
A Formal Semantics for the Cognitive
Architecture ACT-R

Daniel Gall and Thom Frühwirth

Institute of Software Engineering and Compiler Construction
University of Ulm

89069 Ulm, Germany
{daniel.gall,thom.fruehwirth}@uni-ulm.de

Abstract. The cognitive architecture ACT-R is very popular in cog-
nitive sciences. It merges well-investigated results of psychology to a
unified model of cognition. This enables researchers to implement and
execute domain-specific cognitive models. ACT-R is implemented as a
production rule system. Although its underlying psychological theory
has been investigated in many psychological experiments, ACT-R lacks a
formal definition from a mathematical-computational point of view.
In this paper, we present a formalization of ACT-R’s fundamental concepts
including an operational semantics of the core features of its production
rule system. The semantics abstracts from technical artifacts of the
implementation. Due to its abstract formulation, the semantics is eligible
for analysis. To the best of our knowledge, this operational semantics is
the first of its kind.
Furthermore, we show a formal translation of ACT-R production rules to
Constraint Handling Rules (CHR) and prove soundness and completeness
of the translation mechanism according to our operational semantics.

Keywords: computational psychology, cognitive systems, ACT-R, pro-
duction rule systems, Constraint Handling Rules, operational semantics

1 Introduction

Computational psychology is a field at the interface of psychology and computer
science. It explores human cognition by implementing detailed computational
models. The models are executable and hence capable of simulating human
behavior. This enables researchers to conduct the same experiments with humans
and a computational model to verify the behavior of the model. By this procedure,
cognitive models are gradually improved. Furthermore, due to their executability,
computational models have to be defined precisely. Hence, ambiguities which
often appear in verbal-conceptual models can be eliminated.

Cognitive Architectures support the modeling process by bundling well-
investigated research results from several disciplines of psychology to a unified
theory. Domain-specific models are built upon such cognitive architectures. Ide-
ally, cognitive architectures constrain modeling to only plausible domain-specific
models.



2 D. Gall, T. Frühwirth

Adaptive Control of Thought – Rational (ACT-R) is one of the most popular
cognitive architectures [4]. It is implemented as a production rule system. Al-
though its underlying psychological theory is well-investigated and verified in
many psychological experiments, ACT-R lacks a formal definition of its produc-
tion rule system from a mathematical-computational point of view. I.e. the main
data structures and the resulting operational semantics suggested by the psycho-
logical theory are not defined properly. This led to a reference implementation
full of assumptions and technical artifacts beyond the theory making it difficult
to overlook. Furthermore, the lack of a formal operational semantics inhibits
analysis of the models like termination or confluence analysis.

In this paper, we present a formalization of the fundamental concepts of
ACT-R leading to an operational semantics. The semantics abstracts from many
details and artifacts of the implementation. Additionally, aspects like time or exter-
nal modules are ignored to concentrate on the basic state transitions of the ACT-R
production rule system. Those abstractions lead to a short and concise definition
of the semantics making it suitable for theoretical analysis of the main aspects
of ACT-R. Nevertheless, the semantics is still closely related to the general com-
putation process of ACT-R implementations as we exemplify by a simple model.

The formalization of ACT-R relates to the reference manual of the ACT-R
production rule system [6]. However, due to the power of logic programming and
CHR, an executable CHR version of ACT-R has been developed, which is very
close to the formal description of the system. In this paper, we define the trans-
lation from ACT-R production rules to CHR rules formally. The translation is
closely related to the translation process described informally in [10], but respects
the changes necessary to correspond to the abstract semantics. Additionally, it is
the first formal description of our translation mechanism which is described for-
mally. Finally, we prove soundness and completeness of our translation according
to our abstract operational semantics.

The paper is structured as follows: Section 2, covers the preliminaries. In
section 3, we first recapitulate the formalization of the basic notions of ACT-R
and then present its abstract operational semantics. The formal translation of
ACT-R to Constraint Handling Rules is shown in section 4. Then, the translation
is proved to be sound and complete in relation to our abstract operational
semantics in section 5. We conclude in section 6.

2 Preliminaries

First, we cover some notational aspects and introduce ACT-R and CHR.

2.1 Notation

We assume some basic notions of first-order logic and logic programming like
syntactic equality or unification. Substitution is denoted by t[x/y] where all
occurrences of the variable x in the term t are replaced by the variable y. For the
sake of brevity, we treat logical conjunctions as multi-sets and vice-versa at some



A Formal Semantics for the Cognitive Architecture ACT-R 3

points. I.e. we use (multi-)set operators on logical conjunctions or multi-sets of
terms as conjunctions. We use the relational notation for some functions and for
binary relations we use infix notation.

2.2 ACT-R

First of all, we describe ACT-R informally. For a detailed introduction to ACT-R
we refer to [4], [12] or [3]. Then we introduce a subset of its syntax and describe
its operational semantics informally. The formalization is presented in section 3.

ACT-R is a production rule system which distinguishes two types of knowledge:
declarative knowledge holding static facts and procedural knowledge representing
processes which control human cognition. For example, in a model of the game
rock, paper, scissors, a declarative fact could be “The opponent played scissors”,
whereas a procedural information could be that a round is won, if we played rock
and the opponent played scissors.

