
On Completion of Constraint Handling RulesSlim Abdennadher and Thom Fr�uhwirthComputer Science Institute, University of MunichOettingenstr. 67, 80538 M�unchen, GermanyfSlim.Abdennadher, Thom.Fruehwirthg@informatik.uni-muenchen.deAbstract. Constraint Handling Rules (CHR) is a high-level languagefor writing constraint solvers either from scratch or by modifying existingsolvers. An important property of any constraint solver is con
uence: Theresult of a computation should be independent from the order in whichconstraints arrive and in which rules are applied. In previous work [1], asu�cient and necessary condition for the con
uence of terminating CHRprograms was given by adapting and extending results about conditionalterm rewriting systems. In this paper we investigate so-called completionmethods that make a non-con
uent CHR program con
uent by addingnew rules. As it turns out, completion can also exhibit inconsistency ofa CHR program. Moreover, as shown in this paper, completion can beused to de�ne new constraints in terms of already existing constraintsand to derive constraint solvers for them.1 IntroductionConstraint Handling Rules (CHR) is our proposal to allow more
exibility andapplication-oriented customization of constraint systems. CHR is a declarativelanguage extension especially designed for writing user-de�ned constraints. CHRis essentially a committed-choice language consisting of multi-headed guardedrules that rewrite constraints into simpler ones until they are solved. CHR de-�nes both simpli�cation of and propagation over user-de�ned constraints. Sim-pli�cation replaces constraints by simpler constraints while preserving logicalequivalence. Propagation adds new constraints, which are logically redundantbut may cause further simpli�cation.As a special-purpose language for constraints, CHR aims to ful�ll the promise ofuser-de�ned constraints as described in [4]: \For the theoretician meta-theoremscan be proved and analysis techniques invented once and for all; for the imple-mentor di�erent constructs (backward and forward chaining, suspension, com-piler optimization, debugging) can be implemented once and for all; for the useronly one set of ideas need to be understood, though with rich (albeit disciplined)variations (constraint systems)."We have already shown in previous work [1] that analysis techniques are availablefor an important property of any constraint solver, namely con
uence: The re-sult of a computation should be independent from the order in which constraintsarrive and in which rules are applied. For con
uence of terminating CHR pro-grams we were able to give a su�cient and necessary condition by adapting andextending work done in conditional term rewriting systems (TRS).

In this paper we investigate so-called completion methods as known from TRS[12]. Completion is the process of adding rules to a non-con
uent set of rulesuntil it becomes con
uent. Once again, we have to adapt and extend the resultsfrom TRS to be applicable for CHR. As it turns out, our completion method forCHR can also exhibit inconsistency of the logical meaning of a CHR program.A practical application of our completion method lies in software development.Completion can be used to de�ne new constraints in terms of already existingones and to derive constraint solvers for them. Furthermore, completion can beused as a method to provide generic answers given as a set of rules. In this way,completion helps the CHR programmer to extend, modify and specialize existingsolvers instead of having to write them from scratch.This paper is organized as follows. In Section 2 we de�ne the CHR languageand summarize previous con
uence results. Section 3 presents our completionmethod for CHR, including a fair algorithm, a correctness theorem and a theoremrelating completion and consistency. In Section 4 we give further examples forthe use of our completion method. Finally, we conclude with a summary.2 PreliminariesIn this section we give an overview of syntax and semantics as well as con
uenceresults for CHR. More detailed presentations can be found in [1, 2]. We assumesome familiarity with (concurrent) constraint (logic) programming [14, 11, 13].2.1 Syntax of CHRA constraint is a �rst order atom. We use two disjoint kinds of predicate symbolsfor two di�erent classes of constraints: One kind for built-in constraints and onekind for user-de�ned constraints. Built-in constraints are those handled by aprede�ned constraint solver that already exists as a certi�ed black-box solver.Typical built-in constraints include true, false and =. User-de�ned constraintsare those de�ned by a CHR program.A CHR program is a �nite set of rules. There are two basic kinds of rules1.A simpli�cation rule is of the formRulename @ H , C j B:A propagation rule is of the formRulename @ H) C j B;where Rulename is a unique identi�er of a rule, the head H is a non-emptyconjunction of user-de�ned constraints, the guard C is a conjunction of built-in constraints and the body B is a conjunction of built-in and user-de�nedconstraints. Conjunctions of constraints as in the body are called goals. A guard\true" is usually omitted together with the vertical bar.1 Their syntax is inspired by concurrent logic programming languages like GHC.

