CHRAnimation: An Animation Tool
for Constraint Handling Rules

Nada Sharaf' ™) Slim Abdennadher!, and Thom Frithwirth?

! The German University in Cairo, Cairo, Egypt
2 Ulm University, Ulm, Germany
{nada.hamed,slim.abdennadher}@guc.edu.eg,
thom.fruehwirthQuni-ulm.de

Abstract. Visualization tools of different languages offer its users with
a needed set of features allowing them to animate how programs of such
languages work. Constraint Handling Rules (CHR) is currently used as a
general purpose language. This results in having complex programs with
CHR. Nevertheless, CHR is still lacking on visualization tools. With Con-
straint Handling Rules (CHR) being a high-level rule-based language, ani-
mating CHR programs through animation tools demonstrates the power
of the language. Such tools are useful for beginners to the language as
well as programmers of sophisticated algorithms. This paper continues
upon the efforts made to have a generic visualization platform for CHR
using source-to-source transformation. It also provides a new visualiza-
tion feature that enables viewing all the possible solutions of a CHR
program instead of the don’t care nondeterminism used in most CHR
implementations.

Keywords: Constraint Handling Rules - Algorithm visualization -
Algorithm animation - Source-to-source transformation

1 Introduction

Constraint Handling Rules (CHR) [1] is a committed-choice rule-based language
with multi-headed rules. It rewrites constraints until they are solved. CHR has
developed from a language for writing constraint solvers into a general purpose
language. Different types of algorithms are currently implemented using CHR.

So far, visually tracing the different algorithms implemented in CHR was not
possible. Such visual tools are important for any programming language. The
lack of such tools makes it harder for programmers to trace complex algorithms
that could be implemented with CHR. Although the tool provided through [2] was
able to add some visualization features to CHR, it lacked generality. It was only
able to visualize the execution of the different rules in a step-by-step manner. In
addition to that, it was able to visualize CHR constraints as objects. However,
the choice of the objects was limited and the specification of the parameters of
the different objects was very rigid.

Thus the tool presented through this paper aims at providing a more general
CHR visualization platform. In order to have a flexible tracer, it was decided

© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 92-110, 2015.
DOI: 10.1007/978-3-319-17822-6_6

CHRAnimation: An Animation Tool for Constraint Handling Rules 93

to use an already existing visualization tool. Such tools usually provide a wide
range of objects and sometimes actions as well. As a proof of concept, we used
Jawaa [3] throughout the paper. The annotation tool is available through: http://
sourceforge.net /projects/chrvisualizationtool. A web version is also under devel-
opment and should be available through http://met.guc.edu.eg/chranimation.

In addition to introducing a generic CHR algorithm visualization system, the
tool has a module that allows the user to visualize the exhaustive execution
of any CHR program forcing the program to produce all the possible solutions.
This allows the user to trace the flow of a CHR program using some different
semantics than the refined operational semantics [4] embedded in SWI-Prolog.
The output of the visualization is a tree showing the different paths of the
algorithm’s solutions. The tree is the search tree for a specific goal. It is also
linked to the visualization tool as shown in Sect. 8.

The paper is organized as follows: Sect. 2 introduces CHR. Section 3 shows
some of the related work and why the tool the paper presents is different and
needed. Section4 shows the general architecture of the system. Section 5 intro-
duces the details of the annotation module. The details of the transformation
approach are presented in Sect. 6. Section 7 shows an example of the visualization
of algorithms implemented through CHR. Section 8 shows how it was possible to
transform CHR programs to produce all the possible solutions instead of only
one. Finally, we conclude with a summary and directions for future work.

2 Constraint Handling Rules

A CHR program distinguishes between two types of constraints: CHR constraints
introduced by the user and built-in constraints [5]. Any CHR program consists
of a set of simpagation rules. Each rule has a head, a body and an optional
guard. The head of any CHR rule consists of a conjunction of CHR constraints.
The guard of a rule is used to set a condition for applying the rule. The guard
can thus only contain built-in constraints. The body, on the other hand, can
contain both CHR and built-in constraints [5]. A simpagation rule has the form:
optional rule_name @ Hi \ Hp < G| B.
There are two types of head constraints. Hg is the conjunction of CHR con-
straint(s) that are kept on executing the rule. On the other hand, Hp are the
CHR constraint(s) that are removed once the rule is executed. G is the optional
guard that has to be satisfied to execute the rule. B is the body of the rule. The
constraints in B are added to the constraint store once the rule is executed.
Using simpagation rules, we can distinguish between two types of rules.
A simplification rule is a simpagation rule with empty Hy. Consequently, the
head constraint(s) are removed on executing the rule. It has the following form:
optional rule_name @ Hgr < G| B.
On the other hand, a propagation rule is a simpagation rule with empty Hp.
Thus, on executing a propagation rule, its body constraints are added to the
constraint store without removing any constraint from the store. Its format is:
optional rule_name @ Hi = G | B.

94 N. Sharaf et al.

The following program extracts the minimum number out of a set of numbers.
It consists of one rule: extract_min @ min(X) \ min(Y) <=> ¥>=X | true.

