Preliminary version 2019.
Final version in Journal Fundamenta Informaticae, vol. 173 no. 4, IOS Press, 2020.

Justifications in Constraint Handling Rules for
Logical Retraction in Dynamic Algorithms:
Theory, Implementations, and Complexity

Thom Frithwirth

Ulm University, Germany
thom.fruehwirthQuni-ulm.de

Abstract. We present a concise source-to-source transformation that
introduces justifications for user-defined constraints into the rule-based
Constraint Handling Rules (CHR) programming language. There is no
need to introduce a new semantics for justifications. This leads to a
conservative extension of the language, as we can show the equivalence
of rule applications.

A scheme of two rules suffices to allow for logical retraction (deletion,
removal) of CHR constraints during computation. Without the need to
recompute from scratch, these rules remove the constraint and also undo
all its consequences. The scheme applies to CHR rules without built-
in constraints in their bodies. We prove a confluence result concerning
the rule scheme. We prove its correctness in general and for confluent
programs.

We give an implementation that is available online. We show its cor-
rectness for confluent programs. We present two classical examples of
dynamic algorithms: maintaining the minimum of a changing set of num-
bers and shortest paths in a graph whose edges change.

Finally, we improve the efficiency of the implementation while maintain-
ing correctness. The computational overhead of introducing justifications
and of performing logical retraction, i.e. the additional time and space
needed, is proportional to the derivation length in the original program.
This overhead may increase space complexity, but does not change the
worst-case time complexity.

Additional Keywords. Truth Maintenance, Rule-Based Programming,
Logic Programming, Computational Logic, Source-to-Source Program
Transformation, Constraint Deletion, Confluence.

1 Introduction

Justifications have their origin in truth maintenance systems (TMS) [McA90]
for automated reasoning. In this knowledge representation method, derived in-
formation (a formula) is explicitly stored and associated with the information it
originates from by means of justifications. This dependency can be used to ex-
plain the reason for a conclusion (consequence) by its initial premises. With the
help of justifications, conclusions can be withdrawn by retracting their premises.

By this logical retraction, e.g. default reasoning can be supported and inconsis-
tencies can be repaired by retracting one of the reasons for the inconsistency. An
obvious application of justifications are dynamic constraint satisfaction problems
(DCSP), in particular over-constrained ones [BMO6].

In this work, we extend the applicability of logical retraction to arbitrary
algorithms that are expressed in the programming language and formalism Con-
straint Handling Rules (CHR) [Frii09,Friil5,FR18]. In CHR, conjunctions of
atomic formulae (constraints) are rewritten by rule applications.

When algorithms are written in CHR, constraints represent both data and
operations. CHR is already incremental by nature, i.e. constraints can be added
at runtime. Logical retraction then adds decrementality. To accomplish logical
retraction in CHR, we have to be aware that CHR constraints can also be deleted
by rule applications. These constraints may have to be restored when a premise
constraint is retracted. With logical retraction of constraints, operations can
be undone and data can be removed at any point in the computation without
compromising the correctness of the result. Hence any algorithm written in CHR
with justifications will become fully dynamic.

Minimum Example. Given a multiset of numbers min(n,), min(nsg),...,
min(ng). The constraint (predicate) min(n;) means that the number n; is a can-
didate for the minimum value. The following CHR rule filters the candidates.

min(N) \ min(M) <=> N=<M | true.

The rule consists of a left-hand side, on which a pair of constraints has to be
matched, a guard check N=<M that has to be satisfied, and an empty right-hand
side denoted by true. In effect, the rule takes two min candidates and removes
the one with the larger value (constraints after the \ symbol are deleted). Note
that the min constraints behave both as operations (removing other constraints)
and as data (being removed).

CHR rules are applied exhaustively. Here the rule keeps on going until only
one, thus the smallest value, remains as single min constraint, denoting the cur-
rent minimum. If another min constraint is added during the computation, it
will eventually react with a previous min constraint, and the correct current
minimum will be computed in the end. Thus the algorithm as implemented in
CHR is incremental. It is not decremental, though: We cannot logically retract
a mun candidate. While removing a candidate that is larger than the minimum
would be trivial, the retraction of the minimum itself requires to remember all
deleted candidates and to find their minimum. With the help of justifications,
this logical retraction will be possible automatically.

Contributions and Overview. While there is previous work extending
CHR with justifications (see section on related work), our approach of a source-
to-source transformation leads to a straightforward implementation. A new se-
mantics for justifications is not necessary. Our approach allows for strong proven
correctness results and enables well-known CHR analysis techniques such as for
confluence to be applied.

In the next section we recall abstract syntax and abstract as well as refined
operational semantics for CHR. In this work, we restrict given CHR programs to

rules without built-in constraints in the body. This restriction is necessary as long
as built-in constraint solvers do not support the removal of built-in constraints.
Then our contributions are as follows:

We introduce CHR with justifications (CHRY) in Section 3. We enhance

standard CHR programs with justifications by a source-to-source program

transformation. We prove the operational equivalence of rule applications in
both settings. Thus CHRY is a conservative extension of standard CHR.

— We define a scheme of two rules to enable logical retraction of constraints
based on justifications in Section 4. We show that the rule scheme is confluent
with each rule in any given program, independent of the confluence of that
program. We show that logical retraction can undo rule applications. We
prove correctness of logical retraction in general and for confluent programs:
the result of a computation with retraction is the same as if the retracted
constraint was never introduced.

— We present an implementation of CHRY in CHR and Prolog (available on-
line) in Section 5 and show its correctness for confluent programs. We discuss
two classical examples for dynamic algorithms, maintaining the minimum of
a changing set of numbers and maintaining shortest paths in a graph whose
edges change.

— In Section 6 we optimize this implementation and show that correctness still

holds. In Section 7 we show its worst-case space and time complexity. We

prove that the costs of introduction of justifications and of logical retraction
are bounded by the derivation length in the original program.

The paper ends with discussion of related work in Section 8 and with conclusions
and directions for future work.

This paper is based on the approach of [Frul7b] and the improved implemen-
tation of [Frul7a]. In particular the correctness and complexity theorems appear
here for the first time.

2 Preliminaries

We recall the abstract syntax and the equivalence-based abstract operational
semantics of CHR in this section. We also informally describe the refined oper-
ational semantics typically realized in sequential implementations of CHR. For
parallel and concurrent CHR see [Frul8].

2.1 Abstract Syntax of CHR

Constraints are relations, distinguished predicates of first-order predicate logic.
We differentiate between two kinds of constraints: built-in (pre-defined) con-
straints and user-defined (CHR) constraints which are defined by the rules in a
CHR program. The built-in solver stores, combines, and simplifies the built-in
constraints. Built-in constraints can be used as tests in the guard as well as for
auxiliary computations in the body of a rule.

Upper-case letters stand for (possibly empty) conjunctions of constraints in
this paper.

Definition 1. A CHR program is a finite set of rules. A (generalized) simpaga-
tion rule is of the form

T Hl\Hg 54 C’B

where r : is an optional name (a unique identifier) of a rule. In the rule head (left-
hand side), H; and Hy are conjunctions of user-defined constraints, the optional
guard C| is a conjunction of built-in constraints, and the body (right-hand side)
B is a goal. A goal is a conjunction of built-in and user-defined constraints. A
state is a goal. Conjunctions are understood as multisets of their conjuncts.

In the rule, H; are called the kept constraints, while Hy are called the removed
constraints. At least one of H; and Hs must be non-empty. If H; is empty, the
rule corresponds to a simplification rule, also written

s: Hy & C|B.
If H, is empty, the rule corresponds to a propagation rule, also written

pH1:>C‘B

2.2 Abstract Operational Semantics of CHR

Computations in CHR are sequences of rule applications. The operational se-
mantics of CHR is given by the state transition system. It relies on a structural
equivalence between states that abstracts away from technical details in a tran-
sition [RBF09,Bet14].

State equivalence treats built-in constraints semantically and user-defined
constraints syntactically. Basically, two states are equivalent if their built-in
constraints are logically equivalent (imply each other) and their user-defined
constraints form syntactically equivalent multisets. For example,

X=<Y ANY=<XAc(X,)Y) = X=Y Ac(X,X) Z X=Y Ne(X,X) Nc(X, X).

For a state S, the notation Sy; denotes the built-in constraints of S and S,q
denotes the user-defined constraints of S.
Definition 2 (State Equivalence). Two states S1 = (S1pi A S1ua) and So =
(Sa2pi A Souq) are equivalent, written Sp = Ss, if and only if

= V(S — 39((S1ud = S2ud) A S2vi)) A V(S2pi = IT((S1ud = S2ud) A S1vi))

with T those variables that only occur in S; and g those variables that only
occur in Ss.

Using this state equivalence, the abstract CHR semantics is defined by a
single transition (computation step). It defines the application of a rule. Note
that CHR is a committed-choice language, i.e. there is no backtracking in the
rule applications.

Definition 3 (Transition). Let the rule (r : H;\Hy < C|B) be a variant! of
a rule from a given program P. The transition (computation step) S +—, T is
defined as follows, where S is called source state and T is called target state:

SE(Hl/\HQ/\C/\G) (TiHl\HQ@C’B)GP (Hl/\C/\B/\G)ET
S—,.T

The goal G is called context of the rule application. It remains unchanged. It is
arbitrary and may be empty.

