to
fill in the grid. Initially, the Sudoku grid can have a few numbers given, provided that
it satisfies the following constraints; each row, column and 3 x 3 box must have all nine
numbers without any of them repeated. Also, filling in the rest of the board to solve
the puzzle must be done fulfilling the same conditions.
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Figure 2.3: Permutations of N-Queens problem’s solution with eight queens. Courtesy
of 2]
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Figure 2.4: A Sudoku problem on the left-hand-side and its solution on the right-hand-
side. Courtesy of [3]

In figure 2.4, the puzzle begins with a few numbers in red as the input and then
the constraints previously mentioned are applied on the possible numerical solutions for
each cell. This eliminates the solutions that would fail to satisfy the constraints and
thus leaving us with a valid correct solution to the whole puzzle.

2.3 Algorithm Visualisation

Various works have been interested in visualising and animating algorithms. According
to [11], generally, an algorithm animation is done through visualising the algorithm’s be-
haviour which can be shown through providing a step-by-step workout to the algorithm
as shown in the Sorting Out Sorting film. In 1981, Baecker introduced this Sorting Out
Sorting short colour sound film which explains nine different sorting algorithms through
their animations. The aim of the project was to provide sufficient information about
each algorithm through the visualisation so that a student watching it, with no previous
knowledge about the algorithms, could be able to program some of those algorithms
afterwards. According to Baecker’s case study in 1991[4], Sorting Out Sorting has been
both successful and influential among computer science students at different levels.

In 2002, the ANIMAL system[5] was interested in algorithm animation from a differ-
ent aspect. The idea was to develop a system that supports multiple roles in algorithm
animation. The three roles that this work was interested in are the user, the visualiser
and the developer. This system visualised algorithms and offered different features to
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each of the three roles. It enabled the user to alter the visualisation through various
given options. As for the visualiser, the flexible primitives and animation effects that
the base system provides can be of great help. Also, the visualiser is capable of loading
any additions from the world wide web. The ANIMAL system gives the developer the
ability to easily extend or adapt it to their preferences. This also includes adapting the
language used in the graphical user interface’s (GUT’s) front end.

Some later works have brought the idea of visualisation to the CHR language. For
example, [12] introduced VisualCHR; an interactive visualisation tool that visualises
propagation and simplification of constraints. It is also used as a debugger for constraint
solvers written in CHR which can aid the understanding of the details of the different
constraints’ interactions. Later, a general methodology for visualising the execution of
algorithms written in CHR was proposed in [13], where the CHR program is passed to
a Java application that parses the CHR code, extracting the needed information from
it to output the final program showing the visualisation.



Chapter 3

Approach

In order to tackle the graphical aspect of this work, some researching was done to inspect
the graphical capabilities of SWI-Prolog, since it is the chosen compiler to be used for
this project.

3.1 Choosing a Graphical Approach

According to the official SWI-Prolog website[8], SWI-Prolog on its own lacks such graph-
ical capabilities. However, a few other possible substitutions to overcome this shortage
are available.

3.1.1 Using an External GUI Language
The Embedding Approach

This approach mainly presents the possibility of embedding the Prolog system in an
application written in an another language, where Prolog implementations can provide
potent interfaces to C and mechanisms to such embedding. Even though one can have
the freedom in choosing any desired GUI platform when following this approach, it is
quite difficult to debug and develop the hybrid environment in generall8].

Using Pipes

An alternative more popular approach is to exploit an external language, such as
JPL/Java, that can handle GUI development and connect the interface to Prolog, i.e
acting as a pipe. JPL (Java/Prolog) is a library of a collection of Java classes and
C functions offering an interface between Java and Prolog through its 2-layer design;
a low-level interface to the Prolog Foreign Language Interface (FLI) and a high-level
Java interface for a Java programmer with no interest in such details of the Prolog FLI.
Hence, the Java environment’s robust class structure can easily be taken advantage of
from within Prolog. Thus, this approach had been used often such as in [13] where JPL
was used to run the CHR program through the Java application enabling the possibility
to present a rich GUIL In addition to the JPL/Java option, other popular candidates
are Tk/Tcl, Visual Basic and Delphi. However, a very restricting disadvantage to this
approach is that when having intensive communication between the interface and Prolog
application, performance can decrease significantly|8].

10
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3.1.2 Using Graphical APIs

Even though it is not a commonly used approach, using an Application Programming
Interface (API), written specially to meet the graphical needs of Prolog, is still a valid
option. A significant example of such an API is Xwip which stands for X Window
Interface for Prolog and is written in Prolog and C language. Xwip offers the ability
to use Prolog as a client program for the X Windows System[14]. However, the general
reason behind the unpopularity of such API’s usage is that most of them are low-levelled
and difficult to deal with regarding the representation of their data types in Prolog|[8].

3.1.3 Using XPCE

XPCE is a platform portable tool-kit used for developing GUIs where the platforms
covered are UNIX/X11 and Windows (Windows-NT/2000/XP/Vista). Its aim is to
speedily develop fast and well-structured GUIs across the previously mentioned plat-
forms. XPCE mainly offers two different ways of programming. The first simple option
is to use the built-in and library classes from within one’s Prolog code. On the other
hand, for a larger and more well structured graphical application, one can use the normal
Prolog syntax to define their own new XPCE classes to meet the application’s needs.

A Closer Look into XPCE

Since XPCE’s kernel is an object oriented engine, it permits the possibility to define
methods in several languages. Furthermore, its built-in graphics are defined in C to
enhance its speed, whereas applications and application-oriented libraries are defined as
XPCE classes whose methods are defined in Prolog. Such approach for developing a GUI
application allows those methods to run naturally in Prolog taking advantage of Prolog’s
rapid development cycle[8]. Another advantage is that when employing XPCE/Prolog,
a Prolog fact-base is used for describing any relevant information about entities in one
location. Such information allows the maintenance of the database and evaluation of
constraints on the data.

Introducing XPCE

Assuming one’s familiarity with Prolog syntax, the simplest way to introduce XPCE is
through the four predicates it adds to Prolog introduced in [15].

e new(?Ref, +Class(...Arg...)): Creates an object Ref as an instance of a class
Class using the given argument(s) Arg. The reference Ref can either be a Prolog
variable or an XPCE object reference displayed as @ref where the name after the
“@” can be any name. The “?” indicates that the argument following it is an
optional input, whereas the “+” means that it is required.

o send(+Ref, +Method(...Arg...)): Similar to new/2, send/2 invokes the method
Method with arguments Arg on the already existing object referenced Ref. This
predicate returns a boolean indicator. It can also take more than two arguments
as to be shown in an example shortly.

e get(+Ref, +Method(...Arg...), -Res): Retrieves information about an object
Ref. It is usually used to return a ‘true’ result value Res from the method Method.
However, when having a primitive result, the result is converted into a Prolog
integer, float or atom. As for any other case, the object’s reference is returned.
The “-” as in “~Res” indicates that this argument is a returned value.



CHAPTER 3. APPROACH 12

e free(+Ref): destructs the referenced object Ref.

The following sample queries are examples of how one can employ the previously
mentioned predicates.

?7- new(@p, picture), send(@p, size, size(70,70)), send(@p, display,
new(@c, circle(40)), point(30,30)), send(@p,open), get(@c, radius,R).
R = 20.

7- free(@p), free(@c).
true.

O

Figure 3.1: An XPCE example showing a circle drawn in a specified position of a picture

The output shown in figure 3.1 is a result of the first query. First, an object with
reference @p and class picture is initialised to output a picture which is a window
usually used for application graphics since it has scrollbars. The size of the picture was
specified through the following send predicate where the method size was invoked on
the picture @p with an extra argument size(70,70) to define its width and height.

Next, to draw a circle n the picture, another send predicate is invoked on the picture’s
reference however this time with the method display. The third argument of this
predicate is a newly created circle whose reference is @c and as shown, the class circle
takes one argument which is the circle’s diameter.

Creating the picture and the circle does not mean it is shown to the user yet. Hence,
the next send predicate invoking the method open on the picture, is queried. Finally,
to show what a get query would output, the method radius is invoked on the circle to
return the radius of the circle in variable R.

The second query destroys the picture through freeing its reference and consequently
any graphical object in the picture will be destroyed as well since they are bound to it.

Choosing XPCE

One of the aims of this work was to find a stable and easy-to-employ graphical approach
for the algorithms’ visualisations. After exploring other possibilities, XPCE was found
to be the most suitable choice. As previously discussed, when employing XPCE one can
use solely Prolog to develop a graphical application. This avoids any clashes that can
occur as a result of massive communication between two different languages employed
together to develop the graphical application.
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Also, CHR was initially ported to Prolog and ever since, Prolog has been the most
supported and commonly used language with CHR. Thus, using Prolog alone ensures
the stability of the code.

