Using Constraint Logic Programming
for Software Validation™

Angelo E. M. Ciarlini and Thom Frithwirth

The Laboratory of Formal Methods, Departamento de Informaética
Pontificia Universidade Catélica do R.J.
Rua Marqués de S.Vicente 225, 22.453-900 - Rio de Janeiro, Brazil
angelo@inf.puc-rio.br
and
Computer Science Institute
University of Munich
Oettingenstr. 67, D-80538 Minchen, Germany
fruehwir@informatik.uni-muenchen.de

Abstract. Validation and testing are expensive tasks in the software de-
velopment cycle. In order to save time while validating and testing a new
system, we propose using logic programming together with constraint solv-
ing for the symbolic execution of formal specifications (like hybrid automata
or statecharts) of concurrent systems. In order to validate a system, desired
properties can be specified in a fragment of first order temporal logic relating
variable values at different times. As a result, all possible paths, that satisfy
the constraints given initially, are obtained together with the corresponding
necessary and sufficient constraints. Using this approach, one can also com-
pute backwards. One can, for example, derive possible ranges of the input
variables, be they continuous or discrete, that produce specific, given ranges
(i.e. constraints) on the output variables. Since we can think about ranges
instead of specific values, it is easier to verify properties and choose good
values to test the final code. We implemented these ideas in a prototype
in the DExVal project, which is part of the ARTS software development
environment.

1 Introduction

Software verification and validation aims at determining whether the software re-
quirements are implemented correctly and completely. Validation and testing are
concerned with answering the question ”Are we building the right thing?”. The
challenge in answering this question is how to come up with experiments that make
sense and can reveal a maximum number of potential software bugs. Dynamic anal-
ysis techniques such as testing involve execution, or simulation, of software to detect
errors by analyzing the response to input.

Model checking is a technique for analyzing finite state spaces to determine
whether a given property holds or not. It has been applied successfully to hard-
ware, and also, more recently, to software, see e.g. [2]. Since software is usually
modelled having an infinite number of states and continuous variables, one tries to
approximate it by finite state machines where continuous variables are abstracted
into discrete (boolean) ones. However, model checking may have the so-called state
explosion problem, because every state and every variable value has to be tried,
resulting in an exponential blow-up in the number of states.

* This work is supported by the Brazilian-German CNPQ/GMD project DExVal (Deriva-

tion of meaningful Experiments for Validation).

The model (a state machine) represents the important features of a software
under consideration. In model checking, desired properties of the software are usu-
ally expressed in a variation of first order predicate logic, typically branching time
temporal logics such as CTL (Computation Tree Logic) [6]. In such logics, the truth
values of predicates are time-dependent. The model is ” checked” to see if the desired
properties hold in the model. The result is either a claim that the property holds
or a counterexample.

Our goal is to symbolically execute and validate formal specifications given as
concurrent transition systems (state machines, automata [11]), e.g. hybrid automata
[1, 10] or statecharts [9], even in the presence of continuous variables and non-linear
expressions. The idea is to make these specifications executable by translating them
into a constraint logic programming (CLP) language.

It is straightforward to express the transition system in a CLP language, how-
ever actions (variable assignment) and concurrency (between different automata)
need more thinking. Logical rules describe transitions, where both preconditions
(guards) and actions (variable assignments) of the transition are mapped into con-
straints. Constraints are basically first order predicates for which efficient solvers are
available. Constraints enable us to represent possible infinite relations, e.g. X < 5,
finitely.

As opposed to standard finite model checking, the use of constraint solving al-
lows one to work with both discrete and continuous variables directly, and more
general, without giving specific values to variables at all. Instead, arbitrary condi-
tions (constraints) on any variables in any state describing properties that should
be obeyed during the execution can be given as constraints by the user. We use a
first order temporal logic to express user constraints on the variables and its values
occurring in different states.

Such constraints are solved and simplified together with new constraints in-
troduced during transitions. The computation follows any path in the transition
system, provided that the constraints accumulated in each transition of the path,
together with user given constraints, are satisfiable. All possible valid runs are there-
fore taken into account. The result of a run consists of a path and some time-
dependent constraints that must be satisfied by the variables of the automaton at
different points in time. The user can scan the result in order to understand all the
assignments (to the variables) which enable the following of its path.

In short, instead of checking that a temporal formula (property) given by the
user is implied by the system, we compute one or - on request - all paths that are
consistent with the user’s formula. The implication problem for a property can be
expressed by checking that there are no paths that are consistent with the negation
of the property.