2.2 Declarative Semantics of CHRThe logical meaning of a simpli�cation rule is a logical equivalence provided theguard holds8�x (C ! (H $ 9�y B)).The logical meaning of a propagation rule is an implication if the guard holds8�x (C ! (H ! 9�y B)),where �x is the list of variables occuring in H or in C and �y are the variablesoccuring in B only.The logical meaning P of a CHR program P is the conjunction of the logicalmeanings of its rules united with a (consistent) constraint theory CT that de�nesthe built-in constraints. We require CT to de�ne = as syntactic equality.2.3 Operational Semantics of CHRThe operational semantics of CHR is given by a transition system.A state is a triple <G;CU ; CB>;where G is a conjunction of user-de�ned and built-in constraints called goal store.CU is a conjunction of user-de�ned constraints. CB is a conjunction of built-inconstraints. CU and CB are called user-de�ned and built-in (constraint) stores,respectively. An empty goal or user-de�ned store is represented by >. An emptybuilt-in store is represented by true.Given a CHR program P we de�ne the transition relation 7! by introducing fourkinds of computation steps (Figure 1). In the �gure, all meta-variables standfor conjunctions of constraints. An equation c(t1; : : : ; tn)=d(s1; : : : ; sn) of twoconstraints stands for t1=s1 ^ : : : ^ tn=sn if c and d are the same predicatesymbol and for false otherwise. An equation (p1^ : : :^pn)=(q1^ : : :^qm) standsfor p1=q1 ^ : : : ^ pn=qn if n = m and for false otherwise. Note that conjunctscan be permuted since conjunction is associative and commutative.2In the Solve computation step, the built-in solver produces a new normalizedconstraint store C 0B that is logically equivalent (according to the constraint the-ory CT) to the conjunction of the new constraint C and the old constraint storeCB . Introduce transports a user-de�ned constraint H from the goal store intothe user-de�ned constraint store. There it can be handled with other user-de�nedconstraints by applying CHR.To Simplify user-de�ned constraints H 0 means to remove them from the user-de�ned store and to add the body B of a fresh variant of a simpli�cation rule(R @ H , C j B) to the goal store and the equation H=H 0 and the guardC to the built-in store, provided H 0 matches the head H and the guard C isimplied by the built-in constraint store CB . Note that \matching" means that2 For technical reasons, we consider conjunctions of constraints not to be idempotent.

SolveC is a built-in constraintCT j= CB ^ C $ C0B<C ^G;CU ; CB> 7! <G;CU ; C0B>IntroduceH is a user-de�ned constraint<H ^G;CU ; CB> 7! <G;H ^ CU ; CB>Simplify(R @ H , C j B) is a fresh variant of a rule in P with the variables �xCT j= CB ! 9�x(H=H 0 ^ C)<G;H 0 ^ CU ; CB> 7! <G ^ B;CU ; C ^H=H 0 ^ CB>Propagate(R @ H) C j B) is a fresh variant of a rule in P with the variables �xCT j= CB ! 9�x(H=H 0 ^ C)<G;H 0 ^ CU ; CB> 7! <G ^B;H 0 ^ CU ; C ^H=H 0 ^ CB>Fig. 1. Computation Stepsit is only allowed to instantiate variables of H but not variables of H 0. In thelogical notation this is achieved by existentially quantifying only over the freshvariables �x of the rule to be applied.The Propagate transition is similar to the Simplify transition, but retainsthe user-de�ned constraints H 0 in the user-de�ned store. Trivial nonterminationcaused by applying the same propagation rule again and again is avoided by ap-plying a propagation rule at most once to the same constraints. A more complexoperational semantics that addresses this issue can be found in [1].An initial state for a goal G is of the form <G;>; true>. A �nal state is ei-ther of the form <G;CU ; false> (such a state is called failed) or of the form<>; CU ; CB> with no computation step possible anymore and CB not false(such a state is called successful).A computation of a goal G is a sequence S0; S1; : : : of states with Si 7! Si+1beginning with the initial state for G and ending in a �nal state or diverging.7!� denotes the re
exive and transitive closure of 7!.Example 1. We de�ne a user-de�ned constraint for a (partial) order � that canhandle variable arguments.r1 @ X � X , true.r2 @ X � Y ^ Y � X , X=Y.r3 @ X � Y ^ Y � Z) X � Z.r4 @ X � Y ^ X � Y , X � Y.