For the previously mentioned reasons, XPCE will be the approach used for the
graphical implementation part of this work.

3.2 Adding Graphics to Algorithm Implementation

Having chosen Prolog with XPCE to be used for visualising the algorithms, the basic
idea for this work is to add XPCE predicates to the CHR implementation of the chosen
algorithms. In order to apply such additions, some of the already implemented CHR
rules will need to be altered. Constraints, as well as the previously mentioned XPCE
predicates, will be added to the head, guard and/or body of the rules to aid the visu-
alisation of an algorithm. This will be explained in more details throughout chapter
4. However, in the following sub-sections, a brief look over each of the five algorithms’
graphical approaches will be presented.

3.2.1 Fundamental Algorithms

For the following two algorithms, the graphical approach was not based on a specific
method of visualisation. Each algorithm was visualised differently based on which steps
of the algorithm the user would be interested to view. Also, we are concerned with
illustrating each algorithm clearly to the user so that it can aid the understanding of
how the CHR rules are applied.

Minimum of a Set

A simple problem such as finding the minimum in a set of numbers would not require a
complicated visualisation. Most importantly, the state of a number needs to be shown.
There can be three states for a number:

e The number is being compared to another. This implies that it is not yet refused
nor accepted as the minimum-so-far.

e The number is marked as the current minimum-so-far after being compared to the
previously marked minimum-so-far number and found to be less than it.

e The number is rejected as being the new minimum-so-far after comparing it with
the current one.

The idea of visualising this algorithm is to show the numbers in a graphical shape, for
example a circle, where its colour would differ according to the state it is currently in.
Such choice of the visualisation is explained in sub-section 4.2.1.

Fibonacci: Top-Down Approach with Tabling

Referring back to how a top-down algorithm of calculating the Fibonacci of a number
works as explained in sub-section 2.2.2, it can be useful to always keep track of the
numbers and their Fibonacci number if calculated. The main idea of the graphical
approach for this algorithm is to visualise a number in a rectangle divided into two parts
where the left-hand-side is the number itself and the right-hand-side is the calculated
Fibonacci number.
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3.2.2 Grids

Regarding Wolfram’s cellular automaton, the N-Queens and Sudoku problems, as shown
in 2.2, 2.3 and 2.4 respectively, the common way of visualising such problems is through
having a grid-like representation or board that the algorithm can run on.

Wolfram’s Cellular Automaton: Rule 110

As for rule 110 from Wolfram’s cellular automata, the graphical approach to be followed
in this work is taken from Tom Schrijvers’s slides[16]. Each generation consists of four
vertical cells and the input is the user’s choice. A cell can be either white or black
which corresponds to 0 or 1. The constraints are run on the input cells to yield more
generations. At any point, the neighbouring cells involved in a computation as well
as the new cell resulting from it in the next generation, will all be marked to aid the
comprehension of the algorithm’s flow for the user. As for the maximum number of
generations computed, it will be left for the user to specify.

N-Queens

In order to find a valid position for a queen to be placed without being attacking any
other queen, different positions of the queen need to be tested. The cases of each cell of
the grid can be summarised into four cases:

e Undecided: Meaning this cell can possibly have a queen.

e Not a possibility: Whenever a queen Q is placed in a cell, it eliminates the
possibility of having another queen placed in the same row, column or diagonal of
Q. Such positions of the eliminated cells are what this case covers.

e Bad Queen: A bad queen is one that was found to be in a position that does
not allow other queens to be placed after it in a way that would lead to a valid
solution.

e Good Queen: A good queen is one that is in a position such that it allows the
rest of the queens to be safe, i.e not attacking each other.

The different cases of a queen’s state will be visualised as a question mark, an empty
cell, a red crown and a green crown respectively. The concept behind such visualisation
choices will be explained later in the explanation of the N-Queens implementation in
chapter 4’s sub-section 4.2.4.

Sudoku

Similar to the N-queens problem, the Sudoku puzzle works based on constraints being
applied on the input numbers. Initially, each cell can carry any number. This will be
visualised through marking nine dots on each cell representing the possible numerical
values it can take; from 1 to 9. Whenever a number is entered in a cell, the dot
corresponding to that number is deleted from each cell in the same row, column and 3 x 3
box it is in. We are interested in showing a step-by-step workout of how the constraints
are applied on the cells causing such eliminations to take place and eventually bringing
us to a valid solution to the puzzle.



Chapter 4

Implementation

This chapter is concerned exclusively with the implementation part of this work. The
main focus is introducing the algorithms’ implementations and how the graphical im-
plemented part is embedded in them. Each of the five algorithms’ visualisations will be
explained in a detailed manner with sample queries for further understanding. Note that
each implementation’s .pl file is consulted separately through the SWI-Prolog console,
and using the sample queries that will be given shortly, one can run the algorithms’
visualisations.

4.1 Outline of Implementation

For simplicity, a general common outline was put to be followed for each algorithm
implementation. Each of the following sub-sections may or may not be present in an al-
gorithm’s code depending on the algorithmic and graphical needs of the implementation.
This will be explained shortly for each of the coming sub-sections.

4.1.1 Initialising the Visualisation

Initially, there has to be a window for the visualisation to be displayed on. As stated
before in 3.1.3, a picture in XPCE is a window with scrollbars mainly used for graph-
ical applications. A window can also have scrollbars, however they would have to be
implemented manually. Thus, for simplicity and maintaining the generalisability of the
implementations, a picture was used for all implementations. For later reference, a
picture will be referred to as a ‘window frame’ in order to avoid any confusion with
the meaning of an actual picture/image.

Initialising the window frame is done in every implementation through calling a
certain predicate responsible for creating it. Also, such predicate can be used to initially
throw any constraints that can be needed to begin the algorithm being visualised.

The following example of an initialising predicate start/1 is taken from the N-
Queens problem’s implementation:

start(X):-
free(@p),
speedch(0.10),

15
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new(@p, picture(’N-Queens Solver’)),

W is 100+(X*40)+((X-1)*10),

send(@p, size, size(W,W)),

send (new(D, dialog), below, @p),

send(D, append, button(speed_up, message(@prolog, speed, -0.1))),
send(D, append, button(slow_down, message(@prolog, speed, 0.1))),
send(D, append, new(Quit, button(quit, and(message(D, destroy))))),
send(D, done_message, message(Quit, execute)),

send (D, default_button(slow_down)),

send(@p, open).

Generally, this predicate creates a new window frame of type picture with a person-
alised size. A dialog is also added at the bottom of the frame to hold the added
buttons. In XPCE, a dialog is basically a window specialised for laying out and han-
dling messages required by any XPCE controller that is appended to the dialog. For
the functionality of XPCE’s predicates send and new, refer to section 3.1.3.

Some Extra Features

In each window frame, there are three buttons;

e Quit: stops the visualisation and destroys the window,

e Slow Down: slows down the visualisation if one needs to keep better track of its
flow in a slower pace,

e Speed Up: accelerates the visualisation. This can be used when, for example, the
user wishes to reach the next step in a visualisation. It is also useful if one wants
to just go through the whole visualisation quickly to arrive at the final solution.

Those buttons are added to the dialog D built on the window frame, through the
predicate initialising the frame as discussed earlier. For example, the speed_up button
is created through the following line of code:

send(D, append, button(speed_up, message(@prolog, speed, -0.1))),

where a button speed_up is appended on dialog D. A message here is sent to @prolog,
which is an object that allows calling a Prolog predicate, in this case speed, from the
XPCE environment. The arity of the called predicate has to be equivalent to the number
of arguments to the message. Applying this on the given code sample, whenever the
speed_up button is clicked, the predicate speed/1 is called with the argument -0.1.

4.1.2 Helper Predicates and/or CHR Rules

This part of an implementation holds any predicate or CHR rule that aids the visuali-
sation but does not affect the actual algorithm. Also, to avoid repetition of commands,
some general predicates are added to some implementations as helper ones. An example
of the is icon/3 which will be explained shortly. The following predicates or CHR rules
in this sub-section are not necessarily present in all of the implementations.
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Delays

Normally, when entering a query for SWI-Prolog to compile, it outputs the final result
directly. This does not match the idea of this work which is to show a step-by-step
workout to the user. Thus, the idea to accomplish that was to add delays after each
point in the implementation where it is needed to show the user what has been done,
i.e a checkpoint. The constraint time1/0 was created to be added anywhere in the code
that would be considered as a checkpoint. Another constraint speedch/1 was created to
carry the value of the delaying time. A speedch constraint, carrying a certain delaying
value, is always thrown at the beginning of the visualisation through the initialising
predicate such as in the example shown at the beginning of sub-section 4.1.1. The
two constraints timel and speedch are employed together to fulfil the action of adding
delays through the following CHR rule.

speedch(X) \ timel <=> send(timer(X), delay).