A computation (derivation) of a goal S in a program P is a connected se-
quence S; —,, Si+1 beginning with the initial state (query) Sp that is S and
ending in a final state (answer, result) or the sequence is non-terminating (di-
verging). We may drop the reference to the rules r; to simplify the presentation.
The relation —* denotes the reflexive and transitive closure of —.

If the source state can be made equivalent to a state that contains the head
constraints and the guard built-in constraints of a variant of a rule, then we delete
the removed head constraints from the state and add the rule body constraints
to it. Any state that is equivalent to this target state is in the transition relation.
The abstract semantics does not account for termination of inconsistent
states and propagation rules. From a state with inconsistent built-in constraints,
any transition is possible. If a state can fire a propagation rule once, it can do
so again and again. This is called trivial non-termination of propagation rules.

Minimum Example, contd. Here is a possible transition from a state
S = (min(0) A min(2) A min(1)) to a state T' = (min(0) A min(1)):

S=(min(X)Amin(Y)ANX <YA(X=0AY =2Amin(1)))
(min(X)\min(Y) & X <Yl|true)
(min(X)ANX <Y AtrueN(X =0AY =2Amin(1))) =T
S—=T

2.3 Refined Operational Semantics of CHR

We follow the exposition in [SF06] in this subsection. Given a query, the rules of
the program are applied to exhaustion. A rule is applicable, if its head constraints
are matched by constraints in the current goal one-by-one and if, under this
matching, the guard check of the rule holds. More formally, the guard is logically
implied by the built-in constraints in the goal.

Any of the applicable rules can be applied, and the application cannot be
undone, it is committed-choice (in contrast to Prolog). When a simplification
rule is applied, the matched constraints in the current goal are replaced by the
body of the rule, when a propagation rule is applied, the body of the rule is
added to the goal without removing any constraints. When a simpagation rule
is applied, only the head constraints right to the backslash symbol are removed,
the head constraints before are kept.

! A variant (renaming) of an expression is obtained by uniformly replacing its variables
by fresh variables.

Active and Passive Constraints. As in Prolog, almost all sequential CHR
implementations execute queries and rule body constraints from left to right and
apply rules top-down in the textual order of the program. This behavior has been
formalized in the so-called refined semantics that was also proven to be a con-
cretization of the standard operational semantics [DSGHO04]: Every computation
in the refined semantics has a corresponding derivation in the abstract semantics,
but the converse does not hold. In this refined semantics of actual implementa-
tions, a CHR constraint in a query can be understood as a procedure that goes
efficiently through the rules of the program in the order they are written.

We consider such a constraint to be active. When it matches a head constraint
of a rule, it will look for the other, partner constraints of the head in the constraint
store and check the guard until an applicable rule is found. If the active constraint
has not been removed after trying all rules, it will be delayed and put into the
constraint store as data. Constraints from the store will be reconsidered (woken)
if newly added built-in constraints constrain variables of the constraint, because
then rules may become applicable since their guards may now hold. Note that
the order in which constraints are woken is not fixed in the refined semantics.
This allows for optimized data structures for the constraint store that support
indexing.

Indexing in CHR. For optimal time complexity, (near) constant-time ad-
dition and deletion of CHR constraints is required. Moreover, finding all con-
straints with a particular value in a particular argument position should be
constant-time. To achieve this efficiency, CHR implementations typically pro-
vide for indexing on arguments of constraints. Most current CHR libraries in
Prolog are based on the KU Leuven CHR system [SD04]. This generic CHR
implementation supports indexing for terms via attributed variables based on
the principles laid out in [VW10]. In SWI Prolog that we used for implementa-
tion, the CHR library also supports hash tables for ground terms and arrays for
dense integers. The hash table based indexes in SWI Prolog work at the argu-
ment level. For efficient constraint lookups, these arguments have to be ground
during computation.

3 CHR with Justifications (CHRY)

We present a conservative extension of CHR by justifications. If they are not
used, programs behave as without them. Justifications annotate atomic CHR
constraints. A simple source-to-source transformation extends the rules with
justifications. We restrict given CHR programs to rules without built-in con-
straints in the body except true and false. This restriction is necessary as long
as built-in constraint solvers do not support the removal of built-in constraints.

Definition 4 (CHR Constraints and Initial States with Justifications).
A justification f is a unique identifier. Given an atomic CHR constraint G, a CHR
constraint with justifications is of the form G¥', where F is a set of justifications.
An initial state with justifications is of the form A, G;.{f 7 Where the fi are
distinct justifications.

We now define a source-to-source translation from rules to rules with justifi-
cations. Let kill and rem (remove) be to unary reserved CHR constraint symbols.
This means they are only allowed to occur in rules as specified in the following.

Definition 5 (Translation to Rules with Justifications). Given a gener-
alized simpagation rule

l m n
r: NKi\ \RjeC| A\ By
i=1 j=1 k=1
Its translation to a simpagation rule with justifications is of the form
l m m n ! m
rf: /\KZFl \ /\ Rfj < O /\ rem(Rfj)F/\/\ B} where F = UFZUU F;.
i=1 j=1 j=1 k=1 i=1 j=1

The translation ensures that the head and the body of a rule mention exactly
the same justifications. More precisely, each CHR constraint in the body is an-
notated with the union of all justifications in the head of the rule, because its
creation is caused by the head constraints. The reserved CHR constraint rem/1
(remember removed) stores the constraints removed by the rule together with
their justifications.

Translating the minimum rule from the introduction to one with justifications
results in:

min(A)" \ min(C)? & A < C | F = FiUF, A rem(min(C)™2)F.

3.1 Operational Equivalence of Rule Applications

Let A, B,C' ... be states. For convenience, we will often consider them as multi-
sets of atomic constraints. Then the notation A—B denotes multiset difference,
A without B. To avoid clutter, let A7, BY CY ... stand for conjunctions (or
corresponding states) whose atomic CHR constraints are annotated with jus-
tifications according to the above definition of the rule scheme. Similarly, let
rem(R)7 denote a conjunction /\7]11 rem(Rfj)F.

We show that rule applications correspond to each other in standard CHR
and in CHRY.

Lemma 1 (Equivalence of Program Rules). There is a computation step
S —,. T with simpagation rule

T Hl\Hg 54 C|B

if and only if there is a computation step with justifications S +,; T A
rem(Hy)? with the corresponding simpagation rule with justifications

rf: HY\Hs < C|rem(Hy)” A BY.

Proof. We compare the two transitions involving rule r and rf, respectively:

(TZHl\H2<:>C’B)
SE(Hl/\HQ/\C/\G) (Hl/\C/\B/\G)ET
S, T

(rf: H/\Hs < C|rem(Hy)? A BY)
ST =HI ANHS NCANGT) (HI NACABI ANGT) =TI Arem(Hy)”
ST 5,5 TI A rem(Ha)7

Given the standard transition with rule r, the transition with justifications
with rule rf is always possible: The rule rf by definition does not impose any
constraints on its justifications. The justifications in the rule body are computed
as the union of the justifications in the rule head, which is always possible.
Furthermore, the reserved rem constraints always belong to the context of the
transition (cf. Definition 3) since by definition there is no rule rf that can match
any of them.

Conversely, given the transition with justifications with rule rf, by the same
arguments, we can strip away? all justifications from it and remove rem(Hsy)”
from the rule and the target state to arrive at the standard transition with rule
T. O

Since computations are sequences of connected computation steps, this Lemma
implies that computations in standard CHR program and in CHRY correspond
to each other. Thus CHR with justifications is a conservative extension of CHR.

4 Logical Retraction Using Justifications

We use justifications to remove a CHR, constraint from a computation without
the need to recompute from scratch. This means that all its consequences due
to rule applications it was involved in are undone. CHR constraints added by
those rules are removed and CHR, constraints removed by the rules are re-added.
To specify and implement this behavior, we give a scheme of two rules, one for
retraction and one for re-adding of constraints. The reserved CHR constraint
kill(f) undoes all consequences of the constraint with justification f.

Definition 6 (Rules for CHR Logical Retraction). For each n-ary CHR
constraint symbol ¢ (except the reserved kill and rem), we add a rule to kill
constraints and a rule to revive removed constraints of the form:

kill : kill(f) \ GF < f € F | true
revive : kill(f) \ rem(GF) < f e F | G,
where G = ¢(X;,...,X,,), where X1,...,X,, are different variables.

Distinct variables in the arguments of ¢ are necessary to ensure that the rule
matches any instance of a ¢ constraint, independent of its actual arguments.
Note that a constraint may be revived and subsequently killed. This is the case
when both F,. and F' contain the justification f.

2 For a related strip function, see the proof of Theorem 3.

4.1 Confluence of Logical Retraction

Confluence of a program guarantees that any computation starting from a given
initial state can always reach equivalent states, no matter which of the appli-
cable rules are applied. There is a decidable, sufficient and necessary syntactic
condition to check confluence of CHR programs and to detect rule pairs that
lead to non-confluence when applied.

