
A Refined Operational Semantics for ACT-R
Investigating the Relations between Different ACT-R Formalizations

Daniel Gall Thom Frühwirth
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Abstract
The popular cognitive architecture ACT-R is used in many cognitive
models to explain cognitive features of human-beings. It has a
well-defined psychological theory but lacks a formalization of its
underlying computational system. This lack allows for technical
ad-hoc artifacts in the original reference implementation. More
importantly, formal analysis of cognitive models is not possible
without a well-defined semantics. In prior work we have defined an
abstract operational semantics for ACT-R’s production system that
is suitable for model analysis. It abstracts from details like timings
and conflict resolution methods. However, to describe the behavior
of ACT-R implementations a more refined semantics is needed.

In this paper, we first introduce a new very abstract operational
semantics for ACT-R that serves as formal base to compare different
semantics. We define an improved version of the abstract semantics
as an instance of our new very abstract semantics. Furthermore, we
present a more refined operational semantics that also captures
details from actual ACT-R implementations. We show that the
refined semantics is sound w.r.t. the abstract semantics. This makes
model analysis with the abstract semantics suitable for real-world
ACT-R models.

Categories and Subject Descriptors F.3.2 [Semantics of Program-
ming Languages]: Operational semantics; J.4 [Social and Behav-
ioral Sciences]: Psychology; D.3.2 [Language Classifications]:
Specialized application languages; I.6.8 [Types of Simulation]: Dis-
crete event

Keywords ACT-R, cognitive modeling, production rule systems,
formal operational semantics

1. Introduction
Adaptive Control of Thought – Rational (ACT-R) [7, 8] is a cognitive
architecture that is very popular in computational cognitive model-
ing. It offers a unified psychological theory as well as a language
and framework to implement psychological models about human
cognition. Although it is well investigated from the psychological
point of view, ACT-R lacks a formal foundation of its computational
concepts. This inhibits computational analysis of cognitive models
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and leads to various different implementations with technical arti-
facts. To improve understanding of the fundamental concepts and
to enable analysis of cognitive models and comparison of differ-
ent implementations, a formal description of ACT-R’s operational
semantics is needed:

“Unfortunately, in contrast to the precisely defined mathe-
matics of stochastic optimal control, the ACT-R literature is
marred by a lack of specificity and consistency. The ACT-R
definition is distributed across a vast collection of journal
articles and monographs, and no single text is sufficient to
provide a complete definition. Important parts of the ACT-R
definition vary from source to source, with no explanation as
to why the change was made, or even an acknowledgement
that the change had occurred at all.” [25]

The need of a formalization is also indicated by the fact that there
are several approaches to formalize ACT-R that we discuss in detail
in section 6 [4, 5, 17, 21].

In prior work [17], we have presented an operational semantics
of ACT-R that abstracts from details like timings, latencies and a
concrete conflict resolution mechanism. This abstraction simplifies
modeling and analysis while capturing the fundamental parts of the
system. Calls to external modules are abstracted as state-dependent
functions. This leads to a description of ACT-R’s fundamental
concepts that is independent from the exact instantiation and used
modules. By representing rule conflicts as non-deterministic state
transitions, our abstract operational semantics considers all possible
state transitions. Hence, our description is independent from the used
conflict resolution mechanism. This allows to exchange parts of the
ACT-R theory and enables analysis of different implementations.

Independent from our work, a formal semantics of ACT-R is
presented in [4]. This semantics already includes parts of the refine-
ment we need for the continuation of our work and hence is valuable
to validate and extend our previous efforts. However, it still leaves
some parts open that are needed for the formalization of a concrete
instantiation (i.e. a description of actual implementations) of ACT-
R and lacks some definitions that we already have established in
our abstract semantics and that we need for our analysis tools, for
example the notions of matching and variable bindings.

In this paper, we first define a very abstract semantics in the
spirit of the formalization according to Albrecht and Westphal [4]. It
simplifies analysis of the relations between different operational se-
mantics. We redefine our abstract semantics from [17] as an instance
of the very abstract semantics and get rid of some inaccuracies and
notational overload we have introduced there. As before, the ab-
stract semantics is easy to analyze. This is further substantiated by
the sound and complete translation scheme of ACT-R models to
Constraint Handling Rules (CHR). This translation scheme enables
the application of theoretical results of CHR to it, e.g. the decidable
confluence test [13, section 5.2].



We continue the work from [17] and introduce a more refined
semantics that adds concepts like timing, latencies and conflict reso-
lution. Those concepts have been omitted in our abstract semantics
to simplify analysis. This gives an exact formal description of ex-
isting ACT-R implementations. We show soundness of the refined
semantics w.r.t. the abstract operational semantics, i.e. that every
derivation in the refined semantics is a valid derivation in the ab-
stract semantics. This result paves the way for model analysis by
making our simple abstract semantics usable for e.g. confluence and
termination analysis.

Altogether, the contributions of this paper are

• a comparison and discussion of the recent work on ACT-R
semantics,

• a very abstract operational semantics that serves as theoretical
toolkit to analyze relations between different actual instantiations
of ACT-R semantics,

• an improved version of our abstract operational semantics from
[17],

• a refined operational semantics that continues our work to an
analytical framework of ACT-R and

• a soundness result that relates our abstract semantics to the
refined semantics. This makes the abstract semantics suitable for
analysis.

2. Description of ACT-R
In this section, we describe ACT-R informally. For a detailed
introduction to the system, we refer to [6–8, 24]. Adaptive Control
of Thought – Rational (ACT-R) is a popular cognitive architecture
that is used in many cognitive models to describe and explain human
cognition. There have been applications in modeling language
learning [23] or improving human computer interaction by the
predictions of a cognitive model [10]. The components of the ACT-
R architecture even have been mapped to brain regions [6, chapter
2].

Using a cognitive architecture like ACT-R simplifies the model-
ing process, since well-investigated psychological results have been
assembled to a unified theory about fundamental parts of human
cognition. In the best-case, such an architecture constrains modeling
to only plausible cognitive models [24]. Computational cognitive
models are described clearly and unambiguously since they are
executed by a computer producing detailed simulations of human
behavior [22]. By performing the same experiments on humans
and the implemented cognitive models, the resulting data can be
compared and models can be validated.

2.1 Overview of the ACT-R Architecture
The ACT-R theory is built around a modular production rule system
operating on data elements called chunks. A chunk is a structure
consisting of a name and a set of labeled slots that are connected to
other chunks. The slots of a chunk are determined by its type. The
names of the chunks are only for internal reference – the information
represented by a network of chunks comes from the connections. For
instance, there could be chunks representing the cognitive concepts
of numbers 1, 2, . . . By chunks with slots number and successor
we can connect the individual numbers to an ordered sequence
describing the concept of natural numbers. This is illustrated in
figure 1.

As shown in figure 2, ACT-R consists of modules. The goal
module keeps track of the current (sub-) goal of the cognitive model.
The declarative module contains declarative knowledge, i.e. factual
knowledge that is represented by a network of chunks. There are
also modules for interaction with the environment like the visual
and the manual module. The first perceives the visual field whereas
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Figure 1. Two count facts with names b and c that model the
counting chain 1, 2, 3.

the latter controls the hands of the cognitive agent. Each module is
connected to a set of buffers that can hold at most one chunk at a
time.

goal
module

goal buffer

imaginal
module

imaginal
buffer

declarative
module

declarative
buffer

procedural
module

visual
module

visual
buffer

manual
module

manual
buffer

environment

Figure 2. Modular architecture of ACT-R. This illustration is
inspired by [24] and [8].