Since constraints can be imposed on the (variables of the) final state of the
computation, one can enumerate all runs that lead to the same final state. The
disjunction of the constraints for all possible runs logically describes the conditions
under which the final state can be reached. From these conditions, tests can be
derived. More concretely, if the user specifies, among other initial constraints, some
constraints on the ranges of output values, he or she can get the corresponding
ranges of input values that allow paths from an initial state to a final state. In this
way, our approach forms a basis for testing and validation, where the output values,
or ranges of values, must be known.

In HYTECH [1, 10], an implementation of linear hybrid automata in Mathe-
matica, a procedural language is used to formulate desired properties to be checked
(queries). The underlying temporal logic, ICTL is inspired by the duration calcu-
lus [5] and CTL [6]. Tt has clocks and integrators (special counters that increment
only if a certain property is true). However, the HYTECH system cannot be eas-
ily employed to express all kinds of queries relating variables at different times.

In our tool prototype DExVal [4], expressing properties in a declarative way as
constraints, including constraints relating any variables at any (different) times, is
straightforward.

Any constraint that can be handled by the constraint solvers, embedded within
the CLP language, can be used in DExVal. In particular, non-linear constraints
can be handled by some available constraint solvers. In HYTECH, non-linear func-
tions can be approximated by piecewise linear functions, at the cost however of
introducing more transitions.

A main characteristic and source of efficiency of CLP languages is that con-
straint solving and search are interleaved, performed on-the-fly, i.e both constraint
solving and search are incremental. This is unlike standard approaches of model
checking where all the constraints (propositions) and choices have to be handled at
once resulting in huge amounts of data.

In the next section we briefly introduce hybrid automata and constraint logic
programming. We then describe the DexVal project and tool that aims to derive
meaningful experiments for software validation from symbolic executions in a con-
straint logic programming language. Section 4 gives the algorithm and implemen-
tation used for symbolic execution. We then introduce the example of a bathroom
boiler scenario. We end with conclusions and an outlook for future work.

2 Preliminaries

2.1 Hybrid Automata

Hybrid automata [1, 10] have been introduced for modelling mixed discrete - con-
tinuous systems. A hybrid automaton is a transition system whose states contain
descriptions of continuous activities and whose transitions are discrete and labeled
with guarded actions. The state of the automaton changes either instantaneously
through a discrete transition associated with system actions or, while time elapses,
through a continuous environment activity. The treatment of continuous activities
inside states and the absence of hierarchical abstraction into superstates, are the
main main features which distinguish it from related approaches such as statecharts
[9].

A variety of terminology is used in different papers on hybrid automata [1,
10]. For ease of reference, we have employed the more widely used terminology of
transition systems, giving alternative synonymous in brackets.

A hybrid automaton consists of a finite number of each of the following compo-
nents:

— (Data) variables. Typically real-valued, in our case also integer or boolean are
possible.
— States (also called: control locations, control modes). There is one initial state
and one or more final (terminal) states. States consist of three components:
e Name.
e Invariant inv (invariant conditions, location invariants)- a constraint on vari-
ables. The automaton may reside in the state as long as the invariant holds.
e Tteration iter (continuous activities, flow conditions)- activities (assignments)
that specify the new values of the variables based on their values at the last
clock. The values of the variables change in this way while the automa-
ton resides in this state. In our case, continuous activities are modelled as
variable assignments instead of giving derivatives of the assigned variable.
— Transitions (control switches). They consist of four components:
e Source state.

e Target state (destination state).

e Guarded actions (discrete actions, jump conditions, guarded assignments,
guarded commands). If the guard (guarding condition) holds, the transition
can take place and may change values of variables by executing the specified
action (assignments). There may also be transitions from final states, typi-
cally in non-terminating systems, where final states serve as check-marks.

e Events (synchronization labels)- used to synchronize concurrent automata.
We do not use them in this paper, if needed they could be modelled as
boolean variables as e.g. in [2].

In a state the values of variables conceptually change continuously, however the
iterations actually happen step by step when the clock increases. Iterations takes
time, while transitions are instantaneous.

In a timed hybrid automata all the automata are synchronized by a machine
clock that causes iterations and transitions of states. A clock is a variable that
always increases with the rate of one time unit in each iteration and all transitions
leave its value unchanged (or reset it to zero). The system modifies the values of
the variables according to the state of the automaton at the last clock. Variables
that do not occur in activities or actions remain unchanged.

