
Justifications in Constraint Handling Rules for
Logical Retraction in Dynamic Algorithms

Thom Frühwirth

Ulm University, Germany
thom.fruehwirth@uni-ulm.de

Abstract. We present a straightforward source-to-source transforma-
tion that introduces justifications for user-defined constraints into the
CHR programming language. Then a scheme of two rules suffices to al-
low for logical retraction (deletion, removal) of constraints during com-
putation. Without the need to recompute from scratch, these rules re-
move not only the constraint but also undo all consequences of the rule
applications that involved the constraint. We prove a confluence result
concerning the rule scheme and show its correctness.

When algorithms are written in CHR, constraints represent both data
and operations. CHR is already incremental by nature, i.e. constraints
can be added at runtime. Logical retraction adds decrementality. Hence
any algorithm written in CHR with justifications will become fully dy-
namic. Operations can be undone and data can be removed at any point
in the computation without compromising the correctness of the result.

We present two classical examples of dynamic algorithms, written in our
prototype implementation of CHR with justifications that is available on-
line: maintaining the minimum of a changing set of numbers and shortest
paths in a graph whose edges change.

1 Introduction

Justifications have their origin in truth maintenance systems (TMS) [McA90]
for automated reasoning. In this knowledge representation method, derived in-
formation (a formula) is explicitly stored and associated with the information it
originates from by means of justifications. This dependency can be used to ex-
plain the reason for a conclusion (consequence) by its initial premises. With the
help of justifications, conclusions can be withdrawn by retracting their premises.
By this logical retraction, e.g. default reasoning can be supported and inconsis-
tencies can be repaired by retracting one of the reasons for the inconsistency. An
obvious application of justifications are dynamic constraint satisfaction problems
(DCSP), in particular over-constrained ones [BM06].

In this work, we extend the applicability of logical retraction to arbitrary
algorithms that are expressed in the programming language Constraint Handling
Rules (CHR) [Frü09,Frü15,FR18]. To accomplish logical retraction, we have to
be aware that CHR constraints can also be deleted by rule applications. These

2

constraints may have to be restored when a premise is retracted. With logical
retraction, any algorithm written in CHR will become fully dynamic1.

Minimum Example. Given a multiset of numbers min(n1), min(n2),...,

min(nk). The constraint (predicate) min(ni) means that the number ni is a can-
didate for the minimum value. The following CHR rule filters the candidates.

min(N) \ min(M) <=> N=<M | true.

The rule consists of a left-hand side, on which a pair of constraints has to be
matched, a guard check N=<M that has to be satisfied, and an empty right-hand
side denoted by true. In effect, the rule takes two min candidates and removes
the one with the larger value (constraints after the \ symbol are deleted). Note
that the min constraints behave both as operations (removing other constraints)
and as data (being removed).

CHR rules are applied exhaustively. Here the rule keeps on going until only
one, thus the smallest value, remains as single min constraint, denoting the cur-
rent minimum. If another min constraint is added during the computation, it
will eventually react with a previous min constraint, and the correct current
minimum will be computed in the end. Thus the algorithm as implemented in
CHR is incremental. It is not decremental, though: We cannot logically retract
a min candidate. While removing a candidate that is larger than the minimum
would be trivial, the retraction of the minimum itself requires to remember all
deleted candidates and to find their minimum. With the help of justifications,
this logical retraction will be possible automatically.

Contributions and Overview of the Paper. In the next section we recall
syntax and operational semantics for CHR. Our contributions are as follows:

– We introduce CHR with justifications (CHRJ) in Section 3. We enhance
standard CHR programs with justifications by a source-to-source program
transformation. We show the operational equivalence of rule applications in
both settings. Thus CHRJ is a conservative extension of standard CHR.

– We define a scheme of two rules to enable logical retraction of constraints
based on justifications in Section 4. We show that the rule scheme is con-
fluent with each rule in any given program, independent of the confluence
of that program. We prove correctness of logical retraction: the result of a
computation with retraction is the same as if the constraint would never
have been introduced in the computation.

– We present a proof-of-concept implementation of CHRJ in CHR and Prolog
(available online) in Section 5. We discuss two classical examples for dynamic
algorithms, maintaining the minimum of a changing set of numbers and
maintaining shortest paths in a graph whose edges change.

The paper ends with discussion of related work in Section 6 and with conclusions
and directions for future work.

1 Dynamic algorithms for dynamic problems should not be confused with dynamic
programming.

3

2 Preliminaries

We recall the abstract syntax and the equivalence-based abstract operational
semantics of CHR in this section. Upper-case letters stand for (possibly empty)
conjunctions of constraints in this paper.

2.1 Abstract Syntax of CHR

Constraints are relations, distinguished predicates of first-order predicate logic.
We differentiate between two kinds of constraints: built-in (pre-defined) con-
straints and user-defined (CHR) constraints which are defined by the rules in a
CHR program.