The heart of the system is the procedural module that contains
the production rules controlling the cognitive process. It only has
access to a part of the declarative knowledge: the chunks that are
in the buffers. A production rule matches the content of the buffers
and – if applicable – executes its actions. There are three types of
actions:

Modifications overwrite information in a subset of the slots of a
buffer, i.e. they change the connections of a chunk.

Requests ask a module to put new information into its buffer. The
request is encoded in form of a chunk. The implementation
of the module defines how it reacts on a request. For instance,
there are modules that only accept chunks of a certain form
like the manual module that only accepts chunks that encode a
movement command for the hand according to a predefined set
of actions.
Nevertheless, all modules share the same interface for requests:
The module receives the arguments of the request encoded as a
chunk and puts its result in the requested buffer. For instance, a
request to the declarative module is stated as a partial chunk and
the result is a chunk from the declarative knowledge (the fact
base) that matches the chunk from the request.

Clearings remove the chunk from a buffer.



The system described so far is the so-called symbolic level of
ACT-R. It is similar to standard production rule systems operating
on symbols (of a certain form) and matching rules that interact
with buffers and modules. However, to simulate the human mind,
a notion of timing, latencies, priorities etc. are needed. In ACT-R,
those concepts are subsumed in the sub-symbolic level. It augments
the symbolic structure of the system by additional information to
simulate the previously mentioned concepts.

Therefore, ACT-R has a progressing simulation time. Certain
actions can take some time that is dependent on the information
from the sub-symbolic level. For instance, chunks are mapped to
an activation level that determines how long it takes the declarative
module to retrieve it. Activation levels also resolve conflicts between
chunks that match the same request. The value of the activation level
depends on the usage of the chunk in the model (inter alia): Chunks
that have been retrieved recently and often have a high activation
level. Hence, the activation level changes with the simulation time.
This can be used to model learning and forgetting of declarative
knowledge. Similarly to the activation level of chunks, production
rules have a utility that also depends on the context and the success of
a production rule in prior applications. Conflicts between applicable
rules are resolved by their utilities which serve as dynamic, learned
rule priorities.

2.2 Syntax
We use a simplified syntax of ACT-R that we have introduced in [17].
It is based on sets of logical terms instead of the concatenation of
syntactical elements. This enables an easier access to the syntactical
parts. Our syntax can be transformed directly to the original ACT-R
syntax and vice-versa.

The syntax of ACT-R is defined over two possibly infinite,
disjoint sets of (constant) symbols C and variable symbols V . An
ACT-R model consists of a set of types T with type definitions
and a set of rules Σ. A production rule has the form L ⇒ R
where L is a finite set of buffer tests and queries. A buffer test is
a first-order term of the form =(b, t, P ) where the buffer b ∈ C
and P ⊆ C × (C ∪ V) is a set of slot-value pairs (s, v) where
s ∈ C and v ∈ C ∪ V . This means that only the values in the
slot-value pairs can consist of both constants and variables. The
right-hand side R ⊆ A of a rule is a finite set of actions where
A = {a(b, t, P ) | a ∈ A, b ∈ C, t ∈ C and P ⊆ C × (C ∪ V)}.
I.e. an action is a term of the form a(b, t, P ) where the functor a of
the action is in A, the set of action symbols, the first argument b is
a constant (denoting a buffer), the second argument is a constant t
denoting a type, and the last argument is a set of slot-value pairs, i.e.
a pair of a constant and a constant or variable. Usually, the action
symbols are defined as A := {=,+,−} for modifications, requests
and clearings respectively.

We define the function vars that maps an arbitrary set of terms to
its set of variables in V . For a production rule L⇒ R the following
must hold: vars(R) ⊆ vars(L), i.e. no new variables must be
introduced on the right-hand side of a rule. As we will see in the
following sections about semantics, this restriction demands that all
variables are bound on the left-hand side.

2.3 Informal Operational Semantics
In this section, we describe ACT-R’s operational semantics infor-
mally. The production rule system constantly checks for matching
rules and applies their actions to the buffers. This means that it tests
the conditions on the left hand side with the contents of the buffers
(which are chunks) and applies the actions on the right hand side,
i.e. modifies individual slots, requests a new chunk from a module
or clears a buffer.

The left hand side of a production rule consists of buffer tests –
that are terms =(b, t, P ) with a buffer b, a type t and a set of slot-

value pairs P . The values of a slot-value pair can be either constants
or variables. The test matches a buffer, if the chunk in the tested
buffer b has the specified type t and all slot-value pairs in P match
the values of the chunk in b. Thereby, variables of the rule are bound
to the actual values of the chunk. Values of a chunk in the buffers
are always ground. This is ensured by the previously mentioned
condition in the syntax of a rule that the right hand side of a rule
does not introduce new variables (see section 2.2). Hence the chunks
in the buffers stay ground.

If there is more than one matching rule, a conflict resolution
mechanism that depends on the sub-symbolic layer chooses one rule
that is applied. After a rule has been selected, it takes a certain time
(usually 50 ms) for the rule to fire. I.e. actions are applied after this
delay. During that time the procedural module is blocked and no
rule can match.

The right hand side consists of actions a(b, t, P ), where a ∈ A
is an action symbol, b is a constant denoting a buffer and P is
again a set of slot-value pairs. We have already explained the three
types of actions (modifications, requests and clearings) roughly. In
more detail, a modification overwrites only the slots specified in
P with the values from P . A request clears the requested buffer
and asks a module for a new chunk. It can take some time specified
by the module (and often depending on sub-symbolic values) until
the request is processed and the chunk is available. During that
time, other rules still can fire, i.e. requests are executed in parallel.
However, a module can only process one request for a buffer at the
same time. Buffer clearings simply remove the chunk from a buffer.
In the following, we disregard clearings in our definitions since they
are easy to add.

We now give an example rule and informally explain its behavior.

Example 1 (production rule). We want to model the counting
process of a little child that has just learned how to count from one
to ten. We use the natural number chunks described in section 2.1
as declarative knowledge. Furthermore, we have a goal chunk of
another type g that memorizes the current number in a current slot.
We now define a production rule, that increments the number in the
counting process (and call this rule inc). We denote variables with
capital letters in our examples. The left-hand side of the rule inc
consists of two tests:

• = (goal , g, {(current , X)}) and
• = (retrieval , succ, {(number , X), (successor , Y )}).

This means that the rule tests if in the goal buffer there is a chunk of
type g that has some number X (which is a variable) in the current
slot. If this number X is also in the number slot of the chunk in the
retrieval buffer, the test succeeds and the variable Y is bound to the
value in the successor slot. The actions of the rule are:

• = (goal , , {(current , Y )}) and
• +(retrieval , succ, {(number , Y )}).