A hybrid system typically consists of several interacting concurrent hybrid au-
tomata that coordinate through shared variables and events. All the automata make
their modifications simultaneously, i.e. a maximal set of mutually consistent contin-
uous activities and enabled transitions is performed at the same time. We assume
that a variable can be modified by only one automaton. Otherwise two concurrent
transitions could modify the same variable.

A state transition diagram is a pictorial representation of the operation of some
given automaton. It is a directed graph where the vertices represent states, which
are inscribed with invariants and continuous activities, and the arcs represent state
transitions, which are labelled with guarded actions (see the upcoming Figures).

In this paper, we use concurrent timed hybrid automata, in which we allow arbi-
trary (non-linear) invariants and continuous activities instead of restricting ourselves
to linear ones.

2.2 Constraint Logic Programming

Constraint logic programming (CLP) [12, 7, 13] combines the advantages of logic
programming (e.g. Prolog) and constraint solving. In logic programming, problems
are stated in a declarative way using rules to define relations (predicates of first order
logic). Rules describe the conclusions that can be reached given certain premises. A
logic programming system searches for all solutions by systematically trying all pos-
sible rules using chronological backtracking. In constraint solving, efficient special-
purpose algorithms are employed to solve sub-problems involving distinguished re-
lations referred to as constraints.

The key aspect of CLP is the tight integration between a deterministic process,
constraint evaluation, and a nondeterministic process, search. During program ex-
ecution, the logic program incrementally sends constraints to the constraint solver
(CS). The CS tries to solve the constraints. The results from the CS cause a priori
pruning of branches in the search tree spawned by applying rules in the program.
Unsatisfiability of the constraints means failure of the current branch, and thus re-
duces the number of possible branches, i.e. choices, to be explored via backtracking,

For instance, if one has already accumulated the constraints X +Y <5, X >0
and Y > 0 and an inequality constraint solver is being applied, when the variable
X is bound to 6, the execution does not need to continue in this branch. Instead,
the system will backtrack, undo the binding for X, and explore the next branch.

The syntax of CLP is reminiscent of first order predicate logic, however predicate
symbols start with lower case letters and variable names with upper case letters,
=7 stand for implication < and ’,’ for conjunction. For example,

fac(N,1) :- N<=1.
fac(N,N*¥F) :- N>1, fac(N-1,F).

is a recursive definition of the factorial function, i.e. fac (N,M) holds if M = NI,
N<=1 and N>1 are constraints. A goal (query) fac(2,B) will unfold with the second
rule into the conjunction 2=N, B=N*F, N>1, fac(N-1,F). The constraints are sent
to the constraint solver, where they are simplified into N=2, B=2#F. fac(N-1,F) is
recursively unfolded with the first rule yielding N=2, B=2*F, N-1<=1, F=1, which
simplifies into B=2 (omitting intermediary variables). Since no more predicates are
left to be unfolded, the computation terminates with the answer (solution) B=2.
If another answer is requested, the system backtracks to the state N=2, B=2x*F,
fac(N-1,F). It then uses the second rule to unfold fac, but this time the resulting
constraints are inconsistent, so the answer is no.

3 The DExVal Approach

The DExVal (Derivation of meaningful Experiments for Validation) project at
the LMF-DI department of PUC-Rio (Pontificia Universidade Catélica do Rio
de Janeiro) together with the software engineering department of LMU (Ludwig-
Maximilians Universitat) [4] is situated within the ARTS project. ARTS is a large
scale effort to put industrial software development on a solid formal basis funded
in part by Siemens Telecomunicacoes, Brazil. DExVal aims to contribute towards
this goal by providing a tool that helps the validation and testing tasks of software
derived from formal specifications.

In the ARTS project, one generates the final code of a system directly from object
oriented specifications that are translated to a formal level. When an application
is being developed inside ARTS, the programmer defines automata to describe the
behaviour of the objects of the application.

The DExVal approach basically consists of two phases (in this paper we con-
centrate on the first phase). In the first phase, means are provided to symbolically
execute formal specification given as a transition system (hybrid automata or stat-
echarts). In the second phase of the tool one derives test cases for experiments
validating the final code that should implement the automaton specification.

3.1 The DExVal Tool

The DExVal tool (short: DExVal) consults the definitions of the automaton to
check whether from a certain initial state it is possible to reach a final state without
violating any properties given by the user checking the application.