Declarative knowledge is represented as chunks. Each chunk consists of a
symbolic name and labeled slots which hold symbolic values. The values can
refer to other chunk names, i.e. chunks can be connected. Hence, a network of
chunks can build complex constructs. The names of chunks are just symbols
(which are only important for the modeler) but they get a meaning through their
connections. For example, there can be chunks that represent numbers and are
named one, two, . . . In a model, such chunks could be the internal representation
of the concept of numbers 1, 2, . . . However, the names do not give them a
meaning but are just helpful for the modeler. The meaning in such a model could
come from other chunks, that link two number chunks to represent a count fact,
for example. Such a count fact has the slots first and second and e.g. connects
the chunks with name one and two in the first and second slot. This represents
the concept of an ordering between numbers. To compare the concept of chunks
with logic programming or Constraint Handling Rules, the names of chunks can
be seen as constants (since they are just symbolic values) and the connections
between chunks can relate to complex terms. Chunks are typed, i.e. the number
and names of the slots provided by a chunk are determined by a type.

As usual for production rule systems, procedural knowledge is represented
as rules of the form IF conditions THEN actions. Conditions match values of
chunks, actions modify them.

ACT-R has a modular architecture. For instance, there is a declarative module
holding the declarative knowledge or a visual module perceiving the visual field
and controlling visual attention. Each module has a set of affiliated buffers which
can hold at most one chunk at a time. For example, there is a retrieval buffer
which is associated to the declarative module and which holds the last retrieved
chunk from the declarative memory.

The procedural system consists of a procedural memory with a set of produc-
tion rules. The conditions of a production rule refer to the contents of the buffers,
i.e. they match the values of the chunk’s slots.

There are three types of actions whose arguments are encoded as chunks
as well: First of all, buffer modifications change the content of a buffer, i.e. the



4 D. Gall, T. Frühwirth

values of some of the slots of a chunk in a buffer. Secondly, the procedural module
can state requests to external modules which then change the contents of buffers
associated with them. Eventually, buffer clearings remove the chunk from a buffer.
For the sake of brevity, we only regard buffer modifications and requests in this
work. Nevertheless, our formalization and translation can be easily extended
by other actions [10]. Additionally, to keep our definitions extensible and as
general as possible, we refer to an arbitrary set of buffers instead of a concrete
instantiation of the theory with defined buffers and modules. In the example
section (section 3.4) we show a concrete instantiation of our theory.

Syntax We define the syntax of an ACT-R production rule over a set of symbols
S as follows. The set of symbols is possibly infinite and contains all the symbols
that are valid to name objects in ACT-R (e.g. chunks, slot names or values).
ACT-R does not know complex terms like in first order logic or in CHR. Such
terms can rather be constructed by chunks that link the primitive symbols to a
more complex construct. Additionally, there is a set of variable symbols V that
is disjoint from S.

Definition 1 (production rule). An ACT-R production rule r has the form
LHS ⇒ RHS ) where LHS is a set of terms of the form test(b,SVP) where the b
values are called buffers and SVP is a set of pairs (s, v) where s refers to a slot
and v refers to a value. Such a pair is called slot-value pair. Note that b and s
must be constants from S, whereas v can be a variable or constant, i.e. has the
domain S ∪V.

RHS is a set of terms of the form action(a, b,SVP), where a ∈ {mod , req}
(denoting either a modification or a request). b again refers to a buffer and SVP
is a set of slot-value pairs.

The function vars takes a set of tests or actions and returns their variables.
Note that the following must hold: vars(RHS ) ⊆ vars(LHS ), i.e. no new variables
must be introduced on the right hand side of a rule. Buffers appearing in RHS
must also appear in LHS. However, slots on RHS are not required to appear on
LHS. The buffers and slots of the RHS are assumed to be pairwise distinct and
must refer to slots which are available for the chunk in the modified buffer (i.e.
which exist for the chunk). [6].

We can ensure the condition that a modified slot must exist for a chunk by a
typing system. An implementation of such a typing system compliant with the
ACT-R reference [6] can be found in [10] and [11]. However, for this abstract
paper we assume the rules to be valid. Note that we use a representation of
production rules as sets of first-order terms which differs from the original ACT-R
syntax. This allows for the use of typical set operators in the rest of the paper.
It is easy to derive our syntactic representation from original ACT-R rules and
vice-versa.

Informal Operational Semantics A production rule as defined in definition 1
is read as follows: The LHS of the rule are conditions matching the contents of



A Formal Semantics for the Cognitive Architecture ACT-R 5

the buffers. I.e. for a condition test(b, {(s1, v1), (s2, v2)}) the buffer b is checked
for a chunk with the value v1 in its s1 slot and the value v2 in its s2 slot. If
all conditions on the LHS match, the rule can be applied, i.e. the chunks in
the buffers are modified according to the specification on the RHS. For an
action action(mod , b, {(s1, v′1)}) the value in the slot s1 of the chunk in buffer b
is overwritten by the value v′1. This type of action is called a modification. Since
the buffers and slots on the RHS are pairwise distinct, there are no conflicting
modifications.

A request of the form action(req , b, {(arg1, argv1), (arg2, argv2), . . . }) states
a request to the corresponding module of buffer b. The arguments are defined
by slot-value pairs, where the first part of the pair is the name of the argument
and the second part its value. The request returns a pair (c, {(res1, resv1), . . . })
which represents a chunk c with corresponding slot-value pairs. This chunk is
put into buffer b after the request has finished. Since arguments and result are
chunks, the domain of the argument names, values and results is S.

Running Example: Counting We investigate the first example from the
official ACT-R tutorial [1] using our semantics and translation procedure. The
model implements the cognitive task of counting by retrieving counting facts
from the declarative memory. This method models the way how little children
usually learn counting: They know that after one follows two, after two follows
three, etc.