The first action modifies the chunk in the goal. A modification cannot
change the type, that is why we just add an anonymous variable
denoted by the underscore symbol in the type specification. The
current slot of the goal chunk is adjusted to the successor number Y
and the declarative module is asked for a chunk of type succ with Y
in its number slot. This is called a retrieval request. After a certain
amount of time, the declarative module will put a chunk with Y in
its number and Y + 1 in its successor slot into the retrieval buffer
and the rule can be applied again.

3. Very Abstract Operational Semantics
Our goal is to define a refined semantics that extends our abstract se-
mantics by sub-symbolic details. To compare the refined and abstract
semantics, we first give them a common theoretical foundation that



is based on the formalization according to Albrecht and Westphal –
the very abstract operational semantics. It describes the fundamental
concepts of a production rule system that operates on buffers and
chunks like ACT-R. This work extends the definition from [4]. We
compare our work with the work from [4] in section 6.2.

An ACT-R architecture is a concrete instantiation of the very ab-
stract semantics and defines general parts of the system that are left
open by the very abstract semantics like the set of possible actions
A, the effect of such an action or the selection process. In contrast to
that, an ACT-R model defines model-specific instantiations of parts
like the set of types T and the set of rules Σ. Figure 4 summarizes
what is defined by the architecture and the model.

3.1 Chunk Stores
As described before in section 2, ACT-R operates on a network of
typed chunks that we call a chunk store. Therefore, we first define
the notion of types:

Definition 1 (chunk types). A typing function τ : T → 2C maps
each type from the set T ⊆ C to a finite set of allowed slot names.

A chunk store is defined over a set of types and a typing function.
We abstract from chunk names as they do not add any information to
the system. In fact, chunks are defined as unique, immutable entities
with a type and connections to other chunks:

Definition 2 (chunk store). A chunk store is a multi-set of tuples
(t, val) where t ∈ T is a chunk type and val : τ(t) → ∆ is
a function that maps each slot of the chunk (determined by the
type t) to another chunk. We denote the chunk store of all possible
chunks with ∆. For a chunk c = (t, val), the following functions
are defined:

• type(c) = t and
• slots(c) = val .

The typing function τ maps a type t from the set of type names
T to a set of allowed slots, hence the function val of chunk c
has the slots of c as domain. Note that a chunk store can contain
multiple elements with the same values that still are unique entities
representing different concepts. We will see this in the following
example: We model our well-known example from figure 1 as a
chunk store:

Example 2 (chunk store of natural numbers). The chunk store from
figure 1 can be modeled as follows:

• The set of types is T2 = {number, succ}.
• The typing function τ2 : T→ 2C is defined as τ(number) = ∅

and τ(succ) = {number , successor}.
• We have the following chunks in our store ∆2:

the unique entities 1, 2, 3 that are defined as (number , ∅),

b = (succ, valb) with valb(s) =

{
1 if s = number

2 if s = successor

c = (succ, valc) with valb(s) =

{
2 if s = number

3 if s = successor

3.2 States
We first define the individual parts of an ACT-R state. The notion of
a cognitive state defines which chunks are currently in which buffer
and therefore visible to the production system that can only match
chunks in buffers.

Definition 3 (cognitive state). A cognitive state γ is a function
B → ∆ × R+

0 that maps each buffer to a chunk and a delay. The
set of cognitive states is denoted as Γ, whereas Γpart denotes the

set of partial cognitive states, i.e. cognitive states that are partial
functions and do not necessarily map each buffer to a chunk. We
define the following functions to access the individual parts of a
cognitive state γ: If γ(b) = (c, d) for an arbitrary buffer b, then

• chunk(γ(b)) = c and
• delay(γ(b)) = d.

The delay decides at which point in time the chunk in the buffer is
available to the production system. A delay d > 0 indicates that the
chunk is not yet available to the production system. This implements
delays of the processing of requests.

ACT-R adds a sub-symbolic level to the symbolic concepts that
have been defined so far and that distinguish it from other production
rule systems. To gather information from the sub-symbolic layer, we
add the concept of (sub-symbolic) parameter valuations that hold
the additional information needed to calculate sub-symbolic values.
These valuations can be altered by an abstract function as we will
see in section 3.3. We define a parameter valuation as follows:

Definition 4 (parameter valuation). A parameter valuation is a
function υ : Υ→ C with a domain specified by the set of allowed
parameters Υ and the target set C, the set of constants.

The set of allowed parameter valuations Υ is defined by the concrete
architecture. We give an example for parameter valuations:

Example 3 (parameter valuations). We want to memorize the last
application of each rule. Therefore, we introduce a new parameter by
defining the set of allowed parameter valuations as Υ3 = {tr | r ∈
Σ}. For the rule r∗ that has been applied at simulation time 1.5, the
valuation υ in a state is υ(tr∗) = 1.5.

Note that we will use rule application times similarly when defining
the sub-symbolic information in the refined semantics (c.f. sec-
tion 5.1).

We now define ACT-R states as follows:

Definition 5 (very abstract state). A very abstract state is a tuple
〈γ; υ; t〉V where γ is a cognitive state in the sense of definition 3,
υ : Υ → C is a parameter valuation function (called additional
information), t ∈ R+

0 is a time and V is a set of variable bindings.
The state space is denoted with Sva .

A set of variable bindings V ⊆ V consists of equality relations over
constants and variables (C ∪ V) that define the values of variables
in the operational semantics. The symbol V denotes the set of all
variable bindings over C ∪ V .

We continue our running example by defining a very abstract
state with one of the chunks defined in example 2.

Example 4. We want to model the counting process of a little child
that has learned the sequence of the natural numbers from one to
ten as declarative facts and can retrieve those facts from declarative
memory. Therefore, we add a chunk of type g with a current slot that
memorizes the current number in the counting process.

The following state has a chunk of type g in the goal buffer that
has the current number 1. The retrieval buffer is currently retrieving
the chunk b with number 1 and successor 2. The retrieval is finished
in one second as denoted by the delay. Figure 3 illustrates the state.
The formal definition is:

• T4 = T2 ∪ {g} where T2 is the set of types from example 2.

• τ4(t) =

{
{current} if t = g

τ2(t) otherwise.
• ∆4 = ∆2 ∪ {(g, valgoal)} where valgoal(current) = X and
X ∈ V .

• σ0 = 〈γ0; ∅; 0〉V
• γ0(goal) = ((g, valgoal), 0)



• γ0(retrieval) = (b, 1) where b is defined as in example 2.
• V = {X = 1}

Note that we have introduced a variable X that is bound to chunk 1
in V.

retrieval 1 b

1 2

goal 0

number successor

current

Figure 3. Visual representation of the very abstract state defined in
example 4. The dashed arrow signifies that the chunk in the retrieval
buffer is not yet visible (as indicated by the delay right of the buffer’s
name).

3.3 Operational Semantics
We now define the state transition system of the very abstract
semantics. As in every production rule system, we first define how
matching rules are chosen. Therefore, we introduce a selection
function S that is defined by the architecture and maps a state to
a set of matching rules and the variable bindings implied by the
application of the rule.

Definition 6 (selection function). A selection function is a function
S : Sva → 2Σ×2V

that maps a state to a set of pairs (r,V) where
r ∈ Σ is a production rule and V ⊆ V is a set of variable bindings.