This rule is fired whenever both constraints are in the constraint store. The constraint
timel is thrown into the store whenever a delay is needed. This will be shown later
when showing some samples from the implementation code. Moreover, when the rule is
fired, a delay of the value carried by the constraint speedch , X, is performed and thus
giving the viewing user a chance to follow the steps of the algorithm.

Whenever the speed_up or slow_down buttons are clicked, the predicate speed/1 is
called. This predicate throws a constraint change/1, passing on the delay value X, that
the predicate holds, to the constraint.

speed(X) : - change(X).
When a constraint change is first thrown into the store, the following rule is fired:
change (X), speedch(Y) <=> Y > 0.01| X1 is Y+X, speedch(X1).

where X is the delay change that will be applied to the current speed value Y. The idea
is simply to add X to Y and replace the speedch constraint, currently present in the
constraint store, with a new speedch constraint carrying the resulting delay value X1.

The value that Y is checked with in the guard, referred to as a ‘check value’ for further
reference, differs from one visualisation to another. Its value is chosen according to tests
made for the last positive value the delay can have after pressing the speed_up button
multiple times. Speeding up the visualisation basically implies that the delay should be
decreased. That is why when the speed_up button is pressed, the argument sent along
with the predicate speed is a negative value which in turn throws a constraint change
carrying that value. Through several trials, it was noticed that when having only one
rule with no guard, to handle the speedch replacement, at some point the new resulting
value is a negative number. This produced errors causing the visualisation to stop when
send(timer (X), delay) is performed, as discussed before, since a delay cannot be of
a negative value. Thus in order to avoid this, another rule is added.

change (X), speedch(Y) <=> Y =< 0.01, X > 0| X1 is Y+X, speedch(X1).

The above rule handles the case when Y has now reached the check value or is less than
it, and the slow_down button is clicked. In this case, it is safe to change the delay since
it will be a positive change. However, for the same case but with clicking the speed_up
button, the case X<0, there are no rules for it and thus no changes will happen to the
visualisation, avoiding any crashes that could happen as explained before. Note that the
above two rules were taken from the N-Queens problem implementation as an example.
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Icons

For the implementations that require using images, like the N-Queens and Sudoku prob-
lems, a predicate icon/3 was added to be called wherever an icon of an image is to be
shown.

icon(X,Y,P):- send(@p, display, new(bitmap(P)), point(X,Y)),
send(@p, flush), timel.

An example of how to call such a predicate is icon(X,Y, ’example.xpm’), where X and
Y represent the position where the icon is to be added on the window frame @p. The
image ‘example.xpm’ corresponds to P in the predicate and is converted into a newly
created bitmap in the specified positions. The method flush is XPCE’s “repaint” or
“refresh” method to redraw the visualisation with the latest updates. It is noticed that
after flushing the window frame, a timel constraint is thrown, adding a delay before
the next step. This enables the user to see any graphical changes made.

Note: There are different approaches of displaying an image in XPCE. For this work,
bitmap is used to convert the .xpm image directly into a graphical object. Also, since
XPCE by default searches for any image in its bitmaps folder, the visualisations’ images
were added to that folder. This folder can be found in the SWI-Prolog installation folder.
For example, if SWI-Prolog is installed in a folder “pl”, then the path of the bitmaps
folder would be “. .\pl\xpce\bitmaps”. For better organization, a folder with the name
of each visualisation, was created in XPCE’s bitmaps folder for each visualisation that
required images.

Other Predicates

Various personalised predicates were added to some of the implementations to serve a
certain need in them. Such predicates will be explained briefly through the detailed
explanation of the algorithm implementations in the following section 4.2.

4.1.3 Algorithm Implementation

Each implementation of the five algorithms will be discussed in more details in the follow-
ing section 4.2. However, a general idea is now given of the algorithms implementations’
outline.

CHR rules

The CHR rules of the algorithms are taken from the official CHR website[17] with
the exception of the Wolfram implementation. The basic idea of the Wolfram CHR
implementation is taken from [16] and the rules were implemented based on it. This
part of the implementation contains the CHR rules of an algorithm with a few additions
to them to aid the visualisation. Such additions can be summarized into the following:

e Some constraints and predicates added to the body, guard and/or heard of a rule

e In some cases, extra arguments are added to the original constraints of the algo-
rithm for visualisation purposes
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Predicates

In some of the algorithms’ implementations, such as in the N-queens and Sudoku imple-
mentations, some predicates are implemented to aid the CHR rules to solve the puzzles.
Similar to the CHR rules, additions were also embedded in such predicates for visuali-
sation purposes.

4.1.4 Implementation of Graphics

This part of the implementation has nothing to do with the basic algorithm of solving
the problem but is solely concerned with the graphical aspect of the implementation.
This will also be explained further for each implementation separately in the next section
4.2,

CHR Rules

The CHR rules were employed here to serve the visualisation and increase the code’s
efficiency. With the exception of the Sudoku problem, all other implementations have
CHR rules dealing with the constraints created especially for the graphical part.

Predicates

These predicates serve the same goal as the CHR rules just mentioned. For most of
the implementations, the body of the predicates of the graphical part of the code could
have been added directly into the CHR rules’ bodies. However, since some of the ac-
tions are repeated a lot throughout the implementation, each group of actions usually
performed together were grouped into predicates. This helps minimizing the size of the
implementation as well as keeping it efficient.

4.2 The Visualised Algorithms

In this section, we will go through every algorithm implementation and explain how
they work.

4.2.1 Minimum of a Set

Finding the minimum of a set of numbers can easily be implemented through only one
rule in CHR:

min(I) \ min(J) <=> J>=I | true.

where the numbers can be queried as min(X). Simply, when having two min/1 con-
straints, satisfying the condition of the guard, the one with the largest value is removed
and the minimum of them is kept. This is done multiple times till all of the numbers have
been compared and tested for being the minimum. However, in order to visualise it, a
few constraints and predicates are added to each part of the rule for the implementation
of this work. Thus, the previous rule is converted into the following rule:
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circle(I,X), numtext(I,A,X), min(I) \
min(J), circle(J,Y), numtext(J,B,Y) <=>
ground(A), ground(B), ground(X), ground(Y), J>=I |
updateC(X,yellow) ,updateC(Y,yellow), send(@p, flush), timel,
updateC(X,green), updateC(Y,red), colortx(B,red ), free(J), true.

We will use the following sample query to explain how the algorithm works
;- start, min(3), min(2), min(1), min(4), min(-2), min(0.4).

First, start/0 predicate is called to initialise the window frame. Also, two constraints;
valuec/3 and valuet/3 are thrown through start. For this implementation, it was
chosen to represent each number inside a circle through a simple visualisation where the
circles are shown next to each other with a maximum of ten circles per row.

The first argument of valuec is the number of circles that can still be drawn in
the current row. While the second and third arguments correspond to the x and y
coordinates of the circle respectively. The arguments of valuet correspond to the same
values but for the text written inside the circle instead of the circle itself. These two
constraints are mainly used by the predicates draw/7 and writetx/8 as will be explained
shortly.

Whenever a min/1 constraint is thrown into the constraint store, the following rule
is fired:

min(N) ==> circle(N,Y), numtext(N,X,Y).

which throws two more constrains, circle/2 and numtext/3, into the store where N is
the number itself, X acts as a reference to the text written inside the circle of reference
Y. A text is linked to the circle it is in through having the reference of that circle as an
argument in numtext. The first constraint thrown into the store will cause the following
rule to be fired:

circle(W,Y) \ valuec(Mx,Fx,Fy) <=> draw(Y,Mx,Fx,Fy,Mx2,Fx2,Fy2),
valuec(Mx2,Fx2,Fy2), timel.

which in turn calls the predicate draw that uses the reference Y of the constraint circle
also as a reference of the circle object drawn. A circle is initially drawn in green as
shown in figure 4.1. Mx is used as a check on the maximum circles that can be drawn
in a row. If that check fails, then the next circle will be drawn in the next row and the
value of Mx returns to its initial value. Otherwise, it is updated into Mx2. Fz and Fy
are used to specify the location of the circle to be drawn and at the end of predicate
draw, they are also updated to the coordinate values Fx2 and Fy2 of the next circle to be
drawn. Since the above rule is a propagation one and the constraint valuec is needed
in order to draw the circles, a new constraint valuec with the new values is thrown into
the constraint store.

Similarly, the following rule works for the text of the numbers written inside each

circle:

numtext(N,Y,Z) \ valuet(Mx,Fx,Fy) <=> writetx(N,Y,Mx,Fx,Fy,Mx2,Fx2,Fy2),
valuet (Mx2,Fx2,Fy2), timel.
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where the only extra argument in writetx/8 over the constraint draw is N, which is the
number to be written.