Definition 7 (Confluence, Joinability). Let A, B and C be states. If A —*
B and A —* C then B and C' are joinable.

Two states B and C' are joinable if there exist states Dy and Dy such that
B +—* Dy and C' —* Dy where D = Ds.

Theorem 1. [Abd97,AFM99] A terminating CHR program is confluent if and
only if all its critical pairs are joinable.

Decidability comes from the fact that there is only a finite number of critical
pairs to consider.

Definition 8 (Overlap, Critical Pair). Given two (not necessarily different)
simpagation rules whose variables have been renamed apart, K1\R; < C1|B;
and K5\Rs < C5|Bsy. Let Ay and As be non-empty conjunctions of constraints
taken from K3 A Ry and K3 A R, respectively. An overlap of the two rules is the
state consisting of the rules heads and guards:

((K1 /\Rl) —Al) /\KQ/\RQ/\Al :Ag/\cl /\02.

The critical pair are the two states that come from applying the two rules to
the overlap, where F = (A1=A3 A C1 A Cy):

(((Kl /\KQ/\RQ) —Ag)/\Bl NE <> ((Kl A Ry /\KQ) —Al)/\Bg/\E).

Note that the two states in the critical pair differ by Ry A By and Ry A Bs.

A critical pair is trivially joinable if its built-in constraints are inconsistent
or if both A; and Ay do not contain removed constraints [AFM99].

We are ready to show the confluence of the kill and revive rules with each
other and with each rule in any given CHR program. It is not necessary that
the given program is confluent. This means for any given program, the order
between applying applicable rules from the program and retracting constraints
can be freely interchanged. It does not matter for the result, if we kill a constraint
first or if we apply a rule to it and kill it and its consequences later.

Theorem 2 (Confluence of Logical Retraction). Given a CHR program
whose rules are translated to rules with justifications together with the kill
and revive rules. We assume there is at most one kill(f) constraint for each
justification f in any state. Then all critical pairs between the kill and revive
rules and any rule from the program with justifications are joinable.

Proof. There are several overlaps between various rules to consider.

10

There is only one overlap between the kill and revive rules,
kill : kill(f) \ G & f € F | true

revive : kill(f) \ rem(GF) < f e F | G'-,

since G¥" cannot have the reserved constraint symbol rem /1. The overlap is in
the kill(f) constraint. But since it is not removed by any rule, the resulting
critical pair is trivially joinable.

By our assumption, the only overlap between two instances of the kill rule
must have a single kill(f) constraint. Again, since it is not removed, the resulting
critical pair is trivially joinable. The same argument applies to the only overlap
between two instances of the revive rule.

Since the head of a simpagation rule with justifications from the given pro-
gram

rf: KI\R? < C | rem(R)? A BY

cannot contain reserved kill and rem constraints, these program rules cannot
have an overlap with the revive rule.

But there are overlaps between program rules, say a rule rf, and the kill rule.
They take the general form:

Eill(f) NKY AR ANGF=AT A feF A C,
where AF occurs in K7 A R7. This leads to the critical pair
(Kill(F) A (KT ART) = GFYNE <> Kill(f) N K7 A rem(R)? ABY AE),

where E = (GF=AY A feF A C). In the first state of the critical pair, the kill
rule has been applied and in the second state the rule rf. Note that AF is atomic
since it is equated to G in E. Since G has been removed in the first state and
GF=AF rule rf is no longer applicable in that state.

We would like to join these two states. The joinability between a rule rf and
the kill rule can be visualized by the diagram:

kill(f NKY AR NE

Eill(f) A ((KY AR7T) —GF)AE™ Eill(f) N K9 Arem(R)Y ABY ANE

revive™® kill™

We now explain this joinability result. The states of the critical pair differ. In
the first state we have the constraints R7 and have G¥ removed from K7 AR7
while in the second state we have the body constraints rem(R)7 A BY of rule
rf instead. Any constraint in rem(R)7 A B must include f as justification by
definition, because f occurred in the head constraint A" and E contains fcF.

The goal rem(R)7 contains rem constraints for each removed constraint from
R7 . But then we can use kill(f) with the revive rule to replace all rem constraints

11

by the removed constraints, thus adding R back again. Furthermore, we can use
kill(f) with the revive rule to remove each constraint in B | as each constraint in
BY contains the justification f. So rem(R)Y A B has been removed completely
and R7 has been re-added.

The two states may still differ in the occurrence of G (which is AT). In the
first state, G¥ was removed by the kill rule. Now if A¥ (G¥') was in R7, it has
been revived with R7. But then the kill rule is applicable and we can remove
AF again. In the second state, if A" was in R it has been removed together
with RY by application of rule rf. Otherwise, AF is still contained in K. But
then the kill rule is applicable to A" and removes it from K7. Now Af (GT)
does not occur in the second state either.

We thus have arrived at the first state of the critical pair. Therefore the
critical pair is joinable. ad

This means that given a state, if there is a constraint to be retracted, we can
either kill it immediately or still apply a rule to it and use the kill and revive
rules afterwards to arrive at the same resulting state.

Note that the confluence between the kill and revive rules and any rule from
the program is independent of the confluence of the rules in the given program.

4.2 Undoing of Rule Applications

From the proof of confluence in Theorem 2 we can see that killing a constraint
also undoes the rule application it was involved in. We can show that one can
undo the rule application, provided we do not kill the associated initial con-
straint. The following Lemma appears here for the first time.

Lemma 2 (Rule Undoing). Given a state A7 A GU} A Eill(f) where f does
not occur in A7 . Then any application of a rule that involves G/} can be undone
by applications of the kill and revive rules for kill(f):

It A7 AGYY AEill(f) —rp DT A Kill(f)

then DY A Kill(f) =it revive A7 A GYY A Kill(f)

Proof. The structure of the proof is very similar to that of the proof of
confluence in Theorem 2.
Given a simpagation rule with justifications

rf: KF\RY < Clrem(R)" A BF
Then the transition that applies the rule rf is as follows:
AT NGYY N Eill(f) —rp DT A KilI(S)
where A7 AGUY = KF ARFACAE and DY = KF Arem(R)Y ABY ACAE.

We also have that G/} occurs in K A R¥ in the source state K A R A
C A E. The justification f occurs in all constraints of rem(R)f" A BY in the

12

target state K A rem(R)Y A BY AC A E, because the rule application involved
G/}, Exhaustive application of the revive rule to rem(R)¥ will remove these
constraints and re-add RY. Exhaustive application of the kill rule to B will
remove these constraints. Therefore the resulting state is K ARFANC A E, i.e.
we are back to the source state. a

4.3 Correctness of Logical Retraction

We prove correctness of logical retraction: the result of a computation with
retraction is the same as if the constraint would never have been introduced in
the computation.

We show that given a computation starting from an initial state with a kill(f)
constraint that ends in a state where the kill and revive rules are not applicable,
i.e. these rules have been applied to exhaustion, then there is a corresponding
computation without constraints that contain the justification f.

Theorem 3 (Correctness of Logical Retraction). Given a computation
AT NG AKill(f) —=* BY A rem(R)T A Kill(f) A ritt revives

where f does not occur in A7. Then there is a computation without G/} and

kill(f)
(A7 —* BT A rem(R)7.

Proof. We distinguish between transitions that involve the justification f or
do not. A rule that applies to constraints that do not contain the justification f
will produce constraints that do not contain the justification. A rule application
that involves at least one constraint with a justification f will only produce
constraints that contain the justification f.

We now define a mapping from a computation with Gt} to a corresponding
computation without G/}, The mapping essentially strips away constraints that
contain the justification f except those that are remembered by rem constraints.
In this way, the exhaustive application of the revive and Fkill rules kill(f) is
mimicked.

strip(f, A7 A BT) .= strip(f, A7) A strip(f, BY)

strip(f, rem(GF1)¥2) .= strip(f,GT) if f € Fy

strip(f, GY') := true if G is an atomic constraint except rem/I and f € F
strip(f,GF) .= GF otherwise.

We extend the mapping from states to transitions. We keep the transitions
except where the source and target state are equivalent, in that case we replace
the transition — by an equivalence =. This happens when a rule is applied that
involves the justification f. The mapping is defined in such a way that in this
case the source and target state are equivalent. Otherwise a rule that does not
involve f has been applied. The mapping ensures in this case that all necessary
constraints are in the source and target state, since it keeps all constraints that

13

do not mention the justification f. For a computation step C7 +— D7 we define
the mapping as:

strip(f,C7 w,.¢p D7) := strip(f,C7) = strip(f, D7) if rule rf involves f
strip(f,C7 w5 D7) := strip(f,C7) 5,5 strip(f, D7) otherwise.

We next have to show is that the mapping results in correct state equivalences
and transitions. If a rule is applied that does not involve justification f, then it is
easy to see that the mapping strip(f, . ..)leaves states and transitions unchanged.