For actual implementations of ACT-R, the result of S is usually
restricted to sets with zero or one element, but for abstract definitions
there can also be more than one rule. The function S usually defines
a notion of matching and makes sure that only rules can fire that
match visible information in the buffers, i.e. chunks that are not
delayed by a time greater than zero.

To define the modification of a state by a transition, we define
interpretation functions of actions that determine the possible effects
of an action.

Definition 7 (interpretation of actions). An interpretation of actions
is a function I : A× Sva → 2Γpart×CΥ where CΥ denotes the set
of all functions Υ→ C.

An interpretation maps each state and action of the form a(b, t, P )
– where a ∈ A is an action symbol, b ∈ C a constant denoting a
buffer, t ∈ C a type, and P ⊆ C × (C ∪ V) is a set of slot-value
pairs – to a tuple (γpart, υ). Thereby, γpart is a partial cognitive
state, i.e. a partial function that assigns some buffers a chunk.
The partial cognitive state γpart will be taken in the operational
semantics to overwrite the changed buffer contents, i.e. it contains
the new contents of the changed buffers. Analogously, the additional
information υ defines changes of parameter valuations induced by
the action.

Note that the interpretation of an action can return more than one
possible effect. This is used in the abstract semantics where due to
the lack of sub-symbolic information all possible effects have to be
considered. For example, the declarative module can find more than
one chunk matching the retrieval request. Usually, by comparing
activation levels of chunks, one chunk will be returned. However,

in the abstract semantics all matching chunks are possible. In the
refined semantics, we restrict the selection to one possible effect as
proposed by the ACT-R reference manual [9].

To combine interpretations of all actions of a rule, we first define
how two interpretations can be combined. Therefore, we introduce
the following set operator, that combines two sets of sets:

Definition 8 (combination operator t for effects). If A and B
are sets of tuples (f, g) where f and g are functions, then their
combination is defined as

A tB := {(f ∪ f ′, g ∪ g′) | (f, g) ∈ A and (f ′, g′) ∈ B}.
In the following example, we combine two sets of effects, i.e. sets
of tuples of partial cognitive states and parameter valuations:

Example 5 (combination of effects). For two sets of effects E =
{(γ1, υ1), (γ2, υ2)} and E′ = {(γ′1, υ′1)} the combination is

E t E′ = {(γ1 ∪ γ′1, υ1 ∪ υ′1), (γ2 ∪ γ′1, υ2 ∪ υ′1)}.
The result still is a valid set of effects, since each element of the
combination is still a tuple of functions.

We now define the interpretation function I : Σ → 2Γpart×Υ

that maps a rule to all its possible effects to the cognitive state and
additional information.

Definition 9 (interpretation of rules). A rule r := L ⇒ R is
interpreted by an interpretation function I : Σ× Sva → 2Γpart×Υ

that is defined as follows: I(r, σ) applies the function applyr to all
tuples in the result set when combining the individual actions of the
rule:

• apply : Γpart × Υ → Γpart × Υ that applies some more
effects at the end of the rule application and is defined by the
architecture,

• The interpretation has the result

I(α, σ) = applyr(
⊔
α∈R

I(α, σ))

where the apply function is applied to each member of the
combination set. Hence, all possible effects of the rules are
combined such that the corresponding cognitive states and
valuations belong together as shown in example 5 and each
of the resulting partial cognitive states is then modified by the
apply function that is defined by the architecture.

The apply function can apply additional changes to the state that
are not directly defined by its actions. For instance, it can change
some sub-symbolic values that depend on the rule application like
the utility of the rule itself. Note that by definition of the ACT-R
syntax it is ensured that each of the γpart in the combination of the
individual actions is still a function, since only one action per buffer
is allowed [9]. For the additional information in υ the concrete
architecture has to ensure this property.

We now define the operational semantics as the state transition
system (Sva , 7→):

Definition 10 (very abstract operational semantics). The transition
relation 7→: Sva × Sva in the very abstract operational semantics of
ACT-R is defined as follows:

Apply For a fresh variant r′ := r[x̄/ȳ] of rule r with vars(r) = x̄,
the following transitions are possible:

(r′,V∗) ∈ S(σ), (γpart, υ
∗) ∈ I(r′)

σ := 〈γ; υ; t〉V 7→ 〈γ′; υ′; t′〉V∪V∗

where

• γ′(b) =

{
γpart(b) if defined
(c, d	 δ) otherwise, if γ(b) = (c, d),



• x	 y =

{
x− y if x > y

0 otherwise
for two numbers x, y ∈ R+

0 ,

• υ′(p) =

{
υ∗(p) if defined
υ(p) otherwise,

and

• t′ = t + δ for a delay δ ∈ R+
0 defined by the concrete

instantiation of ACT-R.
We use 7→r to denote that the transition applies rule r.

No Rule
C(σ)

σ := 〈γ; υ; t〉V 7→ 〈γ′; υ; θ(σ)〉V

where
• C ⊆ Sva is a side condition in form of a logical predicate,
• update : Sva → Γpart a function that describes how the

cognitive state should be transformed,
• θ : Sva → R+

0 a function that describes the time adjustment
in dependency of the current state, and

• γ′(b) :=

{
[update(σ)] (b) if defined
γ(b) otherwise

is the updated

state.
We also write 7→no to emphasize that the no rule transition is
used.

Note that chunks are immutable and therefore changes in the
cognitive state always exchange the whole chunk in a modified
buffer.

An apply transition applies a rule that satisfies the conditions of
the selection function S by overwriting the cognitive state γ with
the result from the interpretations of the actions of rule r. Thereby,
one possible combination of all effects of the actions is considered.
Note that the transition is also possible for all other combinations.
Only the buffers with a new chunk are overwritten, the others keep
their contents. The same applies for parameters: They keep their
value except for those where υ∗ defines a new value. Additionally,
the rule application can take a certain time δ that is defined by the
architecture. Time is forwarded by δ, i.e. the time in the state is
incremented by δ and the delays in the cognitive state that determine
when a chunk becomes visible to the system are decremented by δ
(with a minimal delay of 0).

The no rule transition defines what happens if there is no rule
applicable, but there are still effects of e.g. requests that can be
applied. This means that there are buffers b ∈ B with γ(b) = (c, d)
and d > 0, i.e. information that is not visible to the production rule
system. In that case there are no possible transitions in the original
semantics. We generalized this case in our definition of the no
rule transition that allows state transitions without rule applications.
It ensures that if a side condition C(σ) defined by the ACT-R
instantiation, the cognitive state is updated according to the function
update and the current time of the system is set to a specified time
θ(σ). Both functions are also defined by the concrete architecture.
This makes new information visible to the production system and
hence new rules might fire. In typical ACT-R implementations, the
side condition C(σ) is that S(σ) = ∅, i.e. that no rule is applicable,
and θ(σ) := t + d∗ where σ has the time component t and d∗ is
the minimum delay in the cognitive state of σ. This means that time
is forwarded to the minimal delay in the cognitive state and makes
for instance pending requests visible to the production rule system.
It can be interpreted like if the production rule system waits with
the next rule application until there is new information present that
leads to a rule matching the state. This behavior coincides with the
specification from the ACT-R reference implementation [9]. If no
transition is applicable in a state σ, i.e. there is no matching rule

Architecture Model
C: set of constants T: set of types
V: set of variables τ : typing function
B: set of buffers Σ: set of rules
A: set of action symbols
δ: rule delay
Υ: allowed parameter valuations
S: rule selection function
I: interpretation functions

Figure 4. Parameters of the very abstract semantics that must be
defined by the architecture or the cognitive model respectively.

and no invisible information in σ, then σ is a final state and the
computation stops.