5

' Minimum Demo SHEECEL X

Speed up | Slow down Quit |

Figure 4.1: A circle initialised in green with the number written inside it.

Referring back to the main CHR rule that the algorithm actually works through,
whenever there exists min, circle and numtext constraints for two numbers; where the
references to the graphical objects, whether a circle or a text, are bound to a value,
implying that they have been drawn, the rule is fired. Other than the checks done in
the guard of the rule, the two circles involved in the rule, get their colours changed into
yellow through the predicate updateC/2. This predicate, given a reference to the circle
object and a colour passed as arguments, updates the colour of the referenced circle
with the given colour.

Having the two circles in yellow means that currently those two numbers are being
tested for which is the minimum among them. When one is found less than the other,
the minimum among them has its circle’s colour updated to green marking it as the
minimum number found so far. Also, the other number’s circle and text both get their
colours updated to red, marking its failure of being a minimum candidate. Such colour
representations are inspired from the different states of the traffic lights that one is used
to seeing everyday.

Figures 4.2, 4.3, 4.4 and 4.5 show the different stages of the visualisation to reach
the minimum of the given numbers in the previously mentioned query.

' Minimum Dema =REENL X

OXO

Speed up | Quit |

- -

Figure 4.2: Two numbers are being compared and tested for the minimum among them.
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Figure 4.3: A minimum is chosen through applying constrains.
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Figure 4.4: Another comparison between the current minimum and another number.
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Figure 4.5: The final step of the visualisation showing the minimum of the input numbers
in green.

4.2.2 Fibonacci

As previously discussed 3.2.1, the idea of visualising a number would be in a 2-part
rectangle. However, the overall form of the visualisation would be in a binary tree form,
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where each F,, will have a lower level with Fj,_; on its left and F,,_5 on its right. The
algorithm mainly consists of two consecutive steps; recursively expanding the tree until
the base cases are reached, then backtracking to calculate F,.

Visualising the Nodes

The algorithm can simply be queried as follows:
:- start(7)

where it is required to calculate the seventh number in the Fibonacci sequence. The
predicate start(N) is the initialising predicate; it creates the window frame with the
buttons. The size of the frame is generic, depending on N which is the number entered
by the user to run the algorithm and calculate the N** term of the Fibonacci sequence.
Other than initialising the window frame, the predicate start/1 also throws in a few
constraints. One of these constraints is entry/1 where the argument it carries is N.
Also, after initialising and opening the window frame, a constraint £ib/5 is thrown into
the constraint store to begin the algorithm. However, before explaining further how the
flow of the algorithm’s implementation goes, we need to define the arguments that fib
carries: fib(Id,L,C,N,M)

e N: s a variable carrying the number where it is required to calculate the N** value
of the Fibonacci series.

M: Is the calculated value of Fly.

Id: Is a reference to N; acts as an identity, hence Id.

L: Since the visualisation will be in a binary tree form, there will be different levels.
Thus this argument corresponds to the level number N is on.

C: Each node in the tree corresponds to a number X, where in order to calculate
Fx, it is divided into F'x _1 as the left child and F'x_5 as the right child. C’s value
corresponds to the child position with respect to the parent node; 1 for left, 2 for
right and 0 in the case of the root node.

Whenever a fib constraint is thrown into the constraint store, there are two cases
for the number N that were handled separately to preserve the simpleness of the imple-
mentation and avoid any complications:

1. It is a number other than 0 or 1:
The following rule is matched and fired whenever a new constraint £ib is thrown
into the constraint store with M still being a variable and N is a number greater
than 1 to ensure that the case is matched:

fib(I4,L,C,N,M) ==> var(Id), var(M), N>=2]|
drawparent(Id,L,C,N,_,_), N1 is N-1, N2 is N-2,
L1 is L+1, fib(_,L1,1,N1,M1), fib(_,L1,2,N2,M2),
M is M1+M2.
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After meeting the conditions of the guard, drawparent/6 constraint, which will
be explained shortly, is thrown into the constraint store as well as two new fib/
constraints corresponding to the two children. The variables M1 and M2 correspond
to Fy_1 and Fy_o respectively. Hence having M evaluated eventually as their sum.

As for the constraint drawparent, it is used solely for graphical purposes. It carries
six arguments where the first four are the same as the first four arguments of £ib/
and the last two arguments, X and Y, correspond to the x and y position of the
rectangle to be drawn. There are also two cases to be covered regarding drawing
the node.

(a) It is the root node:
The rule fired in such a case is

drawparent (Id,L,_,Num,X,Y), entry(N) ==> L=:=1, var(X) |
totalX(N,Z), X is ((Z/2)-20), Y=20, drawfirst(Id,Num,X,Y).

The guard checks that L = 1, i.e its the root in level 1. It also checks that X is
still a variable, to avoid redrawing the node, since X is set to a value through
the body of the rule. After, X and Y are calculated, drawfirst/4 predicate
is called to draw two squares next to each other, forming a rectangle. The
left-hand-side square is in red and has the number Num written on it while
the right-hand-side initially is green and has a question mark indicating that
Frnoum is not calculated yet such as in figure 4.6.

" Fibonnaci Top-Down Approach with Tabling E@El

‘ Speed up | 755w down ] aut |

Figure 4.6: An example of calculating the Fibonacci of 7. Root node

(b) It is any other node:
For this case, the rule fired will be

drawparent (Id4,L,C,N,X,Y), drawparent(_,L1,_,_,X1,Y1)
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==> L=\=1, var(X), var(Y), ground(X1), ground(Y1),
L2 is L-1, L1=:=L2| drawchild(Id,L,C,N,X1,X,Y).

Since the root node is not being dealt with any more, this node has to be a
child of a parent. What this rule does is search for the parent of the node
and draw the node based on the parents position. Here comes the use of
the constraint drawparent where it can be used as a reference to any node
drawn, carrying its level, numeric value, position coordinates and which child
it is, at all times. The guard’s checks are mainly concerned with making sure
that this node has not been drawn before, is not a root node and that it
actually has a parent. Satisfying those conditions leads directly to the body
with the predicate drawchild/7. This predicate uses the level of the child L
along with the x-position of the parent X1 and which child C the node is to
the parent, to calculate the positions X and Y of the node and draw it. It is
noticed that X and Y are not variables any more after drawing the node, thus
this rule can never be fired again for the same node. Hence, the guard check
in the guard.

2. It is 0 or 1:
As previously mentioned, the base cases are 0 and 1. Meaning, they can either
be a root node having the rest of the tree empty, or they can be a leaf node.
The reason behind not having a third case is because, for this work, the tabling
approach is used as mentioned in section 4.2.2. Similar to the previous case, there
is a specialised rule for having a node of value 1 or 0.

fib(_,L,C,N,M) <=> N<2 | M=1, drawleaf(L,C,N,1).

A fib constraint with its N = 0 or N = 1, is simplified into the constraint
drawleaf/4, similar to drawparent with the last argument corresponding to Fy =
1. Furthermore, there are two cases for drawing such a node;

(a)

It is the root node:

entry(N) \ drawleaf(L,_,N,Val) <=> L=:=1 |
totalX(N,Z), X is ((Z/2)-20), Y=20, firstleaf(N,Val,X,Y).

The guard checks that this is the first level, i.e its the root node. The position
is calculated for a root node and the predicate firstleaf/4 is called to draw
the root similar to what drawfirst does. The only difference is that in the
case of N being a 0 or 1, the value of Fly, Val, is already known, thus it is
written in the visualisation as a 1 directly instead of a question mark.

It is a leaf:
In the case of having a parent to this node, there is a rule that functions
similar to the rule of the case when the number is not a 0 or 1.

drawparent(_,L1,_,_,X1,Y1) \ drawleaf(L,C,N,Val) <=>
L=\=1, ground(X1), ground(Y1), L2 is L-1, Li1=:=L2 |
leaf(L,C,X1,N,Val).

Here, the same steps are taken to visualise such node. It is checked that it is
not a root node and that it has an already drawn parent. Instead of calling
drawchild predicate, the predicate for this special case is leaf/7 where the
value of Fjy is already written directly as previously mentioned since it is
known. Figure 4.7 shows the progress of the visualisation until it reaches a
leaf.
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Figure 4.7: An example of calculating the Fibonacci of 7. A leaf is reached

Updating a Node

Since a leaf already has its value calculated, backtracking takes place to calculate Fi-
bonacci of the second child, which is a 0 and also has a ready value equals to 1. Now for
the number 2 on level 6, the M of its £ib constraint is now bound to a value equivalent
to the sum of Fy and Fy. This will lead to firing the rule responsible for replacing the
question mark in the box of a number with its now-available value.

fib(I4,L,C,N,M), drawparent(Id,L,C,N,X,Y), drawparent(_,L1,_,_,X1,Y1)
==> ground (M), ground(X), ground(Y), ground(X1), ground(Y1),
L2 is L-1, L1=:=L2| update(X,Y,X1,M).