Definition 1. A CHR program is a finite set of rules. A (generalized) simpaga-
tion rule is of the form

r : H1\H2 ⇔ C|B
where r : is an optional name (a unique identifier) of a rule. In the rule head (left-
hand side), H1 and H2 are conjunctions of user-defined constraints, the optional
guard C| is a conjunction of built-in constraints, and the body (right-hand side)
B is a goal. A goal is a conjunction of built-in and user-defined constraints. A
state is a goal. Conjunctions are understood as multisets of their conjuncts.

In the rule, H1 are called the kept constraints, while H2 are called the removed
constraints. At least one of H1 and H2 must be non-empty. If H1 is empty, the
rule corresponds to a simplification rule, also written

s : H2 ⇔ C|B.

If H2 is empty, the rule corresponds to a propagation rule, also written

p : H1 ⇒ C|B.

In this work, we restrict given CHR programs to rules without built-in con-
straints in the body except true and false. This restriction is necessary as long
as built-in constraint solvers do not support the removal of built-in constraints.

2.2 Abstract Operational Semantics of CHR

Computations in CHR are sequences of rule applications. The operational se-
mantics of CHR is given by the state transition system. It relies on a struc-
tural equivalence between states that abstracts away from technical details in a
transition[RBF09,Bet14].

State equivalence treats built-in constraints semantically and user-defined
constraints syntactically. Basically, two states are equivalent if their built-in
constraints are logically equivalent (imply each other) and their user-defined
constraints form syntactically equivalent multisets. For example,

X=<Y ∧ Y =<X ∧ c(X,Y) ≡ X=Y ∧ c(X,X) 6≡ X=Y ∧ c(X,X) ∧ c(X,X).

For a state S, the notation Sbi denotes the built-in constraints of S and Sud

denotes the user-defined constraints of S.

4

Definition 2 (State Equivalence). Two states S1 = (S1bi ∧ S1ud) and S2 =
(S2bi ∧ S2ud) are equivalent, written S1 ≡ S2, if and only if

|= ∀(S1bi → ∃ȳ((S1ud = S2ud) ∧ S2bi)) ∧ ∀(S2bi → ∃x̄((S1ud = S2ud) ∧ S1bi))

with x̄ those variables that only occur in S1 and ȳ those variables that only
occur in S2.

Using this state equivalence, the abstract CHR semantics is defined by a
single transition (computation step). It defines the application of a rule. Note
that CHR is a committed-choice language, i.e. there is no backtracking in the
rule applications.

Definition 3 (Transition). Let the rule (r : H1\H2 ⇔ C|B) be a variant2 of
a rule from a given program P. The transition (computation step) S 7→r T is
defined as follows, where S is called source state and T is called target state:

S ≡ (H1 ∧H2 ∧ C ∧G) (r : H1\H2 ⇔ C|B) ∈ P (H1 ∧ C ∧B ∧G) ≡ T
S 7→r T

The goal G is called context of the rule application. It is left unchanged.

A computation (derivation) of a goal S in a program P is a connected se-
quence Si 7→ri Si+1 beginning with the initial state (query) S0 that is S and
ending in a final state (answer, result) or the sequence is non-terminating (di-
verging). We may drop the reference to the rules ri to simplify the presentation.
The notation 7→∗ denotes the reflexive and transitive closure of 7→.

If the source state can be made equivalent to a state that contains the head
constraints and the guard built-in constraints of a variant of a rule, then we delete
the removed head constraints from the state and add the rule body constraints
to it. Any state that is equivalent to this target state is in the transition relation.

The abstract semantics does not account for termination of inconsistent
states and propagation rules. From a state with inconsistent built-in constraints,
any transition is possible. If a state can fire a propagation rule once, it can do
so again and again. This is called trivial non-termination of propagation rules.

Minimum Example, contd. Here is a possible transition from a state
S = (min(0) ∧min(2) ∧min(1)) to a state T = (min(0) ∧min(1)):

S ≡ (min(X) ∧min(Y) ∧X ≤ Y ∧ (X = 0 ∧ Y = 2 ∧min(1)))
(min(X)\min(Y)⇔ X ≤ Y |true)

(min(X) ∧X ≤ Y ∧ true ∧ (X = 0 ∧ Y = 2 ∧min(1))) ≡ T
S 7→ T

2 A variant (renaming) of an expression is obtained by uniformly replacing its variables
by fresh variables.

5

3 CHR with Justifications (CHRJ)

We present a conservative extension of CHR by justifications. If they are not
used, programs behave as without them. Justifications annotate atomic CHR
constraints. A simple source-to-source transformation extends the rules with
justifications.

Definition 4 (CHR Constraints and Initial States with Justifications).
A justification f is a unique identifier. Given an atomic CHR constraint G, a CHR
constraint with justifications is of the form GF , where F is a set of justifications.

An initial state with justifications is of the form
∧n

i=1 G
{fi}
i where the fi are

distinct justifications.