The CHR program implements re
exivity (r1), antisymmetry (r2), transitivity(r3) and idempotence (r4) in a straightforward way. The re
exivity rule r1states that X�X is logically true. The antisymmetry rule r2 means that if we �ndX�Y as well as Y�X in the current store, we can replace them by the logicallyequivalent X=Y. The transitivity rule r3 propagates constraints. It states thatthe conjunction of X�Y and Y�Z implies X�Z. Operationally, we add the logicalconsequence X�Z as a redundant constraint. The idempotence rule r4 absorbsmultiple occurrences of the same constraint.In the following computation constraints which are considered in the currentcomputation step are underlined:<A � B ^ C � A ^ B � C;>; true>7!�Introduce <>; A � B ^ C � A ^ B � C; true>7!Propagate <C � B; A � B ^ C � A ^ B � C; true>7!Introduce <>; A � B ^ C � A ^ B � C ^ C � B; true>7!Simplify <B = C; A � B ^ C � A; true>7!Solve <>; A � B ^ C � A; B = C>7!Simplify <A = B;>; B = C>7!Solve <>;>; A = B ^ B = C>2.4 Con
uenceThe con
uence property of a program guarantees that any computation startingfrom an arbitrary initial state, i.e. any possible order of rule applications, resultsin the same �nal state. Due to space limitations, we can just give an overview oncon
uence where some de�nitions are left informal. Detailed con
uence resultsfor CHR can be found in [1, 2, 3]. The papers adopt and extend the terminologyand techniques of conditional TRS [8] about con
uence. Our extensions enablehandling of propagation rules, global context (the built-in constraint store) andlocal variables.We require that states are normalized so that they can be compared syntacticallyin a meaningful way. Basically, we require that the built-in constraints are in a(unique) normal form, where all syntactical equalities are made explicit and arepropagated to all components of the state. The normalization also has to makeall failed states syntactically identical.De�nition 1. A CHR program is called con
uent if for all states S; S1; S2:If S 7!� S1 and S 7!� S2 then S1 and S2 are joinable. Two states S1 and S2are called joinable if there exists a state T such that S1 7!� T and S2 7!� T .To analyze con
uence of a given CHR program we cannot check joinabilitystarting from any given ancestor state S, because in general there are in�nitelymany such states. However one can construct a �nite number of \minimal"states where more than one rule is applicable (and thus more than one transitionpossible) based on the following observations: First, adding constraints to thecomponents of the state cannot inhibit the application of a rule as long as the

built-in constraint store remains consistent (monotonicity property). Second,joinability can only be destroyed if one rule inhibits the application of anotherrule. Only the removal of constraints can a�ect the applicability of another rule,in case the removed constraint is needed by the other rule.By monotonicity, we can restrict ourselves to ancestor states that consist of thehead and guards of two rules. To possibly destroy joinability, at least one rulemust be a simpli�cation rule and the two rules must overlap, i.e. have at leastone head atom in common in the ancestor state. This is achieved by equatinghead atoms in the state.De�nition 2. Given a simpli�cation rule R1 and an arbitrary (not necessarilydi�erent) rule R2, whose variables have been renamed apart. Let Gi denote theguard (i = 1; 2). Let Hci and Hi be a partition of the head of the rule Ri intotwo conjunctions, where Hci is nonempty. Then a critical ancestor state S of R1and R2 is <>; Hc1 ^H1 ^H2; (Hc1 = Hc2) ^G1 ^G2>;provided (Hc1 = Hc2) ^G1 ^G2 is consistent in CT .The application of R1 and R2, respectively, to S leads to two states that formthe so-called critical pair.De�nition 3. Let S be a critical ancestor state of R1 and R2. If S 7! S1 usingrule R1 and S 7! S2 using rule R2 then the tuple (S1; S2) is the critical pair ofR1 and R2. A critical pair (S1; S2) is joinable, if S1 and S2 are joinable.Example 2. Consider the program for � of Example 1. The following critical pairstems from the critical ancestor state3 <>; X � Y ^ Y � X ^ Y � Z; true> of r2and r3:(S1; S2) := (<X = Y; Y � Z; true>;<X � Z; X � Y ^ Y � Z ^ Y � X; true>)It is joinable. A computation beginning with S1 proceeds as follows:<X = Y; Y � Z; true>7!Solve <>; X � Z; X = Y>A computation beginning with S2 results in the same �nal state:<X � Z; X � Y ^ Y � Z ^ Y � X; true>7!Introduce <>; X � Z ^ X � Y ^ Y � Z ^ Y � X; true>7!Simplify <X = Y; X � Z ^ Y � Z; true>7!Solve <>; X � Z ^ X � Z; X = Y>7!Simplify <>; X � Z; X = Y>De�nition 4. A CHR program is called terminating, if there are no in�nitecomputations.3 Variables from di�erent rules already identi�ed to have an overlap; for readability.