As seen from the rule, the numbers are inserted through the constraint
min/1. The rule extract min is executed on two numbers X and Y if Y has
a value that is greater than or equal to X. extract_min removes from the store
the constraint min(Y) and keeps min(X) because it is a simpagation rule. Thus
on consecutive executions of the rule, the only number remaining in the con-
straint store is the minimum one. For example, for the query min(9), min(7),
min(3), the rule is applied on min(9) and min(7) removing min(9). It is then
applied on min(7) and min(3) removing min(7) and reaching a fixed point
where the rule is no longer applicable. At that point, the only constraint in the
store is min(3) which is the minimum number.

3 Why “CHRAnimation”?

This section shows the need for the tool and its contribution. As introduced
previously, despite of the fact that CHR has developed into a general purpose
language, it lacked algorithm visualization and animation tools. Programmers
of CHR used SWI-Prolog’s “trace” option which produces a textual trace of the
executed rules. Attempts focused on visualizing the execution of the rules. The
tool provided through [2] is able to visualize the execution of the rules showing
which constraints are being added and removed from the store. However, the
algorithm the program implements did not affect the visualization in any means.
Visual CHR [6] is another tool that is also able to visualize the execution of CHR
programs. However, it was directed towards the Java implementation of CHR;
JCHR [7]. To use the tool, the compiler of JCHR had to be modified to add
the required features. Although [2] could be extended to animate the execution
of different algorithms, the need of having static inputs remained due to the
inflexibility of the provided tracer. The attempts provided through [8] and [9]
also suffered from the problem of being tailored to some specific algorithms.
Thus compared to existing tools for CHR, the strength of the tool the paper
presents comes from its ability to adapt to different algorithm classes. It is able
to provide a generic algorithm animation platform for CHR programs. The tool
eliminates the need to use any driver or compiler directives as opposed to [6,10]
since it uses source-to-source transformation. Although the system adopts the
concept of interesting events used in Balsa [11] and Zeus [12], the new system
is much simpler to use. With the previous systems, algorithm animators had to
spend a lot of time writing the views and specifying how the animation should
take place. With CHRAmnimation, it is easy for a user to add or change the
animation. In addition, the animator could be the developer of the program or
any CHR programmer. Thus this eliminates the need of having an animator with
whom the developer should develop an animation plan ahead. Consequently, the
tool could be easily used by instructors to animate existing algorithms to teach
to students. The system provides an interactive tool. In other words, every time
a new query is entered, the animation automatically changes. The animations

CHRAnimation: An Animation Tool for Constraint Handling Rules 95

thus do not have to be prepared in advance to show in a class room for example
and are not just movie-based animations that are not influenced by the inputs
of users similar to [13].

Unlike the available systems, the user does not need to know about the
syntax and details of the visualization system in use. Using source-to-source
transformation eliminates this since the programs are automatically modified
without the need of manually instructing the code to produce visualizations. The
only need is to specify, through the provided user interface, how the constraints
should be mapped to visual objects. In Constraint Logic Programming (CLP),
the available visualization tools (such as the tools provided through [14] and
[15]) focused on the search space and how domains are pruned. Thus to the best
of our knowledge, this is the first tool that provides algorithm animation and
not algorithm execution visualization for logic programming.

4 System Architecture

The aim of CHRAnimation is to have a generic algorithm animation system. The
system however should be able to achieve this goal without the need to manually
instrument the program to produce the needed visualizations. CHRAnimation
consists of modules separating the steps needed to produce the animations and
keeping the original programs unchanged.

As seen from Fig. 1, the system has two inputs: the original CHR program P
in addition to Annotcons, the output of the so-called “Annotation Module”.

Animation
Module

External
Module

Fig. 1. Interactions between the modules in the system.

, N
, \
k 1
CHRII::;gram ‘:)[[Parser |——>| Transformer]‘——) Prans :
| 1
interactsl :
with X
1
Annotation I
1
1
1

As a first step, the CHR program is parsed to extract the needed information.
The transformation approach is similar to the one presented in [16] and [2]. Both
approaches represent the CHR program using a set of constraints that encode
the constituents of the CHR rule. For example head(extract_min, min(Y),
remove) encodes the information that min(Y) is one of the head constraints of
the rule named extract min and that this constraint is removed on executing
the rule. The CHR program is thus first parsed to automatically extract and

96 N. Sharaf et al.

represent the constituents of the rules in the needed “relational normal” form
[16]. The transformer then uses this representation in addition to Annotcens to
convert the original CHR program (P) to another CHR program (Pryqy) with
embedded visualization features as explained in more details in Sect. 6.

The annotation module is the component that allows the system to animate
different algorithms while having a generic visual tracer. It allows users to define
the visual states of the algorithm without having to go into any of the actual
visualization details. The users are presented with a black-box module which
allows them to define the needed visual output through the interesting events
of the program. The module is explained in more details in Sect. 5. The output
of the module (Annotcoens) is used by different components of the system to be
able to produce the corresponding animation.

Prrans is a normal CHR program that users can run. Whenever the user
enters any query to the system, Pr,.ns automatically communicates with an
external module that uses Annotcons to spontaneously produce an animation
for the algorithm.

