
Compiling Constraint Handling RulesChristian Holzbaur�University of ViennaDepartment of Medical Cybernetics and Arti�cial IntelligenceFreyung 6, A-1010 Vienna, Austriachristian@ai.univie.ac.atThom Fr�uhwirthCWG at LMUyOettingenstrasse 67, D-80538 Munich, Germanyfruehwir@informatik.uni-muenchen.deAbstractWe introduce the most recent and advanced implementation of CHR whichimproves both on previous implementations (in terms of completeness, ex-ibility and e�ciency) and on the principles that should guide such an im-plementation. The idea is to have three rather independent phases of thecompiler that utilize templates to generate the code and macros to specializeit. Moreover, our new implementation of CHR emphasizes the need for andpower of attributed variables. We compile constraints into clauses and storethem in attributes of variables. This is the �rst paper (besides from a lengthytechnical report) that describes the implementation of CHR.1 IntroductionIn the beginning of constraint logic programming (CLP), constraint solving was\hard-wired" in a built-in constraint solver written in a low-level language. Whilee�cient, this so-called \black-box" approach makes it hard to modify a solver orbuild a solver over a new domain, let alone debug, reason about and analyze it. Thisis a problem, since one lesson learned from practical applications is that constraintsare often heterogeneous and application-speci�c. Consequently, several proposalshave been made to allow more for exibility and customization of constraint systems(\glass-box" or even \no-box" approaches):� Demons, forward rules and conditionals in CHIP [D*88] allow the de�nitionof propagation of constraints in a limited way.� Constraint combinators in cc(FD) [VH91] allow to build more complex con-straints from simpler constraints.� Constraints connected to a Boolean variable in BNR-Prolog [BeOl92] and\nested constraints" [Sid93] allow to express any logical formula over primitiveconstraints.� Indexicals in clp(FD) [CoDi93] allow to implement constraints over �nite do-mains at a medium level of abstraction.�The work was performed while visiting CWG at LMU with �nancial support from DFG.yConstraint Working Group at Ludwig-Maximilians-University1

� Meta- and attributed variables [Neu90, Hui90, Hol92] allow to attach con-straints to variables at a low level of abstraction.It should be noted that all the approaches but the last can only extend a solver overa given, speci�c constraint domain, typically �nite domains. Other (applications-speci�c) constraint domains can only be implemented using the last approach.Attributed Variables [Hol92] serve as direct access storage locations for prop-erties associated with variables. At the same time, attributed variables make theuni�cation part of a uni�cation based language, Prolog for example, user-de�nablewithin the language under extension [Hol90, Hol93]. Attributed variables nowa-days serve as the primary low-level construct for implementing suspension (delay)mechanisms and constraint solver extensions in many constraint logic programminglanguages, e.g. SICStus and ECLiPSe Prolog. However this is tedious, a kind of\constraint assembler" programming.If there already is a powerful constraint assembler, one may wonder what an as-sociated high-level language could look like. Our proposal is a declarative languageextension especially designed for writing constraint solvers, called constraint han-dling rules (CHR) [Fru91, FrBr95a, FrBr95b, Fru98, FAM98, HoFr98]. With CHR,one can introduce user-de�ned constraints into a given high level host language,be it Prolog or Lisp. As language extension, CHR themselves are only concernedwith constraints, all auxiliary computations are performed in the host language.CHR have been used in dozens of projects worldwide to encode dozens of constrainthandlers (solvers), including new domains such as terminological and temporal rea-soning. If comparable hard-wired constraint solvers are available, the price to payfor the exibility of CHR is often within an order of magnitude in runtime. Thistime di�erence can in many cases be eliminated by tailoring the CHR constraintsto the speci�cs of the class of applications at hand.CHR is essentially a committed-choice language consisting of guarded rules thatrewrite constraints into simpler ones until they are solved. CHR can de�ne both sim-pli�cation of and propagation over user-de�ned constraints. Simpli�cation replacesconstraints by simpler constraints while preserving logical equivalence. Propagationadds new constraints which are logically redundant but may cause further simpli�-cation. CHR can be seen as a generalization of the various CHIP [D*88] constructsfor user-de�ned constraints.In contrast to the family of the general-purpose concurrent logic programminglanguages [Sha89], concurrent constraint languages [Sar93] and the ALPS [Mah87]framework, CHR are a special-purpose language concerned with de�ning declara-tive objects, constraints, not procedures in their generality. In another sense, CHRare more general, since they allow for \multiple heads", i.e. conjunctions of con-straints in the head of a rule. Multiple heads are a feature that is essential insolving conjunctions of constraints. With single-headed CHR alone, unsatis�abilityof constraints could not always be detected (e.g X<Y,Y<X) and global constraintsatisfaction could not be achieved. The probably most distinguishing functionalityof CHR is that they act as a powerful iteration and retrieval mechanism over theconstraint store, a data structure holding constraints.CHR are typically realized as a library containing a compiler, runtime systemand solvers written in CHR. For a CLP host language, the idea is to base the imple-mentation of CHR on attributed variables. We will compile constraints into clausesand store them in attributes of variables. Thus CHR can also be understood as apowerful means to manipulate the attributes of variables in a declarative high-levelfashion. In this paper we introduce the most recent and advanced implementationof CHR which improves both on the previous implementation [FrBr95b] in termsof completeness, exibility and e�ciency and on the principles that should guidesuch an implementation [FrBr95a]. The improvements are based on compilation2

on-the-y and a special purpose CHR constraint debugger together with a rich butnot overwhelming set of built-ins, options and pragmas. The release also includesmore than 25 constraint solvers written in CHR.The �rst implementation of CHR in 1991 was an interpreter written in ECLiPSeProlog [Fru91]. Then, the CHR language has been implemented in 1993 in CommonLISP at the German Research Institute for Arti�cial Intelligence (DFKI) [Her93]and in 1994 as a library of ECLiPSe [FrBr95a, FrBr95b]. CHR are currently alsoimplemented in the successor language ECLiPSe 2 at IC-Parc of Imperial Collegeand in the concurrent logical object-oriented constraint language OZ [SmTr94].Overview of this PaperWe quickly recapture syntax and semantics for CHR. Then we describe the threephases of the new compilation scheme and the runtime system for CHR that willbe based on attributed variables. We conclude with a comparison with the previousimplementation. An example will guide us through the paper. Even though it doesnot de�ne a typical constraint, we chose it for didactic reasons. It is small but canstill illustrate the various stages of our compilation scheme.Example 1.1 (Primes) We implement the sieve of Eratosthenes to compute primesin a way reminiscent of the \chemical abstract machine" [BCL88]: The constraintprimes(N) generates candidates for prime numbers, prime(M), where M is between 1and N. The candidates react with each other such that each number absorbs multiplesof itself. In the end, only prime numbers remain.primes(1) <=> true.generate @ primes(N) <=> N>1 | M is N-1, prime(N), primes(M).absorb @ prime(I) \ prime(J) <=> J mod I =:= 0 | true.Looking at the two rules de�ning primes/1, note that head matching is usedin CHR so the �rst rule will only apply to primes(1). The test N>1 is a guard(precondition) on the second rule named generate. Thus a call with a free variable,like primes(X), will suspend. The third, multi-headed rule named absorb reads asfollows: If there is a constraint prime(I) and some other constraint prime(J) suchthat J mod I =:= 0 holds, i.e. J is a multiple of I, then keep prime(I) but removeprime(J) and execute the body of the rule, true.2 Syntax and SemanticsWe assume some familiarity with (concurrent) constraint (logic) programming, e.g.[Sha89, VH91, Sar93, JaMa94]. As a special purpose language, CHR extend a hostlanguage with (more) constraint solving capabilities. Auxiliary computations inCHR programs are executed as host language statements. Here the host language is(SICStus) Prolog. For more formal and detailed syntax and semantics of constrainthandling rules see [Fru98, FAM98].2.1 SyntaxDe�nition 2.1 There are three kinds of CHR. A simpli�cation CHR is of the form1[Name '@'] Head1,...,HeadN '<=>' [Guard '|'] Body.1For simplicity, we omit syntactic extensions like pragmas which are not relevant for this paper.3