This rule is fired whenever there is a fib constraint having M bound to a value as
well as having two drawparent constraints. The first one corresponds to the node of the
number N having its Fiy ready and the other corresponding to the parent node, provided
that their X and Y coordinates are known. The update/4 predicate simply updates the
value of Fy and draws a green arrow from its node to the parent node indicating that
this value is ready to be used by the parent4.8.

Tabling

Since F_1, i.e the left child, of a number N is always calculated first, by the time
backtracking starts taking place to calculate Fiy_o, i.e the right child, it would have
already been calculated along the way through the left child’s tree. Thus, in order to
avoid repetitive calculations, the tabling approach is used. The following rule is added
to serve such approach.
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fib(Id1,L,C,N,M1), fib(_,_,_,N,M2), drawparent(_,L1,_,_,X1,Y1)
==> L2 is L-1, L1=:=L2, ground(X1), ground(Y1), ground(M2),
var(M1) | drawchild(Id1,L,C,N,X1,X,Y),
update (X,Y,X1,M2), M1=M2.

The main idea behind this rule is that whenever there is a constraint fib thrown into
the constraint store with N1 and there is another fib constraint in the store with N2
where N1 = N2, the node is drawn and have its Fy updated directly. The value of such
update is the same as the second constraint’s F, thus is done without any calculations
as shown through figure 4.8. Finally in figure 4.9, the algorithm stops where the root
node N has its F'y calculated.

* |Fibonnaci Tap-Down Approach with Tabling, * |Fibonnaci Top-Down Approach with Tabling,

Quit Speed up ‘ : Slow down | Quit

Slow down

Speed up

Figure 4.8: An example of calculating the Fibonacci of 7. Backtracking and Tabling.
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" Fibonnaci Top-Down Approach with Tabling

‘ : Speed up | Slowe down Quit |

Figure 4.9: An example of calculating the Fibonacci of 7. Final solution.

4.2.3 Wolfram

The idea behind Wolfram’s cellular automaton using rule 110 is basically applying con-
straints on the cells of a certain generation to output cells in the next generation. For this
work, each generation was restricted to have four cells. However, there is no limit to the
number of generations. We will explain how the algorithm along with its visualisation
would work through showing what happens when querying the following;:

:— wolfram(6), white(d,c,a,0), black(c,b,d,0), white(b,a,c,0),
white(a,d,b,0).

Initially the predicate wolfram/1 is queried to initialise the window frame where the
visualisation will be shown. The argument given to this predicate corresponds to the
number of generations G the user wants the algorithm to reach, where in this query
G = 6. A constraint generation/1 is thrown through the predicate wolfram, where the
argument it carries is G. This constraint is always left unaltered in the constraint store
to act as a reference at all times of G. Another constraint thrown is yp/1, which stands
for the y-position of the next cell to be drawn. This constraint was mainly created to aid
the visualisation of the initial cells. Initially it is thrown with the value of the argument
equals 30. So far, no rule is fired. However, once the constraints white/4 is thrown into
the store through the query, the following rule fires:

white(_,_,_,0) ==> white(_,_,_,0,_).

A constraint white/5 is thrown into the constraint store. The reason white/4 propa-
gates to white/5 is to first draw the initial generation. The need of an extra argument
will be explained shortly. Since there is a yp(30) constraint in the constraint store, the
first rule of the following two rules is fired:
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white(_,_,_,0,C), yp(Y) <=> ¥<135, var(C)|
send(@p, display, new(box(30,30)), point(20,Y)), send(@, flush),
C=1, Y1 is Y+35, yp(Y1).

The rule above are implemented especially to handle the case of drawing the first three
cells of the first generation. Each cell is represented as a 30 x 30 box, with a gap of 5
pixels left between each box. Thus, the y-position of the fourth most bottom cell would
be equal to 135, hence the checking condition in the guard. Also, another check is on C
to make sure it is a variable and not bound to any value. This check ensures that the
rule does not keep firing in an endless loop since in the body of the rule, C gets bound to
a random value, in this case chosen to be 1. Furthermore, since this is a simplification
rule, there has to be a yp constraint thrown into the store with the new y-position value
Y1 to be used when drawing the next cell and so on.

white(_,_,_,0,C), yp(135) <=> var(C) |
send(@p, display, new(box(30,30)), point(20,135)), send(@p, flush),
C=1, done.

The only difference between the above rule and the previous one is that the above one
deal with the case of the fourth, and last, cell of the initial generation. It is noticed
that at the end of this rule, yp constraint is not thrown into the constraint store since it
will be of no use again. Instead, a new constraint done/0 is thrown. This constraint is
to mark that the initial cells have been drawn and the algorithm should start applying
constraints on the input to give us a solution of the problem. This will be shown shortly
through the coming CHR rules. Note that similar to the three previous rules mentioned
for white/4 and white/5 constraints, there are rules for the constraints black/4 and
black/5.

For the actual implementation of the algorithm, as mentioned before, the basic idea
behind it was taken from [16] then all permutations of the cells with respect to their
colours, was implemented. The following CHR, rule is an example of one of the permu-
tations.

done, white(C,_,_,G), black(B,A,C,G), white(A,_,_,G), generation(J)
==> G < J | freeing, marking(C,G), timel, marking(B,G), timel,
marking(A,G), timel, NG is G + 1, drawanswer(B,black,NG),
timel, black(B,A,C,NG).

To clarify how the rule works, the explanation is divided into the three parts of the rule:

1. Heads:

e done: As previously explained, this constraint marks that the initial input
generation has been drawn. Thus, this rule, and the rest of its permutations,
would not work unless this constraint is found in the constraint store.

e white/4: This constraint corresponds to a ‘white’ cell, where the four argu-
ments are the reference of the cell itself, the cell above it, the cell below it
and the generation number that the cell is in respectively. The first three
arguments can either be a, b, ¢ or d where a is the bottom cell and they go
upwards in ascending order to reach d being the top cell.

e black/4: Similar to white/4, this constraint carries the same arguments.
The only difference is that it corresponds to a ‘black’ cell.
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In the head of the above rule, it is made sure that the cells involved are all in the
same generation through having the same variable G as the last argument.

2. Guard: The guard of the rule mainly checks that the generation of the cells in
the head has not exceeded the maximum number of generations entered by the
user initially through checking G<J.

e freeing/0: For the least use of graphical objects’ references, this predicate
is employed to ‘free’ the references of some graphical objects, drawn through
marking/2 and drawanswer/2 predicates, with every rule firing. This allows
the re-use of such references and thus decreasing the amount of references
used. This will be explained further through explaining the following two
predicates.

e marking: This predicate is used to ‘mark’ and keep track of the cells currently
being visited by a rule. It draws a small circle in the middle of the cell. Since
the rules run consequently, such marking s only needed for one rule at a time;
the circles can be removed once a new rule is fired. Hence, the possibility of
freeing them as previously mentioned. The colour of a circle would either be
one of two cases:

(a) Yellow: marking the cells that caused the rules to fire.

(b) Red: marking the output cell which will be explained shortly through
the explanation of the body of the rule.

3. Body: After meeting the guard conditions, the only thing left is to draw the re-
sulting cell, according to rule 110. To ensure the visualisation goes in the correct
order, the predicate to draw the cell is called first before throwing the actual con-
straint of the new cell. This is done to avoid having the newly generated constraint
being fired with other rules before its corresponding cell is even visualised.

e drawanswer: Given three arguments, P, C' and G for example, this predicate
simply draws the output cell; where P the letter of the cell to help identify
the y-position, C' is the colour of the cell and G is the generation it is in
which in turn helps identifying the x-position. Also, it marks the cell with a
red circle to point it out to the user, making it easier follow the visualisation.
Similar to marking, the circle’s reference can also be freed as it will not be
needed once another rule is fired.

The rules of different permutations keep firing depending on the available constraints
in the store until the maximum number of generations is reached. The following figures
show different intervals of the visualisation’s flow.

At the beginning, the four cells of the initial generation are drawn and the first three
cells of them are marked. Then, the output cell of the fired rule is drawn and marked.
New constraints resulting from rules’ firing cause more rules to fire and thus creating
more generations. Finally, the number of generations specified by the user is reached
and the visualisation stops.
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Figure 4.10: From left to right and top to bottom, an example of Wolfram’s Cellular
Automaton: Rule 110

4.2.4 N-Queens

The idea behind solving the N-Queens problem is mainly making choices and elimina-
tions as a result of applying specific constraints on the queen positions that would ensure
that none is attacking the other. In this work, showing the user how such eliminations
are done through the visualisation that would lead eventually to a solution is a main
concern.