5 Annotation to Visualize CHR Algorithms

Algorithm animation represents the different states of the algorithm as pictures.
The animation differs according to the interaction between such states [17]. As
discussed before, the tool uses an existing tracer to overcome the problems faced
in [2] in order to have a dynamic system that could be used with any algorithm
type. The annotation module is built to achieve this goal while keeping a generic
platform that is not tailored according to the algorithm type. Such module is
needed to link between the different CHR constraints and the Jawaa objects/-
commands. The idea is similar to the “interesting events” that Balsa [11] and
Zeus [12] uses. This section introduces the basic functionalities of the annotation
module which were first presented in [18] in addition to the new features that
were added to accommodate for a wider set of algorithms. In the system, an
interesting event is basically defined as the addition of CHR constraint(s) that
leads to a change in the state of the algorithm and thus a change in the visual-
ized data structure. For example, in sorting algorithms, every time an element
in the list is moved to a new position, the list changes and thus the visualized
list should change as well.

5.1 Basic Constraint Annotation

Constraint annotation is the basic building block of the annotation module. Users
first identify the interesting events of a program. They could then determine
the graphical objects that should be linked to them. For example, the program
introduced in Sect. 2 represents a number through the constraint min/1 with its
corresponding value. Adding or changing the min constraint is the interesting
event in this algorithm. The annotation module provides its users with an inter-
face through which they can choose to link constraint(s) with object(s) and/or
action(s) as shown in Fig. 2.

CHRAnimation: An Animation Tool for Constraint Handling Rules 97

min(A)

Step 1: Please enter the constraint

iPlease enter the condition(if needed)

Please enter the object name node -

Di\chrJawaaAnnotationWorkspace
Please choose the directory Change

PPlease choose the file: Dichrmin.pl
iPlease note that all rules should have

inames and that comments are not

allowed in the input files

Change

Communicate head constraints as well? ® Yes O No
Iname nodevalueOf(A) bl
X 30
ly prologValue(R is random(30),X is R*15) =
width 30
Ineight 30 -
In 1
ldata valueOf(A)

) lack. s

Fig. 2. Annotating the min constraint.

In order to have a dynamic system, the tool is automatically populated
through a file that contains the available objects and actions and their corre-
sponding parameters in the form object_name#parameter,# . .. #parameter .
For example, the line circle#name#x#y#width#color#bkgrd, adds the object
circle as one of the available objects to the user. The circle object requires
the parameters name, x, y, width, color and bkgrd. Users can then enter the
name of the constraint and the corresponding annotation as shown in Fig. 2. The
current system provides more annotation options than the prototype introduced
in [18]. Users enter the constraint: cons(Argi, ..., Arg,) representing the inter-
esting event. With the current system, annotations can be activated according
to defined conditions. Thus users provide some (Prolog) condition that should
hold to trigger the annotation to produce the corresponding visualization. Users
can then choose an object/action for annotation. This dynamically fills up the
panel with the needed parameters so that users can enter their values. Parameter
values can contain one or more of the following values (Val):

1. A constant c¢. The value can differ according to the type of the parameter. It
could be a number, some text, ...etc.
2. The built-in function valueO f(Arg;) to return the value of an argument

(Arg;).

98 N. Sharaf et al.

3. The built-in function prologValue(Expr) where Expr is a Prolog expression
that binds a variable named X to some value. The function returns the bind-
ing value for X.

The output of the constraints’ annotations is a list where each element Cons a,mnot
has the form cons(Args, ..., Arg,) ==> condition#parametery = Vali# ... #
parameter,, = Val,,. In Fig.2, the user associates the min/1 constraint with
the Jawaa object “Node”. In the given example, the name of the Jawaa node
is “node” concatenated with the value of the first argument. Thus for the con-
straint min(9), the corresponding node has the name node9. The y-coordinate
is random value calculated through Prolog. The text inside the node also uses
the value of the argument of the constraint. The annotation is able to produce
an animation for this algorithm as shown later in Sect. 7.

5.2 Multi-constraint Annotation

In addition to the basic constraint annotation, users can also link one constraint
to multiple visual objects and/or actions. Thus each constraint (cons), can add

to the output annotations’ list multiple elements Consannot, ;- - - Consapnot,, if
it has n associations.
In addition, users can combine multiple constraints consy,...,consy in one

annotation. This signifies that the interesting event is not associated with hav-
ing only one constraint in the store. It is rather having all of the constraints
consy, . ..,consy simultaneously in the constraint store. Such annotations could
thus produce and animate a color-mixing program for example. This kind of
annotations adds to the annotations’ list elements of the form:

consi, ..., Cons, ==> annotation_constraintcons,cons, -

5.3 Rule Annotations

In addition, users can choose to annotate CHR rules instead of only having anno-
tations for constraints. In this case, the interesting event is the execution of the
rule as opposed to adding a constraint to the store. This results in adding Jawaa
objects and/or actions whenever a specific rule is executed. Thus, whenever a
rule is annotated this way, a new step in the visual trace is added on executing
the rule. Such annotation adds to the annotations’ list an element of the form:
rule; ==> annotation_constraint,,e,. Rule annotations ignore the individual
annotations for the constraints since the interesting event is associated with the
rule instead. Therefore, it is assumed that the only annotation the user should
visualize is the rule annotation since it accounts for all the constraints in the
body. An example of this annotation is shown in Sect. 7.

6 Transformation Approach

The transformation mainly aims at interfacing the CHR programs with the
entered annotations to produce the needed visual states. Thus the original pro-
gram P is parsed and transformed into another program Pryqns. Prrans performs

CHRAnimation: An Animation Tool for Constraint Handling Rules 99

the same functionality as P. However, it is able to produce an animation for the

executed algorithm for any input query. As a first step, the transformation adds

for every constraint constraint/N a rule of the form:

comm_cons_constraint Q constraint(Xy, Xa, ..., X,,) = check(status, false) |
communicate_constraint(constraint(Xq, Xa, ..., Xp)).