We now define a source-to-source translation from rules to rules with justifi-
cations. Let kill and rem (remove) be unary reserved CHR constraint symbols.
This means they are only allowed to occur in rules as specified in the following.

Definition 5 (Translation to Rules with Justifications). Given a gener-
alized simpagation rule

r :

l∧
i=1

Ki \
m∧
j=1

Rj ⇔ C |
n∧

k=1

Bk

Its translation to a simpagation rule with justifications is of the form

rf :

l∧
i=1

KFi
i \

m∧
j=1

R
Fj

j ⇔ C |
m∧
j=1

rem(R
Fj

j)F ∧
n∧

k=1

BF
k where F =

l⋃
i=1

Fi∪
m⋃
j=1

Fj .

The translation ensures that the head and the body of a rule mention exactly the
same justifications. More precisely, each CHR constraint in the body is annotated
with the union of all justifications in the head of the rule, because its creation is
caused by all of the head constraints. The constraint rem/1 (remember removed)
stores the constraints removed by the rule together with their justifications.

3.1 Operational Equivalence of Rule Applications

Let A,B,C . . . be states. For convenience, we will often consider them as multi-
sets of atomic constraints. Then the notation A−B denotes multiset difference,
A without B. To avoid clutter, let AJ , BJ , CJ . . . stand for conjunctions (or
corresponding states) whose atomic CHR constraints are annotated with jus-
tifications according to the above definition of the rule scheme. Similarly, let

rem(R)J denote a conjunction
∧m

j=1 rem(R
Fj

j)F .

We show that rule applications correspond to each other in standard CHR
and in CHRJ .

6

Lemma 1 (Equivalence of Program Rules). There is a computation step
S 7→r T with simpagation rule

r : H1\H2 ⇔ C|B

if and only if there is a computation step with justifications SJ 7→rf TJ ∧
rem(H2)J with the corresponding simpagation rule with justifications

rf : HJ1 \HJ2 ⇔ C|rem(H2)J ∧BJ .

Proof. We compare the two transitions involving rule r and rf, respectively:

(r : H1\H2 ⇔ C|B)
S ≡ (H1 ∧H2 ∧ C ∧G) (H1 ∧ C ∧B ∧G) ≡ T

S 7→r T

(rf : HJ1 \HJ2 ⇔ C|rem(H2)J ∧BJ)
SJ ≡ (HJ1 ∧HJ2 ∧ C ∧GJ) (HJ1 ∧ C ∧BJ ∧GJ) ≡ TJ ∧ rem(H2)J

SJ 7→rf TJ ∧ rem(H2)J

Given the standard transition with rule r, the corresponding transition with
justifications with rule rf is always possible. The rule rf by definition involves
the same constraints (up to addition of justifications) as the standard rule r. It
does not impose any additional built-in constraints, in particular no constraints
on its justifications. The justifications in the rule body are computed as the union
of the justifications in the rule head, which is always possible. Furthermore, the
rem constraints in the rule body are simply added to the target state.

Conversely, given the transition with justifications with rule rf , we can strip
away3 all justifications from it and remove rem(H2)J from the rule and the
target state to arrive at the standard transition with rule r. ut

Since computations are sequences of connected computation steps, this lemma
implies that computations for program rules in CHR and in CHR with justi-
fications correspond to each other. Thus CHRJ is a conservative extension of
CHR.

4 Logical Retraction Using Justifications

We use justifications to remove a CHR constraint from a computation without
the need to recompute from scratch. This means that all its consequences due
to rule applications it was involved in are undone. CHR constraints added by
those rules are removed and CHR constraints removed by the rules are re-added.
To specify and implement this behavior, we give a scheme of two rules, one for
retraction and one for re-adding of constraints. The reserved CHR constraint
kill(f) undoes all consequences of the constraint with justification f .

3 For a related strip function, see the proof of Theorem 3.

7

Definition 6 (Rules for CHR Logical Retraction). For each n-ary CHR
constraint symbol c (except the reserved kill and rem), we add a rule to kill
constraints and a rule to revive removed constraints of the form:

kill : kill(f) \ GF ⇔ f ∈ F | true

revive : kill(f) \ rem(GFc)F ⇔ f ∈ F | GFc ,

where G = c(X1, . . . , Xn), where X1, . . . , Xn are different variables.

Note that a constraint may be revived and subsequently killed. This is the case
when both Fc and F contain the justification f .

4.1 Confluence of Logical Retraction

Confluence of a program guarantees that any computation starting from a given
initial state can always reach equivalent states, no matter which of the appli-
cable rules are applied. There is a decidable, sufficient and necessary syntactic
condition to check confluence of terminating programs and to detect rule pairs
that lead to non-confluence when applied.

Definition 7 (Confluence). If A 7→∗ B and A 7→∗ C then there exist states
D1 and D2 such that B 7→∗ D1 and C 7→∗ D2 where D1 ≡ D2.

Theorem 1. [Abd97,AFM99] A terminating CHR program is confluent if and
only if all its critical pairs are joinable.