The user can specify properties as contraints that should hold for all states
(universal quantification) and contraints that should hold for at least one state
(existential quantification). Constraints include:

— values or ranges of input variables;
— values or ranges of output variables;
— values or ranges of variables at intermediate states;

In general, arbitrary constraints (e.g. linear and non-linear equalities and inequali-
ties) among different variables at different times can be specified. This is done by

using the temporal modalities ”since”, "until”, ”always in the future”, ”always in
the past”, ”sometime in the future” and ”sometime in the past”.
Therefore, the user can express complex properties such as:

— 7since X>Y, Z=1":
all(T,since(T,T1,x:T1>y:T1,z:T1=1)

— 7for all states, X has a higher value than its value in the previous state”:
all(T,x:T>x:(T-1))

— 7X is never higher than Y and less than 7 at the same time”:
not (exists(T, (x:T>y:T, x:T<z:T)))

— 7if, at some time, X>Y, then at most 5 seconds later Z=1":
all(T,implies(x:T>y:T,
exists(T1, (systime:T1-systime:T<5, systime:T1>systime:T,z:T1=1))))

DExVal computes all paths that do not violate the user constraints. Moreover,
DExVal informs the user of constraints on certain variables (specified by the user)
that must hold to allow the corresponding path to be followed. For example, the
user can specify that an output variable, say X, is higher than 5 and request that
DExVal find all paths and corresponding values for an input variable Y. DExVal
might inform the user, for instance, that Y is less than 10 for a certain path.

3.2 Validation and Testing

Figure 1 shows how we perceive that DExVal can help validation and testing tasks.
The first use of DExVal is to obtain, given some assertions (as constraints) on
transition paths and timing, ranges in which the values of relevant input variables at
design level should be. Since the user has all the ranges, he or she can check whether
these ranges are as expected. If at least a part of a range is not as expected, then
DExVal can be activated again, receiving as input the detected wrong ranges at the
initial state. The user can analize the resulting transition paths and intermediate
values of variables in order to discover where the error occurs. After the automata
have been corrected, the user can restart the validation process.

A gsettions ot
Tranation Paths
and Timing Ranges in which input
vatiahles should be
Automata /
Y

Wrong

Ranges ¥ alidation
¢
L J
Wrong ‘ @

Paths

Fig.1. Validation and Testing in DExVal

If the user wants to prove that a certain property does not hold, he or she can
execute DExVal providing a user constraint corresponding to the negation of this
property. If DExVal finds a path, it is a counterexample for that property. If there
is no counterexample, the property holds for all paths.

Since DExVal can provide final constraints on input variables, it is also a useful
tool for testing. Suppose, for instance, that DExVal computes that an input variable
X is either in between 10 and 20 and the output variable Y is higher than 100 or X
is less than 10 or higher than 20 and Y is less or equal 100. This result indicates
that it is probably better to test the code for X=1, 10, 15, 20 and 30 than to test
for X=12, 13, 14, 15 and 16.

4 Implementation - Symbolic Execution using CLP

In a previous experiment, we coded a small statechart from a real life application
at the car-manufacturer BMW, Munich, into the constraint logic programming lan-
guage Eclipse using its CHR library [8]. The statechart is about an automatic shift
gear and its computations are sequential only. The code for the transition system
is about 2 pages, the code implementing the example is about 3 pages.

Based on this experience, we implemented the DExVal tool in the CLP language
Sicstus Prolog [3]. DExVal implements a concurrent execution of a kind of hybrid
automata.

4.1 Preparation Stage - Translating Properties

A computation in DExVal proceeds as follows: At the preparation stage for the
symbolic execution, the properties given by the user are translated to sets of simple
constraints (sets of conjunctions and/or disjunctions). The references to variables
at specific clocks are replaced by the corresponding logic variables. The constraints
are inserted in the store of constraints to be incrementally solved by the constraint
solver.The user should express constraints according to the following BNF-syntax
and informal semantics:

Formula - F,F1,F2

sometime_future(C,CV,F) F is true for at least one CV>C
sometime_past(C,CV,F) F is true for at least one CV<C

F::= all(CV,F) for all clocks CV, F is true
| exists(CV,F) there exists a clock CV when F is true
| not (F) F is not true
| implies(F1,F2) if F1 is true then F2 is true
| since(C,CV,F1,F2) F1 is true for C’<CV<C and F2 is true for CV=C’
| until(C,CV,F1,F2) F1 is true for C<CV<C’ and F2 is true for CV=C’
| all_future(C,CV,F) F is true for all CV>C
| all_past(C,CV,F) F is true for all CV<C
I
I

| (F1,F2) F1 and F2 are true

| (F1;F2) F1 or F2 are true

| EXP REL EXP arithmetic equalities or inequalities

Clock variable - CV

CV::= PROLOG_VARIABLE any string beginning with an uppercase letter
Clock - C
C::= CV | INTEGER_NUMBER a variable (already quantified) or a number