where the rule has an optional Name (a Prolog term), the multi-head Head1,...,HeadNis a conjunction of CHR constraints, which are Prolog atoms. The guard is optional;if present, Guard is a Prolog goal excluding CHR constraints; if not present, it hasthe same meaning as the guard 'true |'. The body Body is a Prolog goal includingCHR constraintsA propagation CHR is of the form[Name '@'] Head1,...,HeadN '==>' [Guard '|'] Body.A simpagation CHR is a combination of the above two kinds of rule, it is of theform[Name '@'] Head1,...'\'...,HeadN '==>' [Guard '|'] Body.where the symbol '\' separates the head constraints into two nonempty parts.2.2 SemanticsDeclaratively2, a rule relates heads and body provided the guard is true. A simpli-�cation rule means that the heads are true if and only if the body is satis�ed. Apropagation rule means that the body is true if the heads are true.A simpagation rule combines a simpli�cation and a propagation rule. Therule Heads1 \ Heads2 <=> Body is equivalent to the simpli�cation rule Heads1,Heads2 <=> Body, Heads1. However, the simpagation rule is more compact towrite, more e�cient to execute and has better termination behaviour than the cor-responding simpli�cation rule.In this paper, we are interested in the operational semantics of CHR in actualimplementations. A CHR constraint is implemented as both code (a Prolog predi-cate) and as data in the constraint store. Every time a CHR constraint is executed(called) or woken (reconsidered), it checks itself the applicability of its associatedCHR. Such a constraint is called (currently) active, while the other constraints inthe constraint store that are not executed at the moment are called (currently)passive. For each CHR, one of its heads is matched against the constraint. Match-ing succeeds if the constraint is an instance of the head, i.e. the head serves asa pattern. If a CHR has more than one head, the constraint store is searched forpartner constraints that match the other heads. If the matching succeeds, the guardis executed. Otherwise the next rule is tried.The guard either succeeds or fails. A guard succeeds if the execution succeedswithout touching a variable that occurs also in the heads. A variable is touched ifit is uni�ed with a non-variable term or a variable appearing in a CHR constraintor if it is the cause of an instantiation error. If the guard succeeds, the rule applies.Otherwise the next rule is tried.If the �ring CHR is a simpli�cation rule, the matched constraints are removedfrom the store and the body of the CHR is executed. Similarly for a �ring sim-pagation rule, except that the constraints that matched the heads preceding '\'are kept. If the �ring CHR is a propagation rule the body of the CHR is executedwithout removing any constraints. It is remembered that the propagation rule �red,so it will not �re again with the same constraints if the constraint is woken. Sincethe currently active constraint has not been removed, the next rule is tried.If all rules have been tried and the active constraint has not been removed,it suspends (delays) until a variable occurring in the constraint is touched. Heresuspension means that the constraint is inserted into the constraint store as data.When a constraint is woken, all its rules are tried again.2Unlike general committed-choice programs, CHR programs can be given a declarative seman-tics since they are only concerned with de�ning constraints, not procedures in their generality.4

3 The CompilerThe compiler is written in (SICStus) Prolog [HoFr98] and translates CHR intoProlog on-the-y, while the �le is consulted or compiled. Its kernel consists of ade�nite clause grammar that generates the target instructions (clauses) driven bytemplates. We will use example 1.1 to step through the three phases of the compiler:Parsing, translating CHR into clauses using templates and partial evaluation usingmacros.Similar translations, i.e. compilation of committed-choice languages into Prolog,have been investigated before, be it translating GHC [UeCh85], implementations ofdelay declarations [Nai85] or the e�cient implementation of QD-Janus [Deb93].Today, we bene�t from more powerful programming constructs, in particular cus-tomizable suspension mechanisms provided by attributed variables. The remainingissues to be addressed with CHR are multiple head constraints and propagationrules.3.1 ParsingUsing the appropriate operator declarations, a CHR can be read and written as aProlog term. Hence parsing basically reduces to computing information from theparse tree and to producing a canonical form of the rules. The translation processrequires mainly two synthesized attributes (pieces of information) to be computedfrom the parse tree:� The set of global variables, i.e. those that appear in the heads of a rule.� The set of variables shared between the heads matched so far and the currenthead.In the canonical form of the rules,� each rule is associated with a unique identi�er,� rule heads are collected into two lists (Keep and Remove), and� guard and body are made explicit with defaults applied.One list, called Remove in the sequel, contains all head constraints that are removedwhen the rule is applied, the other list, called Keep, contains all head constraintsto be kept. Lists may be empty. As a result of this representation, simpli�cation,propagation and simpagation rules can be treated uniformly.Example 3.1 (Primes, contd.) The canonical form of the rules for the primenumber example is given below.