Decidability comes from the fact that there is only a finite number of critical
pairs to consider.

Definition 8 (Overlap, Critical Pair). Given two (not necessarily different)
simpagation rules whose variables have been renamed apart, K1\R1 ⇔ C1|B1

and K2\R2 ⇔ C2|B2. Let A1 and A2 be non-empty conjunctions of constraints
taken from K1∧R1 and K2∧R2, respectively. An overlap of the two rules is the
state consisting of the rules heads and guards:

((K1 ∧R1)−A1) ∧K2 ∧R2 ∧A1 =A2 ∧ C1 ∧ C2.

The critical pair are the two states that come from applying the two rules to
the overlap, where E = (A1=A2 ∧ C1 ∧ C2):

(((K1 ∧K2 ∧R2)−A2) ∧B1 ∧ E <> ((K1 ∧R1 ∧K2)−A1) ∧B2 ∧ E).

Note that the two states in the critical pair differ by R2 ∧B1 and R1 ∧B2.
A critical pair is trivially joinable if its built-in constraints are inconsistent

or if both A1 and A2 do not contain removed constraints [AFM99].
We are ready to show the confluence of the kill and revive rules with each

other and with each rule in any given program. It is not necessary that the given
program is confluent. This means for any given program, the order between
applying applicable rules from the program and retracting constraints can be
freely interchanged. It does not matter for the result, if we kill a constraint first
or if we apply a rule to it and kill it and its consequences later.

8

Theorem 2 (Confluence of Logical Retraction). Given a CHR program
whose rules are translated to rules with justifications together with the kill
and revive rules. We assume there is at most one kill(f) constraint for each
justification f in any state. Then all critical pairs between the kill and revive
rules and any rule from the program with justifications are joinable.

Proof. There is only one overlap between the kill and revive rules,

kill : kill(f) \ GF ⇔ f ∈ F | true

revive : kill(f) \ rem(GFc)F ⇔ f ∈ F | GFc ,

since GF cannot have the reserved constraint symbol rem/1 . The overlap is in
the kill(f) constraint. But since it is not removed by any rule, the resulting
critical pair is trivially joinable.

By our assumption, the only overlap between two instances of the kill rule
must have a single kill(f) constraint. Again, since it is not removed, the resulting
critical pair is trivially joinable. The same argument applies to the only overlap
between two instances of the revive rule.

Since the head of a simpagation rule with justifications from the given pro-
gram

rf : KJ \RJ ⇔ C|rem(R)J ∧BJ

cannot contain reserved kill and rem constraints, these program rules cannot
have an overlap with the revive rule.

But there are overlaps between program rules, say a rule rf , and the kill rule.
They take the general form:

kill(f) ∧KJ ∧RJ ∧GF =AF ∧ f∈F ∧ C,

where AF occurs in KJ ∧RJ . This leads to the critical pair

(kill(f) ∧ ((KJ ∧RJ)−GF) ∧ E) <> (kill(f) ∧KJ ∧ rem(R)J ∧BJ ∧ E),

where E = (GF =AF ∧ f∈F ∧ C). In the first state of the critical pair, the kill
rule has been applied and in the second state the rule rf . Note that AF is atomic
since it is equated to GF in E. Since GF has been removed in the first state and
GF =AF , rule rf is no longer applicable in that state.

We would like to join these two states. The joinability between a rule rf and
the kill rule can be visualized by the diagram:

kill(f) ∧KJ ∧RJ ∧ E(
kill

tt

�
rf

))
kill(f) ∧ ((KJ ∧RJ)−GF) ∧ E oo

revive∗,kill∗
∗ �

kill(f) ∧KJ ∧ rem(R)J ∧BJ ∧ E

We now explain this joinability result. The states of the critical pair differ. In
the first state we have the constraints RJ and have GF removed from KJ ∧RJ ,

9

while in the second state we have the body constraints rem(R)J ∧ BJ of rule
rf instead. Any constraint in rem(R)J ∧ BJ must include f as justification by
definition, because f occurred in the head constraint AF and E contains f∈F .

The goal rem(R)J contains rem constraints for each removed constraint from
RJ . But then we can use kill(f) with the revive rule to replace all rem constraints
by the removed constraints, thus adding RJ back again. Furthermore, we can use
kill(f) with the revive rule to remove each constraint in BJ , as each constraint in
BJ contains the justification f . So rem(R)J ∧BJ has been removed completely
and RJ has been re-added.

The two states may still differ in the occurrence of GF (which is AF). In the
first state, GF was removed by the kill rule. Now if AF (GF) was in RJ , it has
been revived with RJ . But then the kill rule is applicable and we can remove
AF again. In the second state, if AF was in RJ it has been removed together
with RJ by application of rule rf. Otherwise, AF is still contained in KJ . But
then the kill rule is applicable to AF and removes it from KJ . Now AF (GF)
does not occur in the second state either.