The definition of our very abstract semantics leaves parts to
be defined by the actual architecture and the model. Figure 4
summarizes what has to be defined by an architecture and a model.

4. Abstract Semantics as Instance
We redefine our abstract semantics from [17] as an instance of the
very abstract semantics from section 3. With the redefinition we
correct some technicalities and reduce the syntactic overload of the
original statement. The detailed changes are addressed in section 6.1.

4.1 Definition
First of all, we define the notion of matchings:

Definition 11 (matching). A buffer test =(b, ct , P ) for a buffer
b ∈ B testing for a type ct and slot-value pairs P ⊆ C × (C ∪ V)
matches a state σ := 〈γ; υ; t〉V, written =(b, ct , P ) v σ, if and
only if the following holds:

V→ (∀s ∈ C, ∀v ∈ C ∪ V : (s, v) ∈ P →
∃b′ ∈ B : b′ = b ∧ γ(b′) = ((ct , val), 0) ∧ val(s) = v)

This definition can be extended to rules: A rule r := L ⇒ R
matches a state σ, written as r v σ, if and only if for all buffer tests
t ∈ L match σ.

A buffer test matches a state, if and only if all its slot tests hold in
the state, i.e. the variable bindings imply that the values in the rule
are the same as in the state (for the tested buffer). Note that a test
can only match chunks in the cognitive state that are visible to the
system, i.e. whose delay is zero. A test cannot match chunks with a
delay greater than zero.

We give the architectural parameters that are left open in the very
abstract semantics:

States The states from definition 5 are defined upon a set of allowed
parameter valuations Υabs . We set Υabs := ∅ since the abstract
semantics has no sub-symbolic layer. Additionally, we set the
time in every state to t := 0 (or any other constant) because
abstract states are not timed. Hence, each abstract state is a tuple
〈γ; ∅; 0〉V where γ ∈ Γ is a cognitive state.

Selection Function The rule selection in the abstract semantics is
simply defined as Sabs(σ) := {(r, {r v σ}) | r ∈ Σ∧r v σ}.
Hence we select all matching rules in state σ and bind the
variables from the rules to their actual values from the matching.

Effects For a state σ = 〈γ; ∅; 0〉V the interpretation function Iabs
for actions in the abstract semantics is defined as follows:
• Iabs(= (b, t, P ), σ) = {(γp, ∅)} for modifications

where

γp(b) := ((type(γ(b)), valb), 0) and



for the old slot-value pairs in the cognitive state γ that are
defined as old = slots (chunk (γ (b))) the new values
are:

valb(s) :=

{
v if (s, v) ∈ P
old(s) otherwise.

This means that a modification creates a new chunk
that modifies only the slots specified by P and takes
the remaining values from the chunk that has been in
the buffer (chunk(γ(·))). Note that the type cannot be
modified, since the resulting chunk always has the type
derived from the chunk that has previously been in the
buffer. Note that modifications are deterministic, i.e. that
there is only one possible effect.

• (γp, ∅) ∈ Iabs(+(b, t, P ), σ) for requests
if

requestb : T × 2C×(C∪V) × Sva → 2∆×R+
0 ×C

Υ

is a
function defined by the architecture for each buffer. It
calculates the set of possible answers for a request that is
specified by a type and a set of slot value pairs. Possible
answers are tuples (c, d, υ) of a chunk c, delay d and
parameter valuation function υ.

We assume that (cb, db, υb) ∈ requestb(t, P, σ). Then

γp(b) :=

{
(cb, 1) if db > 0

(cb, 0) otherwise,

Note that the sub-symbolic information in the result of the
request is discarded in the interpretation function of the
abstract semantics.

• These definitions trivially ensure the functional character
of the additional information (i.e. υ only maps at most one
element to an element in the domain) as required by its
definition: υ is the empty function.

• The function apply from definition 9 that adds additional
changes to the state when a rule is applied is defined as the
identity function, i.e. no changes to the state are introduced
by the rule application itself but only by its actions.

Rule Application Delay The delay of a rule application is set to
δ := 0, since the abstract semantics does not care about timings.

No Rule Transition In the no rule transition, there are three param-
eters to be defined by the actual ACT-R instantiation: The side
condition C, the state update function update and the time ad-
justment function θ. We define them for a state σ := 〈γ; ∅; t〉V
as follows:
• σ ∈ C if and only if there is a b∗ ∈ B such that γ(b∗) =

(c, d) with d > 0, i.e. there is a buffer with a chunk that is
not visible to the system. Those are the cases where there is
a pending request. This means that the no rule transition is
possible as soon as there is at least one pending request. We
call the buffer of one such request b∗.

• [update(σ)] (b∗) := (c, 0) if γ(b∗) = (c, d) and d > 0
for one b∗ ∈ B. This means that one pending request is
chosen to be applied (the one appearing in C). Since this is
a rule scheme and b∗ can be chosen arbitrarily, the transition
is possible for all assignments of b∗. This coincides with
the original definition of our abstract semantics where one
request is chosen from the set of pending requests.

• The function θ that determines how the time is adjusted after
a chunk has been made visible is defined as θ(σ) := t, i.e.
the time is not adjusted.

We now extend our running example by a derivation in the
abstract semantics:

Example 6 (abstract semantics). We begin with the state σ0 from
example 4. Then, the following derivations are possible. Note that
we assume that variable bindings in V are directly applied to the
state for the sake of readability.

σ0 7→no 〈γ1; ∅; 0〉V

7→inc 〈γ2; ∅; 0〉V =: σ2

where

• γ1(retrieval) = (b, 0) (and γ1(goal) = γ0(goal) as in σ0),
• γ2(retrieval) = (c, 1) and
• γ2(goal) = ((g, valg2 , 0) where valg2(current) = 2

In σ0 no rule is applicable, but there is a pending request whose
result is not visible for the production system. Hence, we can
apply the no rule transition which makes the chunk b visible.
Then the rule inc from example 1 is applicable. If we assume
that requestretrieval(succ, {(number , 2)}, σ) = (creq , 1, ∅) for all
states σ where creq = (succ, {(number , 2), (successor , 3)}), i.e.
a chunk of type succ with the number 2 in the number slot and
3 in the successor slot, we reach the state σ2 that is illustrated
in figure 5. Note that in this state again the no rule transition is
possible.

retrieval 1 c

2 3

goal 0

number successor

current

Figure 5. Visual representation of state σ2 from example 6.

5. Refined Semantics as Instance
The abstract semantics does not use any sub-symbolic information
or timings and is highly non-deterministic in the choice of rules and
application of requests. It can be used for analysis, but to describe
actual ACT-R implementations, we define a refined semantics in
section 5.1. It coincides with our CHR implementation, where
e.g. specific conflict resolution mechanisms can be plugged to the
interfaces of the abstract system [15]. This is expressed by the
abstract sub-symbolic functions that are parameters of the refined
semantics and can be specified by the actual instantiation. In the
reference implementation of ACT-R (and other implementations)
the exchangeable conflict resolution mechanism is replaced by one
fixed method. We have described some of the common mechanisms
in [15]. They can be easily adopted in our refined semantics.