% rule(Id,Keep, Remove, Guard, Body)rule(1, [], [primes(1)], true, true).rule(2, [], [primes(A)], A>1, (B is A-1,prime(A),primes(B))).rule(3, [prime(A)],[prime(B)], B mod A=:=0, true).3.2 Translating CHR into ClausesBasically, CHR constraints are compiled into Prolog predicates. The CHR compilerassociates each CHR constraint with all rules in whose heads it occurs. We �rstillustrate the compilation with a simple example, a single-headed simpli�cationCHR, then we consider general cases of arbitrary multi-headed rules.5

Each occurrence of a CHR constraint in the head of a rule gives rise to oneclause. The clause head contains the active constraint, while the missing otherhead constraints are searched for in the constraint store.Example 3.2 (Primes, contd.) For the constraint primes/1 the compiler gen-erates the following intermediate code (edited for readability).% for each occurrence of the constraint as a head of a rule:% in chr primes(1) <=> trueprimes(A) :- % 1match([1], [A]), % 2check_guard([], true), % 3!, % 4true. % 5% in chr primes(N) <=> N>1 | M is N-1, prime(N), primes(M)primes(A) :- % 6match([C], [A]), % 7check_guard([C], C>1), % 8!, % 9D is C-1, % 10prime(C), % 11primes(D). % 12% if no rule applied, suspend the constraint on its variablesprimes_1(A) :- % 13suspend(primes(A)). % 14The predicate match(L1,L2) matches the actual arguments (list L2) against theformal parameters (list L1). The predicate check guard(L,G) checks the guard G.In most Prolog implementations, it is more e�cient to re-execute head matching andguards instead of suspending all of them and executing them incrementally. There-fore, check guard(L,G) fails as soon as the global variables (list L) are touched,i.e. takes part in a uni�cation or gets more constrained by a built-in constraint.When no rule applied, the last clause inserts the constraint into the constraintstore using a suspension mechanism. It allocates the suspension data structure(s)and attaches it to each variable occurring in the call. Touching any such variablewill wake the constraint.The real challenge left is to implement multi-headed CHR. In a naive imple-mentation of a rule, the constraint store is queried for the crossproduct of matchingconstraints. For each tuple in the crossproduct the guard is checked in the cor-responding environment. If the guard is satis�ed, constraints that matched headsfrom the Remove list are removed from the store and the instance of the rule'sbody is executed. Note that the removal of constraints removes tuples from thecrossproduct.Our implementation idea (as in [FrBr95a]) is an extension of the simple casepresented above. For each head constraint the compiler does the following: It isdeleted from the Keep or Remove list, respectively, and it will be called active.Whether the active constraint is removed when the rule applies, and whether anyhead constraints are removed, leads to the following three prototypical cases, eachcovered by a code generating template in the compiler. Interestingly, the three casesdo not directly correspond to the three kinds of CHR.6

Case Active constraint from Remove listThe active head constraint is to be removed if the rule applies. Thus the ruleunder consideration is either a simpli�cation or simpagation rule. It can obviouslybe applied at most once with the current active constraint. The search for thepartner constraints is through nondeterministic enumeration. Here is the template,slightly abridged. The predicate ndmpc generates the code to nondeterministicallyenumerate and match the partners, only by one.compile(remove(Active), Remove, Keep, Guard, Body, ...) -->{ Active =.. [_|Args],same_length(Args, Actual),...ndmpc(Remove, RemoveCode, Ks, ...),ndmpc(Keep, KeepCode, ...)},[('F'(n(F/A,R-N), a(Actual)) :-match(Args, Actual),RemoveCode,KeepCode,check_guard(Vars, Guard),!,remove_constraints(Ks),Body)].Example 3.3 (Primes, contd.) The second occurrence of prime/1 in rule 3 (Ex-ample 1.1) matches this template, and here is its instantiation:'F'(n(prime/1,3-2), a([A])) :-match([C], [A]),% RemoveCode (for one partner constraint)get_cnstr_via([], Constraints),nd_init_iteration(Constraints, prime/1, Candidate),get_args(Candidate, [F]),match([C]-[G], [C]-[F]),% KeepCode (no partner constraints to be kept in this case)true,% Guardcheck_guard([G,C], C mod G=:=0),!,remove_constraints([]), % no constraints to remove here% Bodytrue.The predicate get cnstr via(L,Cs) returns the constraints suspended on a freevariable occurring in the list L. If there is no such variable, it returns all the con-straints in the store. nd init iteration(Constraints, F/A, Candidate) non-deterministically returns a candidate constraint with functor F and arity A from theconstraint store.Case Active constraint from Keep list, Remove list nonemptyThis case applies only if there is at least one constraint to be removed and theactive constraint will be kept. Thus the rule from which this case originates can7