Otherwise the transition is the application of a rule rf from the program,
the rule kill or the rule revive where f is contained in the justifications. Let the
context EY be an arbitrary goal where f € 7. Then we have to compute

strip(f,Eill(F) NGE AN f € FANEY s kill(f) A EY)

strip(f, Kill(f) A rem(GF)E A f € FANEY s pepive kill(f) AGFe A ET)
strip(f, KY NRT NC ANEY w0 K9 Arem(R)Y ABT ANC AET)

and to show that equivalent states are produced in each case. The resulting
states are))
true A true A true A BV = true A EY

true A GFe A true A BV = true A GF A BT if fe&F,
true A true A true A B = true A true A BT if feF,
K7 ANRT ANCANET =K7 ART ACAET where f & J’,

where, given a goal A, the expression A7 " contains all constraints from A7 that
do not contain the justification f.

In the end state of the given computation we know that the revive and
kill rules have been applied to exhaustion. Therefore all rem(G*1)"2 where F,
contains f have been replaced by G by the revive rule. Therefore all standard
constraints with justification f have been removed by the kill rule (including
those revived), just as we do in the mapping strip(f,...). The end states are
indeed equivalent except for the remaining kill constraint. a

4.4 Strong Correctness for Confluent Programs

For confluent programs, Theorem 3 can be tightened.

Theorem 4 (Strong Correctness of Logical Retraction). Given a conflu-
ent CHR program P, its translation to a program with justifications P7 and a
computation in P7

AT NG AKill(f) —=* BT Arem(R)T A Kill(f) v,
where f does not occur in A7. Then for every computation

AT —* BT Arem(R)T o .

14

Proof. We first show that if the given CHR program P is confluent, so is its
translation PY. If P is confluent, so is the translation of its rules to rules with
justifications by Lemma 1. So all critical pairs are joinable. For P we also have
to add the kill and revive rules. By Theorem 2, all critical pairs between these
rules and rules from P7 are joinable. Hence all critical pairs between any pair
of rules in PY are joinable, therefore PV is confluent.

We now show the strong correspondence between the computations with and
without G/} and kill(f). The states BY Arem(R)7 Akill(f) and BT Arem(R)Y,
respectively, admit no further computation steps, they are final states. As P
is confluent, by definition any computation from a given initial state can always
reach equivalent states. This implies that for each initial state, there is a unique
final state in a terminating computation.

By Theorem 1, for any state

AT A G{f} VAN klll(f) —* C7 A klll(f) %kill,revivev

there exists a computation
AT o,

By confluence we know that
CT NEill(f) —* BT A rem(R)7 A Kill(f) v/ .

In this computation, the constraint kill(f) can never be active. Only the rules
kill and revive could apply to a kill(f) constraint. Initially kill(f) is not active,
because Theorem 1 presumes C7 A kill(f) ¥ kill revive, Where f does not occur
in A7. In the remaining computation, f cannot be reintroduced in another
constraint, because program rules do not apply to kill(f). Therefore the rules
kill and revive are never applicable with kill(f) and kill(f) can never become
active.

Hence for any transition, kill(f) will be in the context of the transition (cf.
Definition 3) and cannot impede the applicability of a rule. So the computation

CT AN kill(f) —* BT Arem(R)T A kill(f) v
has a corresponding computation
C7 w—* BY Arem(R) v

that only differs in that the constraint kill(f) is removed from every state.
From the above computations

A7 —* C7 and €7 —* BT A rem(R)7 v

it follows that
A7 —* BI Arem(R)7 o

Since the program is confluent and since BY A rem(R) is a final state, it is the
only possible final state for A7 . ad

15

5 Basic Implementation

As a proof-of-concept, we implement CHR with justifications (CHRY) in SWI-
Prolog using its CHR library. This prototype source-to-source transformation
is available online at http://pmx.informatik.uni-ulm.de/chr/translator/.
The translated programs can be run in Prolog or online systems like WebCHR.
As we will clarify in this section, for correctness of the implementation we have
to assume confluence of the given CHR program.

5.1 Direct Implementation

We give a straightforward direct implementation of constraints and rules ex-
tended by justifications.

Constraints with Justifications. CHR constraints annotated by a set
of justifications are realized by a binary infix operator ##, where the second
argument is a list of justifications:

C{FLF2,) g represented as C ## [F1,F2,...].

For convenience, we add rules that add a new justification to a given con-
straint C. For each constraint symbol ¢ with arity n there is a rule of the form

addjust @ c(X1,X2,...Xn) <=> c(X1,X2,...Xn) ## [F].

where the arguments of X1,X2, .. .Xn are different variables.
Rules with Justifications. A CHR simpagation rule with justifications is
translated as follows3:

l m l
rf:/\KiF"\ /\Rfj(:)C] Rrem(Rfj)F/\;\B,fwhereF:UFZ-UGFJ'
i=1 j=1 j=1 k=1 i=1 j=1

rf @ K1 ## FK1,... \ R1 ## FR1,... <=> C |
union([FK1,...FR1,...],Fs), rem(R1##FR1) ## Fs,...B1 ## Fs,...

where the auxiliary predicate union/2 computes the ordered duplicate-free union
of a list of lists.

Rules remove and revive. Justifications are represented as flags that are
initially unbound logical variables. This eases the generation of new unique jus-
tifications and their use in killing. Concretely, the reserved constraint kill(f) is
realized as built-in equality F=r, where r is an arbitrary unique constant. In
this way the justification variable gets bound, which is interpreted as setting
the corresponding flag. If kill(f) occurred in the head of a kill or revive rule, it
is moved to the guard as equality test F==r. Note that we rename rule kill to
remove in the implementation.

revive : kill(f) \ rem(CT)l' & fe F | Cte
kill : kill(f) \ CF < f € F | true

3 More precisely, a simplification rule is generated if there are no kept constraints and
a propagation rule is generated if there are no removed constraints.

16

revive @ rem(C##FC) ## Fs <=> member (F,Fs),F==r | C ## FC.
remove @ C ## Fs <=> member(F,Fs),F==r | true.

These rules are added before any other rule of the transformed program. Since
rules are tried in program order in the CHR implementation, the constraint C in
the second rule is not a reserved rem/1 constraint when the rule is applicable.
The check for set membership in the guards is expressed using the standard
nondeterministic Prolog built-in predicate member/2.

Logical Retraction with killc/1. We extend the translation to allow
for retraction of derived constraints. The constraint killc(C) logically retracts
one occurrence of a constraint C. The two rules killc and killr try to find
the constraint C. The killr rule applies in the case where constraint C has
been removed and is therefore now present in a rem constraint. The associated
justifications point to all initial constraints that where involved in producing
the constraint C. For retracting the constraint, it is sufficient to remove one of
its producers. This introduces a choice which is implemented by the member
predicate.

killc @ killc(C), C ## Fs <=> member(F,Fs),F=r.
killr @ killc(C), rem(C ## FC) ## _Fs <=> member(F,FC),F=r.

Note that in the killr rule, we bind a justification F from FC, because FC contains
the justifications of the producers of constraint C, while Fs also contains those
that removed it by a rule application.

5.2 Correctness

Since the rules in the implementation directly correspond to the abstract rules
given before, their correctness is easy to see. However this is not sufficient to show
correctness of the overall implementation. The proofs of our theorems we gave
are in the abstract semantics, the implementation is in the refined semantics.

The refined semantics is a proven refinement of the abstract one [DSGHO04]
essentially fixing the order of rule applications and constraint activations. Rules
are tried in the order in which they occur in the program. Constraints become
active in the order in which the occur in a state.

Every computation in the refined semantics has a corresponding derivation
in the abstract semantics [DSGHO04], but the converse does not hold. So we
may miss computations in the implementation that are possible in the abstract
semantics and that are necessary for the theorems of the previous section to
hold.

Counter-Example for Correctness. Consider the following program (we
use the untranslated code for readability):

a, b <=> e.
a, ¢c <=>f.
a, d <=> g.

and the query

17

?- a, b, d, c.
In the refined semantics, the only possible computation leads to
e, d, c.

while in the abstract semantics, any of the three program rules could be applied.
But this is not yet the problem. The problem is exemplified by the following
computation

7- a, d, c.
g, C.

compared to

?- a, b, d, ¢, killc(b).
f, d.

The difference in the final states is incorrect but occurs in the refined semantics:
constraints are activated from left to right and they are delayed (put into the
constraint store) when no rule is applicable to them. When killc(b) is reached
and becomes active, the constraints e, d, c are in the constraint store. Then
e will be killed, b will be revived and killed, and a will be revived, d, c stay in
the store. So a is now active. Since rules are applied in the order in which they
occur in the program, a will apply the rule a, ¢ <=> f which leads to the final
state given above.

Confluence for Correctness. The example program above is not confluent.
Confluence solves the problem, because it guarantees that any computation from
a given initial state can always reach equivalent states independent of the order
of constraint activations and rule applications. This implies that final states are
equivalent.

We now show that Theorem 4 which was formulated for the abstract se-
mantics also holds for the refined semantics for terminating programs and then
applies to our implementations.

In [DSGHO4] it is proven in Corollary 1 that if a CHR program is terminating
under the refined semantics and confluent under the abstract semantics, it is also
confluent under the refined semantics.

Since any computation in the refined semantics is also possible in the abstract
semantics [DSGHO4], the final states of any computation from a given initial
state must be equivalent in both semantics if the program is confluent in both
semantics.

For the correctness of our implementations, it is therefore a sufficient condi-
tion that the given CHR program to be extended with justifications is terminat-
ing and confluent.