As an example, we will explain how the algorithm works for solving a 4-Queens
problem. The following query is given to SWI-Prolog:

:- solve(4,Qs)

where solve/2 constraint takes the number of queens as an input and outputs their
positions in the list @s. It is simplified through the following CHR rule

solve(N,Qs) <=> start(N), makedomains(N,Qs), N1=N, queennum(N1),
queens(Qs), copylist(Qs,Q2), copylist(Qs,Q3),
queenl(Q3), queen(Q2), enum(Qs).

1. start/1: a predicate that initialises the window frame that the visualisation is
going to be shown on.

2. makedomains/2: this predicate mainly creates the domains of each queen through
the following steps:.

makedomains(N,Qs) :- length(Qs,N), upto(N,D), domain(1,N,Qs,D).
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First, length/2 specifies the length of the list )s to be N. Then, upto/2 takes
N as an input and outputs D which is a list of the domain [N...1]

upto (0, [1).
upto(N, [N|L]) :- N>0, N1 is N-1, upto(N1i,L).

Afterwards, domain/4 is called. This predicate which throws two constraints, in/2
and idof/2, for each queen into the constraint store. The first constraint is used
for algorithmic purposes while the second one is implemented for visualisation
purposes.

domain(_,_,[1,_).
domain(N1,N, [QIQs],D) :- N1=< N, Q in D, idof(N1,Q), N2 is Ni+1,
domain(N2,N,Qs,D).

e in/2 throws constraints that look like this: Q in D where @ is the reference
to a queen and D is its domain. For example, there would be Q1 in [1,2,3,4].

e idof constrains carry two arguments; the number of a queen and its reference.
For example, Q1 refers to the first queen, thus there would be an idof (1,Q1)
constraint. This was implemented for simplicity in the visualisation’s imple-
mentation part; where the first argument is a reference to which column of
the grid the queen is supposed to be on. For example, queen 1 is on column
1, queen 2 is on column 2 and so on.

3. queennum/1: a constraint thrown into the store and carries the number of total
queens. It is used as a reference at all times to that number.

4. copylist/2: a predicate that, given a list (s, makes a clone of the list into Q2.
Since the visualisation and the algorithm implementations run in parallel, at some
points it was needed to have the same list doing different actions for the different
parts of the implementation. Thus, in order to preserve the values of such a list
for each need of the implementation, this predicate serves such issue.

5. queens/1, queenl/1 and queen/1: are all constraints carrying a list of queen
variables. queens is used by the algorithm implementation and is the only one
carrying the original list to be returned at the end of the algorithm. As for queenl
and queen, they carry clones of that list and are used for different visualisation
purposes.

(a) Upon throwing the constraint queens/ into the store, the following rule is
fired:

queens([Q]Qs]) <=> safe(Q,Qs,1), queens(Qs).
where the constraint safe/3 simplifies into:
safe(X, [Y|Qs],N) <=> noattack(X,Y,N), N1 is N+1, safe(X,Qs,N1).

This eventually results in throwing noattack/3 constraints into the store for
each queen where X and Y are references to queens and N corresponds to
the column distance between them. This implies that queen Y must not be
in an ‘attacking’ position from queen X. This constraint will be responsible
for narrowing down the domains of the queens as will be explained later on.

(b) Once queen is thrown into the constraint store, the following rule would have
all of its head’s constraints in the store and thus is fired:
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idof (X,Q), Q in L , queennum(N) \ queen([QIQs]) <=> var(Q) |
N1 = N, drawme(X,L,N1), send(@p, flush), timel, queen(Qs).

For each queen @),,, the predicate drawme/3 is called with the column num-
ber X of the queen, its domain list L and the total number of queens N1
indicating also the maximum number of rows and columns the grid can have.
This predicate draws or updates the grid’s cells according to the domain of
the given queen. Generally it has two cases for the image displayed on the
cell:

e A question mark: indicating that the number corresponding to this cell is
in the domain, where generally 1 is the highest cell and N is the lowest.
The reason a question mark is chosen for this case is because it gives
the user viewing the visualisation a sense that this cell is not known yet
whether it will work or not as a position for the queen. However, it is a
possible solution at this point of the visualisation.

e An empty box: meaning that this cell is not a number in the domain list.
The empty box helps the user to eliminate the thought that this cell is a
possible solution.

As a result of firing this rule, multiple times for each queen, the visualisation
reaches the following step shown in figure 4.11, where all of the queens still
have their domains [1...N]

* IN-Queens Solver

‘ Speed up |

Figure 4.11: Initial domains of a 4-queen problem.

6. enum/1: This constraint is the one responsible for beginning the eliminations and
thus leading to reach a solution to the problem. Once enum is found in the store,
the following rule, which will be referenced as the ‘enum-rule’, fires:

queennum(M), idof(N,X), queenl(Qs) \
enum([X|R]), X in L <=> enum_val(M,N,Qs,X,L), enum(R).

where given a certain queen reference X, its number N and domain L along with
other arguments, enum_val/5 predicate begins the eliminations, both algorithmi-
cally and visualisation-wise.

enum_val(M,N,Qs,X, [VIL]) :-
(N1 is M, drawqueen(N,V,’nqueens/green2.xpm’),
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delrest(N,V,N1), send(@p, flush), timel, X=V) ;
(drawqueen(N,V, ’nqueens/red2.xpm’), timel,
enum_val (M,N,Qs,X,L)).

First, the case of equating X by V is tried out. This basically means that the
current trial will be giving queen X a value of V' which is the first number in its
domain. For example, initially the queen that will be matched using the above
CHR rule and predicate, is Q1 with the value 4. As a result, an image of a crown
inside a green circle will be shown in position 4 of the first column to mark that
this queen is in a valid position at this point. This is done through the predicate
drawqueen/3. Then, the predicate delrest/3 is used to delete, i.e put empty
boxes, the rest of the cells of Q1’s column. The assignment Q1 = 4 will lead to
firing this next rule:

queennum(N1), idof(M,Y) \ noattack(X,Y,N), Y in L
<=> number(X), X1 is X-N, X2 is X+N, delete(L,X,L1),
delete(L1,X1,L2), delete(L2,X2,L0), L\==L0 |
drawme(M,LO,N1), send(@p, flush), timel, Y in LO.

where number/1 is a boolean check on its argument that it is a number and
delete(List, Num, List1) predicate deletes the number Num from list List and
outputs a new list List1.

Since @1 is the only queen assigned to a value so far, the noattack constraints
with @1 as the first argument will be matched and fired consequently with this
rule. For example, the head will be matched as the following:

queennum(4), idof(2,Q2) \ noattack(4,Q2,1), Q2 in [4,3,2,1]

X1 and X2 are calculated and, in this case, are equal to 3 and 5 respectively. The
next step is to eliminate those values, if they exist, from the domain L and have
a new domain L0 for queen Y. The visualisation is updated here through giving
drawme (Q2’s number M and its current domain. This rule is fired for the rest of
noattack constraints having @1 as an argument as well and the following step in
the visualisation is reached:

* N-Queens Solver g@@
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Figure 4.12: The first queen’s position is set and eliminations are done accordingly
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At this point, the algorithm backtracks to the ‘enum-rule’ and evaluates enum for
the rest of the queens list @s. This leads to repeating the same process of the
enum_val predicate for the second queen as shown in figure 4.13.

* |N-Queens Solver
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Figure 4.13: The second queen’s position is set.

However, when firing and applying the no_attack rule, the third queen’s domain
becomes empty. Meaning there is a constraint Q3 in [] in the constraint store.
Such case matches the head of this rule:

queennum (M), idof (N,X) \ X in [] <=> drawme(N, [],M),
send(@p, flush), timel, fail.

Thus, the column of @3 is updated to have all of its cells as empty boxes indicating
the failure to have a possible valid queen. Such failure causes ()2’s enum_val/5
predicate evaluation to fail; meaning the choice of setting @2 with the first value
of its domain was unsuccessful. This brings us to the second part of the predicate
which acts as an alternative in case the first part fails:

(drawqueen(N,V, ’nqueens/red2.xpm’), timel, enum_val(M,N,Qs,X,L))

Instead of a crown in a green circle marking the position of the second queen, it is
first updated to be a in a red circle indicating its failure as shown in figure 4.14.

Figure 4.14:
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The domain of the third queen becomes empty. The second queen fails.
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Then, the algorithm backtracks to the alternative choice which is choosing the
next value in the domain of 2 and re-run the same process on it. This is shown
in figure 4.15 and is done by calling the predicate enum_val with the list argument
passed as the rest of the domain list of Q2.