only be a simpagation rule. Since the active constraint is kept, one has to continuelooking for applicable rules, even if the rule applies. However, since at least onepartner constraint will have been removed, the same rule will only be applicableagain with another constraint from the store that matches the same partner head.Therefore, we can deterministically iterate over the constraints that are candidatesfor matching this head, while the remaining partners can be found via nondeter-ministic enumeration as before. At the end of the iteration, we have to continuewith the remaining rules for the active constraint.Example 3.4 (Primes, contd.) For space reasons, we just present a simple in-stance of the template, originating from the �rst occurrence of prime/1 in rule 3(for readability with the constraint predicate already attened, as described in thenext section on partial evaluation):prime(A, B) :-get_cnstr_via([], C), % get constraints from storeinit_iteration(C, prime/1, D), % get partner candidates!,prime(D, B, A). % try to apply the ruleprime(A, B, C) :-iteration_last(A), % no more partner candidateprime_1_2(C, B). % try next ruleprime(A, B, C) :-iteration_next(A, D, E), % try next partner candidate(get_args(D, [F]),match([C]-[G], [C]-[F]),check_guard([C,G], G mod C=:=0)-> % rule appliesremove_constraints([D]), % remove the partner from store; true % rule did not apply), % in any case, try same ruleprime(E, B, C). % with another partner candidateCase Active constraint from Keep list, Remove list emptyIn this case (stemming from propagation rules), there is no constraint to remove.Since no constraint will be removed, all possible combinations of matching con-straints have to be tried. The rule under consideration may apply with each com-bination. Therefore, all the partners (not just one as in the previous case) have tobe searched through nested deterministic iteration - this can be quite expensive.Example 3.5 This propagation rule is part of an interval solver. X::Min:Max con-strains X with lower and upper bounds Min, Max.X le Y, X::MinX:MaxX, Y::MinY:MaxY ==> Y::MinX:MaxY, X::MinX:MaxY.The propagation rule produces approximately the following code for X le Y. Somearguments pushed around by the actual code have been omitted for readability.X le Y :- 'le/2_1'(X, Y).'le/2_1'(X, Y) :- % active constraint X le Yget_cnstr_via([X], ViaX),init_iteration(ViaX, ::/2, Lx),!,'le/2_1_0'(Lx, X, Y). 8

'le/2_1'(X, Y) :-'le/2_2'(X, Y).'le/2_2'(X, Y) :- suspend(X le Y).'le/2_1_0'(Lx, X, Y) :- % outer loop for X::MinX:MaxXiteration_last(Lx),'le/2_2'(X, Y).'le/2_1_0'(Lx, X, Y) :-iteration_next(Lx, Cx, LxRest),(get_args(Cx), match,get_cnstr_via([Y], ViaY),init_iteration(ViaY, ::/2, Ly) ->'le/2_1_1'(Ly, LxRest, X, Y); 'le/2_1_0'(LxRest, X, Y)).'le/2_1_1'(Ly, Lx, X, Y) :- % inner loop for Y::MinY:MaxYiteration_last(Ly),'le/2_1_0'(Lx, X, Y).'le/2_1_1'(Ly, Lx, X, Y) :-iteration_next(Ly, Cy, LyRest),(get_args(Cy), match ->Y::MinX:MaxY, X::MinX:MaxY, % rule body'le/2_1_1'(LyRest, Lx, X, Y); 'le/2_1_1'(LyRest, Lx, X, Y)).3.3 Partial EvaluationThe translation granularity was chosen so that the generated code would roughlyrun as is, with little emphasis on e�ciency coming from local optimizations andspecializations. These are performed in the �nal, third phase of the compiler usinga simple instance of partial evaluation (PE). It is performed by using macros asthey are available in most Prolog systems, e.g. [CaWi95]. In contrast to approachesthat address all aspects of a language in a partial evaluator such as [Sah91], ourrestricted form of PE can be realized with an e�ciency that meets the requirementsof a production compiler.The functionalities of the main macros of the compiler are:� The generic predicates steering the iteration over partner constraints are spe-cialized with respect to a particular representation of these multi sets.� Recursions (typically iterations over lists) that are de�nite at compile timeare unfolded at compile time.� Head matching is specialized into uni�cation instructions guarded by nonvar/1tests (as in [UeCh85]).� Structures are attened by removing redundant function symbols. In partic-ular, clause heads are attened to facilitate clause indexing. For example,'F'(n(prime/1,3-2), a([A])) will be transformed into prime 1(A).Example 3.6 (Primes, contd.) The macro expansion phase results in the follow-ing code for our example 3.2. The code for matching and guard checking has beenin-lined. Then, the resulting trivial matchings (line 7), guards (line 3) and bodies(line 5) have been removed. 9