Example 1 (production rule). In the following, we define the production rule
which counts to the next number. This rule has been derived from the ACT-R
tutorial as mentioned above:

{test(goal, {(count,Num1)}),
test(retrieval, {(first,Num1), (second,Num2)})}

⇒
{action(mod, goal, {(count,Num2)}),
action(req, retrieval, {(first,Num2)})}

The goal buffer is tested for slot count and Num1 is bound to the value in this
slot. The second test checks if there is a chunk in the retrieval buffer with Num1

in its first slot and some number Num2 in its second slot. If the conditions hold,
the goal buffer is modified such that the count slot is updated with Num2 . Then
the declarative memory is requested for a chunk which has Num2 in its first slot.

2.3 Constraint Handling Rules

We recap the syntax and semantics of Constraint Handling Rules (CHR) shortly.
For a detailed introduction to the language, we refer to [8].



6 D. Gall, T. Frühwirth

Syntax We briefly introduce a subset of the abstract CHR syntax as defined
in [8]. Constraints are first-order logic predicates of the form c(t1, . . . , tn) where
the t values are first-order terms, i.e. function terms or variables. There are two
distinct types of constraints: built-in and user-defined constraints. We constrain
the allowed built-in constraints to true, false and the syntactic equality =.

Definition 2 (CHR syntax). A CHR program P is a finite set of rules. Sim-
pagation rules have the form

r @ Hk\Hr ⇔ G | B.

r is an optional name of the rule, Hk and Hr are conjunctions of user-defined
constraints (at least one of them is non-empty) called head constraints. G is
a conjunction of built-in constraints and is called the guard. Eventually, B a
conjunction of built-in and user-defined constraints and called the body of the
rule.

Operational Semantics The operational semantics of CHR is defined as a
state transition system. Hence, we first define the notion of a CHR state and
then introduce the so-called very abstract operational semantics of CHR [8] [9].

Definition 3 (CHR state). A CHR state is a goal, i.e. either true, false, a
built-in constraint, a user-defined constraint or a conjunction of goals.

Definition 4 (head normal form). A CHR rule is in head normal form (HNF)
if each argument of a head constraint is a unique variable.

A CHR rule can be put into HNF by replacing its head arguments ti with a new
variable Vi and adding the equations Vi = ti to its guard.

The operational semantics of CHR is defined upon a constraint theory CT
which is nonempty, consistent and complete and contains at least an axiomatiza-
tion of the syntactic equality = together with the built-in constraints true and
false.

Definition 5 (CHR operational semantics). For CHR constraints Hk and
Hr, built-in constraints G and constraints of both types R the following transition
relation is defined:

(Hk ∧Hr ∧G ∧R) 7→r (Hk ∧ C ∧B ∧G ∧R)

if there is an instance with new variables x̄ of a rule r in HNF,

r @ H ′k \ H ′r ⇔ C | B.

and CT |= ∀ (G→ ∃x̄ (C ∧ (Hk = H ′k) ∧ (Hr = H ′r))).

I.e., there is a state transition using the rule r, if (a part of) the built-in constraints
G of the state imply that the guard holds and the heads the match.

For the successor state, the constraints in Hk are kept, the constraints in Hr

are removed and the body constraints are added. Additionally, the state contains
the constraints C from the guard. Since the rule is in HNF, the state contains
equality constraints from the variable bindings of the matching Hk = H ′k and
Hr = H ′r.



A Formal Semantics for the Cognitive Architecture ACT-R 7

3 Formalization of the ACT-R Production System

In this section, we formalize the core data structures of ACT-R formally. We
follow the definitions from [10].

3.1 Chunk Stores

Intuitively, a chunk store represents a network of chunks. I.e., it contains a set of
chunks. Each chunk has a set of slots. In the slots, there are symbols referring
either to a name of another chunk (denoting a connection between the two chunks)
or primitive elements (i.e. symbols which do not refer to another chunk).

Definition 6 (chunk store). A chunk-store over a set of symbols S is a tuple
(C,HasSlot), where C is a finite set of chunk identifiers. HasSlot : C×S→ S
is a partial function which receives a chunk identifier and a symbol referring to a
slot. It returns the value of a chunk’s slot. If a slot does not have a value, HasSlot
is undefined (or in relational notation, if chunk c does not have a value in its
slot s, then there is no v such that (c, s, v) ∈ HasSlot).

3.2 Buffer Systems

Buffer systems extend the definition of chunk stores by buffers. Each buffer can
hold at most one chunk from its chunk store. This is modeled by the relation
Holds in the following definition:

Definition 7 (buffer system). A buffer system with buffers B is a tuple
(C; HasSlot; Holds), where B ⊆ S is a finite set of buffer names, (C,HasSlot) is
a chunk-store and Holds : B→ C a partial function that assigns every buffer at
most one chunk that it holds. Buffers that do not appear in the Holds relation
are called empty.

3.3 The Operational Semantics of ACT-R

A main contribution of this work is the formal definition of an abstract operational
semantics of ACT-R which is suitable for analysis. The semantics abstracts
from details like timings, latencies and conflict resolution but introduces non-
determinism to cover those aspects. This has the advantage that analysis is
simplified since the details like timings are difficult to analyze and secondly to
let those details exchangeable. For instance, there are different conflict resolution
mechanisms for ACT-R which are interchangeable at least in our implementation
of ACT-R as we have shown in [10]. However, for confluence analysis for example,
the used conflict resolution mechanism does not matter since conflicts are resolved
by some method. At some points though, we do not want to introduce rule conflicts
and they are regarded as a serious error. An operational semantics making analysis
possible to detect such conflicts in advance is capable of improving and simplifying



8 D. Gall, T. Frühwirth

the modeling process which is one of the goals of a cognitive architecture like
ACT-R.