In section 5.2 we show that every derivation in the refined
semantics is a valid derivation in the abstract semantics. This makes
the latter suitable for analysis of ACT-R models without covering
all the details of the refined semantics. Since the refined semantics
describes typical ACT-R implementations, this is an important result.

5.1 Definition of the Semantics
We define the refined semantics as an instance of the very abstract
semantics to make it easier comparable to the abstract semantics.



The architectural parameters from the definition in section 3 are
defined as follows:

States There are many possibilities for parameters that can be stored
by modules in the state. In our basic version of the refined
semantics, we define sub-symbolic information for the typical
ACT-R instantiation with a declarative module. Hence, the set
of allowed parameter valuations Υref contains the symbols ta,ic
where c ∈ ∆ is a chunk and i ∈ N is an integer. Additionally,
it contains the symbols tu,ir where r ∈ Σ is a rule and i ∈ N is
an integer. The value ta,ic is a time where chunk c has been used,
i.e. retrieved. This value is needed to find the activation of the
chunk. Analogously, tu,ir is an application time of rule r needed
to calculate the utility.

Selection Function We define the refined rule selection by using
the selection function from the abstract semantics (see sec-
tion 4.1): Sref (σ) := conf res(Sabs(σ), σ). Usually, the con-
flict resolution function chooses at most one rule by a conflict
resolution mechanism that is defined by the function conf res .

Effects Requests can be defined for many different modules. Hence,
the sub-symbolic information varies (hidden in the function
requestb defined by each module). We give the definition for
the retrieval buffer. Hence, the interpretation function Iref for
actions is defined as follows:
• Iref (α, σ) = Iabs(α, σ) if α is a term with functor =, i.e. a

modification. This means that we simply use the definition
from the abstract semantics since the sub-symbolic layer is
not affected by a modification.

• Iref (+(b, t, P ), σ) = {(γp, υ)} for requests
if

sel reqb(requestb(t, P, σ), σ) = (cb, db, υ) where

sel reqb : 2∆×R+
0 ×Sva → ∆×R+

0 is a function defined
by the architecture.

Then

γp(b) := (cb, db) and

υ′(ta,icb ) := t for a fresh integer i ∈ N if b = retrieval .
Other modules can define their values analogously.

The request is calculated by the same procedure as in the ab-
stract semantics (by function requestb). However, one indi-
vidual result is selected and applied after a delay db specified
by the requested buffer. During that delay time, the buffer
appears to be empty for the production rule system. The
selection function is defined by the requested module. Addi-
tionally, sub-symbolic information is adjusted. For instance,
if the retrieval buffer is requested, the sub-symbolic informa-
tion is adjusted: A new retrieval time for the requested chunk
is added. This information is needed to calculate its activa-
tion. Note that no sub-symbolic information is overwritten,
since a new integer i is introduced to mark the parameter.
Additionally, υ′ is a (partial) function since it only is defined
for the retrieval buffer. Hence, the definition of additional
information as a function is not harmed.

• For a rule r ∈ Σ, the function apply from definition 9 is
defined as follows:

applyr(γpart, υ) := (γpart, υ∪{(tu,ir , t))} for an integer i.

This means that with the rule application, the application
time of rule r is memorized. This information is needed to
calculate rule utilities.

Rule Application Delay The delay of a rule application is set to
δ := 0.5 seconds as defined by the ACT-R reference manual [9].

No Rule Transition For a state σ := 〈γ; υ; t〉V we define the
parameters of the no rule transition as follows:
• We first define d∗ := min{d | d > 0, b ∈ B, γ(b) =

(c, d)}.
• Then the condition C is defined as: σ ∈ C if and only if
Sref (σ) = ∅ and d∗ exists, i.e. a pending request is only
applied explicitly if no rule can be applied and execution
is stuck. Otherwise, if there are applicable rules, then the
requests will be applied implicitly by the progress of time.
Additionally, a minimal delay d∗ > 0 must exist, i.e. there
is invisible information in the cognitive state.

• For all buffers b ∈ B the update function is defined as
[update(σ)] (b) := (c, d− d∗) if γ(b) = (c, d).

• θ(σ) := t + d∗, i.e. the current time is forwarded by the
minimum delay in the current state.

5.2 Soundness of the Refined Semantics
In this section, we show that each derivation of the refined semantics
is also a derivation in the abstract semantics (if only the cognitive
state is regarded). This result is important to allow for using the
abstract semantics to reason about actual models in the refined
semantics.

Therefore, we define a state transfer function that maps each
refined state an abstract state:

Definition 12 (state transfer function). The function trans :
Sref → Sabs that transfers refined to abstract states is defined
as trans(〈γ; υ; t〉V) = 〈γ′; ∅; 0〉V where γ′(b) = (cb, 1) if and
only if γ(b) = (cb, d) and d > 0 and otherwise γ′(b) = γ(b). The
function can also be applied on partial state descriptions, e.g. tuples
of a cognitive state and additional information.

This definition drops the sub-symbolic information and the timing
when transforming the state. Additionally, chunks in cognitive states
are divided into two classes – one where the chunk is visible to the
system (delay is zero), and one where it is not (otherwise). Intuitively
this is reasonable because with the lack of a notion of time, the delay
only affects the visibility. Note that the transfer function is not
injective, since each of the abstract states can have been transferred
from multiple refined states. Hence, it has no inverse function which
is not necessary to show soundness.

First, we show that rules are applicable in both transition systems:

Lemma 1 (applicability). For all refined states σ and rules r the
following holds: If r is applicable in σ, then it is also applicable in
trans(σ).

Proof. The rule application transition from definition 10 has the
condition that there is a tuple (r,V∗) ∈ S(σ). For the refined
semantics, this selection function S is defined as Sref (σ) =
conf res(Sabs(σ), σ) where conf res is the conflict resolution
function that selects a sub-set of rules from a given set of rules (by
using information from a given state). The set of rules the conflict
resolution function can choose from is defined by Sabs , the selection
function of the abstract semantics.

After having shown that applicable rules in the refined semantics
are also applicable in the abstract semantics, we show that the effects
of the rules lead to the same cognitive state:

Lemma 2 (effects of rules). The interpretation functions of the
abstract (Iabs ) and the refined semantics (Iref ) are equivalent w.r.t.
the transformation function trans . This means that if Iref (r) =
{(γref , υref )} for a request r then there is some (γabs , ∅) ∈ Iabs(r)
such that trans(γref , υref ) = (γabs , ∅).



Proof. For modifications the proposition holds trivially, since
Iref (α, σ) = Iabs(α, σ) for all terms α with functor =.

The definitions for requests compare as follows: Let the interpre-
tation of a request in the refined semantics be Iref (+(b, t, P ), σ) =
{(γref , υref )} where the cognitive state and sub-symbolic informa-
tion are defined as

• γref = (cref , dref ) where
• sel req(requestb(t, P, σ)) = (cref , dref , υref ).