Relation - R
Ri:=> | < | >= | =< | =

Expression - E arithmetic expression
EXP::= TERM | TERM + TERM | TERM - TERM | - TERM
TERM: := ELEM | ELEM * TERM | ELEM / TERM

ELEM: := (EXP) | VAR_VALUE | NUMBER

Data variable value - VAR_VALUE

VAR_VALUE::= VAR_NAME:C | Value at C
VAR_NAME:i | Value at the initial state
VAR_NAME: £ Value at the final state

Variable name - VAR_NAME
VAR_NAME: := PROLOG_ATOM any string starting with a lowercase letter

DExVal translates user constraints like a1l (X, v:X>20) to expressions like v: 1>20,
v:2>20,v:3>20, ..., where v is the name of the variable followed by the clock.

4.2 Main Stage - Symbolic Execution

The symbolic execution of the automata is a search for paths for each concurrent
automaton. Each path is a sequence of transitions or continuous activities between
the initial state and the final state of the corresponding automaton. For each tran-
sition or continuous activity, the constraint solver is informed of new constraints
stemming from guarded actions, invariants or iterations. If the store of constraints
becomes inconsistent, the current branch fails and DExVal backtracks to try an-
other branch of the search tree. The symbolic execution is performed according to
the following algorithm.

Input

NC - number of clocks

NA - number of automata

INIT_STATE - array with the names of the initial state of each automaton
FINAL_STATE - array with the names of the initial state of each automaton
USER_CONSTRAINTS - properties defined by the user

VAR_PROJECT - variables which final constraints should be projected on

Internal data structures

S[NC] . AUTOMATON [NA] - array with the states of the automaton and Prolog variables at
each clock

CS - constraint store

I, J - counters

CONST1, CONST2 - lists of constraints

Algorithm

Preparation Stage:

1. Create array S[NC].AUTOMATON [NA].

2. Translate properties in USER_CONSTRAINTS to constraints on Prolog
variables defined in S and add them to CS.

Main Stage:
3. For I:=1 to NA do
3.1. S[1].AUTOMATON[I].STATE:= INIT_STATE[I].
3.2. S[NC].AUTOMATON[I].STATE:= FINAL_STATE[I].
4., For I:=1 to NC-1 do
4.1. For J:=1 to NA do

Do iteration corresponding to state
S[I].AUTOMATON[J].STATE and add constraints to CS.

If it is impossible to do an iteration of any automata,

then fail and backtrack.

4.2. For J:=1 to NA do decide next state

If invariant (S[I].AUTOMATON[J].STATE) is true
remain at the same state and add constraints to CS.

Else choose one of the possible transitions from
S[I].AUTOMATONL[J].STATE to S[I+1].AUTOMATON[J].STATE
and add constraints to CS.

If it is impossible to reach the next state of any

automata, then fail and backtrack.

Final Stage:

5. Collect remaining constraints in CONST1

6. Project CONST1 on variables in VAR_PROJECT, giving CONST2.

7. Translate constraints in CONST2 and path in S and print them.
#. If the user requests more answers, then fail, backtrack to 4.2.

4.3 Final Stage - Producing an Answer

When the final state of each automaton is reached, DExVal simplifies the accumu-
lated constraints and projects them on the variables of interest as specified by the
user. The resulting constraints typically specify, among other things, the ranges in
which variables should be in order to cause the execution of that path. The user
may be interested in expressing such constraints in terms of certain variables only.
Therefore, DExVal projects the constraints in terms of these variables, according
to the user specification. For instance, assume that the user is interested only in
the values of variable X and the set of constraints is the following X>2*Y+1 and Y>Z
and Z>0. After the projection, we have only the following constraint X>1.

The output shows a sequence of clocks and the corresponding states for each
automaton. In addition to the states, the constraints remaining after the projection
are also presented.

4.4 CLP Implementation

Most of the translation of automata into CLP is straightforward: States correspond
to CLP predicates, transitions to CLP rules:

source_state(Clock,Variables) :- true. % a final state

source_state(Clock,Variables) :-— % a transition
guard as constraint on Variables,
action as equality constraints on Variables and NewVariables,
target_state(Clock,NewVariables) .

source_state(Clock,Variables) :- % a continuous activity
invariant as constraint on Variables,
iteration as equality constraints on Variables and NewVariables,
source_state(Clock+1,NewVariables).