We define the operational semantics of ACT-R as a state transition system
(S,�). The state space S consists of states defined as follows:

Definition 8 (ACT-R states). S := 〈C; HasSlot; Holds;R〉V is called an ACT-
R state. Thereby, (C,HasSlot,Holds) form a buffer system of buffers B, V is a
set of variable bindings and R (the set of pending requests) is a subset of tuples
B × 2S×S, i.e. tuples of the form (b,SVP) where b ∈ B and SVP is a set of
slot-value pairs.Initial states are states where R = ∅.

Before we define the transitions �, we introduce the notion of a holding buffer
test and consequently a matching l.h.s. of a production rule in a state.

Definition 9 (buffer test). A buffer test t of the form test(b,SVP) holds in
state S := 〈C; HasSlot; Holds;R〉V , written t =̂ S, if ∃bS ∈ B, cS ∈ C such that
the variable bindings V of the state imply that bS = b, Holds(bS) = cS and
∀(s, v) ∈ SVP ∃sS , vS : (cS , sS , vS) ∈ HasSlot with sS = s and vS = v.

Definition 10 (matching). A set T of buffer tests matches a state S, written
T =̂ S, if all buffer tests in T hold in S.

We define the following functions which simplify notations in the definition of
the operational semantics. Since the behavior of a rule depends on the fact if
a certain slot is modified or requested on r.h.s. of the rule, we introduce two
functions to test this:

Definition 11 (modified and requested slots). For an ACT-R rule r the
following functions are defined as follows:

–

modifiedr(b, s) =

 true if ∃action(mod , b, SV P ) ∈ RHS(r)
∧∃v : (s, v) ∈ SV P

false otherwise

–

requestedr(b) =

{
true if ∃action(req , b, SV P ) ∈ RHS(r)
false otherwise

With the two functions from definition 11, it can be tested, if a certain buffer is
modified (in a certain slot) or requested. As a next step, we regard the actions
of a production rule. An action adds or deletes information from the state. The
following definition covers these aspects:

Definition 12 (add and delete lists). For an ACT-R rule r and a state S,
we define the following sets:

mod addS(r) ={(c, s, v) ∈ HasSlot | (b, c) ∈ Holds

∧ action(mod , b, SV P ) ∈ RHS (r) ∧ (s, v) ∈ SV P}
mod delS(r) ={(c, s, v) ∈ HasSlot | (b, c) ∈ Holds ∧modifiedr(b)}

req delS(r) ={(b, c) ∈ Holds | requestedr(b), c ∈ S}



A Formal Semantics for the Cognitive Architecture ACT-R 9

The functions mod add and mod del will overwrite modified slots by new values
in the operational semantics, whereas the function req del simply clears a buffer.
As mentioned before, this happens when a request is stated and the buffer waits
for its answer. The result of a request is module-dependent and is defined by
a buffer-specific function requestb : 2S×S → S × 2S×S which receives a finite
set of slot-value pairs as input and produces a tuple with a symbol denoting a
chunk name and a set of slot-value pairs. Hence, a request is stated by specifying
a (partial) chunk derived from the slot-value pairs in the request action of a rule.
Its result is again a chunk description (but also containing a name).

We now can define the transition relation � of our state transition system:

Definition 13 (operational semantics of ACT-R). For a production rule
r = (LHS ⇒ RHS ) the transition �r is defined as follows.

rule application: If there is a fresh variant r′ := r[x̄/ȳ] of rule r with variables
x̄ substituted by fresh variables ȳ and ∀(V → ∃ȳ(LHS=̂S)) then

S := 〈C; HasSlot; Holds;R〉V �r 〈C; HasSlot′; Holds′;R′〉V∪(LHS(r′)=̂S)

where
– Holds′ := Holds− req delS(r′)
– HasSlot′ := HasSlot−mod delS(r′) ∪mod addS(r′)
– R′ = R ∪ {(b, SV P ) | action(req, b, SV P ) ∈ RHS(r′)}

We write S �r S
′ if the rule application transition is used by application of

rule r.
request If the result of the request requestb(SVP in) = (c,SVP) then
〈C; HasSlot; Holds;R ∪ (b,SVP in)〉V
�r 〈C ∪ {c}; HasSlot ∪

⋃
(s,v)∈SVP (c, s, v); Holds ∪ {(b, c)};R〉V .

We write S �request S
′ if the request transition is used.

Informally spoken: If the buffer tests on the l.h.s. match a state, the actions
are applied. This means that chunks are modified by replacing parts of the
HasSlot relation or chunks are requested by extending R. If a request occurs as
action of a rule, the requested buffer is cleared (i.e. the Holds relation is adapted)
and a pending request is added to R memorizing the requested buffer and the
arguments of the request in form of slot-value pairs. The variable bindings of
the matching are added to the state, i.e. that the fresh variables from the rules
are bound to the values from the state. The set of variable binding contains the
equality predicates from the matching.

The request transition is possible as soon as a request has been stated, i.e. the
last argument of the state is not empty. Then the arguments are passed to the
corresponding requestb function and the output chunk is put into the requested
buffer.

Note that after a request has been stated the rule application transition
might be used since other rules (testing other buffers) might be applicable. This
non-deterministic formulation simulates the background execution of requests in
the ACT-R reference implementation where a request can take some time until
its results are present. During this time, other rules might fire.