5.3 Examples

We discuss two classical examples for dynamic algorithms, maintaining the min-
imum of a changing set of numbers and shortest paths when edges change.

18

Dynamic Minimum. Translating the minimum rule to one with justifica-
tions results in:

min(A)##B \ min(C)##D <=> A<C | union([B,D],E), rem(min(C)##D)##E.
The following shows an example query and the resulting answer in SWI-Prolog;:

?- min(1)##[A], min(O)##[B], min(2)##[C].
rem(min (1) ##[A])##[A,B], rem(min(2)##[C])##[B,C],
min (O) ##[B] .

The constraint min(0) remained. This means that 0 is the minimum. The con-
straints min (1) and min(2) have been removed and are now remembered. Both
have been removed by the constraint with justification B, i.e. min(0).

We now logically retract with killc the constraint min(1) at the end of the
query. The killr rule applies and removes rem(min (1) ## [A])##[A,B].

killr @ killc(C), rem(C ## FC) ## _Fs <=> member(F,FC),F=r.

In the rule body, the justification A is bound to r — to no effect, since there are
no other constraints with this justification:

7- min(1)##[A], min(0)##[B], min(2)##[C], killc(min(1)).
rem(min(2) ##[C])##[B,C], min(0)##[B].

On the other hand, if we retract the minimum min(0), the killc rule
killc @ killc(C), C ## Fs <=> member(F,Fs),F=r

applies. It removes min (0)##[B] and binds justification B. The two rem con-
straints for min(1) and min(2) have justification B as well, so these two con-
straints are re-introduced by applications of rule revive

revive @ rem(C##FC) ## Fs <=> member(F,Fs),F==r | C ## FC.

The minimum rule applies to these two revived constraints. Note that min(2)
is now removed by min(1) (before it was min(0)). The result is the updated
minimum, which of course is 1:

?- min(D)##[A], min(O)##[B], min(2)##[C], killc(min(0)).
rem(min(2)##[C1)##[A,C], min(1)##[B].

Dynamic Shortest Path. Given a graph with directed arcs e(X,Y), we
compute the lengths of the shortest paths between all pairs of reachable nodes:

% keep shorter of two paths from X to Y
pp @ p(X,Y,L1) \ p(X,Y,L2) <=> L1=<L2 | true.

% edges have a path of unit length

e @ e(X,Y) ==> p(X,Y,1).

% extend path in front by an edge

ep @ e(X,Y), p(Y,Z,L) ==> Li=:=L+1 | p(X,Z,L1).

19

The corresponding rules in the translated program are:

ppOp(A,B,C)##D \ p(A,B,E)##F <=> C=<E |
union([D,F],G), rem(p(A,B,E)##F)##G.
e Ge(A,B)##C ==> true | union([C],D), p(A,B,1)##D.
epCe (A,B)##C,p(B,D,E)##F ==> G is E+1 | union([C,F],H),p(A,D,G)##H.

Here is a sample query and its resulting answer.

?7- e(a,b)##[A]l, e(b,c)##[B], e(a,c)##[C].
rem(p(a, c, 2)##[A, B])##[A,B,C],

pla, b, D##[A], e(a, b)##[A],

p(b, c, D##[B], e(b, c)##[B],

pa, c, D##[C], e(a, c)##[C].

We see that a path of length 2 has been removed by the constraint e (a, c)##[C],
which produced a shorter path of length one. We next kill this constraint e (a,c).

7- e(a,p)##[A], e(b,c)##[B], e(a,c)##[C], kill(e(a,c)).
pla, b, D##[A], e(a, b)##[A],

p(b, c, 1)##[B], e(b, c)##[B],

p(a, c, 2)##[A,B].

Its path p(a,c,1) disappears and the removed path p(a,c,2) is re-added. We
can see that the justifications of a path contains are those from the edges in that
path. The same happens if we logically retract p(a,c,1) instead of e(a,c).

What happens if we remove p(a,c,2) from the initial query? The killr
rule applies. Since the path has two justifications, there are two computations
generated by the member predicate. In the first one, the constraint e(a,b) dis-
appeared, in the second answer, it is e(b,c). In both cases, the path cannot be
computed anymore, i.e. it has been logically retracted.

?7- e(a,b)##[A], e(b,c)##[B], e(a,c)##[C], kill(p(a,c,2)).
p(b, c, D##[B], e(b, c)##[B],
pla, c, D##[C], e(a, c)##[C]
p(a, b, D##IA], e(a, b)##[A],
pa, c, D##[C], e(a, c)##[C].

6 Optimizing the Implementation

We describe in this section the modifications for our improved implementations
following [Frul7a] and in the next section for the first time we formally show the
space and time complexity of this implementation.

We would like to avoid any overhead complexity-wise when computing with
justifications as long as we do not use them for retraction. We are ready to
accept a constant factor penalty. However, in the basic implementation, the
computation time of a union of justifications is linear in the size of its input

20

justification sets. So it depends on the number of initial justifications, i.e. the
number of constraints in the given query. A first idea to avoid this cost is to delay
this computation until it is needed due to a retraction. But we can actually go
farther in our constraint-based setting. We actually need never compute the
union of justifications, but will use the union constraints as data to find the
necessary justifications.

6.1 Optimized Implementation

To logically retract a constraint with justification F, we will use the constraints
killj(F), killone. The constraint killj (F) (kill justification) finds the initial
justifications from which justification F derived. The constraint killone will then
choose one initial justification for logical retraction. We first modify the rules
for the killc constraint accordingly.

killc @ killc(C), C ## Fs <=> killj(Fs), killone.
killr @ killc(C), rem(C ## FC) ## _Fs <=> killj(FC), killone.

The computation then proceeds in four phases as follows.

Phase 1 - Finding all initial justifications with ki11j. Since the delay-
ing union constraints are inactive data now, their arguments (which are justi-
fications) are unbound variables, except for occurrences of initial justifications,
which are represented as singleton lists.

The constraint killj has to find the union constraint with its justification
in the output and follow all its input justifications (which are represented by a
list). It will proceed recursively with the help of ki111 (kill list) until it reaches
an initial justification. We can stop if we see a justification again that we have
already seen using rule already_seen.

already_seen @ killj(F) \ killj(F) <=> true.
go_to_initial @ union(FL,F), killj(F) ==> killl(FL).

killl @ killl([]) <=> true.
killl @ killl([F|FL]) <=> killj(F), killl(FL).

If no computation caused by killj(F) is possible anymore, there is exactly
one killj constraint for every justification from which justification F derived.

Phase 2 - Choosing an initial justifications with killone. Then the
auxiliary constraint killone (kill one) becomes active and chooses one of the
initial justifications and removes it.

killit @ killone, killj([F]) <=> F=r, dorev.

In rule killit, we recognize an initial justification by its form [F]. The binding
of variable F to constant r marks it as to be killed and wakes up all constraints
in which this justification occurs. By this mechanism, the constraints can be
retracted and revived. The auxiliary constraint dorev (do revive) will be used
to delay the reviving of constraints. Note that the rule is applied exactly one.

21

Phase 3 - Killing justifications and removing constraints with F=[r].
Once an initial justification was chosen for retraction, we also have to kill all out-
put justifications of unions that have a killed justification as input justification,
i.e. we go forward using the union constraints®.

go_forward @ union(FL,F) <=> member(F1,FL),Fi==[r] | F=[r].
We remove constraints with killed justifications.
remove @ c(X1,..Xn,[r]) <=> true.

Note that we translate program constraints C with justifications F of the
form c(X1,..Xn)##F into c(X1,..Xn,F) to support argument-wise indexing if
necessary.

Phase 4 - Reviving constraints with dorev. Only when all constraints
have been removed, constraints are revived. This completes the logical retraction
and improves the performance of the subsequent partial recomputation. The
constraint dorev now triggers the re-addition of previously removed constraints.

revive @ dorev \ rem(c(X1,..Xn,FC),[r]) <=> c(X1,..Xn,FC).
clean_up @ dorev <=> true.

When all constraints have been revived, dorev is removed at the very end by
the last rule.

6.2 Correctness

To show correctness of the optimized implementation, we establish its equiva-
lence with the basic implementation which we already have shown correct.

Rewriting the optimized program. We first rewrite the rules of the opti-
mized implementation without changing its semantics. In this way we make the
relation to the basic version more explicit. Every built-in constraint F=[r] in
the body of a rule is replaced by the built-in constraints member (F2,F) ,F2=r,
where F2 is a new variable. Likewise, every built-in constraint F==r in the
guard of a rule is replaced by the built-in constraints member (F2,F) ,F2==r,
and every occurrence of [r] in the head of a rule is replaced by a new vari-
able® F, and member (F2,F) ,F2==r is added to the guard of the rule®. More-
over, c(X1,..Xn,F) is replaced by c(X1,..Xn)##F. This results in the following
rewritten optimized program:

already_seen @ killj(F) \ killj(F) <=> true.
go_to_initial @ union(FL,F), killj(F) ==> killl(FL).

killl @ killl([]) <=> true.
killl @ killl([F|FL]) <=> killj(F), killl(FL).