This extra rule makes sure that every time a new constraint is added to the
constraint store, it is communicated to the external module. Thus, in the case
where the user had specified this constraint to be an interesting event (i.e.
entered an annotation for it), the corresponding object(s)/action(s) is automat-
ically produced. With such new rules, any new constraint added to the store is
automatically communicated. Thus once the body constraints are added to the
store, they are automatically communicated to the tracer.

The rules of the original program P can affect the visualization through the
head constraints. To be more specific, head constraints removed from the store
can affect the resulting visualization since their corresponding object(s) might
need to be removed as well from the visual trace. Thus the transformer can
instruct the new rules to communicate the head constraints’.

The transformer also makes use of the output of the annotation module
output (Annot.ons). Thus as a second step, the transformer adds for every com-
pound constraint-annotation of the form:

CONsy, ..., cons, ==> annotation_constraintcons, ... cons,, @ new rule of the
form: compoundcons, ,....cons, @

007751(147"90071511 PR Argconsllz)7 <. CONSpy (Argconsnl PRI 7A7agconsnny)

= check(status, false) | annotation_constraintcons, ,....cons, (Argl, ..., Argm).

The default case is to keep the constraints producing a propagation rule but
the transformer can be instructed to produce a simplification rule instead. The
annotation should be triggered whenever the constraints consi, ..., cons, exist
in the store producing annotation_constraint.ons,.....cons, - This is exactly what
the new rules (compoundcons,.,....cons,) do. They add to the store the anno-
tation constraint whenever the store contains consi,...,cons,. The annota-
tion constraint is automatically communicated to the tracer through the new
comm_cons_constraint_name rules.

As a third step, the rules annotated by the user have to be transformed. The
problem with rule annotations is that the CHR constraints in the body should be
neglected since the whole rule is being annotated. Thus, even if the constraints
were determined by the user to be interesting events, they have to be ignored
since the execution of the rule includes them and the rule itself was annotated as
an interesting event. Hence, to avoid having problems with this case, a generic
status is used throughout Prj.qns. In the transformed program, any rule anno-
tated by the user changes the status to true at execution. All the new rules
added by the transformer to Pr,q,s check that the status is set to false before
communicating the corresponding constraint to the tracer. Consequently, such

! The tracer is able to handle the problem of having multiple Jawaa objects with the
same name by removing the old object having the same name before adding the new
one. This is possible even if the removed head constraint was not communicated.

100 N. Sharaf et al.

rules are not triggered on executing an annotated rule since the guard check
is always false in this case. Any rule rule,QHx , Hx < G | B with the
corresponding annotation rule; ==> annotation_constraint,,., is transformed
to: rule;QHyg , Hrx < G | set(status,true), B, annotation_constraint e, ,
set(status, false). In addition, the transformer adds the following rule to Pry.qns:

COMM_CONS annotation_constraint.,.. Q@ annotation_constraint .y, <
k2
communicate_constraint(annotation_constraint,yie,).

The new rule thus ensures that the events associated with the rule annotation
are considered and that all annotations associated with the constraints in the
body of the rule are ignored.

7 Examples

This section shows different examples of how the tool can be used to animate
different types of algorithms.

Finding the Minimum Number in a Set is a CHR program consisting of
one rule that is able to extract the smallest number out of a set of numbers as
shown in Sect. 2. The interesting event in this program is adding and removing
the constraint min. It was annotated using the basic constraint annotation pro-
ducing the association: min (A)==>node##name=nodevalue0f (A)#x=30#
y=prologValue(R is random(30), X is R*15)#width=30#height=30#n=1#
data=valueOf (A) #color=black#bkgrd=green#textcolor=black#type=CIRCLE. The
annotation links every min constraint to a Jawaa “Node” whose y-coordinate
is randomly chosen through the function prologV alue. The x-coordinate is fixed
to a constant (30 in our case). As seen in Fig. 3, once a number is added to the
store, the corresponding node is visualized. Once a number is removed from the
store, its mode object is removed. Thus by applying the rule, extract min, the
user gets to see in a step-by-step manner an animation for the program.

Bubble Sort is another algorithm that could be animated with the tool.
start @ totalNum(T)<=> startBubbling, loop(1,1,T).

© @
() @ @
@ (b) () (d) ()

adding adding remov- adding remov-

min(9) min(7) ing min(3) ing
to the to the min(9) to the min(7)
store store store

Fig. 3. Finding the minimum element of a set.

CHRAnimation: An Animation Tool for Constraint Handling Rules 101

FFIFTUY" Y
() (d) (¢) (f) () (h)

(a) all (b)
ele- high- mov- mov- mov- mov- high- mov-
ments light- ing 10 ing 6 ing 10 ing 4 light- ing 4
in- ing to the to the to the to the ing 6 to the
serted 10 right left right left and left
to the mov-
list ing it

to the

right

Fig. 4. Sorting a list of numbers using rule annotations.