10 D. Gall, T. Frühwirth

3.4 Running Example: Operational Semantics of ACT-R

We exemplify the operational semantics of ACT-R by continuing with our running
example – the counting model (section 2.2). The actual instantiation of ACT-R is
kept open in the formal semantics (section 3.3): For instance, the semantics talks
about an arbitrary set of buffers and corresponding request handling functions.
In the following section, we describe the actual instantiation of ACT-R used in
our running example. It is the default instantiation of ACT-R models which only
use the declarative memory and the goal buffer without interaction with the
environment.

ACT-R instantiation For our cognitive model, we need two buffers:

– the goal buffer taking track of the current goal and serving as memory for
intermediate steps, and

– the retrieval buffer giving access to the declarative memory which holds
all declarative knowledge of our model, i.e. all known numbers and number
sequences.

This means, that the set of buffers is defined as follows: B = {goal , retrieval}.
In ACT-R, declarative memory can be seen as an (independent) chunk store

DM = (CDM ,HasSlotDM ). In the following example, we show the initial content
of the declarative memory for our counting model:

Example 2 (ontent of declarative memory).

CDM = {a, b, c, d, . . . }
HasSlotDM = {(a, first, 1), (a, second, 2),

(b, first, 2), (b, second, 3),

. . . }

A request to the retrieval buffer (and hence to the declarative memory) is defined
as follows:

requestretrieval(SVP) = (c,SVPout) if c ∈ CDM

∀(s, v) ∈ SVP : ∃(c, s′, v′) ∈ HasSlotDM

such that s′ = s and v′ = v.

SVPout := {(c′, s′, v′) ∈ HasSlotDM |c′ = c}

This means that a chunk from declarative memory is returned which has all slots
and values (matches all conditions) in SVP .

Example Derivation For our counting model, we use the previously defined
ACT-R instantiation with a goal and a retrieval buffer. As described before,
requests to the declarative memory return a matching chunk based on the
arguments given in the request. The next step to an example derivation of the
counting model is to define an initial state.



A Formal Semantics for the Cognitive Architecture ACT-R 11

Example 3 (initial state). The initial state is S1 := 〈C,HasSlot,Holds, ∅〉∅ with
the following values:

C = {a, goalch}
HasSlot = {(a,first , 1), (a, second , 2),

(goalch, count , 1)}
Holds = {(goal , goalch), (retrieval , a)}

This state has two chunks in its store: The chunk a which encodes the fact that
2 is successor of 1 and a goalch which has one slot count which is set to 1. This
denotes that the current subgoal is to count from 1 to the next number.

We start the derivation from our initial state S1. For better readability, we
apply variable bindings directly in the state representation:

Example 4 (derivation).

〈{a, goalch}, {(a,first , 1), (a, second , 2), (goalch, count , 1)},
{(goal , goalch), (retrieval , a)}, ∅〉

�count {a, goalch}, {(a,first , 1), (a, second , 2), (goalch, count , 2)},
{(goal , goalch))}, {(retrieval , {(first, 2)})}〉

�request {a, b, goalch},
{(a,first , 1), (a, second , 2), (b,first , 2), (b, second , 3), (goalch, count , 2)},
{(goal , goalch))}, ∅}〉

. . .

It can be seen that as a first derivation step only the application of rule count is
possible. After the application, only a request derivation step is possible, since
the retrieval buffer is empty and hence the condition of rule count does not hold.

4 Translation of ACT-R rules to CHR

In this section, we define a translation function chr(·) which translates ACT-
R production rules and states to corresponding CHR rules and states. We
show later on that the transition is sound and complete w.r.t. the abstract
operational semantics of ACT-R. This enables the use of CHR analysis tools like
the confluence test to analyze ACT-R models. The translation procedure is very
close to the technical implementation given in [10]. Nevertheless, it is the first
formal description of the translation process.

Definition 14 (translation of production rules). An ACT-R production
rule r can be translated to a CHR rule Hk\Hr ⇔ G|B as follows. The translation
is denoted as chr(r).

We introduce a set Θ which takes track of buffer-chunk mappings. We define
Hk, Hr, B and Θ as follows:



12 D. Gall, T. Frühwirth

– For each test(b,SVP) ∈ LHS (r) introduce a fresh variable c and set (b, c) ∈ Θ.
There are two cases:
case 1: If requestedr(b), then constraint buffer(b, c) ∈ Hr.
case 2: If ¬requestedr(b), then constraint buffer(b, c) ∈ Hk.
For each (s, v) ∈ SVP:
case 1: If modifiedr(b, s), then constraint chunk has slot(c, s, v) ∈ Hr.
case 2: If ¬modifiedr(b, s), then constraint chunk has slot(c, s, v) ∈ Hk.

– For each action(a, b,SVP) ∈ RHS(r):
case 1: If a = mod, then for each (s, v) ∈ SVP there is a constraint

chunk has slot(c, s, v) ∈ B where (b, c) ∈ Θ. Additionally, if there is
no test(b,SVP ′) ∈ LHS(r) with (s, v) ∈ SVP ′, then introduce fresh
variables c and v′ and set chunk has slot(c, s, v′) ∈ Hr and (b, c) ∈ Θ.

case 2: If a = req, then constraint request(b,SVP) ∈ B

We assume a generic rule request(b,SVP)⇔ . . . in the program which implements
the request handling function requestb for every buffer b. The generation of such
rules is given in definition 16.