4 To avoid special cases, in the rule we use the term [r] as for initial justifications
instead of just r.

5 For initial justifications, F becomes [F].

¢ We assume in this subsection that the built-in member/2 is deterministic, meaning
that it will just delay if its second argument is a variable.

22

killit @ killone, killj([F]) <=> member(F2, [F]) ,F2=r, dorev.

go_forward @ union(FL,F) <=> member(F1,FL), member(F2,F1) ,F2==r |
member (F3,F) ,F3=r.

remove @ c(X1,..Xn)##F <=> member(F2,F),F2==r | true.

revive @ dorev \ rem(c(X1,..Xn)##FC)##F <=> member (F2,F) ,F2==r |
c(X1,..Xn,FC).

clean_up @ dorev <=> true.

When establishing the relationship to the basic version, it is easier to consider
the rules of the programs in backward order from the last to the first.

Correctness of the remove and revive rules. The rules remove and
revive are now identical to the ones in the basic version, except that dorev
must be present in the revive rule. What is left to show for correctness is that
the remaining rules lead to the same behavior as when union is evaluated in the
basic version and that a dorev constraint will be produced.

Correct meaning of the remaining rules. The remaining rules actually
express properties of union/2 with regard to justifications in its list arguments.

The rule go_forward says that if an element of a list in the input list FL is
bound to r, then it is also bound in the output list F.

Recall that logical retraction is expressed by the initial goal killj(FO0),
killone. The variable FO is now interpreted as list of justifications. Any con-
straint killj(F) occurring in the computation of the initial goal then means
that the list F only contains initial justifications from the list FO.

The rule killit says that if ki1l1j([F]) contains only justifications from FO
and it is an initial justification, then we can bind (and thus kill) it.

The rules go_to_intial and killl say that for each union(FL,F), if F con-
tains only justifications from FO, then all lists contained in the list FL do so as
well.

Finally, the rule already_seen removes duplicates of killj constraints.

Correct execution of the remaining rules. So far we have shown that
the meaning of the rules is correct. We have not shown yet that the execution
of these rules are sufficient to replace the evaluation of the union constraint in
the basic version of our program. We now proceed with the rules in the order as
given in the program, i.e. in the order in which they are executed in the refined
semantics.

In the basic version, we have direct access to the list of initial justifications
for a given constraint. The rules for killc/1 will then choose one of them. In the
optimized version, we have to find all initial justifications first by going through
union constraints starting from killj(F0), killone.

By the definition of union/2, all justifications in the first argument occur
in the second argument and vice versa. If there is a constraint union(FL,FO0),
then FO is an unbound variable in our optimized version, but we know that its
justifications are exactly those of FL. This kind of reasoning is made executable
by the rules go_to_intial and killl. Their correctness is easy to be seen due

23

to their minimality. It is also clear removing duplicates in rule already_seen
does not impede correctness, but improves performance by avoiding redundant
computations with duplicate killj constraints.

When an active killj (F) constraint cannot find a partner constraint union
anymore, we know that F must contain a single initial justification. When the
rules for killj have been applied to exhaustion, all initial justification have been
found. Thus the rules involving killj in Phase 1 of the optimized version choose
and bind an initial justification as do the rules for killc in the basic version.

In Phase 2 of our optimized implementation, killone becomes active and
by applying rule killit exactly once, it will choose a killj constraint with an
initial justification, and bind that justification to r, which wakes all constraints
in which this justification occurs. When the woken constraints are all processed,
dorev will become active.

The constraints that are woken are union/2, c/n+1, rem/2 constraints.
rem/2 constraints will delay again, they will be processed when dorev with rule
revive becomes active. ¢/n+1 constraints will be removed with rule remove.
The woken union/2 constraints will contain the bound justification in the first
argument. Therefore the guard of rule go_forward holds and the rule can be
applied. It will bind the justification in the second argument, which in turn will
wake further constraints. Rule go_forward will exhaustively bind justifications
in all arguments of union constraints that involve the chosen initial justification.

In this way all constraints that depend on the initial justification will be re-
moved and revived as in the basic implementation. Therefore Correctness The-
orem 4 also holds for the optimized implementation in the refined semantics
provided the given program is terminating and confluent.

7 Worst-Case Space and Time Complexity

We are interested in the computational overhead of introducing justifications
using our optimized program transformation and of performing logical retraction
in a given query. We will see that in both cases, the additional time and space
needed are proportional to the derivation length of the query in the worst case.
We will also show that this overhead may increase space complexity, but does not
change the time complexity with regard to the original untransformed program.

We give upper-bounds for the worst-case space and time complexity of the
overhead for justifications by inspecting the rules of our transformed program.
Let A be a query (initial state) for a given program P without justifications. Let
A7 be this query and P be this program extended with justifications according
to the optimized implementation of the source-to-source-transformation in Sec-
tion 6. Note that A and thus A7 do not contain constraints for logical retraction
(killc, killj, killonme,...). Let ¢ be the number of CHR constraints in the
query A. Let k be the largest number of head or body constraints of a rule in
the program P. Note that k is a constant for a given program. Let n be the
derivation length of a computation for query A in program P, i.e. the number

24

of rule applications (transitions). Since a rule application takes at least constant
time, the time complexity of the original program cannot be better than O(n).

In the refined semantics, rules are applied in textual order of the program
and that queries and body constraints are activated in textual order. We assume
that argument-wise indexing is available as described in Section 2.3. We assume
that constraints can be added (inserted) in constant time. We assume that if a
variable is bound, only the constraints that contain that variable are considered
for re-activation (waking). These assumptions hold for most sequential CHR
implementations [SF06,DSGH04,VW10].

Recall the rules for handling logical retraction from Section 6:

already_seen @ killj(F) \ killj(F) <=> true.
go_to_initial @ union(FL,F), killj(F) ==> killl(FL).

killl @ killl([]) <=> true.
killl @ killl([F|FL]) <=> killj(F), killl(FL).

killit @ killomne, killj([F]) <=> F=r, dorev.
go_forward @ union(FL,F) <=> member(F1,FL),Fi==[r] | F=[r].

remove @ c(X1,..Xn,[r]) <=> true.
revive @ dorev \ rem(c(X1,..Xn,FC),[r]) <=> c(X1,..Xn,FC).
clean_up @ dorev <=> true.

We start with the following lemma.

Lemma 3 (Constant Time Justification Handling Rule Application).
All rule tries (application attempts) and rule applications for handling logical
retraction take constant time.

Proof. Constant time of rule application attempts is mostly achieved by
indexing on the arguments that contain a justification:

— rule already_seen and rule go_to_initial use the index on the justifica-
tion F,

— rules killl use an index to distinguish between empty and non-empty lists,

— rule killit uses an index to find a singleton justification in a list,

— rule go_forward involves a single head constraint and has a guard where the
member predicate has to go through a list of k£ justifications at most, but k
is a constant,

— rule remove and rule revive use the index on the justification F,

— rule clean_up involves a single head constraint.

Furthermore, constant time rule applications are possible: The number of
constraints in a rule is always bounded and by our assumption body constraints
of a rule can be added (inserted) in constant time. O

25

7.1 Overhead of Justifications

We determine the overhead in terms of space and time for introducing justifica-
tions.

Lemma 4 (Space Complexity of Overhead for Justifications). Execu-
tion of a query A7 in the transformed program P has an overhead in space
proportional to the derivation length n of the query A in the original program
P.

Proof. The query A7 is without logical retraction, so only the transformed
rules of the original program apply. From Lemma 1 we can conclude that these
rules can be applied in the same way as the original rules for query A.

Recall that each rule of the original program is transformed according to the
following scheme (see Section 3):

rf @ K1 ## FK1,... \ R1 ## FR1,... <=> C |
union([FK1,...FR1,...],Fs), rem(R1##FR1) ## Fs,...B1 ## Fs,...

Each application of the transformed rule with justifications introduces in addi-
tion to the at most k original body constraints one union constraint with a list of
at most k elements and one new justification Fs and at most k rem constraints,
where k is a constant. The additional rules handling justifications in case of log-
ical retraction will not be applied, so no space is needed for their constraints.
Therefore the number of constraints additionally introduced is proportional to
the number of rule applications n. ad

So in order to compute the space complexity of the query A7 in transformed
program PY, O(n) has to be added to the space complexity of the query A in
the original program P.

We next determine the overhead in terms of time for introducing justifica-
tions.

Lemma 5 (Time Complexity of Overhead for Justifications). Execu-
tion of a query A7 in the transformed program PY has an overhead in time
proportional to the derivation length n of the query A in the original program
P.

Proof. Without logical retraction in query A7, only the transformed rules
of the original program apply. From Lemma 1 we can conclude that these rules
can be applied with the same derivation length and the same time complexity
as the original rules.

The additional rules handling justifications in case of logical retraction” will
not be applicable, but may be tried by the constraints in the body of the applied
program rule. There are at most ¥ CHR constraints: one union constraint, rem
constraints and CHR constraints with justifications. By Lemma 3, these rule
application attempts each take constant time. Their number is proportional to
n in the worst case. So they do not add to the overall time complexity. a

7 See the proof of forthcoming Lemma 7 for a related discussion of these rules.

26

The time complexity of the query A7 in transformed program P is the same as
the time complexity of the query A in the original program P. It is at least O(n).
The introduction of justifications without logical retraction does not increase the
time complexity of the original program.