Invariants and guards in the automaton can readily be expressed as constraints.
The complication was implementing variable assignments occurring in actions and
activities in a declarative, logical manner, using equality constraints. To this end, we
represent a single variable of the automaton as a sequence of logical variables so that
each state comes with a fresh set of variables. The logical variables in subsequent
states representing the same data variable are related to each other by constraints:

If the variable is written, i.e. assigned a new value, the constraint on the current
variable is the assignment statement seen as an equality constraint, otherwise the
logical variables of the subsequent states are equated to each other, their value stays
the same (whatever it may be).

The above implementation scheme does not maintain the logical variables as-
sociated with a state. In order to be able to constrain them, they are stored in an
array (see description above). A straightforward way to do this in CLP is to use a
list:

source_state(Clock,cons(Vars,nil)) :- true. % a final state

source_state(Clock, cons(Vars, cons(llewVars,Rest))) :— % a transition
guard as constraint on Vars,
action as equality constraints on Vars and NewVars,
target_state(Clock, cons(lNewVars,Rest)).

% Analogously for the rule for continuous activities

Concurrency (parallel composition) for automata is achieved by simply executing
the conjunction of the involved automata (sharing the clock and the variables):

initial_statel(Clock,Vars), initial_state2(Clock,Vars).

4.5 Nondeterminism in the Prototype

While constraints already overcome the problem of choosing a value for a variable
by working directly with ranges of possible values, there are still two sources of
nondeterminism remaining, just as in other tools:

— the choice of the number of clocks for each run, since automata may express
nonterminating processes;

— the choice of the next transition (since variables do not have unique values,
typically several transitions from a given state are possible)

The nondeterminism is handled in CLP by exploring all choices, one after the
other. This chronological backtracking can cause a combinatorial explosion in the
number of possibilities that have to be explored.

Note that interleaving is not a source of nondeterminism as in related ap-
proaches, because in hybrid automata at each clock all automata do an iteration
(and enabled transitions) and all the iterations take only one clock.

5 The Bathroom Boiller Scenario

There are already application examples of the use of the DExVal tool prototype
in the domain of industrial processes involving production cells, but we identified
the need for another class of examples that clearly illustrate the advantages of the
approach taken in the DExVal project. In particular, as opposed to e.g. standard
finite model checking, continuous variables can be used without problems in the
constraint-based approach, since infinite ranges of values can still be represented by
and reasoned with constraints. We therefore chose an example involving physical
processes, inspired by the steam boiler problem [10]. The scenario (Fig. 2) involves
a warm water boiler of a bathroom, with a automatic water pump, a heater and
the possibility of someone taking a shower. Physical units are the amount of water
(pumps add water, taking a shower reduces the water level) and the temperature of
the water (that depends on the income and outflow of water and on the functioning
of the heater).

Consequently, there are five variables: heater, pump, shower, water_volume and
temperature. The boolean variables heater, pump and shower have value 1 if they
are on and O if they are off. The initial values of each variable and all values of vari-
able shower during the execution are input values. water_volume and temperature
are continuous floating point variables representing the current volume of the water
in the boiler and its temperature, respectively.

WT - cold water
temperature ai the

pUMp (constant) P —pump (autom atic

oottt ol — autom aton
Puen)
P=0— of

T - temperature N Pel—m

(simulated by the —

autom aton B oiler)
7 MAX - maximum water level (ronstant)
“HIGH-high
femp erature L T | Y —watervolume (simulated by
(constand the autom ston B oiler)
LOW - lw
te mip erature
(coistan)
8 —shower (extatnal
H- heater (automatic) vati ghle)
cartral - automaton 3=l = off
Heater) F=l=m
H=0— off
H=l—=2m

G - granularity - controls the speed
with which the water volume and
temperature will vary constant)

Fig.2. The Bathroom Boiler Scenario

We designed three concurrent automata to model our sample: Heater (Figure
3), Boiler (Figure 4) and Pump (Figure 5). Heater checks the temperature and
decides if the heater should be on or off. Pump checks the water level and decides
if the pump should be on or off. Boiler represents the physical process itself. It
checks whether the heater, the pump and the shower are on or off and updates the
water level and the temperature accordingly.