For most existing CHR programs it is straightforward to prove termination usingsimple well-founded orderings. Otherwise it seems impossible without relying onimplementational details [10].The following theorem from [1] gives a decidable, su�cient and necessary crite-rion for con
uence of a terminating program:Theorem5. A terminating CHR program is con
uent i� all its critical pairsare joinable.3 CompletionThe idea of completion as developed for term rewriting systems (TRS) is toderive a rule from a non-joinable critical pair that would allow a transition fromone of the critical states into the other one, thus re-introducing con
uence [12]. Inanalogy to completion algorithms for TRS [5], our algorithm for CHR maintainsa set C of critical pairs and a set P of rules. These sets are manipulated by fourinference rules (Figure 2). Terminology is taken from TRS. We write (C;P) 7�!(C 0; P 0) to indicate that the pair (C 0; P 0) can be obtained from (C;P) by anapplication of an inference rule.CP-Deduction: (C;P)(S1; S2) is a critical pair of P(C [f(S1; S2)g; P)CP-Orientation: (C [f(S1; S2)g; P)R = orient�(S1; S2)(C;P [R)CP-Deletion: (C [f(S1; S2)g; P)S1 and S2 are joinable(C;P)CP-Simpli�cation: (C [f(S1; S2)g; P)S1 7! S01(C [f(S01; S2)g; P)(C [f(S1; S2)g; P)S2 7! S02(C [f(S1; S02)g; P)Fig. 2. Inference rules of completion

The rule CP-Deduction permits to add critical pairs to C. CP-Orientation re-moves a critical pair from C and adds new rules to P , provided the criticalpair can be oriented with respect to the termination ordering �. In contrast tocompletion methods for TRS, we need - as exampli�ed below - more than onerule to make a critical pair joinable. With the inference rules CP-Deletion andCP-Simpli�cation, C can be simpli�ed. The rule CP-Deletion removes a joinablecritical pair. The rule CP-Simpli�cation replaces state in a critical pair by itssuccessor state.Di�erent versions of completion di�er in which critical pair they \orient" �rstand in how they keep track of critical pairs that still need to be processed. Aversion of completion is fair if it does not avoid processing any critical pairin�nitely often. One simple fair version of completion is to use the followingstrategy:1. Set i := 0 and begin with the set of the rules P0 := P and their non-joinablecritical pairs C0.2. If Ci = ;, stop successfully with P 0 = Pi.3. Let Ci be C [f(S1; S2)g. Then (C [f(S1; S2)g; Pi) 7�!�CP�Simpli�cation (C [f(T1; T2)g; Pi), such that T1 and T2 are �nal states. If R = orient�(T1; T2),then Pi+1 := Pi [R. Otherwise abort unsuccessfully.4. Form all critical pairs between a rule of R and all rules of Pi+1 by theinference rule CP-Deduction. To produce Ci+1, add these critical pairs toCi and then remove all (in Pi+1) joinable critical pairs by the inference ruleCP-Deletion.5. Set i := i+ 1 and go to 2.With this strategy, we need to de�ne orient� only for �nal states. For the caseCU1 6= > and CU1 � CU2 (the case CU2 6= > and CU2 � CU1 is analogous) wede�neorient�(<>; CU1; CB1>;<>; CU2; CB2>) :=�fCU1 , CB1 j CU2 ^ CB2; CU2) CB2 j CB1g if CU2 6= >fCU1 , CB1 j CB2g if CU2 = > and CT j= CB1$CB2Note that propagation rules whose bodies consist only of true can be eliminated.One obvious di�erence to completion in TRS is that our completion for CHRderives two rules out of a critical pair in general. In example 4 we show why theadditional propagation rule is necessary.Example 3. Let P be a CHR program that represents a fragment of the Booleanconstraint solver [9] de�ning the logical connectives and and imp. The constraintand(X,Y,Z) stands for X ^ Y $ Z and imp(X,Y) for X ! Y.4and1 @ and(X,X,Z) , X=Z.and2 @ and(X,Y,X) , imp(X,Y).4 In the solver, imp is used as an ordering relation which explains the binary notationin contrast to the ternary and.