* |N-Queens Solver - \EIE\

(@]
minimi;
022
= mimi

‘ Spesdup | [Shwaown]  Qut | ‘

Figure 4.15: The next option of the second queen’s position is tested.

With the new position of 2, a resulting constraint of (J3’s value, after firing the
no_attack rule, is Q3 in [3]. This leads to firing the following rule;

X in [X1], idof(N,X) <=> drawqueen(N,X1,’nqueens/green2.xpm’),
X=X1, send(@p, flush), timel.

which handles the case of having only one value in the domain of a queen, i.e only
possible position. Therefore, that queen is set to a value and is drawn accordingly
as visualised in figure 4.16.
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Figure 4.16: The third queen is set to a certain position since it is the only valid one.

However, when having the first three queens set to the values they currently are
set to, and after firing more no_attack rules based on the updates reached by
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the algorithm, it is found that now Q4’s domain is empty as shown in figure 4.17.
Thus, this leads to the failure of all three positions of the queens.

Hi-nn
Hinnn
QL
oL LI

Speed up | [ Slow down & Quit |

Figure 4.17: The fourth queen has an empty domain leading to the failure of the previous
three queens.

This backtracks to the very first queen and the next value of its domain is tried
out. The same steps of the algorithm are repeated all over again for the newly set
value of Q1 until a solution is reached as shown in figure 4.18.
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Figure 4.18: The first solution found to the 4-Queen problem.

For an alternative solution (if exists), using SWI-Prolog’s command “;” will enforce
the algorithm to run again to reach a different solution. For this example, it will
result into the solution shown in 4.19
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Figure 4.19: An alternative solution to the 4-Queen problem

4.2.5 Sudoko

The algorithm behind solving the Sudoko problem, taken from [17], is quite similar to the
N-Queen’s algorithm. Both of them are based on applying constraints that causes some
eliminations. In case of the N-queens, eliminations are done on each queen’s domain.
However, for the Sudoko algorithm, the eliminations are done on the domain of each cell
as will be discussed shortly. The basic idea behind the algorithm is having domain lists
for each cell with the possible numerical values, from [1...9], that it can take depending
on the values or domains of other cells.

Unlike what one is used to when solving a Sudoku problem, the implementation on
the CHR website [17] solves an empty Sudoku. Meaning, the algorithm manually sets
the values of a few cells initially and then the constraints are applied on the rest of the
cells accordingly. To query the algorithm, the following query is used:

;- solve.
where the predicate solve/0 has a body as follows
solve :- start, init_board, init_data,trace, try.

1. start/0: a predicate that initialises the window frame and calls another predicate
drawcells/2 initially given the two arguments 1 and 1. The grid is drawn through
drawcells, in a matter that would enable the user to see the rows, columns and
boxes of the Sudoku board easily as presented in figure 4.20.
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Figure 4.20: An empty Sudoko board drawn initially.

2. init_board/0: this predicate calls a series of predicates sequentially to eventu-
ally throw cell/6 constraints for each cell on the board and call the predicate
updatecelll/7 for each one as well.

a b c
1 2 3 1 2 3 i 2 3
Iaa
a 2z ab2
3 ac32
1
b = ba23
3 bb,3.2 b33
1 cb.1,3
c z ca?
3 3

Figure 4.21: An illustration of how a cell can be referenced.

A cell/6 constraint would carry the following arguments respectively, where the
first four define the position of the cell:

e A: the letter corresponding to the vertical box the cell is in.

e B: the letter corresponding to the horizontal box the cell is in.

e (: the number corresponding to the vertical position of the cell in the box
(A, B).
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e D: the letter corresponding to the horizontal position of the cell in the box
(4,B).

e N: the number of items in the list L; i.e its length.

e [: a list containing the possible values that this cell can take. It acts as the
domain of that cell.

The figure 4.21 illustrates how the lettering and numbering is mapped on the
board. Also, some of the cells have their position’s reference written inside them
in red as an example on how one can locate a cell.

When the constraint cell/6 is thrown for each cell, having L initially set to
[1,2,.....8,9], the predicate updatecelll is also called for each cell with the same
arguments as cell/6 in addition to an extra one for the colour. The need of
having this seventh argument in updatecelll will be explained shortly.

updatecelll(A,B,C,D,N,L,Col) :- clearcell(A,B,C,D),
updatecell(A,B,C,D,N,L,Col).

The predicate updatecell calls two predicates:

e clearcell/4: given the location of the cell through its four arguments, it
clears the cell. This is done through placing an empty box at the cell’s
position. Such predicate is useful in later stages where a cell could already
be occupied with certain graphical objects and it is required to update the
cell. Thus, one can just clear the cell and re-fill it with the updates.

e updatecell/7: basically updates the cell, whose position can be interpreted
through the first four arguments, with its current domain L. As mentioned
before, N is the length of the list L. Depending on the value of IV, one of the
two definitions of the predicate updatecell is chosen.

(a) updatecell(A,B,C,D,N, [HIT],_): deals with the case N > 1, implying
that the domain list of this cell contains more than one value; there are
different numerical possibilities for the cell. For this case, the values
are represented as black dots where their position indicates the value of
the number. Each dot is originally an image that is just placed in a
position depending on the value of the number. Figure 4.22 shows how
the numbers would be mapped as dots.

Figure 4.22: A maximized cell showing how the mapping of numbers to dots.

Note: the numbers written in white inside each black dot are only shown
in the above figure for explanation purposes and not the case in the
implementation’s visualisation. Instead, only the black dots are shown.
(b) updatecell(R,C,NR,NC,1,[H],Col): this definition of the predicate
only works for the case N = 1, meaning that the cell currently has
only one possible value it can take. Thus, instead of showing a dot, the
number itself H is written as a text inside the cell in the colour Col.
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The resulting visualisation after calling the predicate updatecelll for all cells is
shown in figure 4.23:
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Figure 4.23: Initial numerical possibilities of the cells shown as black dots.

3. init_data/0: as previously mentioned at the beginning of this sub-section 4.2.5,
this implementation initially sets a few cells to certain numerical values manually.
The predicate init_data/0 generally serves this purpose and consequently leads
to the elimination of some of the possible values that other cells had available.

To be precise, this predicate updates the values of a chosen set of cells into differ-
ent numerical values. This is done algorithmically through throwing a constraint
cell/5 for each of the chosen cells to be updated. The first four arguments are
the same as the constraint cell/6’s first four arguments and the fifth argument
represents the numerical value the cell is set to. Regarding the visualisation, for
each cell/5 constraint thrown for a cell, a predicate updatecelll is called to
update the visualisation.

Since there is a cell/6 constraint present in the store for every cell, for each cell/5
constraint thrown into the store through the predicate init_data as previously
explained, the following rule is fired:

cell(A,B,C,D,_) \ cell(A,B,C,D,_,_) <=> true.

A cell/5 constraint indicates that this cell is set to a value, thus there is no need
to have a cell/7 constraint carrying the domain of this cell any more.

The next step is performing the eliminations on the cells that do not have a
numerical value it is set to yet. This is done through eliminating such value from
the cell’s:

e same column:
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cell(_,B,_,D,V) \ cell(aA,B,C,D,N,L) <=> select(V,L,LL) |
N1 is N-1, N1>0, updatecelll(A,B,C,D,N1,LL,red),
cell(A,B,C,D,N1,LL).

® salne row:

cell(A,_,C,_,V) \ cell(a,B,C,D,N,L) <=> select(V,L,LL) |
N1 is N-1, N1>0, updatecelll(A,B,C,D,N1,LL,red),
cell(A,B,C,D,N1,LL).

e and same box:

cell(A,B,_,_,V) \ cell(A,B,C,D,N,L) <=> select(V,L,LL) |
N1 is N-1, N1>0, updatecelll(A,B,C,D,N1,LL,red),
cell(A,B,C,D,N1,LL).

All three rules have the same idea on how the elimination takes place. The
main difference is which position arguments to compare. The comparison is
done through the head of each rule between a cell with a set value, let it be
referred to as C1, and a cell C2 that is not yet bound to a value.