(a) all (b) 10, (c) (d) 10, (e) f) 6, (26,4
ele- 6 re- 10, 6 4 re- 10, 4 4 re- swapped
ments moved swapped moved swapped moved

in-

serted

to the

list

Fig. 5. Sorting a list of numbers using constraint annotations only.

bubble @ startBubbling, loop(I,_,_) \ a(I,V), a(J,W) <=> I+i1=:=J, V>W |
a(I,w), a(J,vn.
loopl @ startBubbling\ loop(A,B,C) <=> A<C, B<C | Al is A+1, loop(A1,B,C).
loop2 @ startBubbling \ loop(C,B,C) <=> B<C | Bl is B+1, loop(1,B1,C).
As seen from the program, the different elements of the list are entered using the
constraint a/2. The rule bubble swaps two consecutive elements that are not
sorted with respect to each other. Consequently, through multiple executions
of this rule, the largest element is bubbled to the end. The constraint loop/3
represents a pointer to the elements being compared. loop1 advances the pointer
one step through the list. loop2 resets the pointer to the beginning of the list
whenever one complete round of checks is done. The bubbling step is repeated
T times where T is the number of elements in the list. There are thus two
interesting events in this program. The first one is the insertion of an element to
the list which is represented by the constraint a/2. The second interesting event
is swapping two consecutive elements together through the rule bubble. The
program has three annotations. The first one is a basic constraint annotation
for a/2 constraint. The second annotation is a rule annotation for bubble. The

102 N. Sharaf et al.

rule is annotated with swap/4 which has as arguments I,V,J and W consecutively.
swap/4 has a multi-constraint annotation that does the following:

1. highlights the element at index I through a “changeParam” action,
2. moves the element at index I to the right through a moveRelative action,
3. moves the element at index J to the left through a moveRelative action.

The annotations are shown in Appendix A. The output animation for the query
(a(1,10),a(2,6),a(3,4) ,totalNum(3)) is given in Fig.4. Figure5 shows the
result if no rule annotation was used. In this case, the different nodes represent-
ing the elements in the list are added and removed.

Nqueens is a well-known problem in which N queens have to be placed on an
N by N grid such that they do not attack each other. Two queens can attack
each other if they are placed on the same row, column or diagonal. The following
CHR program can solve this problem:
initial @ solve(N) <=> generate(l,N,List), queens(N,List), labelq.
addl @ queens(N,Dom) <=> N>0 | N1 is N-1, in(N , Dom), queens(N1,Dom).
add2 @ queens(0,Dom) <=> true.
reduce @ in(N1 , [P]) \ in(N2 , Dom) <=> P1 is P-(N1-N2),

P2 is P+(N1-N2), delete(Dom,P,D1), delete(D1,P1,D2),

delete(D2,P2,D3),Dom\==D3 | D3\==[], in(N2 , D3).

label @ labelq \ in(N , Dom) <=> Dom=[_,_I_] | member(P,Dom), in(N , [P]).
The model of the problem uses N variables each represented using the queens/2
constraint. The value of every variable determines the row number. The index,
on the other hand, determines the column number. For example if the value of
the second queen is three, this means that the queen in the second column is
placed in the third row. The domain of any queen is initialized to be from 1 to
N using the predicate generate/3. As seen from the program the rule initial
is used to initialize the solving process by adding the two constraints queens/2
and labelq which enable finding a solution. As seen from the rule, the second
argument of the queens constraint is set to be a list containing all the numbers
from 1 till N. The two rules add1 and add?2 are used to initialize the domains of
all of the queens of the board using the previously computed list. The domain
of every queen is represented using the in/2 constraint. The rule reduce is used
to prune the domains of the different queens. In order to execute the rule, the
location of a specific queen has to be determined. This is represented by having a
domain list with one element only. The rule removes from the domain of another
queen any value that could lead to an attack. This ensures that whenever a
location is chosen for this queen, it does not threaten the already labeled queen.
Finally the rule label is used to search through the domains whenever domain
pruning is not enough.

The visual board is initialized through specifying that the solve constraint is
an interesting event. It should generate 16 rectangles in a board-like structure. To
eliminate the need of entering 16 constraint annotations, users can now use the
object board to annotate constraints and enter the number of squares it contains
and their widths, heights, ...etc. Thus whenever the solve constraint is added

CHRAnimation: An Animation Tool for Constraint Handling Rules 103

2 @
GU.H] GU.H]

(a) Initial Domains and (b) Q1 is placed in row 1 (c¢) Pruning the domain of
Board Q2

oqu (1] au (1]

(d) Q2 placed in row 3 (e) Q3 placed in row 1 (f) Q2 moved to row 4

(g) pruning the domain of (h) Q3 moved to row 2 (i) Q4 placed in
Q3 row 4

(j) Q1 moved to (k) Q2 moved to (1) Domain of Q3 changed (m) Q3 placed in
row 2 row 4 row 1

(n) Domain of Q4 changed (o) Q4 placed in
row 3

Fig. 6. Visualizing the execution of the nqueens algorithm for 4 queens.