Since sel req(requestb(t, P, σ)) ⊆ requestb(t, P, σ), there is an
element (γabs , ∅) ∈ Iabs(+(b, t, P ), σ) where γabs = (cabs , dabs)
with cref = cabs . The delay dabs = 0 if and only if dref =
0, otherwise dabs = 1. This is the same definition as in the
transition function. The sub-symbolic information of the abstract
state is always ∅, in the transfer function and the definition of
the interpretation of a request itself. Hence, the effects of a rule
application are equivalent.

Lemma 3 (soundness of rule applications). For all refined states σ
and rules r the following holds: If σ 7→r

ref σ
′ then trans(σ) 7→r∗

abs

trans(σ′)

Proof. According to lemma 2, the effects of rules are sound. It
remains to show that the composition of the resulting state is sound
w.r.t. the transfer function. The only difference in the both semantics
is the parameter δ: In the abstract semantics it is zero, in the refined
semantics it can be greater that zero. For the effects of rules, lemma 2
shows that the delay does not matter for the effects of the rules, since
the transfer function reduces it for the requested buffers.

For the remaining buffers b, the very abstract semantics defines
that γb = (c, d 	 δ). This means, that no new information other
than the one in a modified or requested state can become visible
in the abstract semantics. In contrast to this, the refined semantics
can make other information visible. Let σref be the state in the
refined semantics after the application of the rule r and V the set
of buffers that become visible in the refined but not in the abstract
semantics. Then for every buffer b ∈ V the no rule transition can
be applied in the abstract semantics (since the only condition is that
there is invisible information). This information is then visible and
leads to an equivalent state w.r.t. the transfer function, i.e. that the
resulting state σno after applying all necessary no rule transitions is
equivalent to trans(σref ).

Note that a one to one correspondence of transitions in the
abstract and refined semantics is not possible, since it can be
necessary to use the no rule transition in the abstract semantics to
achieve the same result of a rule application in the refined semantics.
For soundness, this is allowed.

We have shown that the apply transition is sound. We continue
with the same result for the no rule transition:

Lemma 4 (soundness of no rule transition). For all refined states
σ, σ′ ∈ Sref : If σ 7→no

ref σ′, then trans(σ) 7→∗noabs trans(σ′).
This means that if the no rule transition is possible in the refined
semantics for σ with the resulting state σ′, it is also possible for
trans(σ) with result trans(σ′) in the abstract semantics. The result
is allowed to be reached after more than one step.

Proof. We first show soundness of applicability of the no rule
transition: The no rule transition is applicable in a state σ :=
〈γ; υ; t〉V in the refined semantics if and only ifCref (σ) is true. This
is the case if no rule is applicable (i.e. Sref (σ) = ∅). Furthermore, a
minimal delay d∗ := min{d | d > 0, b ∈ B, γ(b) = (c, d)} must
exist. For the abstract semantics,Cabs is true, if and only if there is at

least one delay d > 0 in the cognitive state (c.f. section 4.1). This is
implied by Cref . Hence, we have shown soundness of applicability.

It remains to show that the effects of the no rule transition
are equivalent in both semantics. Hence, we compare the update
functions of both semantics. Let d∗ be the minimal delay in σ
as defined before. Then,

[
updateref (σ)

]
(b) = (c, d − d∗) if

γ(b) = (c, d) for all buffers. In the abstract semantics, one buffer
b∗ is chosen in each transition whose content is made visible:
[updateabs(σ)] (b∗) := (c, 0) for one b∗, if γ(b∗) = (c, d) and
d > 0.

In the refined semantics, more than one piece of information
can be made visible at once by forwarding the time by the minimal
delay, since the minimum is not necessarily unique. Let B := {b ∈
B | γ(b) = (c, d∗)} be the set of buffers with the minimal delay.
By applying no rule to trans(σ) with one buffer b1 ∈ Bσ , the no
rule transition stays applicable for another b ∈ B − {b1} in the
subsequent state until we reach a state where B = ∅. Then we have
reached a cognitive state σabs = transσ′, since we have made all
chunks visible that have the minimal delay. This means that there
is a sequence of no rule applications in the abstract semantics that
leads to the desired state trans(σ′).

Note that in σ′ time has been adjusted by θ(σ). In the abstract
semantics time is not updated and hence remains zero. We get the
same result by applying trans to σ.

Again, a one to one correspondence of state transitions is not
possible for the no rule transition, because only one buffer is
made visible in the abstract semantics whereas multiple buffers
can become visible by forwarding time in the refined semantics. For
soundness, it suffices to show that every final state of the refined
semantics can also be reached in the abstract semantics. This is the
proposition of the following theorem:

Theorem 1 (soundness). For all states σ, σ′ ∈ Sref : If σ 7→∗ref σ′,
then trans(σ) 7→∗abs trans(σ′).

Proof. The proposition follows directly from lemmas 1, 3 and 4.

6. Related Work
We want to highlight two contributions that are particularly related
to our work and influenced its results: our former definition of the
abstract semantics and the semantics by Albrecht and Westphal.
Hence, we discuss those two semantics in the following sections 6.1
and 6.2. In section 6.3 we summarize other work related to this
paper.

6.1 Former Definition of the Abstract Semantics
In the definition of the abstract semantics from [17], the sets of
buffers B and types of actions A are defined similarly to section 2.
Chunk types have been omitted for the sake of brevity, but rein-
troduced in section 4 of this paper. The definition of chunk stores
differs in two points:

• Chunks have unique names in [17] and chunk stores are therefore
sets instead of multi-sets. However, the concepts are interchange-
able and not crucial to the operational semantics.

• In [17], chunks can be modified in place. The definition in this
paper (that has been derived from [4]) is more accurate to the
reference implementation [9] and therefore has been introduced
to our abstract semantics in section 4.

Otherwise, the relations Isa and HasSlot from [14] and [17] co-
incides with the definition of a chunk as a tuple with type and a
slot-value function val .

The states in [17] do not define a notion of delay in the buffers. In
definition of a cognitive state in the very abstract semantics, the delay



decides at which point in time the chunk in the buffer is available
to the production system. A delay d > 0 indicates that the chunk is
not yet available to the production system. This implements delays
of the processing of requests. A cognitive state roughly corresponds
to a timed version of the Holds relation from the abstract semantics
in [17]. There the delays have been modeled by non-deterministic
transitions that can be applied between rule applications (since
there is no notion of time in the abstract semantics) and by explicit
clearing of requested buffers in the semantics. Both concepts can be
transferred from one to another.

The notion of interpretations of actions has been addressed in
[17] by the definition of add and delete lists for each type of actions
that is similar to the very abstract semantics. However, add and
delete lists are deterministic in [17]. The non-determinism that is
made explicit in the interpretation functions (by returning a set of
possible effects) has been reached by the definition of the interface
to requests, the requestb functions, that can be non-deterministic.
This interface has been reintroduced in the definition of the abstract
semantics in this paper, where it is part of the interpretation of a
request.

6.2 Formal Semantics According to Albrecht and Westphal
The formalization according to Albrecht and Westphal [4] has
been developed independently from our work in [14, 17]. Our very
abstract semantics is based on it. Albrecht and Westphal basically
define a general production rule system that works on sets of buffers
and chunks without specifying actual matching, actions and effects
for the sake of modularity and reusability. We briefly summarize
the differences between the Albrecht and Westphal semantics and
our very abstract semantics. For details, we refer to the original
papers. The nomenclature in this paper differs in some points from
the original paper [4] to unify it with our previous work. We omit
module queries for the sake of brevity.