and3 @ and(X,Y,Z) ^ and(X,Y,Z1) , and(X,Y,Z) ^ Z=Z1.imp1 @ imp(X,Y) ^ imp(Y,X) , X=Y.We choose the termination ordering:C1 � C2 i� C2 is a conjunct of C1 or C1 is and(X,Y,Z) and C2 is imp(X,Y).The completion procedure results in the following sequence; critical pairs whichare considered in the current inference step are underlined.P0 = PC0 = f(<imp(X; X);>; true>;<X = X;>; true>);(<X = Z; and(X; Y; X); true>;<imp(X; Y); and(X; Y; Z); true>);(<X = Z; and(X; Y; Z); true>;<imp(X; Y); and(X; Y; Z); true>)gP1 = P [fr1@imp(X; X), truegC1 = f(<X = Z; and(X; Y; X); true>;<imp(X; Y); and(X; Y; Z); true>);(<X = Z; and(X; Y; Z); true>;<imp(X; Y); and(X; Y; Z); true>)gP2 = P1 [fr2@imp(X; Y)^ and(X; Y; Z), imp(X; Y) ^ X = ZgC2 = f(<X = X ^ imp(X; Y);>; true>;<imp(X; Y); imp(X; Y); true>)gP3 = P2 [fr3@imp(X; Y)^ imp(X; Y), imp(X; Y)gC3 = ;Let c.p. stand for critical pair from now on. The �rst, underlined c.p. of C0 comesfrom equating the heads of rules and2 and and1. This c.p. becomes joinable byadding rule r1 to P . The second c.p. of C0 comes from equating the head of ruleand2 with the �rst head constraint of and3. It becomes joinable by adding ruler2. The third c.p. of C0 comes from equating the head of and2 with the secondhead constraint of and3. It also becomes joinable due to r2. A non-joinable c.p.is added in the third step, which comes from equating the head of and2 andthe second head constraint of r2. For the sake of simplicity we dropped all newpropagation rules generated by orient, since they were trivial, i.e. their bodiesconsisted only of true.The result of the completion procedure is P 0 = P3:% rules and1, and2, and3, imp1 together withr1 @ imp(X,X) , true.r2 @ imp(X,Y) ^ and(X,Y,Z) , imp(X,Y) ^ X=Z.r3 @ imp(X,Y) ^ imp(X,Y) , imp(X,Y).The new rules derived by completion reveal some interesting properties of imp,e.g. r1 states that \X implies X" is always true. P 0 is terminating (see Theorem 9for correctness) and all its critical pairs are joinable, therefore P 0 is con
uent.