Note that the removed heads Hr are constructed by regarding the actions of
the rule. If slots are modified that are not tested on the left hand side as
mentioned in definition 1, constraints with fresh, singleton variables as values are
introduced. Those and are not involved in the matching process of ACT-R rules
(see definition 13). Nevertheless, the corresponding constraints must be removed
from the store whis is why they appear in Hr. When writing an ACT-R rule
it must be ensured that only slots are modified which are part of the modified
chunk as required by definition 1. In the CHR translation, such rules would never
be able to fire, since the respective constraint appearing in Hk can never be in
the store.

Informally, Hk contains all buffer and chunk constraints as well as all
chunk has slot constraints of the slots which are not modified on the r.h.s. In
contrast, Hr contains all chunk has slot constraints of the slots which appear on
the r.h.s., i.e. which are modified.

We now have defined how our subset of ACT-R production rules can be
translated to CHR. In the following definition, we present the translation of
ACT-R states to CHR states.

Definition 15 (translation of states). An ACT-R state

S := 〈C; HasSlot; Holds〉V

can be translated to the corresponding CHR state (denoted by chr(S)):∧
(b,c)∈Holds buffer(b, c) ∧∧

(c,s,v)∈HasSlot chunk has slot(c, s, v) ∧∧
(b,SV P )∈R request(b, SV P ) ∧ V



A Formal Semantics for the Cognitive Architecture ACT-R 13

The Holds and the HasSlot relations are translated to buffer and chunk has slot
constraints respectively. Pending requests appear as request constraints in the
CHR state. The variable bindings V are represented by built-in equality con-
straints. The next definition shows how request functions are represented in the
CHR program.

Definition 16 (request functions). A request function requestb can be trans-
lated to a CHR rule as follows:

request(b,SVP in)⇔
(c,SVPout) = requestb(SVP in) ∧
buffer(b, c) ∧
∀(s, v) ∈ SVPout : chunk has slot(c, s, v)

To continue our running example of the counting model, we show the transla-
tion of the production rule in example 1 to CHR:

Example 5 (translation of rules). The rule count can be translated to the follow-
ing CHR rule:

buffer(goal , C1) ∧
chunk has slot(C2,first ,Num1 ) ∧
chunk has slot(C2, second ,Num2 ) \
chunk has slot(C1, count ,Num1 ) ∧
buffer(retrieval , C2)

⇒
chunk has slot(C1, count ,Num2 ) ∧
request(retrieval , {(first ,Num2 )})

It can be seen that two new variables are introduced: C1 which represents the
chunk in the goal buffer and C2 which represents the chunk in the retrieval
buffer. The derivation of the program is equivalent to the ACT-R derivation in
section 3.4.

To analyze the program for confluence, the notion of observable confluence [7]
is needed, since the definition of confluence is too strict: Intuitively, the program
is (observably) confluent since there are no overlaps between the rule and the
implicit request rule. However, there seems to be an overlap of the rule with itself.
This overlap does not play a role, since both buffer and chunk has slot represent
relations with functional dependency. Hence there is only one possibility to assign
values to the variables and finding matching constraints if we only consider CHR
representations of valid ACT-R states. However, the confluence test detects those
states as non-joinable critical pairs, although they represent states that are not
allowed in ACT-R. Hence, those states should not be considered in the confluence
analysis, since they can never appear in a valid derivation. To formalize this
intuitive observation, the invariants of the ACT-R formalization (like functional



14 D. Gall, T. Frühwirth

dependency of some of the relations) have to be formulated mathematically to
allow for observable confluence analysis.

It can be seen that requests potentially produce non-determinism, since either
another rule might fire or a request could be performed. Usually, in ACT-R
programs, the goal buffer keeps track of the current state of the program and
encodes if a request should be awaited or if another rule can fire. However, this
leads to a more imperative thinking in the conditions of the rules, since the
application sequence of rules is defined in advance.

5 Soundness and Completeness

In this section, we prove soundness and completeness of our translation scheme
from definition 14 and definition 15. I.e., we show that each transition of an ACT-
R model in a certain state is also possible in the corresponding CHR program
with the corresponding CHR state leading to the same results and vice versa.
This is illustrated in figure 1. At first, we show that applicability is preserved by
the translation and then extend this property to the soundness and completeness
theorem 1.

S S′

chr(S) chr(S′)

chr(·) chr(·)

Fig. 1. The proposition of theorem 1. We show that applicability and actions are
preserved by our translation.

Lemma 1 (applicability). If the production rule r is applicable in ACT-R
state S, then the corresponding CHR rule chr(r) is applicable in state chr(S)
and vice-versa.

Proof. “⇒”:
Let S := 〈C; HasSlot; Holds;R〉V . Since r is applicable in S, the following

holds:

∀ (V → ∃x̄ (LHS (r) =̂ s))

This implies that for every test(b, SV P ) ∈ LHS (r) ∃bS ∈ B, cS ∈ C : b =
bS and ∀(s, v) ∈ SVP ∃sS , vS : (cS , sS , vS) ∈ HasSlot with sS = s and vS = v
according to definitions 9 and 10.

By definition 15, the state chr(S) has the following constraints: For each
(bS , cS) ∈ Holds there is a constraint buffer(bS , cS) ∈ chr(S) and for every
(cS , sS , vS) ∈ HasSlot there is a constraint chunk has slot(cS , sS , vS) ∈ chr(S).
Additionally, V ∈ chr(S).