We thus have arrived at the first state of the critical pair. Therefore the
critical pair is joinable. ut

This means that given a state, if there is a constraint to be retracted, we can
either kill it immediately or still apply a rule to it and use the kill and revive
rules afterwards to arrive at the same resulting state.

Note that the confluence between the kill and revive rules and any rule from
the program is independent of the confluence of the rules in the given program.

4.2 Correctness of Logical Retraction

We prove correctness of logical retraction. The result of a computation with
retraction is the same as if the retracted constraint would never have been in-
troduced in the computation. We show that given a computation starting from
an initial state with a kill(f) constraint that ends in a state where the kill and
revive rules are not applicable, i.e. these rules have been applied to exhaustion,
then there is a corresponding computation without constraints that contain the
justification f .

Theorem 3 (Correctness of Logical Retraction). Given a computation

AJ ∧G{f} ∧ kill(f) 7→∗ BJ ∧ rem(R)J ∧ kill(f) 67→kill,revive,

where f does not occur in AJ . Then there is a computation without G{f} and
kill(f)

AJ 7→∗ BJ ∧ rem(R)J .

Proof. We distinguish between transitions that involve the justification f or
do not. A rule that applies to constraints that do not contain the justification f
will produce constraints that do not contain the justification. A rule application

10

that involves at least one constraint with a justification f will only produce
constraints that contain the justification f .

We now define a mapping from a computation with G{f} to a corresponding
computation without G{f}. The mapping essentially strips away constraints that
contain the justification f except those that are remembered by rem constraints.
In this way, the exhaustive application of the revive and kill rules kill(f) is
mimicked.

strip(f,AJ ∧BJ) := strip(f,AJ) ∧ strip(f,BJ)
strip(f, rem(GF1)F2) := strip(f,GF1) if f ∈ F2

strip(f,GF) := true if G is an atomic constraint except rem/1 and f ∈ F
strip(f,GF) := GF otherwise.

We extend the mapping from states to transitions. We keep the transitions
except where the source and target state are equivalent, in that case we replace
the transition 7→ by an equivalence ≡. This happens when a rule is applied that
involves the justification f . The mapping is defined in such a way that in this
case the source and target state are equivalent. Otherwise a rule that does not
involve f has been applied. The mapping ensures in this case that all necessary
constraints are in the source and target state, since it keeps all constraints that
do not mention the justification f . For a computation step CJ 7→ DJ we define
the mapping as:

strip(f, CJ 7→rf DJ) := strip(f, CJ) ≡ strip(f,DJ) if rule rf involves f
strip(f, CJ 7→rf DJ) := strip(f, CJ) 7→rf strip(f,DJ) otherwise.

We next have to show is that the mapping results in correct state equivalences
and transitions. If a rule is applied that does not involve justification f , then it is
easy to see that the mapping strip(f, . . .) leaves states and transitions unchanged.

Otherwise the transition is the application of a rule rf from the program,
the rule kill or the rule revive where f is contained in the justifications. Let the
context EJ be an arbitrary goal where f ∈ J . Then we have to compute

strip(f, kill(f) ∧GF ∧ f ∈ F ∧ EJ 7→kill kill(f) ∧ EJ)

strip(f, kill(f) ∧ rem(GFc)F ∧ f ∈ F ∧ EJ 7→revive kill(f) ∧GFc ∧ EJ)

strip(f,KJ ∧RJ ∧ C ∧ EJ 7→rf KJ ∧ rem(R)J ∧BJ ∧ C ∧ EJ)

and to show that equivalent states are produced in each case. The resulting
states are

true ∧ true ∧ true ∧ EJ
′
≡ true ∧ EJ

′

true ∧GFc ∧ true ∧ EJ
′
≡ true ∧GFc ∧ EJ

′
if f 6∈ Fc

true ∧ true ∧ true ∧ EJ
′
≡ true ∧ true ∧ EJ

′
if f ∈ Fc

KJ
′
∧RJ

′
∧ C ∧ EJ

′
≡ KJ

′
∧RJ

′
∧ C ∧ EJ

′
where f 6∈ J ′,

where, given a goal A, the expression AJ
′

contains all constraints from AJ that
do not contain the justification f .

11

In the end state of the given computation we know that the revive and
kill rules have been applied to exhaustion. Therefore all rem(GF1)F2 where F2

contains f have been replaced by GF1 by the revive rule. Therefore all standard
constraints with justification f have been removed by the kill rule (including
those revived), just as we do in the mapping strip(f, . . .).

Therefore the end states are indeed equivalent except for the remaining kill
constraint. ut

5 Implementation

As a proof-of-concept, we implement CHR with justifications (CHRJ) in SWI-
Prolog using its CHR library. This prototype source-to-source transformation
is available online at http://pmx.informatik.uni-ulm.de/chr/translator/.
The translated programs can be run in Prolog or online systems like WebCHR.

Constraints with Justifications. CHR constraints annotated by a set
of justifications are realized by a binary infix operator ##, where the second
argument is a list of justifications:

C{F1,F2,...} is realized as C ## [F1,F2,...].