7.2 Overhead of Logical Retraction

We now consider the complexity of performing logical retraction. We can deter-
mine the overhead involved in handling the logical retraction itself. The addi-
tional time and space needed for partial recomputation, i.e. for the execution of
revived constraints on the other hand depends on the given program. We there-
fore cannot include it in the overhead considered below. Logical retraction pays
off if these additional costs in terms of execution time are less than recomputing
the original query from scratch with the retracted initial constraint removed.

To logically retract constraints with justification F, we use the query A7 A
killj(F) A killone. The constraint killj proceeds recursively through the
union constraints to find the initial justifications associated with the justification
F. Then the constraint killone chooses one initial justification. Its associated
initial constraint from the query is removed and all its consequences (rule appli-
cations) are undone by removing and reviving constraints that derive from the
initial constraint.

Lemma 6 (Time Complexity of Overhead for Logical Retraction). Ex-
ecution of a logical retraction with query A7 Akillj(F) Akillone in the trans-
formed program PY has an overhead in time proportional to the derivation
length n of the query A in the original program P in the worst case.

Proof. We first recall the basic workings of the rules for handling logical re-
traction. The nested recursion of constraints killj and killl goes along the jus-
tification in the union constraints with the rules already_seen, go_to_initial
and killl. An initial justification is choosen by the constraint killone in the
rule killit. It binds the justification variable. This will wake up all constraints
in which the variable occurs. These are all union constraints and all rem and
program constraints that have this justification. Thus the rule go_forward and
remove are immediately applicable, while the revive rule applications have to
wait for the constraint dorev. It is added after the binding of the justification
in rule killit.

By assumption, rules and constraints are applied in textual order. Thus rule
already_seen ensures that all killj constraints have different justifications as
arguments. Any duplicate constraint will be immediately removed. In a query
with a derivation of length n, there are exactly n union constraints with up
to k (a constant) old justifications in the list argument and one new justifica-
tion, all different from each other. There are ¢ initial justifications (one for each
initial constraint in the query). Hence there can only be up to ¢ + n different
justifications as well as killj constraints. Each of the n rule applications also
produces at most k rem constraints and k body constraints with justifications.

27

Thus there are at most kn such constraints. Finally, there will be one killone
and one dorev constraint.

By Lemma 3 we already know that all rule tries (application attempts) and
rule applications for handling logical retraction take constant time. We now
consider how often rules can be tried and applied in the worst case.

— rule already_seen: The rules for killl produce at most kn killj con-
straints (see below). Thus the rule is tried for at most kn times. Duplicate
killj constraints will be immediately removed. At most c+n different killj
constraints remain where the rule was not applicable. Note this number is
bounded by kn, the number of killj constraints produced in the first place.

— rule go_to_initial: There are at most kn rule application attempts, one
for each killj constraint. Since all killj constraints are different, there are
at most n rule applications, one for each union constraint. They produce at
most n killl constraints.

— rules killl: Each of the up to n killl constraints involves at most k justifi-
cations and therefore the rules produce at most kn killj constraints which
are subjected to rule already_seen.

— rulekillit: The single killone constraint form the query chooses one killj
constraint with an initial justification, binds this justification and adds a
single dorev constraint in constant time.

— rule go_forward: There are at most n unions that can be tried. At most n
justifications can be bound by resulting rule applications.

— rule remove: There are at most kn program constraints that can be tried
and possibly be removed.

— rule revive: There is a single dorev constraint. There are at most kn rem
constraints that can be tried and possibly be replaced by program con-
straints.

— rule clean_up: It applies in constant time for the one dorev constraint.

For each rule, this gives at most kn rule application attempts and at most
kn rule applications that each need constant time. O

The time complexity of a logical retraction with query A7 Akillj(F)Akillone
in the transformed program P7 without the cost for partial recomputation of
revived constraints is not worse than that the time complexity of the query A
without logical retraction in the original program P. It is at least O(n).

We consider the space complexity that is involved in these rule applications.

Lemma 7 (Space Complexity of Overhead for Logical Retraction). Ex-
ecution of a logical retraction with the query A7 Akillj(F) Akillone in the
transformed program P has an overhead in space proportional to the derivation
length n of the query A in the original program P in the worst case.

Proof. We already know from the proof of Lemma 6 that there can only be
up to kn different killj constraints at a time. For these, we need space. Rules
that do not produce killj constraints do not increase the number of constraints
and thus do not increase the space needed:

28

— rule already_seen frees space by removing one constraint.

— rule go_to_initial produces a killl constraint that is immediately re-
duced.

— rules killl always reduce a killl constraint to up to k killj constraints.

— rule killit removes two constraints and adds two constraints.

— rule go_forward removes a constraint and adds a built-in constraint.

— rule remove frees space by removing one constraint.

— rule revive replaces a rem constraints by another constraint.

— rule clean_up frees space by removing one constraint.

So we need additional space for up to kn killj constraints. a

The space complexity of a logical retraction with the query A7 A killj(F) A
killone in the transformed program P without the cost for partial recompu-
tation of revived constraints is not worse than the space complexity of the query
A7 in the transformed program P . The latter has a complexity not better than
O(n).

We now summarize our Lemmata on space and time complexity of the over-
head for logical retraction in a Theorem.

Theorem 5 (Space and Time Complexity of Overhead for Logical Re-
traction with Justifications). Given a program P and a query A with deriva-
tion length n. The time complexity of the query A is at least O(n) since a rule
application takes at least constant time.

Execution of a query with justifications A7 in the transformed program P
has an overhead in space and time proportional to the derivation length n (Proofs
in Lemma 4 and Lemma 5).

Execution of a logical retraction with query A7 Akil1j(F) Akillone in the
transformed program P has an overhead in space and time proportional to the
derivation length n in the worst case. (Proofs in Lemma 7 and Lemma 6).

O

The introduction of justifications increases the space complexity of the query
A7 by O(n), but does not increase the time complexity compared to query A.
The space and time complexity of the query A7 Akillj(F) A killone without
the cost for partial recomputation of revived constraints is not worse than the
space and time complexity of the query AY. Thus we pay with space for the
introduction of justifications, while the time complexity is unchanged. Logical
retraction does not further increase time and space complexity. These complexity
results are supported by the experiments and benchmarks reported in the paper
[Frul7a).

8 Related Work

The idea of introducing justifications into CHR is not new. The thorough work of
Armin Wolf on Adaptive CHR [WGGO00] was the first to do so. Different to our
work, this technically involved approach requires to store detailed information

29

about the rule instances that have been applied in a derivation in order to undo
them. In our approach, we use a straightforward source-to-source transformation
and retract constraints one-by-one instead. Adaptive CHR had a low-level im-
plementation in Java [Wol01], while we give an implementation in CHR itself by
a straightforward source-to-source transformation that we prove confluent and
correct. Moreover we prove confluence of the rule scheme for logical retraction
with the rules of the given program. The application of adaptive CHR consid-
ered dynamic constraint satisfaction problems (DCSP) only, in particular for
the implementation of search strategies [Wol05], while we apply our approach
to arbitrary algorithms in order to make them fully dynamic. Adaptive CHR
requires a dynamic unification algorithm using justifications [Wol98]. With this
extension, built-in constraints of syntactic equality can be handled in the body
of rules.

The issue of search strategies was further investigated by Leslie De Koninck
et. al. [DKSDO0S8]. They introduce a flexible search framework in CHRY (CHR
with disjunction) extended with rule and search branch priorities. In their work,
justifications are introduced into the semantics of CHRY to enable dependency-
directed backtracking in the form of conflict-directed backjumping.

The work of Jeremy Wazny et. al. [SSWO03] introduced informally a particular
kind of justifications into CHR for the specific application of type debugging
and reasoning in Haskell. Justifications correspond to program locations in the
given Haskell program. Unlike other work, the constraints in the body of CHR
rules have given justifications to which justifications from the rule applications
are added at runtime. The justifications are used to find minimal unsatisfiable
subsets of constraints.

The more recent work of Gregory Duck [Ducl2] introduces SMCHR, a tight
integration of CHR with a Boolean Satisfiability (SAT) solver for quantifier-
free formulae including disjunction and negation as logical connectives. It is
mentioned without giving further details that for clause generation, SMCHR
supports justifications for constraints that include syntactic equality constraints
between variables. According to one reviewer, such SMT solvers also track jus-
tifications in the form of a unique SAT variable for each constraint, and rule
application is encoded as a SAT clause.

Our work does not need a new semantics for CHR, nor its extension with
disjunction, it rather relies on a source-to-source transformation within the stan-
dard semantics. Our work does not have a particular application of justifications
in mind, but rather provides the basis for any type of application that requires
dynamic algorithms.

9 Conclusions

In this paper, the basic framework for CHR with justifications (CHRY) has been
established, formally analyzed and implemented. We defined a scheme of two
rules that introduces justifications into a subset of CHR as a conservative exten-
sion. Justifications enable logical retraction of CHR constraints. If a constraint

30

is retracted, the computation is adapted and continues as if the constraint never
was introduced. We proved confluence and correctness of the two-rule scheme
that encodes the logical retraction.