A Formal Semantics for the Cognitive Architecture ACT-R 15

This means that the following conditions hold. We refer to them by (?):

∀test(b, SV P ) ∈ LHS (r) ∃buffer(bS , cS) ∈ chr(S) with bS = b and cS = c

and

∀(s, v) ∈ SVP ∃chunk has slot(cS , sS , vS) ∈ chr(S) with sS = s and vS = v

Let chr(r) = Hk\Hr ⇔ B with H := Hk ∪Hr be the translated CHR rule.
For every test(b, SV P ) there is a constraint buffer(b, c) ∈ H with a fresh variable
c and for every (s, v) ∈ SVP there is a constraint chunk has slot(c, s, v) ∈ H.
Additionally, there are constraints chunk has slot(c, s, v∗) ∈ H with a fresh
variable v∗ for slots which are modified on r.h.s but which do not appear on l.h.s.
chr(r) is applicable in chr(S), if ∃(G → ȳ(H = H ′)) where H ′ are constraints
in the state. Due to (?), this condition holds if we set G = V plus the bindings
of the fresh v∗ variables. Since for every test in the original ACT-R rule there
are corresponding constraints in the state chr(S) and in the rule chr(r) the
condition holds for all chunk has slot constraints who have a correspondent test
in LHS (r). The other constraints have a matching partner in chr(S) since a
well-formed ACT-R rule only modifies slots which exist for the chunk according
to definition 1.

“⇐”:
chr(r) of form Hk\Hr ⇔ B with H := Hk ∪ Hr is applicable in state

chr(S) = 〈H ′ ∧ G ∧ R〉. I.e. that ∀(G → (∃x̄(H = H ′)). Since chr(r) is a
translated ACT-R rule, it only consists of buffer and chunk has slot constraints.
Since H = H ′ there are matching constraints H ′ ∈ chr(S), i.e. there is a
matching M of the constraints in the state with the constraints in the rule. Set
unifier(LHS (r), S) = M and it follows that r is applicable in S.

Lemma 2 (request transitions). For two ACT-R states S and S′ and a CHR
state S′′, the two transitions S �request S

′ and chr(S) 7→request S
′′.

Proof. “⇒”:
S �request S

′, i.e. R 6= ∅ and there is some (b∗, SV P in) ∈ R. This means that
in chr(S) there is a constraint request(b∗, SV P in) due to definition 15.

There is a rule with head request(SVP) for every function requestb(b,SVP) =
(c,SVPout ) which implements this function (i.e. which adds chunk has slot(c, s, v)
constraints according to (SV P )out and a buffer(b, c) constraint for a new chunk
c). The request(b∗, SV P in) constraint is removed from the store like (b∗, SV P in)
is removed from R according to definition 13.

Hence, if the request transition is possible in S, the corresponding request
rule is possible in chr(S) and the resulting states chr(S′) and S′′ are equivalent.

“⇐”:
The argument is analogous to the other direction.

Lemma 3 (soundness and completeness of rule application). For an
ACT-R production rule r and two ACT-R states S and S′ the transitions S �r S

′

and chr(S) 7→r S
′′ correspond to each other, i.e. chr(S′) = S′′.



16 D. Gall, T. Frühwirth

Proof. Let chr(r) = r@H ′k\H ′r ⇔ G|B.
“⇒”: According to lemma 1, r is applicable in S iff chr(r) is applicable

in chr(S). Let chr(S) 7→r S′′ = (Hk ∧ C ∧ Hk = H ′k ∧ Hr = H ′r ∧ B ∧ G)
(definition 5). It remains to show that the resulting state S′′ = chr(S′). Let S =
〈C; HasSlot,Holds,R〉V and S′ = 〈C; HasSlot′,Holds′,R′〉V′

be ACT-R states.
Then

Holds′ = Holds− req dels(r)

HasSlot′ = HasSlot−mod delS(r) ∪mod addS(r)

R′ = R ∪ {(b, SV P )|action(req, b, SV P ) ∈ RHS(r′)}

The corresponding CHR state chr(S′) contains the following constraints
according to definition 15:∧

(b,c)∈Holds′ buffer(b, c) ∧
∧

(c,s,v)∈HasSlot′ chunk has slot(c, s, v) ∧ V ′

Since Holds′, HasSlot′ and R′ are derived from Holds, HasSlot and R, we
have to check whether the corresponding buffer and chunk has slot constraints
are removed and added to chr(S) by chr(r). For the CHR rule, the body
B contains for every action(mod , b,SVP) ∈ RHS (r), there is a constraint
chunk has slot(c, s, v) ∈ B according to definition 14 which is therefore also
added to s′′ according to definition 5. This corresponds to mod adds(r). Accord-
ing to definition 14, a constraint chunk has slot(c, s, v) appears in Hr if it is
modified on RHS (r) (independent of appearing in a test or not, see case 1.a). This
corresponds to mod delS(r). A constraint buffer(b, c) is in Hr, if requestedr(b)
is true. This corresponds to req dels(r). For each action(req , b,SVP) ∈ RHS (r)
there appears a constraint request(b, SV P ) ∈ B of the rule. This corresponds to
the adaptation of R in S.

Hence, the state S′′ is equivalent to chr(S′).
“⇐”: Let chr(S) 7→r chr(S′) and S �r S

′′. According to lemma 1, chr(r) is
applicable in chr(S) iff r is applicable in S. It remains to show that the resulting
state S′′ = chr(S′).

The removed constraints Hr in the CHR rule chr(r) are either

(a) chunk has slot or
(b) buffer constraints.