primes(A) :- % 1A==1, % 2!. % 4primes(A) :- % 6nonvar(A), % 8A>1, % 8!, % 9B is A-1, % 10prime(A), % 11primes(B). % 12primes(A) :- % 13suspend(primes_1(A)). % 144 The Runtime SystemThe code generated by the compiler utilizes Prolog directly since CHR compile intoclauses. Thus e.g. memory management is already taken care of. There are howeverfunctionalities that are not provided directly by most Prolog implementations:� We need means to suspend, wake and re-suspend constraint predicates.� We need e�cient access to suspended constraints in the store through di�erentaccess paths.The vanilla suspension mechanisms used by earlier CHR implementations addressedthe �rst issue above, but did not optimize re-suspension. The second issue waspartially ignored in that plain linear search in (parts of) the constraint store wasused.4.1 SuspensionsSuspended goals are our means to store constraints. They are re-executed each timeone of their variables takes part in a uni�cation and gets bound - either to a termor another variable associated with a suspension. This association can be realizedat the Prolog source level via the attributed variables interface as found in SICStusor ECLiPSe Prolog, where the behaviour of attributed variables under uni�cationis speci�ed with a user-provided predicate.In more detail, the components of the CHR suspension data structure are:� State� Constraint goal� Unique identi�er� Propagation history� Re-use counterThe state basically indicates if the constraint is active, matched, removed orpassive. The unique identi�er is used, together with the propagation history, toensure termination for propagation rules. Each propagation rule �res exactly oncefor each tuple formed by the set of matched head constraints. The tuples are storedin the propagation history of the involved constraints, i.e. suspensions. The re-usecounter is incremented with every re-use of the suspension. It is used for pro�lingand some subtle aspects of rule application control outside the scope of this paper.10

To make re-suspensions work as described, we made the suspension itself anargument of the re-executed goal. The user originally calls a constraint c/n asan ordinary goal. c/n calls c/n+1 with an anonymous variable for the additionalargument. c/n+1 is the code for constraint c/n as generated by the CHR compiler.If the constraint has to delay, this extra argument is bound to the suspension. Whenit runs again, the suspension mechanism has a handle to the suspension and canupdate its state. This construction was omitted from the listed code samples in thispaper to avoid clutter and puzzle.4.2 Access PathsA variable common to two heads of a rule considerably restricts the number ofcandidate constraints to be considered, because both partners must be suspendedon this variable. Thus we usually access the constraint store by looking at onlythose constraints (cf. get cnstr via/2).When a CHR searches for a partner constraint, we know functor and arity of thepartner. Consequently, we want direct access to the set of constraints of the samefunctor/arity. Earlier implementations performed this selection by linear searchover a part of the suspended constraints. In our runtime system we map everyfunctor/arity pair to a �xed attribute slot at compile time yielding constant timeaccess to the constraints of one type. Only the arguments need to be matched atruntime.Access to data through a variable, and then functor/arity, is exactly the func-tionality provided e�ciently by attributed variables. We store constraints directlyin the attributes of variables. Typically, only very few constraints of a particu-lar type will be suspended on a variable. Thus the constraint store can often besearched in constant time.5 EmpiricsWe compared our new SICStus CHR [HoFr98] implementation with the one indistribution with ECLiPSe 3.5.2. We are measuring the variation between the twoProlog implementations together with the actual CHR implementation di�erences.The constraint solvers and examples are taken from the ECLiPSe distribution.Times are given in seconds. ECLiPSe and SICStus were run on the same machine(a Sun workstation). In ECLiPSe, the solvers were compiled without debugger(with the nodbgcomp option). We have two columns for SICStus: one for nativecode, one for emulated code. We only compare SICStus emulated against ECLiPSe.The new CHR version is faster on all examples, the ratio new vs. old rangingfrom 0:15 to 0:78, averaging 0:5 with a standard deviation of 0:2. The booleanconstraint solver features several di�erent kinds of constraints and consequentlybene�ts more from the new data structures than the solver for lists (that basicallyallows for equality between concatenations of lists).