We presented a basic implementation using a straightforward source-to-source
transformation (available for use online) and gave two classical examples for dy-
namic algorithms. We improved this implementation. We showed correctness of
the implementations for confluent programs.

In the optimized implementation, the computational overhead of introducing
justifications and of performing logical retraction, i.e. the additional time and
space needed, is proportional to the derivation length in the original program
without justifications. This overhead may increase space complexity, but does not
change the worst-case time complexity. We pay with space for the introduction
of justifications, while a logical retraction does not further increase complexity.

Our approach currently applies to CHR rules without built-in constraints in
the body, since built-in constraint solvers do not support removal of constraints.
But built-in constraints can be re-implemented in CHR. For the implementa-
tions, our correctness results only apply to confluent programs. But then, a
non-confluent program does not guarantee identical outcomes in the first place.

Future work could investigate along three themes: dynamic algorithms, im-
plementation aspects and application domains of CHR with justifications.

— First, we would like to research how logical as well as classical algorithms
implemented in CHR behave when they become dynamic.

— Second, we would like to further improve the implementation, analyse and
benchmark it. Currently, the entire history of removed constraints is stored.
It could suffice to remember only a partial history.

— Third, the rule scheme can be extended to support typical application do-
mains of justifications: explanation of derived constraints (for debugging),
detection and repair of inconsistencies (for error diagnosis), and nonmono-
tonic logical behaviors (e.g. default logic, abduction, defeasible reasoning).

Acknowledgements. We thank Daniel Gall for implementing the online
transformation tool for the basic implementation of CHRY. We also thank the
anonymous reviewers for their helpful suggestions on how to improve the paper.
In particular, they asked for correctness results for the implementations.

References

[Abd97] Slim Abdennadher. Operational semantics and confluence of constraint prop-
agation rules. In G. Smolka, editor, CP ’97: Proc. Third Intl. Conf. Principles
and Practice of Constraint Programming, volume 1330 of LNCS, pages 252—
266. Springer, 1997.

[AFM99] Slim Abdennadher, Thom Frihwirth, and Holger Meuss. Confluence and
semantics of constraint simplification rules. Constraints, 4(2):133-165, 1999.

[Bet14] Hariolf Betz. A wunified analytical foundation for constraint handling rules.
BoD, 2014.

31

[BMO06] Kenneth N Brown and Ian Miguel. Uncertainty and change, chapter 21. Hand-
book of Constraint Programming, pages 731-760, 2006.

[DKSDO08] Leslie De Koninck, Tom Schrijvers, and Bart Demoen. A flexible search
framework for chr. In Constraint Handling Rules — Current Research Topics,
volume LNAI 5388, pages 16—47. Springer, 2008.

[DSGHO04] Gregory J. Duck, Peter J. Stuckey, Marfa Garcia de la Banda, and Christian
Holzbaur. The refined operational semantics of Constraint Handling Rules. In
B. Demoen and V. Lifschitz, editors, ICLP ’0/4, volume 3132 of LNCS, pages
90-104. Springer, September 2004.

[Ducl?2] Gregory J Duck. SMCHR: Satisfiability modulo constraint handling rules.
Theory and Practice of Logic Programming, 12(4-5):601-618, 2012.

[FR18] Thom Frithwirth and Frank Raiser, editors. Constraint Handling Rules -
Compilation, Ezecution, and Analysis. BOD, ISBN 9783746069050, January
2018.

[Fri09] Thom Frihwirth. Constraint Handling Rules. Cambridge University Press,
20009.

[Friil5] Thom Frithwirth. Constraint handling rules — what else? In Rule Technolo-
gies: Foundations, Tools, and Applications, pages 13-34. Springer Interna-
tional Publishing, 2015.

[Frul7a] Thom Fruehwirth. Implementation of Logical Retraction in Constraint Han-
dling Rules with Justifications. In 21st International Conference on Applica-
tions of Declarative Programming and Knowledge Management (INAP 2017),
September 2017.

[Frul7b] Thom Fruehwirth. Justifications in Constraint Handling Rules for Logical
Retraction in Dynamic Algorithms. 27th International Symposium on Logic-
Based Program Synthesis and Transformation LOPSTR 2017, 2017.

[Frul8] Thom Fruehwirth. Parallelism, concurrency and distribution in constraint
handling rules: A survey. Theory and Practice of Logic Programming, 18(5-
6):759-805, 2018.

[McA90] David A McAllester. Truth maintenance. In AAAI, volume 90, pages 1109—
1116, 1990.

[RBF09] Frank Raiser, Hariolf Betz, and Thom Frithwirth. Equivalence of CHR
states revisited. In F. Raiser and J. Sneyers, editors, CHR ’09, pages 33—
48. K.U.Leuven, Dept. Comp. Sc., Technical report CW 555, July 2009.

[SD04] Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implemen-
tation and application. In Th. Frithwirth and M. Meister, editors, CHR ’04,
Selected Contributions, pages 8-12, May 2004.

[SF06] T. Schrijvers and T. Frithwirth. Optimal union-find in constraint han-
dling rules, programming pearl. Theory and Practice of Logic Programming
(TPLP), 6(1), 2006.

[SSWO03] Peter J Stuckey, Martin Sulzmann, and Jeremy Wazny. Interactive type
debugging in haskell. In Proceedings of the 2003 ACM SIGPLAN workshop
on Haskell, pages 72-83. ACM, 2003.

[VW10] Peter Van Weert. Efficient lazy evaluation of rule-based programs. IEEE
Transactions on Knowledge and Data Engineering, 22(11):1521-1534, Novem-
ber 2010.

[WGGO00] Armin Wolf, Thomas Gruenhagen, and Ulrich Geske. On the incremental
adaptation of CHR derivations. Applied Artificial Intelligence, 14(4):389-416,
2000.

32

[Wol98] Armin Wolf. Adaptive solving of equations over rational trees. In Principles
and Practice of Constraint Programming, pages 475-475, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[Wol01] Armin Wolf. Adaptive constraint handling with chr in java. In International
Conference on Principles and Practice of Constraint Programming, pages 256—
270. Springer, 2001.

[Wol05] Armin Wolf. Intelligent search strategies based on adaptive constraint han-
dling rules. Theory and Practice of Logic Programming, 5(4-5):567-594, 2005.

33

REPLY TO REVIEWERS COMMENTS

We substantially revised and extended the paper, in particular, we added
several pages about correctness. We corrected all the typos and all minor prob-
lems mentioned by the reviewers. Below are answers to the larger issues raised.

Reviewer A:

- In Conclusions ”do not support removal of built-in constraints” we made
this more explicit in the abstract, introduction, main section and conclusions.

- In Conclusions ”adverse effects due to propagation history” after careful
reconsideration we realized that the problem is not with propagation rules, but
with non-confluent programs. So this is covered by the three newly added sub-
sections on correctness.

- ”proofs in abstract semantics, implementation in refined semantics” In the
theoretical part we strengthened Theorem 3 for confluent programs. We proved
correctness of the basic and of the optimized implementation for confluent pro-
grams in two new subsections.

- ”indexing, complexity of constraint retrieval” the indexing uses hash tables
and arrays, and those admit the required constant times. There is not need to
compare keys. As usual in the literature it is assumed that keys, pointers and
indices fit into the word memory size of the underlying computing system. It is
beyond the scope of the paper to explain the optimizing CHR compilers that
admit this constant-time efficiency, there is a wealth of literature about it, and we
added two new references. We also clearly state the complexity assumptions in
the implementation section and give references that show that these assumptions
hold in actual CHR implementations.

- "Prolog disjunction in body of choice rule” we removed the disjunction, it
is not necessary in the scope of this paper and it confused several readers.

- "related work on reversible computations” our work is not concerned with
reversing computations it is rather about removing parts of a computation us-
ing justifications. We still compute final states, we do not return to previous
states. For CHR and reversible computing, see e.g.: Zaki, A., Frithwirth, T. W.,
Abdennadher, S. (2013). Towards inverse execution of constraint handling rules.
Theory and Practice of Logic Programming, 13, 4-5.

- 7abstract too long” shortened and updated it.

Reviewer B:

- 7timings for improved implementation” it is beyond the scope of this paper
to present benchmark results. As said in the conclusions, this is future work
(but first results can be found in the companion papers from which this article
derived).

Reviewer C:
- we made the motivation for source-to-source transformation clearer follow-
ing the suggestions of the reviewer.

34

- we improved the section on related work following the suggestions of the
reviewer.

- ”consider reformulating the confluence results modulo and invariant” there
is no need to use such extended machinery, since the results already hold with
standard confluence, there are no tricky invariants and equivalence of states is
direct.

- 7a better motivating example” beyond minimum and shortest path would
be incomprehensible in the context of this paper due to its complexity when
several non-trivial rules are involved.

- "theoretical results should be extended to the optimized version as well”
In the theoretical part we strengthened Theorem 3 for confluent programs. We
proved correctness of the basic and of the optimized implementation for confluent
programs in two new subsections.

- ”interesting applications, realistic use cases” as said in the conclusions, this
is future work.