104 N. Sharaf et al.

to the store the 4-by-4 grid is visualized. The board, in the 4-queens problem,
consists of 16 adjacent rectangles each with the same width and height (30 was
chosen in this example). The in/2 constraint has two different annotations. The
first one is activated whenever the length of the domain list is equal to one. This
is the case where the queen is labeled to be placed in a specific position on the
board. In this case, the x-coordinate of the Jawaa node is calculated as the index
multiplied by the width of the cell which is 30. The y-coordinate is calculated
through the only value in the domain i.e. the assigned value. It is also multiplied
by 30. This way the circular node is placed in the a location corresponding to
the chosen value. The second annotation is activated whenever the length of
the domain list is greater than one. In this case the queen is not placed in any
position in the board since there are multiple possibilities. It is visualized as
a “Node” outside the board and the domain is written on it. Figure6 shows
the visual steps produced for the query solve(4) until a solution is found. The
annotations are shown in Appendix A.

8 Visualizing Different Semantics

Although SWI-Prolog implements the refined operational semantics [4] for CHR,
there are different proposed and defined CHR operational semantics. Based on
the conflict resolution approach presented in [5], it is possible to convert a pro-
gram running with a different operational semantics into the refined operational
semantics used in SWI-Prolog. The abstract operational semantics of CHR [5]
is nondeterministic. At any point, if several rules are applicable, one of them is
randomly chosen. The application of a rule, however, cannot be undone since it
is committed choice. In addition, the goal constituents are randomly chosen for
processing. The refined operational semantics [4], on the other hand, chooses a
top-bottom approach for deciding on the applicable rule i.e. the first applica-
ble rule is always chosen. In addition, the constraints are processed from left to
right. Nondeterminism is especially interesting when the CHR program is non-
confluent. Confluence [19] is a property of CHR which ensures the same final
result no matter which applicable rule was chosen at any point of the execution.
The tool includes a module that is able to embed some of the nondetermin-
ism properties into any CHR solver. The newly generated solvers are able to
choose, at any point of the execution, any of the applicable rules producing all
the possible solutions.

8.1 Transformation Approach

This section discusses how any CHR program is transformed into a new one that
is able to generate all the possible solutions instead of using the refined opera-
tional semantics that generates only one solution. The transformation approach
is based on the approaches presented in [5,20-22]. The main difference is that
the new solver communicates some of the information to the visual tracer to be
able to produce the needed visualization.

CHRAnimation: An Animation Tool for Constraint Handling Rules 105

The transformed program starts each step by collecting the set of applicable rules

with its corresponding head constraints. After the candidate list is built, the

solver chooses one of the rules randomly using the built-in predicate select/3.

The newly transformed program is thus a CHR [23] solver. For example a rule

of the form:

rl @ Hk \ Hr <=> Guard | Body.

generates two rules in the transformed program. The first generated rule is used

to populate the candidate list. It is a propagation rule of the form:

Hk, Hr ==> Guard | cand([(r1,[Hk,Hr])]). The second rule is fired whenever

this rule is chosen from the candidate list. It has the following form:

Hk\fire((r1, [Hk,Hr])) ,Hr <=> Guard | communicate_heads_kept (Hk),
communicate_heads_removed(Hr) ,communicate_body (Body) ,Body.

In addition, the new program contains the following two rules:

cand(L1),cand(L2) <=> append(L1,L2,L3) | cand(L3).

cand([H|T]),fire <=> select(Mem, [H|T],Nlist), fire(Mem),cand(NList),fire.

The first rule ensures that the candidate list is correctly populated and incre-

mented. The second rule, on the other hand, selects one of the elements of the

candidate list at each step.

For example the program:

:—chr_constraint sphere/2.

rl @ sphere(X,red) <=> sphere(X,blue).

r2 @ sphere(X,red) <=> sphere(X,green).

is transformed into

:—chr_constraint sphere/2, fire/1, cand/1, fire/0.

ri_cand @ sphere(X,red) ==>cand([(r1, [sphere(X,red)])]).

r2_cand @ sphere(X,red) ==> cand([(r2, [sphere(X,red)])]).

cand(L1) ,cand(L2) <=> append(L1,L2,L3), cand(L3).

cand([H|T]),fire <=> select(Mem, [H|T] , NList), fire(Mem), cand(NList),fire.

rl @ fire((r1, [sphere(X,red)])),sphere(X,red) <=>
communicate_head_removed([sphere(X,red)]),

communicate_body ([sphere(X,blue)]), sphere(X,blue).

r2 @ fire((r2, [sphere(X,red)])),sphere(X,red) <=>

communicate_head_removed([sphere(X,red)]),

communicate_body ([sphere(X,green)]), sphere(X,green).

8.2 Visualization

With the refined operational semantics, the query sphere(a,red) results in
executing r1 adding to the store the new constraint sphere(a,blue). Figure 7a
shows the result of visualizing the execution of the solver with this query, using
the tool presented in [2]. The CHR constraints remaining in the constraint store
are shown in white and those removed are shown in red. The transformed pro-
gram is able to generate the visual tree shown in Fig. 7b. Since there were two
applicable rules, the output tree accounts for both cases by the different paths.
Through SWI-Prolog the user can trigger this behavior using the ;" sign to
search for more solutions.