For convenience, we add rules that add a new justification to a given con-
straint C. For each constraint symbol c with arity n there is a rule of the form

addjust @ c(X1,X2,...Xn) <=> c(X1,X2,...Xn) ## [F].

where the arguments of X1,X2,...Xn are different variables.
Rules with Justifications. A CHR simpagation rule with justifications is

realized as follows:

rf :

l∧
i=1

KFi
i \

m∧
j=1

R
Fj

j ⇔ C |
m∧
j=1

rem(R
Fj

j)F ∧
n∧

k=1

BF
k where F =

l⋃
i=1

Fi∪
m⋃
j=1

Fj

rf @ K1 ## FK1,... \ R1 ## FR1,... <=> C |

union([FK1,...FR1,...],Fs), rem(R1##FR1) ## Fs,...B1 ## Fs,...

where the auxiliary predicate union/2 computes the ordered duplicate-free union
of a list of lists4.

Rules remove and revive. Justifications are realized as flags that are ini-
tially unbound logical variables. This eases the generation of new unique jus-
tifications and their use in killing. Concretely, the reserved constraint kill(f)
is realized as built-in equality F=r, i.e. the justification variable gets bound. If
kill(f) occurred in the head of a kill or revive rule, it is moved to the guard as
equality test F==r. Note that we rename rule kill to remove in the implementa-
tion.

revive : kill(f) \ rem(CFc)F ⇔ f ∈ F | CFc

kill : kill(f) \ CF ⇔ f ∈ F | true

4 More precisely, a simplification rule is generated if there are no kept constraints and
a propagation rule is generated if there are no removed constraints.

12

revive @ rem(C##FC) ## Fs <=> member(F,Fs),F==r | C ## FC.

remove @ C ## Fs <=> member(F,Fs),F==r | true.

Since rules are tried in program order in the CHR implementation, the constraint
C in the second rule is not a reserved rem/1 constraint when the rule is applicable.
The check for set membership in the guards is expressed using the standard
nondeterministic Prolog built-in predicate member/2.

Logical Retraction with killc/1. We extend the translation to allow
for retraction of derived constraints. The constraint killc(C) logically retracts
one occurrence of a constraint C. The two rules killc and killr try to find
the constraint C. The killr rule applie sin the case where constraint C has
been removed and is therefore now present in a rem constraint. The associated
justifications point to all initial constraints that where involved in producing
the constraint C. For retracting the constraint, it is sufficient to remove one of
its producers. This introduces a choice which is implemented by the member

predicate.

killc @ killc(C), C ## Fs <=> member(F,Fs),F=r.

killr @ killc(C), rem(C ## FC) ## _Fs <=> member(F,FC),F=r.

Note that in the killr rule, we bind a justification F from FC, because FC contains
the justifications of the producers of constraint C, while Fs also contains those
that removed it by a rule application.

5.1 Examples

We discuss two classical examples for dynamic algorithms, maintaining the min-
imum of a changing set of numbers and shortest paths when edges change.

Dynamic Minimum. Translating the minimum rule to one with justifica-
tions results in:

min(A)##B \ min(C)##D <=> A<C | union([B,D],E), rem(min(C)##D)##E.

The following shows an example query and the resulting answer in SWI-Prolog:

?- min(1)##[A], min(0)##[B], min(2)##[C].

rem(min(1)##[A])##[A,B], rem(min(2)##[C])##[B,C], min(0)##[B].

The constraint min(0) remained. This means that 0 is the minimum. The con-
straints min(1) and min(2) have been removed and are now remembered. Both
have been removed by the constraint with justification B, i.e. min(0).

We now logically retract with killc the constraint min(1) at the end of the
query. The killr rule applies and removes rem(min(1)##[A])##[A,B].

killr @ killc(C), rem(C ## FC) ## _Fs <=> member(F,FC),F=r.

In the rule body, the justification A is bound to r – to no effect, since there are
no other constraints with this justification:

13

?- min(1)##[A], min(0)##[B], min(2)##[C], killc(min(1)).

rem(min(2)##[C])##[B,C], min(0)##[B].

On the other hand, if we retract the minimum min(0), the killc rule

killc @ killc(C), C ## Fs <=> member(F,Fs),F=r

applies. It removes min(0)##[B] and binds justification B. The two rem con-
straints for min(1) and min(2) have justification B as well, so these two con-
straints are re-introduced by applications of rule revive

revive @ rem(C##FC) ## Fs <=> member(F,Fs),F==r | C ## FC.

The minimum rule applies to these two revived constraints. Note that min(2)

is now removed by min(1) (before it was min(0)). The result is the updated
minimum, which of course is 1:

?- min(1)##[A], min(0)##[B], min(2)##[C], killc(min(0)).

rem(min(2)##[C])##[A,C], min(1)##[B].