The next example shows that in general it is not su�cient to derive only simpli-�cation rules as in completion for TRS, in order to join a non-joinable criticalpair.Example 4. Let P be the following CHR program, where p, q and r are user-de�ned constraints and �; � are built-in constraints.r1 @ p(X,Y) , X � Y ^ q(X,Y).r2 @ p(X,Y) , X � Y ^ r(X,Y).P is not con
uent, since the c.p. stemming from r1 and r2(<q(X; Y) ^ X � Y;>; true>;<r(X; Y) ^ X � Y;>; true>)is non-joinable. The corresponding �nal states are<>; q(X; Y); X � Y>;<>; r(X; Y); X � Y>:Let r(X,Y) � q(X,Y). Then the completion procedure derives:r3 @ r(X,Y) , X � Y | q(X,Y) ^ X � Y.r4 @ q(X,Y)) X � Y | X � Y.The following computations show that it is necessary to derive the propagationrule to P to join the c.p. above:<r(X; Y) ^ X � Y;>; true>7!Solve <r(X; Y);>; X � Y>7!Introduce <>; r(X; Y); X � Y>7!Simplify <q(X; Y) ^ X � Y;>; X � Y>7!Solve <q(X; Y);>; X = Y>7!Introduce <>; q(X; Y); X = Y>7!Propagate <X � Y; q(X; Y); X = Y>7!Solve <>; q(X; Y); X = Y>Without the application of the propagation rule the computation below wouldresult in a di�erent �nal state:<q(X; Y) ^ X � Y;>; true>7!Solve <q(X; Y);>; X � Y>7!Introduce <>; q(X; Y); X � Y>7!Propagate <X � Y; q(X; Y); X � Y>7!Solve <>; q(X; Y); X = Y>As is the case for TRS our completion procedure cannot be always successful.We distinguish three cases:1. The algorithm stops successfully and returns a program P 0.

2. The algorithm aborts unsuccessfully, if a critical pair cannot be transformedinto rules for one of three reasons:{ The program remains terminating if new rules are added but the termi-nation ordering is too weak to detect this.{ The program loses termination if new rules are added.{ The critical pair consists exclusively of built-in constraints.3. The algorithm does not terminate, because new rules produce new criticalpairs, which require again new rules, and so on.In the next section we show that when the algorithm stops successfully, thereturned program P 0 is con
uent and terminating.3.1 Correctness of the Completion AlgorithmWe now show that the completion procedure applied to a CHR program resultsin an equivalent program. For the proof to go through, every rule has to satisfya range-restriction condition: Every variable in the body or the guard appearsalso in the head. In practice, in almost all solvers, rules with local variables(variables that occur on the right-hand side of a rule only) can be rewritten tobe range-restricted. One introduces interpreted function symbols for the localvariables and extends the equality theory in CT accordingly.Some de�nitions are necessary before we go further.De�nition 6. Let P1 and P2 be CHR programs and let CT be the appropriateconstraint theory. P1 and P2 are equivalent, if their logical meanings P1 and P2are equivalent: CT j= P1 $ P2De�nition 7. Let S be a state <Gs;CU ; CB>, which appears in a computationof G. The logical meaning of S is the formula9�x Gs ^ CU ^ CB ;where �x are the (local) variables appearing in S and not in G. A computableconstraint of G is the logical meaning of a state which appears in a computationof G.Lemma8. Let P be a CHR program and G be a goal. Then for all computableconstraints C1 and C2 of G the following holds:P [CT j= 8 (C1$C2):Proof. See [2].Theorem9. Let P be a range-restricted CHR program respecting a terminationordering � and C be the set of the non-joinable critical pairs of P . If, forinputs C0 = C, P0 = P and �, the completion procedure generates a successfulderivation of the form (C0; P0) 7�! : : : 7�! (;; P 0), then P 0 is terminating withrespect to �, con
uent and equivalent to P .Proof. Omitted from the �nal version for space reasons. See [2].