For example, checking that C2 is in the same column as C1 is done through
checking if they have the same horizontal box reference B and the same
horizontal position D in the box. If such conditions are satisfied, then the
first rule, off the above rules, is fired. The numerical value V that C1 is
set to, is removed from C2’s domain list L and a new updated list LL is
output. Then, updatecelll is called for C2 with the list LL to update the
visualisation. Also, since this is a simpagation rule, a new constraint cell/6
is thrown into the constraint store with the new list LL to replace the one
removed by the rule. The same process is run for the rest of the cells in the
same row as C'1 as well as any cell in the same column or box, through firing
other two rules. This results in having the visualisation updated as in figure

4.24

" Sudoko Solver g@@
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Figure 4.24: Some cells are set to numerical values thus causing eliminations in the
domain of other cells.
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The predicate init_data/0 does not have any processes more to run after
being done with throwing the cell/5 constraints as previously mentioned,
have them matched with rules causing them to fire, and no other constraints
are available in the constraint store to match any rule. This leads to calling
solve/0’s last predicate try/0.

4. try: this predicate throws a fillone/1 constraint carrying the value 1.

fillone(N), cell(A,B,C,D,N2,L) <=> N2=N |
member (V,L), updatecelll(A,B,C,D,1,[V],red),
cell(A,B,C,D,V), fillone(1).

fillone(N) <=> N < 9 | N1 is N+1, fillone(N1).

The idea of using the constraint fillone through the above two rules is to search
the constraint store for the cell with the smallest domain list. This is done through,
first, firing the second rule above till the value IV is equivalent to the fifth argument
of any of the cell/6 constraints available in the constraint store and thus firing
the first rule. Once such a cell is found, its value is set to the first number of
its domain list, as a trial, and the visualisation is updated accordingly such as
in figure 4.25. Also, a cell/5 constraint is thrown to the store, thus causing the
elimination rules mentioned before to fire. A new fillone constraint is fired as
well at the end of the body of the rule. Thus, causing the same process of finding
a cell to set a value to, to run. This leads to more eliminations performed and so
on.

* | Sudoko Solver g@@
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Y B B S B B rpyzgs
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Figure 4.25: A trial value is set to a cell in order to search for a solution of the puzzle.
Eliminations are done accordingly
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* |Sudoko Solver g@@
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Figure 4.26: More eliminations performed as a result of setting values of more cells.

The eliminations are shown step-by-step through the visualisation until a solution
is found to the puzzle as shown in figure 4.27.

* |Sudoko Solver g@@
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8 9 1 3 7 2 4 5 &
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Figure 4.27: A solution of the Sudoko puzzle is reached.
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An Extra Feature

In this work, an extra feature is added to the original implementation of the Sudoku
problem, which is to give the user the choice to enter a personalized query with input cell
values, i.e solving a personalised Sudoku puzzle. The algorithm then is run according to
the values input by the user and the final solution is presented accordingly. An example
of such query could be:

:—- solve([cell(a,a,1,1,8), cell(a,a,1,2,3), cell(a,b,1,3,7),
cell(a,c,1,3,4), cell(a,b,2,1,9), cell(a,b,2,3,4),
cell(a,c,2,1,8), cell(a,c,2,2,2), cell(a,b,3,2,3),
cell(b,a,1,1,2), cell(b,c,1,1,9), cell(b,c,1,3,7),
cell(b,a,2,1,6), cell(b,a,2,3,7), cell(b,c,2,1,4),
cell(b,c,2,3,8), cell(b,a,3,1,4), cell(b,a,3,3,3),
cell(vb,c,3,3,6), cell(c,b,1,2,1), cell(c,a,2,2,5),
cell(c,a,2,3,8), cell(c,b,2,1,2), cell(c,b,2,3,3),
cell(c,a,3,1,1), cell(c,b,3,1,8), cell(c,c,3,2,4),
cell(c,c,3,3,5)]1).

where the following implementation of solve/1 is added to the code.
solve([H|T]):- start, init_board, init_data([HIT]), try.

This predicate takes an input argument as a list of cell/5 constraints specifying the
cells to have their values set. The predicate solve/1 works the same as solve/0, with
the exception of the init_data/1 predicate part.

init_data([]).
init_data([cell(A,B,C,D,Val) |T]):- updatecelll(A,B,C,D,1, [Val],black),
cell(A,B,C,D,Val), init_data(T).

Previously, init_data/0 was used to manually set values of a selected number of cells
as part of the algorithm. However, the added predicate init_data/1, carries its argu-
ment as the list of cell/5 constraints entered by the user and initially visualises the
cells bound to those values and performs the necessary eliminations. This is shown in
figure 4.28 where it is observed that the input values are shown in black. This was done
through passing the last argument of the predicate updatecell1/7 as black.
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Figure 4.28: A personalised Sudoku puzzle where the input values are shown in black
and eliminations are performed accordingly.

Then, the predicate try/0 is run same as before. Using the personalised option of
solving the Sudoko puzzle enables the user to see the difference between the input values,
shown in black, and the resulted values from the eliminations, shown in red. The figures
4.29 and 4.30 show different stages of the visualisation.
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Figure 4.29: More values are set and more eliminations performed.
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Figure 4.30: A solution is reached for the personalised Sudoku puzzle

Same as the N-Queens problem discussed previously in sub-section 4.2.4, one can
use SWI-Prolog’s “;” command for alternative solutions of the Sudoku puzzle.

4.3 Related Work

In [13], it was also of interest to visualise some CHR algorithms. Three main clus-
ters of algorithms were chosen for that work; sorting, boolean algebra and searching
algorithms. However, a different approach to accomplish the visualisation was taken;
program transformation. This was done through a source-to-source transformation tool
where the input CHR program is transferred into a special relational form. A Java
application is then provided in order to parse the input file and extract the important
information and triggers in the needed format. The user is requested to input some
required information regarding the CHR code to serve some transformation purposes.
Then according to the algorithm type chosen by the user, it applies the corresponding
transformer depending on the chosen program. And finally, the visualisation is shown
through the Java tool, where the connection between the solver and the tool is done
through SWI-Prolog’s JPL interface.

The main difference between the previously mentioned work and the work presented
in this thesis is that there is no need to do any source transformation in the visualisations
implemented for this project. Prolog, along with the graphical help of XPCE, is solely
used with CHR to output the five algorithms’ visualisations. This avoids any possible
poor performance or clashes that can happen as a result of extensively accessing the
different environments of multiple languages employed together to produce the output
visualisation|[8].



Chapter 5

Conclusion

5.1 Conclusion

Since visualising algorithms aids one’s comprehension of how the computation takes
place, it was appealing to this work to visualise CHR algorithms. In general, repre-
senting algorithms graphically has been a field of interest especially for the computer
science world. It is essential to ensure a student’s understanding of a newly introduced
language or algorithm. This can be done through presenting the code of an algorithm
accompanied by a visualisation that stimulates the eyes and help follow the computation
of such algorithm graphically. For CHR algorithms, it is important to understand the
concept behind how the constraints handling and how choices are committed. All of the
previously mentioned factors have motivated this work greatly.

One of the main goals of this thesis, was to use only Prolog with CHR for the
implementation part of this work, through SWI-Prolog acting as the compiler. However,
as mentioned previously in chapter 3, Prolog does not own graphical capabilities and thus
other options had to be explored. XPCE was found to be the most suitable graphical
approach, since this portable tool-kit still uses only Prolog. Thus, it provides maximum
stability without the need to employ and merge different language environments to serve
the graphical aspect of this work.

In conclusion, this work presents visualisations of five different algorithms imple-
mented in CHR and Prolog, with the help of XPCE for the graphical parts. Unique
graphical representations were chosen for each of the two fundamental algorithms; find-
ing the minimum of a set of numbers and calculating the N** term of a Fibonacci
series. While the other three algorithms; Wolfram’s cellular automaton, N-queens and
Sudoku problems, are all grid-based and thus their animations were implemented ac-
cordingly. Each visualisation shows a step-by-step workout of the algorithm that can
aid the explanation of how CHR works and hence can be used for educational purposes.

5.2 Future Work

Concerning the future work, it can be divided into three main points of interest:

1. Developing a Tool:

48
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It would be of more use to have one tool handling the algorithms all together, where
a console can be embedded in the tool itself for the user to run the visualisations’
codes from, instead of doing that externally through the SWI-Prolog console. Also,
the aim would be to explore the possibility of developing such a tool using the
same graphical approach, XPCE. Such a tool can be extended to include a wider
collection of newly implemented algorithm visualisations. Another idea for the
implementations added to the tool, is to generalise them as much as possible; i.e.
make them semi-automatic. This can be done through providing certain tags for
common actions or commands for example.

2. Enhancing Speed Control:

Instead of using buttons that change the values of the delay to be made between
the visualisation’s steps, a more advanced approach can be explored. For example,
having a speed slider controlling such an attribute to allow smoothness of the
animation.

3. More User Interaction:

The user can be given graphical options to choose from, thus allowing him to inter-
act more with the to-be-developed tool. Different options on how a visualisation
is presented can be added for the user to choose from. Also, investigating the
possibility of enabling the user to rewind to a certain point of the visualisation or
skip to a next step.
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