In the automaton Boiler there are three states: empty, normal_heater_on and
normal_heater_off. The first one treats the special case of there being no warm wa-
ter. The other states model the variation of the temperature according to the value
of the variables heater and pump. All states control the water volume according
to the values of variables pump and shower. The automaton Heater has also three
states: maintain, turning_on and turning_off. If the temperature of the water is

in between the lower and upper limits, the automaton remains in state maintain
and the variable heater is not modified. If the temperature is less (higher) than the
lower (upper) limit, the variable heater is set to 1 (0) and the automaton spends
one clock at state turning_on (turning_off) before returning to state maintain.
The automaton Pump has just two states: on and off. If the water volume becomes
less than a certain limit, the variable pump is set to 1 and the automaton goes to
state on. When the volume becomes higher than the limit, the variable pump is set
to 0 and the automaton goes to state off.

turning on turning_ off
[
(T=HIGH
(T=LOW — "~ H=1)—
~ H=0y— mamitain H:=0

Inw (TELOWW w H=11 ~
(T=HIGH - H=0)

Fig.3. The Heater

normal heater on
Inv V26 nH=1

Tter: V:= VHE-3*G ~
To= (VAT+P*GWT)/
(V+PHE)+G

I
V23 n H=0

4———_______

V2% AH=1AT<WT

= T=WT

1—_—_—————_

V2t A H=1nT2WT

normal heater off
Itw V25 o H=0n T2WT

Tter: V:= VHP-3)*G ~
Ti= (VAT+PHG T/
(V+P*G)-G*0.5

B

Va3

VG n =1 VG A H=0

empty
Inv. V<G A T=WT

lter: V:= VHP-3)*G

Fig.4. The Boiler

ikt

TaWTaH=0nV20
= T=WT

V<MA¥— P=1

on
4 oft
Itw: VA

p| Inv V2MAX

VEMMAK— P=0

Fig.5. The Pump

With this simple example DExVal can verify interesting properties, such as:

— Minimal initial temperature for taking a warm shower without turning on the
heater.

INPUT:

CONSTRAINTS: heater:i=0.0, pump:i=1.0, water_volume:i=10.0,
shower:i=1.0, all(X,shower:X=1.0),
all(X,heater:X=0.0)

INITTAL STATES: Pump:on, Heater:maintain,
Boiler:normal_heater_off

FINAL STATES: not specified

CLOCKS: 5

VAR_PROJECT: temperature:i (initial temperature)

OUTPUT:

Clock Pump Heater Boiler
1 on maintain normal _heater_off
2 on maintain normal _heater_off
3 on maintain normal _heater_off
4 on maintain normal _heater_off
5 on maintain normal _heater_off

temperature:1 > 47.1°

There is only one path, temperature:1 > 47.18 is a sufficient and necessary
constraint on the initial temperature.

— Behaviour of the shower to increase continuously the water volume.

INPUT

CONSTRAINTS: heater:i=0.0, pump:i=1.0, temperature:i=30.0,
water_volume:i=6.0,
all(X,water_volume: (X+1)>water_volume:X)

INITTAL STATES: Pump:on, Heater:maintain,
Boiler:normal_heater_off

FINAL STATES: not specified

CLOCKS: 5

VAR_PROJECT: shower and water volume (all clocks)
OUTPUT:

Clock Pump Heater Boiler

1 on maintain normal _heater_off

2 on turning_on normal_heater_on
3 on maintain normal _heater_on
4 on maintain normal _heater_on
5 on maintain normal _heater_on

shower: [1..4]1=0.0; shower:5=FreeVariable;
water_volume:1=6.0; water_volume:2=F.0; water_volume:3=10.0;
water_volume:4=12.0; water_volume:5=14.0

There is only one path, the shower must be off between clocks 1 and 4 (the
constraint shower: [1..4]1=0.0), at clock 5 it is unconstrained, and the water
volume raises.

— Behaviour of the shower to maintain the water volume between the initial and
final volumes (which are not specified).

INPUT

CONSTRAINTS: heater:i=0.0, pump:i=1.0, water_volume:i=6.0,
temperature:i=30.0,
all(X, (water_volume:X>=water_volume:i,

water_volume:X=<water_volume:f))

INITTAL STATES: Pump:on, Heater:maintain,
Boiler:normal_heater_off

FINAL STATES: not specified

CLOCKS: 5

VAR_PROJECT: shower and water volume (all clocks)

The Output consists of eight different paths and the corresponding sequences of
values for the variables. One of them is exactly the path in the previous answer,
the other paths are omitted for space reasons.