11

Benchmark sicstus a) sicstus b) eclipse ratio a=bnative emulatedsolver booldeussen1 ulm027r1, all solutions 0.370 0.470 0.900 0.52schur(10,), all solutions 1.020 1.300 2.584 0.50schur(13,), 1st solution 0.230 0.290 1.233 0.24schur(13,), all solutions 2.040 2.520 7.483 0.34bnqueens(8,L), 1st solution 1.240 1.500 9.817 0.15testbl(5,L), all solutions 0.750 0.900 1.467 0.61solver listsword problem1st solution 0.380 0.460 0.633 0.732nd solution 2.940 3.660 4.717 0.78Most problems are well-known problems from the literature: The Deussen prob-lem ulm027r1 was originally provided by Mark Wallace, Schur's lemma and Booleann-queens by Daniel Diaz. The �nal one is a puzzle reported by Bart Demoen ofunknown origin. The word problem was provided by Klaus Schulz.6 ConclusionsThe CHR system outlined in this paper was implemented in four man-months. Thecompiler is 1100 lines of Prolog, the runtime system around 600, which is less thanhalf of the ECLiPSe implementation.Our new implementation recti�es some former limitations3:� The CHR compiler has been \orthogonalized" by introducing three clearlyde�ned compilation phases. Compilation is now on-the-y. The template-based translation with subsequent macro-based partial evaluation allows foreasy experimentation with di�erent translation schemes. This led to a ratherquick implementation of various compiler options and pragmas.� Attributed variables let us e�ciently implement the generalized suspensionmechanism needed for CHR at the source level. In particular, constant timeaccess to constraints of one type can be provided, causing a signi�cant speedupwhen compared to previous implementations.� The number of heads in a rule is no longer limited to two. The restrictionwas motivated by e�ciency considerations since more heads need more searchtime. One can encode rules with more than two heads using additional aux-iliary intermediate constraints. But then, the resulting rules are not onlyhard to understand, they are also less e�cient than a true multi-headed im-plementation. In addition, rules apply now in textual order, which gives theprogrammer more control.� Guards now support Ask and Tell [Sar93]. In this way, CHR can also be usedas a general-purpose concurrent constraint language. (In this paper we onlyconsidered Ask parts of guards.)� The runtime system no longer abuse the native suspension mechanism of thehost language. The CHR speci�c demands, access paths and suspension recy-cling, are taken care of explicitly through customized versions of the suspen-sion mechanism.3Due to space limitations, only some of them have been discussed in this paper.12

� The CHR debugging mechanism works by instrumenting the code generatedby the CHR compiler. Basically, the CHR debugger works like the Prologdebugger, but there are extra ports speci�c to CHR. The entities reectedby the CHR debugger are constraints and rules. Constraints are treated likeordinary Prolog goals with the additional ports if they get inserted into orremoved from the constraint store or if they are woken and reconsidered.Rules come with a Try and an Apply port. In addition, the constraint storeand the ancestors of a constraint (the stack of calls leading to its execution)can be inspected.Due to space limitations we have not discussed options and pragmas in this paper- these are annotations to programs, rules or constraints that enable the compilerto perform powerful optimizations, that can sometimes make programs terminateor reduce their complexity class.Plans for the future development of the CHR implementation are the intro-duction of a priority scheme, realized through a scheduler [UeCh85] that �xes theremaining degrees of freedom with respect to sequencing4, and the factorization ofcommon matching instructions [Deb92].More information about CHR is available athttp://www.informatik.uni-muenchen.de/�fruehwir/chr-intro.htmlReferences[BCL88] Banatre J.-P., Coutant A. and Le Metayer D., A Parallel Machine for Multi-set Transformation and its Programming Style, Future Generation ComputerSystems 4:133-144, 1988.[BeOl92] F. Benhamou and W.J. Older, Bell Northern Research, June 1992, Applyinginterval arithmetic to Integer and Boolean constraints, Technical Report.[CaWi95] Carlsson M., Widen J, Sicstus Prolog Users Manual, Release 3#0, SwedishInstitute of Computer Science, SICS/R-88/88007C, 1995.