In case (a) the constraints correspond to a modification action in RHS (r).
I.e., modifiedr(b, s) is true for a constraint chunk has slot(c, s, v) ∈ chr(S ) with
buffer(b, c) ∈ chr(S) iff it appears in Hr. This corresponds to mod dels(r). In
case (b), requested(b) is true for a constraint buffer(b, c) if it appears in Hr

according to definition 14. This corresponds to req dels(r).
The added chunk has slot constraints of B in the CHR rule correspond

directly to mod addS(r) by definitions 14 and 12. The request constraints in B
correspond directly to the adaptation in R′.

Hence, S′′ = chr(S′).



A Formal Semantics for the Cognitive Architecture ACT-R 17

Theorem 1 (soundness and completeness). Every ACT-R transition s�
s′ corresponds to a CHR transition chr(S) 7→r chr(S′) and vice versa. I.e., every
transition (not only rule applications) possible in S is also possible in chr(S) and
leads to equivalent states.

Proof. By lemmas 3 and 2 the theorem follows directly.

6 Conclusion

In this paper, we have presented a formalization of the core of the production
rule system ACT-R including an abstract operational semantics. Furthermore,
we have shown a formal translation of ACT-R production rules to CHR. The
translation is sound and complete.

The formalization of ACT-R is based on prior work. In [10] we have presented
an informal description of the translation of ACT-R production rules to CHR rules.
This informal translation has been implemented in a compiler transforming ACT-
R models to CHR programs. Our implementation is modular and exchangeable
in its core features as we have shown in [11] by exchanging the central part of the
conflict resolution with four different methods. Although the implementation is
very practical and covers a lot of practical details of the ACT-R implementations,
it is not directly usable for analysis.

Our formalization of the translation process in this paper is very near to the
practical implementation as it uses the same translation schemes for chunk stores,
buffer systems and consequently states. Even the rules are a simplified version of
our practical translation from [11]. However, it abstracts from practical aspects
like time or conflict resolution. This is justifiable, since for confluence analysis,
this kind of non-determinism in the operational semantics is useful. Additionally,
as shown in our running example, the general computation process is reproduced
closely by our semantics. Furthermore, due to the soundness and completeness of
our translation, confluence analysis tools from CHR can be used on our models.

Hence, the contributions of this paper are

– an abstract operational semantics of ACT-R which is – to the best of our
knowledge – the first formal representation of ACT-R’s behavior,

– a formal description of our translation process (since in [10] a more technical
description has been chosen),

– a soundness and completeness result of the abstract translation.

For the future, we want to extend our semantics such that it covers the more
technical aspects of the ACT-R production rule system like time and conflict
resolution. We then want to investigate how this refined semantics is related to
our abstract operational semantics from this paper.

To overcome non-determinism, ACT-R uses a conflict resolution strategy.
In [11] we have analyzed several conflict resolution strategies. A confluence test
might be useful to reveal rules where the use of conflict resolution is undesired.
For the future, we want to investigate how the CHR analysis tools perform for our



18 D. Gall, T. Frühwirth

ACT-R semantics and how they might support modelers in testing their models
for undesired behavior, since the informal application of the confluence test on
our example is promising. We plan to lift the results for observable confluence of
CHR to ACT-R models. Additionally, it could be interesting to use the CHR
completion algorithm [2] to repair ACT-R models that are not confluent. We
also want to investigate if the activation levels of ACT-R fit the soft constraints
framework [5].

References

1. The ACT-R 6.0 tutorial. http://act-r.psy.cmu.edu/actr6/units.zip (2012), http:
//act-r.psy.cmu.edu/actr6/units.zip

2. Abdennadher, S., Frühwirth, T.: On completion of constraint handling rules. In:
Principles and Practice of Constraint Programming, pp. 25–39. Springer Berlin
Heidelberg (1998)

3. Anderson, J.R.: How can the human mind occur in the physical universe? Oxford
University Press (2007)

4. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An
integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)

5. Bistarelli, S., Frühwirth, T., Marte, M.: Soft constraint propagation and solving in
chrs. In: Proceedings of the 2002 ACM symposium on Applied computing. pp. 1–5.
ACM (2002)

6. Bothell, D.: ACT-R 6.0 Reference Manual – Working Draft. Department of Psy-
chology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

7. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable Confluence for Constraint
Handling Rules. In: Dahl, V., Niemelä, I. (eds.) Logic Programming, Lecture Notes
in Computer Science, vol. 4670, pp. 224–239. Springer Berlin Heidelberg (2007)

8. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)
9. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming (2003)

10. Gall, D.: A rule-based implementation of ACT-R using Constraint Handling Rules.
Master Thesis, Ulm University (2013)

11. Gall, D., Frühwirth, T.: Exchanging conflict resolution in an adaptable imple-
mentation of ACT-R. Theory and Practice of Logic Programming (to appear)
(2014)

12. Taatgen, N.A., Lebiere, C., Anderson, J.: Modeling paradigms in ACT-R. In: Cog-
nition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation.,
pp. 29–52. Cambridge University Press (2006)

http://act-r.psy.cmu.edu/actr6/units.zip
http://act-r.psy.cmu.edu/actr6/units.zip

	A Formal Semantics for the Cognitive Architecture ACT-R
	Introduction
	Preliminaries
	Notation
	ACT-R
	Syntax
	Informal Operational Semantics
	Running Example: Counting

	Constraint Handling Rules
	Syntax
	Operational Semantics


	Formalization of the ACT-R Production System
	Chunk Stores
	Buffer Systems
	The Operational Semantics of ACT-R
	Running Example: Operational Semantics of ACT-R
	ACT-R instantiation
	Example Derivation


	Translation of ACT-R rules to CHR
	Soundness and Completeness
	Conclusion