106 N. Sharaf et al.

Given the solver:

rulel @ sphere(X,red) <=> sphere(X,blue).

rule2 @ sphere(X,blue) <=> sphere(X,green). The steps taken to execute the
query sphere(b,blue), sphere(a,red) with the solver are:

— First Solution
1. rule2 is fired replacing the constraint sphere(b,blue) by sphere
(b,green).
2. rulel is then fired removing the constraint sphere(a,red) and adding
the constraint sphere(a,blue).
3. Finally, sphere(a,blue) triggers rule2 replacing it by sphere(a,green).
— Second Solution
1. Backtracking is triggered through the semicolon(;). We thus go back to
the root and choose to apply rulel for sphere(a,red) producing the
sphere(a,blue).
2. Afterwards, rule2 is executed to replace sphere(a,blue) by sphere
(a,green).
3. Finally, rule2 is fired replacing sphere(b,blue) by sphere(b,green).
— Third Solution
1. This time when the user backtracks, execution goes back to the second
level, applying rule2 to replace sphere(b,blue) by sphere(b,green).
2. Afterwards, rule?2 replaces sphere(a,blue) by sphere(a,green).

’ r
sphere(a blue)

sphere(c red)

‘ sphere(c blue) sphere(c green

<] 1l T

(a) Visualizing the execution of(b) Showing all possible(c) Two ran-
the solver. paths. dom circles.

Fig. 7. Different options for visualizing the execution.

As seen from the tree in Fig.8, the constraint store in the final states con-
tains sphere(a,green), sphere(b,green). However, the paths taken are dif-
ferent. Once the user enters a query, the visual trees are automatically shown.
In addition, whenever the user clicks on any node in the tree, the corresponding
visual annotations are triggered. In this case the sphere can be mapped to a

CHRAnimation: An Animation Tool for Constraint Handling Rules 107

spherg(b blue) spherefa red)

=

sphere(a,red),sphere(,green) sphere(b blue),sphere(a blue)
e S .
' ¥ N
sphere(p green),spherg(a,blue) sphere(p,blue),sphere(b, green) sphere(p,blue),sphere(a green)
v/ \v
sphere(b green) sphere(a, green) sphere(k,green),sphere(a,green) sphere(g,green),sphere(b,green)

Fig. 8. Output tree.

Jawaa “circle” with a constant x-coordinate and a random y-coordinate and a
background color that is equal to the value of the second argument of the con-
straint. If the user clicks on the node with the constraints (sphere(b,blue),
sphere(a,green)), the system automatically connects the constraints to the
previously introduced visual tracer that checks if any of the current constraints
have annotations. This produces a visual state with two circles placed randomly
as shown in Fig. 7c.

9 Conclusion

The paper introduced a new tool that is able to visualize different CHR programs
by dynamically linking CHR constraints to visual objects. To have a generic
tracing technique, the new system outsources the visualization process to exist-
ing tools. Intelligence is shifted to the transformation and annotation modules.
Through the provided set of visual objects and actions, different algorithms
could be animated. Such visualization features have proven to be useful in many
situations including code debugging for programmers and educational purposes
[24]. In addition, the paper explores the possibility of visualizing the execution
of different operational semantics of CHR. It provides a module that is able to
visualize the exhaustive execution of CHR and more importantly it links it to the
annotated constraints. Thus, unlike the previously provided tools [15] for visu-
alizing constraint programs, the focus is not just on the search space and the

108 N. Sharaf et al.

domains. The provided tool enables its users to focus on the algorithms executed
to visualize their states.

In the future, more dynamic annotation options could be provided to the user.
The visualization of the execution of different CHR operational semantics should
be investigated. The tool could also be extended to be a visual confluence checker
for CHR programs. In addition, we also plan to investigate the visualization of
soft constraints [25].

Appendix
A Annotations

The bubble sort program’s annotations use node as a basic object. The x-
coordinate is calculated through the index and the height uses the value.
a(Index,Value)==>node##name=nodevalue0f (Index)#x=valueOf (Index) *14+2#y=100#
width=12#height=valueOf (Value) *5#n=1#data=valueOf (Value)#color=black#
bkgrd=green#textcolor=black#type=RECT
swap(I1,V1,I2,V2)==>changeParam##name=nodevalueOf (I1)#paramter=bkgrd #newvalue=red
swap(I1,V1,I2,V2)==>moveRelative##name=nodevalueOf (I1)#x=14#y=0
swap(I1,V1,I2,V2)==>moveRelative##name=nodevalueOf (I2)#x=-14#y=0
swap(I1,V1,I2,V2)==>changeParam##name=nodevalueOf (I1)#paramter=bkgrd #newvalue=green

For the nqueens problem, the first set of annotations are the rectangles produced
by the object “board” which users can choose through the interface. The number
of vertical and horizontal squares (4 in our case), the initial x and y-coordinates
(30 and 30 in our case), the squares’ widths (30 in this case) in addition to the
color chosen by the user automatically produces 16 associations for the solve
constraint. The below constraints represent the rectangles that form the first
two rows of the board and the two annotations for the in constraint.

solve (N)==>rectangle##name=rect 1#x=30#y=30#width=30#height=30#color=black#bkgrd=white

solve (N)==>rectangle##name=rect2#x=60#y=30#width=30#height=30#color=black#bkgrd=white

solve (N)==>rectangle##name=rect3#x=90#y=30#width=30#height=30#color=black#bkgrd=white

solve (N)==>rectangle##name=rect4#x=120#y=30#width=30#height=30#color=black#bkgrd=white
in(N,List)==>node#length(valueOf (List) ,Len) ,Len is 1l#name=nodevalueOf (N)#x=valueOf (N)*30
#y=prologValue (nth0(0,value0f (List) ,E1),X is E1%*30)#width=30#height=30#n=1#

data=queenvalueOf (N) : valueOf (List)#color=black#bkgrd=green#textcolor=black#type=CIRCLE
in(N,List)==>node#length(valueOf (List),Len) ,Len > 1#name=nodevalueOf (arg0)#x=160#

y=valueOf (N) *30#width=90#height=30#n=1#data=qvalue0f (N) : valueOf (List)#color=black#
bkgrd=green#textcolor=black#type=RECT