Dynamic Shortest Path. Given a graph with directed arcs e(X,Y), we
compute the lengths of the shortest paths between all pairs of reachable nodes:

% keep shorter of two paths from X to Y

pp @ p(X,Y,L1) \ p(X,Y,L2) <=> L1=<L2 | true.

% edges have a path of unit length

e @ e(X,Y) ==> p(X,Y,1).

% extend path in front by an edge

ep @ e(X,Y), p(Y,Z,L) ==> L1=:=L+1 | p(X,Z,L1).

The corresponding rules in the translated program are:

pp@p(A,B,C)##D \ p(A,B,E)##F <=> C=<E |

union([D,F],G), rem(p(A,B,E)##F)##G.

e @e(A,B)##C ==> true | union([C],D), p(A,B,1)##D.

ep@e(A,B)##C,p(B,D,E)##F ==> G is E+1 | union([C,F],H),p(A,D,G)##H.

Here is a sample query and its resulting answer.

?- e(a,b)##[A], e(b,c)##[B], e(a,c)##[C].

rem(p(a, c, 2)##[A, B])##[A,B,C],

p(a, b, 1)##[A], e(a, b)##[A],

p(b, c, 1)##[B], e(b, c)##[B],

p(a, c, 1)##[C], e(a, c)##[C].

We see that a path of length 2 has been removed by the constraint e(a,c)##[C],
which produced a shorter path of length one. We next kill this constraint e(a,c).

?- e(a,b)##[A], e(b,c)##[B], e(a,c)##[C], kill(e(a,c)).

p(a, b, 1)##[A], e(a, b)##[A],

p(b, c, 1)##[B], e(b, c)##[B],

p(a, c, 2)##[A,B].

14

Its path p(a,c,1) disappears and the removed path p(a,c,2) is re-added. We
can see that the justifications of a path contains are those from the edges in that
path. The same happens if we logically retract p(a,c,1) instead of e(a,c).

What happens if we remove p(a,c,2) from the initial query? The killr

rule applies. Since the path has two justifications, there are two computations
generated by the member predicate. In the first one, the constraint e(a,b) dis-
appeared, in the second answer, it is e(b,c). In both cases, the path cannot be
computed anymore, i.e. it has been logically retracted.

?- e(a,b)##[A], e(b,c)##[B], e(a,c)##[C], kill(p(a,c,2)).

p(b, c, 1)##[B], e(b, c)##[B],

p(a, c, 1)##[C], e(a, c)##[C]

;

p(a, b, 1)##[A], e(a, b)##[A],

p(a, c, 1)##[C], e(a, c)##[C].

6 Related Work

The idea of introducing justifications into CHR is not new. The thorough work of
Armin Wolf on Adaptive CHR [WGG00] was the first to do so. Different to our
work, this technically involved approach requires to store detailed information
about the rule instances that have been applied in a derivation in order to undo
them. In our approach, we use a straightforward source-to-source transformation
and retract constraints one-by-one instead. Adaptive CHR had a low-level im-
plementation in Java [Wol01], while we give an implementation in CHR itself by
a straightforward source-to-source transformation that we prove confluent and
correct. Moreover we prove confluence of the rule scheme for logical retraction
with the rules of the given program. The application of adaptive CHR consid-
ered dynamic constraint satisfaction problems (DCSP) only, in particular for
the implementation of search strategies [Wol05], while we apply our approach to
arbitrary algorithms in order to make them fully dynamic.

The issue of search strategies was further investigated by Leslie De Koninck
et. al. [DKSD08]. They introduce a flexible search framework in CHR∨ (CHR
with disjunction) extended with rule and search branch priorities. In their work,
justifications are introduced into the semantics of CHR∨ to enable dependency-
directed backtracking in the form of conflict-directed backjumping. Our work
does not need a new semantics for CHR, nor its extension with disjunction, it
rather relies on a source-to-source transformation within the standard semantics.

Our work does not have a particular application of justifications in mind,
but rather provides the basis for any type of application that requires dynamic
algorithms. There are, however, CHR applications that use justifications. The
work of Jeremy Wazny et. al. [SSW03] introduced informally a particular kind
of justifications into CHR for the specific application of type debugging and rea-
soning in Haskell. Justifications correspond to program locations in the given
Haskell program. Unlike other work, the constraints in the body of CHR rules
have given justifications to which justifications from the rule applications are

15

added at runtime. The more recent work of Gregory Duck [Duc12] introduces
SMCHR, a tight integration of CHR with a Boolean Satisfiability (SAT) solver
for quantifier-free formulae including disjunction and negation as logical connec-
tives. It is mentioned without giving further details that for clause generation,
SMCHR supports justifications for constraints that include syntactic equality
constraints between variables.

7 Conclusions

In this paper, the basic framework for CHR with justifications (CHRJ) has
been established and formally analyzed. We defined a straightforward source-
to-source program transformation that introduces justifications into CHR as a
conservative extension. Justifications enable logical retraction of constraints. If
a constraint is retracted, the computation is adapted and continues as if the
constraint never was introduced. We proved confluence and correctness of the
two-rule scheme that encodes the logical retraction. We presented a prototype
implementation that is available online together with two classical examples.