[CoDi93] Diaz D., Codognet P, A Minimal Extension of the WAM for clp(FD), in WarrenD.S.(Ed.), Proceedings of the Tenth International Conference on Logic Pro-gramming, The MIT Press, Budapest, Hungary, pp.774-790, 1993.[D*88] M. Dincbas et al., The Constraint Logic Programming Language CHIP, FifthGeneration Computer Systems, Tokyo, Japan, December 1988.[Deb92] Debray S., Kannan S., Paithane M, Weighted Decision Trees, in Apt K.R.(Ed.),Logic Programming - Proceedings of the Joint International Conference andSymposium on Logic Programming, MIT Press, Cambridge, MA, pp.654-668,1992.[Deb93] S. K. Debray, QD-Janus : A Sequential Implementation of Janus in Prolog,Software|Practice and Experience, Volume 23, Number 12, December 1993,pp. 1337-1360.[FrBr95a] T. Fr�uhwirth and P. Brisset, High-Level Implementations of Constraint Han-dling Rules, Technical Report ECRC-95-20, ECRC Munich, Germany, June1995.[FrBr95b] T. Fr�uhwirth and P. Brisset, Chapter on Constraint Handling Rules, inECLiPSe 3.5.1 Extensions User Manual, ECRC Munich, Germany, December1995.[FAM98] T. Fr�uhwirth, S. Abdennadher and H. Meuss, Conuence and Semantics of Con-straint Simpli�cation Rules, Constraint Journal, Kluwer Academic Publishers,to appear 1998.4e.g. the order in which applicable rules are executed13

[Fru91] T. Fr�uhwirth, Introducing Simpli�cation Rules, Technical Report ECRC-LP-63,ECRC Munich, Germany, October 1991.[Fru98] T. Fr�uhwirth, Theory and Practice of Constraint Handling Rules, Special Issueon Constraint Logic Programming (P. Stuckey and K. Marriot, Eds.), Journalof Logic Programming, Vol 37(1-3), pp 95-138, October 1998.[Her93] B. Herbig, Eine homogene Implementierungsebene f�ur einen hybriden Wis-sensrepr�asentationsformalismus, Master Thesis, in German, University ofKaiserslautern, Germany, April 1993.[Hol90] Holzbaur C, Speci�cation of Constraint Based Inference Mechanisms throughExtended Uni�cation, Department of Medical Cybernetics and Arti�cial Intel-ligence, University of Vienna, Dissertation, 1990.[Hol92] C. Holzbaur, Metastructures vs. Attributed Variables in the Context of Exten-sible Uni�cation, In 1992 International Symposium on Programming LanguageImplementation and Logic Programming, pages 260{268. LNCS631, SpringerVerlag, August 1992.[Hol93] C. Holzbaur, Extensible Uni�cation as Basis for the Implementation of CLPLanguages, in Baader F., et al., Proceedings of the Sixth International Workshopon Uni�cation, Boston University, MA, TR-93-004, pp.56-60, 1993.[HoFr98] Ch. Holzbaur C. and Th. Fr�uhwirth, Constraint Handling Rules Reference Man-ual, for SICStus Prolog, �Osterreichisches Forschungsinstitut f�ur Arti�cial Intel-ligence, Vienna, Austria, TR-98-01, March 1998.[Hui90] Huitouze S.le, A new data structure for implementing extensions to Prolog, inDeransart P. and Maluszunski J.(Eds.), Programming Language Implementa-tion and Logic Programming, Springer, Heidelberg, 136-150, 1990.[JaMa94] J. Ja�ar and M. J. Maher, Constraint Logic Programming: A Survey, Journalof Logic Programming, 1994:19,20:503-581.[Mah87] Maher M. J., Logic Semantics for a Class of Committed-Choice Programs,Fourth Intl Conf on Logic Programming, Melbourne, Australia, MIT Press,pp 858-876.[Nai85] L. Naish, Prolog control rules, Proceedings of the Ninth International JointConference on Arti�cial Intelligence, Los Angeles, California, September 1985,pp. 720-722.[Neu90] U. Neumerkel, Extensible uni�cation by metastructures, In Proc. of Meta-programming in Logic (META'90), Leuven, Belgium, 1990.[Sah91] Sahlin D, An Automatic Partial Evaluator for Full Prolog, Swedish Institute ofComputer Science, 1991.[Sar93] V. A. Saraswat, Concurrent Constraint Programming, MIT Press, Cambridge,1993.[Sha89] E. Shapiro, The Family of Concurrent Logic Programming Languages, ACMComputing Surveys, 21(3):413-510, September 1989.[Sid93] G.A. Sidebottom, A Language for Optimizing Constraint Propagation, 1993,Simon Fraser University, Canada.[SmTr94] G. Smolka and R. Treinen (Ed.), DFKI Oz Documentation Series, DFKI,Saarbr�ucken, Germany, 1994.[UeCh85] Ueda K., Chikayama T, Concurrent Prolog Compiler on Top of Prolog, in Sym-posium on Logic Programming, The Computer Society Press, pp.119-127, 1985.[VH91] P. Van Hentenryck, Constraint Logic Programming, The Knowledge Engineer-ing Review, Vol 6:3, 1991, pp 151-194.
14