3.2 ConsistencyAnother property of completion is that it can exhibit inconsistency of the pro-gram to complete.De�nition 10. A constraint theory CT is called complete, if for every constraintc either CT j= 8c or CT j= 8:c holds.Theorem11. Let P be a CHR program and CT a complete theory. If the com-pletion procedure aborts unsuccessfully, because the corresponding �nal statesof a critical pair consist only of di�ering built-in constraints, then the logicalmeaning of P is inconsistent.Proof. Let CB1; CB2 be the built-in constraints of the �nal states. According toLemma 8, the following holdsP [CT j= 8 (9�x1CB1 $ 9�x2CB2);where �x1; �x2 are the local variables of the �nal states.We prove the claim by contradiction. Assume that P is consistent. Then P[CT isconsistent. Therefore CT j= 8 (9�x1CB1 $ 9�x2CB2) holds, since CT is complete.Then according to the normalization function CB1 and CB2 have a unique form.This contradicts the prerequisite that the states are di�erent. utExample 5. Let P be the following CHR program trying to implement the con-straint maximum(X,Y,Z), which holds, if Z is the maximum of X and Y, and where� and = are built-in constraints. Note that there is a typo in the body of thesecond rule, since Y should have been Z:r1 @ maximum(X,Y,Z), X � Y | Z = Y.r2 @ maximum(X,Y,Z), Y � X | Y = X.The c.p. (<Z = Y;>; X � Y ^ Y � X>;<Y = X;>; X � Y ^ Y � X>)stemming from r1 and r2 is not joinable. The states of the c.p. consist only ofbuilt-in constraints. Thus the completion procedure aborts unsuccessfully.The logical meaning of this CHR program is the theory8 X,Y,Z (X � Y ! (maximum(X,Y,Z) $ Z = Y))8 X,Y,Z (Y � X ! (maximum(X,Y,Z) $ Y = X))together with an appropriate constraint theory describing � as an order relationand = as syntactic equality. The logical meaning P of this program is not a con-sistent theory. This can be exempli�ed by the atomic formula maximum(1; 1; 0),which is logically equivalent to 0=1 (and therefore false) using the �rst formula.Using the second formula, however maximum(1; 1; 0) is logically equivalent to1=1 (and therefore true). This results in P [CT j= false$true.

4 More Uses of CompletionThe �rst example shows that the completion method can be used - to someextent { to specialize constraints.Example 6. We de�ne the constraint < as a special case of �. If we extend theCHR program for � of Example 1 by the simpli�cation ruler5 @ X � Y , X 6= Y | X < Y.then the resulting program is not con
uent anymore. With the termination or-deringC1 � C2 i� C2 is a conjunct of C1 or C1 is X � Y and C2 is X < Y,the completion procedure derives the following rules:r6 @ X < Y ^ Y < X , X 6= Y | false.r7 @ X < Y ^ X < Y , X 6= Y | X < Y.where r6 comes from a c.p. of r2 and r5,(<X = Y;>; X 6= Y>;<X < Y; Y � X; X 6= Y>):r7 comes from a c.p. of r4 and r5,(<>; X � Y; X 6= Y>;<X < Y; Y � X; X 6= Y>):r6 obviously de�nes the antisymmetry of < and r7 idempotence. Irre
exivity of< could not be derived, since the de�nition of < by rule r5 already presupposesthat X 6=Y. However, completion can derive irre
exivity from rule r1 and the ruler8 @ X � Y ^ Y < X , false.since the resulting c.p.(<X < X;>; true>;<false;>; true>):leads to the simpli�cation ruler9 @ X < X , false.The next example shows how completion can be used as a method to providegeneric answers, even if a constraint cannot further be simpli�ed. This retainssome of the power of logic languages like Prolog, where several answers canbe given. Our approach is similar to the ones that related Prolog and TRScomputation methods [7, 6].Example 7. A CHR formulation of the classical Prolog predicate member as auser-de�ned constraint is (6= is built-in):

r1 @ member(X,[]) , false.r2 @ member(X,[X|_]) , true.r3 @ member(X,[H|T]) , X 6= H | member(X,T).Using CHR, the goal member(X,[1,2,3]) delays. However Prolog generatesthree solutions X=1, X=2 and X=3. If we addr4 @ member(X,[1,2,3]) , answer(X).to P , then the program is non-con
uent. Our completion procedure derives:a1 @ answer(1) , true.a2 @ answer(2) , true.a3 @ answer(3) , true.a4 @ answer(X) , X 6= 1 ^ X 6= 2 ^ X 6= 3 | false.The rules a1,a2 and a3 correspond to the answers of the Prolog program, whilethe last rule a4 makes explicit the closed world assumption underlying Clark'scompletion semantics of Prolog.Completion can also derive recursively de�ned constraints.Example 8. Let P be the following CHR programr1 @ append([],L,L) , true.r2 @ append([X|L1],Y,[X|L2]) , append(L1,Y,L2).de�ning the well-known ternary append predicate for lists as a simple constraint,which holds if its third argument is a concatenation of the �rst and the secondargument. P is con