Our approach applies to CHR rules without built-in constraints in the body,
because built-in constraint solvers typically do not support removal of con-
straints. But note that built-in constraints can be re-implemented in CHR. As
one reviewer pointed out, CHR systems typically feature a propagation history
to avoid the re-application of propagation rules and try to apply rules in the
given order. This may lead to adverse effects in our implementation. The re-
viving of constraints may trigger redundant firings of propagation rules because
the propagation history is partially lost then. The order in which constraints are
revived may lead to different rule applications and thus to different results if the
program is not confluent. We have not observed these effects in our experiments
so far.

Future work could investigate three topics: dynamic algorithms, implementa-
tion and application domains of CHR with justifications. First, we would like to
research how logical as well as classical algorithms implemented in CHR behave
when they become dynamic. Second, we would like to improve the implementa-
tion, optimize and benchmark it. A first step can be found in the companion pa-
per [Fru17] together with an informal complexity analysis. A formal complexity
analysis would clarify the overhead involved in adding justifications. Currently,
the entire history of removed constraints is stored. It could suffice to remember
only a partial history if only certain constraints can be retracted or if partial
recomputation proves to be more efficient for some constraints. A lower-level
implementation could benefit from the propagation history of propagation rules.
Third, the rule scheme can be extended to support typical application domains of
justifications: explanation of derived constraints by justifications (for debugging),
detection and repair of inconsistencies (for error diagnosis), and implementing
nonmonotonic logical behaviors (e.g. default logic, abduction, defeasible reason-
ing).

16

Acknowledgements. We thank Daniel Gall for implementing the online
transformation tool for CHRJ . We also thank the anonymous reviewers for their
helpful suggestions on how to improve the paper.

References

[Abd97] Slim Abdennadher. Operational semantics and confluence of constraint
propagation rules. In G. Smolka, editor, CP ’97: Proc. Third Intl. Conf.
Principles and Practice of Constraint Programming, volume 1330 of LNCS,
pages 252–266. Springer, 1997.

[AFM99] Slim Abdennadher, Thom Frühwirth, and Holger Meuss. Confluence and
semantics of constraint simplification rules. Constraints, 4(2):133–165, 1999.

[Bet14] Hariolf Betz. A unified analytical foundation for constraint handling rules.
BoD, 2014.

[BM06] Kenneth N Brown and Ian Miguel. Uncertainty and change, chapter 21.
Handbook of Constraint Programming, pages 731–760, 2006.

[DKSD08] Leslie De Koninck, Tom Schrijvers, and Bart Demoen. A flexible search
framework for chr. In Constraint Handling Rules — Current Research Top-
ics, volume LNAI 5388, pages 16–47. Springer, 2008.

[Duc12] Gregory J Duck. SMCHR: Satisfiability modulo constraint handling rules.
Theory and Practice of Logic Programming, 12(4-5):601–618, 2012.

[FR18] Thom Frühwirth and Frank Raiser, editors. Constraint Handling Rules -
Compilation, Execution, and Analysis. BOD, ISBN 9783746069050, January
2018.

[Frü09] Thom Frühwirth. Constraint Handling Rules. Cambridge University Press,
2009.

[Frü15] Thom Frühwirth. Constraint handling rules – what else? In Rule Technolo-
gies: Foundations, Tools, and Applications, pages 13–34. Springer Interna-
tional Publishing, 2015.

[Fru17] Thom Fruehwirth. Implementation of Logical Retraction in Constraint Han-
dling Rules with Justifications. In 21st International Conference on Ap-
plications of Declarative Programming and Knowledge Management (INAP
2017), September 2017.

[McA90] David A McAllester. Truth maintenance. In AAAI, volume 90, pages 1109–
1116, 1990.

[RBF09] Frank Raiser, Hariolf Betz, and Thom Frühwirth. Equivalence of CHR
states revisited. In F. Raiser and J. Sneyers, editors, CHR ’09, pages 33–48.
K.U.Leuven, Dept. Comp. Sc., Technical report CW 555, July 2009.

[SSW03] Peter J Stuckey, Martin Sulzmann, and Jeremy Wazny. Interactive type
debugging in haskell. In Proceedings of the 2003 ACM SIGPLAN workshop
on Haskell, pages 72–83. ACM, 2003.

[WGG00] Armin Wolf, Thomas Gruenhagen, and Ulrich Geske. On the incremental
adaptation of CHR derivations. Applied Artificial Intelligence, 14(4):389–
416, 2000.

[Wol01] Armin Wolf. Adaptive constraint handling with chr in java. In International
Conference on Principles and Practice of Constraint Programming, pages
256–270. Springer, 2001.

[Wol05] Armin Wolf. Intelligent search strategies based on adaptive constraint han-
dling rules. Theory and Practice of Logic Programming, 5(4-5):567–594,
2005.