6 Conclusions

We proposed using logic programming together with constraint solving for the sym-
bolic execution of formal specifications (such as hybrid automata or statecharts) of
concurrent systems. For validating a system, desired properties can be specified as
queries in a fragment of first order temporal logic relating variable values at differ-
ent times. As a result, we obtain all possible paths that satisfy the constraints given
initially, together with the corresponding necessary and sufficient constraints. We
implemented these ideas in a prototype in the DExVal project, which is part of the
ARTS software development environment.

Our preliminary results indicate the potential importance of constraint-based
methods for software validation and verification. The advantage of using CLP is
that it is easier and quicker to modify the prototype. Constraints enable us to
represent possible infinite relations finitely. Any relation is possible, as long as there
is a constraint solver for it. With the appropriate constraint solver, we can also solve
certain non-linear constraints (e.g. the one computing the new temperature in our
bathroom boiler scenario, see Figure 3). However, the limitation in current CLP
languages is that constraint solvers are restricted to solving existentially quantified
conjunctions of atomic constraints.

The encoding of a hybrid automaton or statechart is performed by hand at
the moment. Since the automata are generated in an object-oriented environment
(ARTS), it is common for them to rely on message-based communication. So far,
only ad hoc ways of translating messages to constraint logic have been produced. To
enable fully automatic translation of automata, a generic translation for messages
is needed.

An important issue to be explored in the DExVal project is how to generate
the actual test cases comprising the meaningful experiments from the results of the
abstract run. At the moment, we only have an intuition of what could be called
a meaningful experiment. It would be useful if we could define a methodology to
discover them using DExVal. Another goal for future work is the integration of
DExVal and a debugger. We could compare expected and real values and detect
exactly which part of the code generated an error.

Acknowledgements. We would like to thank Christine Mayr and Sebastian
Voges, two students from LMU that helped to implement the DExVal tool proto-
type while visiting LMF-DI. We are also grateful to Thomas Maibaum, Armando
Haeberer, José Fiadeiro and Martin Wirsing for stimulating discussions.

References

1. R. Alur, T. A. Henzinger and P.-H. Ho. Automatic Symbolic Verification of Embedded
Systems. IEEE Transactions on Software Engineering 22:181-201. 1996.

2. R. J. Anderson et al.. Model Checking Large Software Specifications. ACM SIGSOFT
Symposium on the Foundations of Software Engineering. pp. 156-166. October 1996.

3. M. Carlsson and J. Widen. Sicstus Prolog Users Manual, Release 3#0. Swedish Insti-
tute of Computer Science. SICS/R-88/88007C. 1995.

4. S. Carvalho et al. Formal Derivation of Meaningful Validation Experiments in the
ARTS Environment. 4th DLR/CNPq German-Brazilian Workshop on Information
Technology (St. Jahnichen, ed.). Porto Alegre, Brazil. 1997.

5. 7. Chaochen, C.A.R. Hoare and A.P. Ravn. A Calculus of Durations. Information
Processing Letters. 40:269-276. 1991.

6. E. M. Clarke, E. A. Emerson and A. P. Sistla. Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Pro-
gramming Languages and Systems. vol 8(2):244-263. 1986.

7. T. Frithwirth and S. Abdennadher. Constraint-Programmierung (in German). Springer
Verlag, Heidelberg, Germany. September 1997.

8. T. Frihwirth and P. Brisset. The CHR Library, Version 2, of Eclipse 3.5.3. European
Computer-Industry Research Centre, Munich, Germany. January 1996.

9. D. Harel. Automata: A visual formalism for complex systems. Science of Computer
Programming 8(3):231 - 274. June 1987.

10. T. A. Henzinger and H. Wong-Toi. Using HYTECH to Synthesize Control Parame-
ters for a Steam Boiler. Formal Methods for Industrial Applications: Specifying and
Programming the Steam Boiler Control (J.-R. Abrial, E. Borger and H. Langmaack,
eds.). Lecture Notes in Computer Science 1165. Springer-Verlag. pp. 265-282. 1996.

11. Hopcroft and Ullman. Introduction to Automata Theory, Languages and Computa-
tions. Addison-Wesley. 1979.

12. J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of Logic
Programming 19,20:503-581. 1994.

13. K. Marriott and P. J. Stuckey. Programming with Constraints. MIT Press, USA.
March 1998.

This article was processed using the TEX macro package with LLNCS style