uent since there are no critical pairs. When we add the ruler3 @ append(L1,[],L3) , new(L1,L3).con
uence is lost. Completion derives a constraint solver for new:r4 @ new([],[]) , true. % joins c.p. of r1 and r3r5 @ new([A|B],[A|C]) , new(B,C). % joins c.p. of r2 and r3Our completion procedure has uncovered that append(L1,[],L3) holds exactlyif L1 and L2 are the same list, as tested by the generated, recursive constraintnew. Note that the rules represent in a �nite way the in�nitely many answersthat would be generated by the corresponding program in Prolog.5 ConclusionsWe introduced a completion method for Constraint Handling Rules (CHR).Completion methods make a non-con
uent CHR program con
uent by addingnew rules. We have shown that our proposed completion procedure is correct andcan exhibit inconsistency of a CHR program. We also gave various examples to

show that completion can be used as a method to provide generic answers andto de�ne new constraints from existing ones and to derive constraint solvers forthem. The latter helps the CHR programmer to extend, modify and specializeexisting solvers instead of having to write them from scratch. We currently in-vestigate using our completion method on larger real-life solvers for easing theirmodi�cation and for giving more informative answers. An interesting directionfor future work is to explore the relationship of completion to partial evaluation.References1. S. Abdennadher. Operational semantics and con
uence of constraint propagationrules. In Third International Conference on Principles and Practice of ConstraintProgramming, CP'97, LNCS 1330. Springer-Verlag, 1997.2. S. Abdennadher. Analyse von regelbasierten Constraintl�osern (in German). PhDthesis, Computer Science Institute, LMU Munich, February 1998.3. S. Abdennadher, T. Fr�uhwirth, and H. Meuss. On con
uence of constraint han-dling rules. In 2nd International Conference on Principles and Practice of Con-straint Programming, CP'96, LNCS 1118. Springer-Verlag, August 1996. Revisedand extended version to appear in the Constraints Journal.4. ACM. The constraint programming working group. Technical report, ACM-MITSDRC Workshop, Report Outline, Draft, September 1996.5. L. Bachmair and N. Dershowitz. Commutation, transformation, and termination.In J. H. Siekmann, editor, Proceedings of the Eighth International Conference onAutomated Deduction (Oxford, England), LNCS 230. Springer-Verlag, July 1986.6. M. P. Bonacina and J. Hsiang. On rewrite programs: Semantics and relationsshipwith PROLOG. Journal of Logic Programming, 14:155{180, 1992.7. N. Dershowitz and N. A. Josephson. Logic programming by completion. In Sten-�Ake T�arnlund, editor, Proceedings of the Second International Conference on LogicProgramming, Uppsala, 1984.8. N. Dershowitz, N. Okada, and G. Sivakumar. Con
uence of conditional rewritesystems. In J.-P. Jouannaud and S. Kaplan, editors, Proceedings of the 1st Inter-national Workshop on Conditional Term Rewriting Systems, LNCS 308, 1988.9. T. Fr�uhwirth. Constraint handling rules. In A. Podelski, editor, Constraint Pro-gramming: Basics and Trends, LNCS 910. Springer-Verlag, March 1995.10. T. Fr�uhwirth. A Declarative Language for Constraint Systems: Theory and Prac-tice of Constraint Handling Rules. Habilitation, Computer Science Institute, LMUMunich, 1998. Shortened version to appear in Journal of Logic Programming, Spe-cial Issue on Constraint Logic Programming, P. Stuckey and K. Marriot, editors.11. J. Ja�ar and M. J. Maher. Constraint logic programming: A survey. Journal ofLogic Programming, 20, 1994.12. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebra. InJ. Leech, editor, Computational Problems in Abstract Algebra. Pergamon Press,1970.13. K. Marriott and P. Stuckey. Programming with Constraints: An Introduction. TheMIT Press, 1998.14. V. A. Saraswat. Concurrent Constraint Programming. MIT Press, Cambridge,1993.This article was processed using the LATEX macro package with LLNCS style