The sets of buffers B and action symbols A are defined as in
section 2. For the sake of brevity, we have omitted the so-called
buffer queries in our definition of the very abstract semantics.
Queries are an additional type of test on the left-hand side of
a rule. The very abstract semantics can be easily extended by
queries. We have adopted the definition of chunk types, chunks
and cognitive states from the Albrecht and Westphal formalization,
although the set of chunks in [4] should be a multi-set as example 2
shows. However, we have reduced the definition in our very abstract
semantics by omitting the notion of a finite trace, which is a
sequence γ0, γ1, · · · ∈ Γ∗ of cognitive states. Those traces are used
to compute the effects of an action. This definition seems inaccurate
as the information of a finite trace that only logs the contents of
the buffers at each step does not suffice to calculate sub-symbolic
information. In typical definitions the calculation of production rule
utilities needs the times of all rule applications that are not part of the
trace. In other implementations and instantiations of ACT-R, there
can be more additional information that is needed for sub-symbolic
calculations. That is why we have extended the states by a parameter
valuation function that abstracts from the information needed and
leaves it to the architecture to define which information is stored.

In [4], effects of actions with action symbol α ∈ A are defined
by an interpretation function Iα : Π → 2Γpart×2∆

(we have
omitted queries as stated before). Similarly to the very abstract
semantics, it assigns to each finite trace the possible effects of
an action. Effects are a partial cognitive state that overwrites the
contents of the buffers as in the very abstract semantics and a
set C ⊆ ∆ that defines the chunks that are removed. In typical
implementations of ACT-R, the chunks in C are moved to the
declarative module which explains the need to define such a set.
We have generalized this information by the notion parameter
valuations that can be manipulated by an interpretation function.

This enables us to abstract from the specific concept of moving
chunks to declarative memory in our abstract semantics for example.
Note that in [4], the combination of interpretation functions to a
rule interpretation is only stated informally. Additionally, we have
extended the domain of an action interpretation function to actions,
i.e. terms over the actions symbols in A, and states instead of only
action symbols, since more information is needed to calculate,
like the parameters of the actions (i.e. the slot-value pairs) and
information from the state.

The production rule selection function S : Π → 2Σ maps
a set of applicable rules to each finite trace. In the very abstract
semantics we have extended the domain from traces to a whole
state since again additional information might be needed to resolve
rule conflicts. With parameter valuations, we abstract from the
information that is actually needed and leave it to the architecture
definition. Additionally, our definition of selection function adds the
notion of variable bindings that are not considered by Albrecht and
Westphal.

The operational semantics in [4] is defined as a labeled, timed
transition system with the following transition relation over time-
stamped cognitive states from Γ× R+

0 :

(γ, t)π
r,d,ω
 (γ′, t′)

for a production rule r ∈ Σ, an execution delay d ∈ R+
0 , a

set of chunks ω ⊆ ∆ and a finite trace π ∈ Π, if and only if
r ∈ S(π, γ), i.e. r is applicable in γ, the actions of r according to
the interpretation functions yield γ′ and t′ = t+ d.

Note that the set of chunks ω has been used but never defined in
the original paper [4]. We suspect that it represents an equivalent
to the chunk store from our abstract semantics, i.e. the used subset
of all possible chunks (which is how ∆ is defined according to
the paper). Although we consider it an integral part of ACT-R, the
matching of rules – and particularly binding of variables by the
matching – is completely hidden in S or even not defined. On the
one hand this simplifies exchanging the matching, on the other hand
the function S should then be defined slightly different to enable
proper handling of variable bindings and conflict resolution as we
discuss in section 3.

In the original semantics according to Albrecht and Westphal
there is no definition of what happens if there is no rule applicable,
but there are still effects of e.g. requests that can be applied. We
have treated this case by adding the no rule transition to the very
abstract semantics.

6.3 Other Work
There are approaches of implementing ACT-R in other languages,
for example a Python implementation [21] or (at least) two Java im-
plementations [18, 20]. All those approaches do not concentrate on
formalization and analysis, but only introduce new implementations.
Stewart and West state that exchanging integral parts of the ACT-R
reference implementation is difficult due to the need of an extensive
knowledge of technical details [21]. They propose an architecture
that is more concise and reduced to the fundamental concepts (that
they also identify in their paper). However, their work still lacks a
formalization of the operational semantics.

In [5], the authors summarize the work on semantics in the ACT-
R context. They also come to the conclusion that there are only new
implementations available that sometimes try to formalize parts of
the architecture, but no formal definition of ACT-R’s operational
semantics. The authors use this result as a motivation for their work
in [4].

We describe an adaptable implementation of ACT-R using
Constraint Handling Rules (CHR) in [14–16] that is based on our
formalization. Due to the declarativity of CHR, the implementation
is very close to the formalization and easy to extend. This has been



proved by exchanging the conflict resolution mechanism (that is
an integral part of typical implementations) with very low effort
[15]. Even the integration of refraction, i.e. inhibiting rules to fire
twice on the same (partial) state, has been exemplified and can be
combined with other conflict resolution strategies.

7. Conclusion
In this paper, we have defined a very abstract operational semantics
for ACT-R that extends the formalization according to Albrecht
and Westphal. It is the common base to analyze other operational
semantics since it leaves enough room for various ACT-R variants.
We then have redefined our abstract semantics as an instance of the
very abstract semantics. The abstract semantics simplifies analysis
of ACT-R models by abstracting from details like timings, latencies,
forgetting, learning and specific conflict resolution.

To show that our abstract semantics is suitable for analysis of
real-world ACT-R models, we have defined a refined operational
semantics that covers the details abstracted by the abstract semantics
using the very abstract semantics. We have shown soundness of the
refined w.r.t to the abstract semantics. This result paves the way to
an analytical framework for ACT-R models.

For the future, we want to investigate how we can use our
abstract semantics for analysis. Since we have shown a, w.r.t. to
our abstract semantics, sound and complete translation scheme
of ACT-R models to Constraint Handling Rules [17], we could
apply theoretical results from the CHR world to ACT-R models.
For instance, there is a decidable confluence test [1], a completion
algorithm that fixes confluence [2], a test for operational equivalence
[3] etc. whose application to cognitive models can be used for
validation and quality improvements. There is also an automated
confluence tester for CHR programs [19]. It has to be examined
what has to be done to reasonably apply the analytical tools of CHR
to cognitive models. For instance, confluence usually is too strict
in practice since it includes states that can never be reached by
the program or model. With the notion of observable confluence
[11], only valid states that can be reached are considered, making
confluence analysis applicable for practical use. Another interesting
property of a cognitive model is its time complexity: Since humans
are able to solve certain (subsets of) problems efficiently (even
for larger problem instances), the corresponding cognitive model
should also have a corresponding time complexity. This constrains
the model space to only models of that time complexity. CHR offers
methods to analyze the complexity of a program [12]. Those results
could be lifted to ACT-R models to analyze their time complexity.
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