References

1. Frithwirth, T.: Theory and practice of constraint handling rules, special issue on
constraint logic programming. J. Logic Program. 37, 95-138 (1998)

2. Abdennadher, S., Sharaf, N.: Visualization of CHR through source-to-source trans-
formation. In: Dovier, A., Costa, V.S. (eds.) ICLP (Technical Communications).
LIPIcs, vol. 17, pp. 109-118. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2012)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

CHRAnimation: An Animation Tool for Constraint Handling Rules 109

Rodger, S.H.: Introducing computer science through animation and virtual worlds.
In: Gersting, J.L., Walker, H.M., Grissom, S. (eds.) SIGCSE, pp. 186-190. ACM
(2002)

Duck, G.J., Stuckey, P.J., Garcia de la Banda, M., Holzbaur, C.: The refined oper-
ational semantics of constraint handling rules. In: Demoen, B., Lifschitz, V. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 90-104. Springer, Heidelberg (2004)

Frithwirth, T.: Constraint Handling Rules. Cambridge University Press, Cambridge
(2009)

Abdennadher, S., Saft, M.: A visualization tool for constraint handling rules. In:
Kusalik, A.J. (ed.) WLPE (2001)

Schmauss, M.: An Implementation of CHR in Java, Master Thesis, Institute of
Computer Science, LMU, Munich, Germany (1999)

Ismail, A.: Visualization of Grid-based and Fundamental CHR Algorithms, bach-
elor thesis, the Institute of Software Engineering and Compiler Construction, Ulm
University, Germany (2012)

Said, M.A.: Animation of Mathematical and Graph-based Algorithms expressed
in CHR, bachelor thesis, the Institute of Software Engineering and Compiler Con-
struction, Ulm University, Germany (2012)

Stasko, J.: Animating algorithms with xtango. SIGACT News 23, 67-71 (1992)
Brown, M.H., Sedgewick, R.: A system for algorithm animation. In: Proceedings
of the 11th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1984, pp. 177-186. ACM, New York (1984)

Brown, M.: Zeus: a system for algorithm animation and multi-view editing. In:
Proceedings of the 1991 IEEE Workshop on Visual Languages, pp. 4-9 (1991)
Baecker, R.M.: Sorting Out Sorting: A Case Study of Software Visualization for
Teaching Computer Science, chap. 24, pp. 369-381. MIT Press, Cambridge (1998)
Smolka, G.: The definition of kernel oz. In: Podelski, A. (ed.) Constraint Program-
ming: Basics and Trends. LNCS, vol. 910. Springer, Heidelberg (1995)

Meier, M.: Debugging constraint programs. In: Montanari, U., Rossi, F. (eds.) CP
1995. LNCS, vol. 976. Springer, Heidelberg (1995)

Frithwirth, T., Holzbaur, C.: Source-to-source transformation for a class of expres-
sive rules. In: Buccafurri, F. (ed.) APPIA-GULP-PRODE, pp. 386-397 (2003)
Kerren, A., Stasko, J.T.: Algorithm animation. In: Diehl, S. (ed.) Dagstuhl Seminar
2001. LNCS, vol. 2269, pp. 1-17. Springer, Heidelberg (2002)

Sharaf, N., Abdennadher, S., Frithwirth, T. W.: Visualization of Constraint Han-
dling Rules, CoRR, vol. abs/1405.3793 (2014)

Abdennadher, S., Frithwirth, T., Meuss, H.: On confluence of constraint handling
rules. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118. Springer, Heidelberg
(1996)

Zaki, A., Frihwirth, T.W., Abdennadher, S.: Towards inverse execution of con-
straint handling rules. TPLP 13(4-5) (2013) Online-Supplement

Abdennadher, S., Fakhry, G., Sharaf, N.: Implementation of the operational seman-
tics for CHR with user-defined rule priorities. In: Christiansen, H., Sneyers, J.
(eds.) Proceedings of the 10th Workshop on Constraint Handling Rules, pp. 1-12,
Technical report CW 641, (2013)

Fakhry, G., Sharaf, N., Abdennadher, S.: Towards the implementation of a source-
to-source transformation tool for CHR operational semantics. In: Gupta, G., Pefia,
R. (eds.) LOPSTR 2013, LNCS 8901. LNCS, vol. 8901, pp. 145-163. Springer,
Heidelberg (2014)

110 N. Sharaf et al.

23. Abdennadher, S., Schiitz, H.: CHRv: a flexible query language. In: Andreasen, T,
Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS (LNAI), vol. 1495, pp.
1-14. Springer, Heidelberg (1998)

24. Hundhausen, C., Douglas, S., Stasko, J.: A meta-study of algorithm visualization
effectiveness. J. Vis. Lang. Comput. 13(3), 259-290 (2002)

25. Bistarelli, S., Frithwirth, T., Marte, M.: Soft constraint propagation and solving
in chrs. In: Proceedings of the 2002 ACM Symposium on Applied Computing, pp.
1-5. ACM (2002)

