
1.3 Exercises 21

Guard Checking. A guard is a precondition on the applicability of a rule.

The guard is basically a test that either succeeds or fails. If the guard

succeeds, the rule is applied. If the guard fails, the active constraint tries

the next head matching.

Body Execution. If a rule is applied, we say it fires. If the firing rule is a

simplification rule, the matched constraints are removed from the store and

the rule body is executed. Similarly for a firing simpagation rule, except that

the constraints that matched the head part preceding the backslash ’\’ are

kept. If the firing rule is a propagation rule, the body is executed without

removing any constraints. It is remembered that the propagation rule fired,

so it will not fire again with the same constraints. According to the rule

type, we say that the constraints matching the rule head are either kept or

removed constraints. When the active constraint has not been removed, the

next rule is tried.

1.3 Exercises

Compare the following CHR programs, which consist each of one of the

given rules, based on their answers to the suggested queries.

Exercises

1.1 Single-headed rules:

p <=> q.

p ==> q.

Multi-headed rules:

p , q <=> true.

p \ q <=> true.

Use some queries containing p and/or q.

1.2 Simplification rules with logical variables and syntactic equality:

p(a) <=> true.

p(X) <=> true.

p(X) <=> X=a.

p(X) <=> X=a | true.

p(X) <=> X==a | true.

Propagation rules with logical variables and syntactic equality:

22 Getting Started

p(a) ==> true.

p(X) ==> true.

p(X) ==> X=a.

p(X) ==> X=a | true.

p(X) ==> X==a | true.

p(X) ==> q(X).

p(a) ==> q(X).

p(a) ==> q(a).

p(X) ==> q(Y).

Queries: (a) p(a), (b) p(b), and (c) p(C).

1.3 Arithmetic comparison:

p(X) <=> X>1 | q(X).

p(X) ==> X>1 | q(X).

p(X) ==> X>1 | fail.

p(X) ==> X=<1.

Queries: (a) p(0), (b) p(1), (c) p(2), and (d) p(A).

1.4 Multi-headed rules, conjunctions in head and body, unary constraints:

p(X), q(X) <=> r(X).

p(X), q(Y) <=> X==Y | r(X).

p(X), q(Y) <=> X=Y, r(X).

p(X) \ q(X) <=> r(X).

Queries: (a) p(a), q(a), (b) p(a), q(b), (c) p(a), q(a), q(b),

and (d) p(a), q(b), q(a).

1.5 Multi-headed rules, conjunctions in head and body, binary con-

straints:

c1 @ c(X), c(X) <=> q(X,X).

c2 @ c(X), c(Y) <=> r(X,Y).

c3 @ c(X), c(X) ==> q(X,X).

c4 @ c(X), c(Y) ==> r(X,Y).

Queries: a) c(a), b) c(a), c(a), c) c(a), c(b), d) c(X), c(X),

e) c(X), c(Y), and f) c(X), c(Y), X=Y

Selected Answers:

c1 @ c(X), c(X) <=> q(X,X).

a) q(X,X)

b) c(X), c(Y)

Exercises 23

c) Y = X, q(X,X)

c2 @ c(X), c(Y) <=> r(X,Y).

a) r(X,X)

b) r(Y,X)

c) Y = X, r(X,X)

c3 @ c(X), c(X) ==> q(X,X).

a) c(X), c(X), q(X,X), q(X,X)

b) c(X), c(Y)

c) Y = X, c(X), c(X), q(X,X), q(X,X)

c4 @ c(X), c(Y) ==> r(X,Y).

a) c(X), c(X), r(X,X), r(X,X)

b) c(X), c(Y), r(Y,X), r(X,Y)

c) Y = X, c(X), c(X), r(X,X), r(X,X)

1.6 Binary constraints:

q1 @ p(X,Z), q(Z,Y) <=> q(X,Y).

q2 @ q(Z,Y), p(X,Z) <=> q(X,Y).

q3 @ p(X,Z), q(Z,Y) ==> q(X,Y).

q4 @ q(Z,Y), p(X,Z) ==> q(X,Y).

q5 @ p(X,Z) \ q(Z,Y) <=> q(X,Y).

q6 @ q(Z,Y) \ p(X,Z) <=> q(X,Y).

Queries: a) p(a,b), q(b,c), b) p(A,B), q(B,C), c) p(A,B), q(B,C),

p(D,A), d) p(X,C), p(Y,C), q(C,A), and e) p(Y,C), p(X,C), q(C,A).

Selected Answers:

q1 @ p(X,Z), q(Z,Y) <=> q(X,Y).

b) q(A,C)

c) q(D,C)

q2 @ q(Z,Y), p(X,Z) <=> q(X,Y).

b) q(A,C)

c) q(D,C)

q3 @ p(X,Z), q(Z,Y) ==> q(X,Y).

b) p(A,B), q(B,C), q(A,C)

c) p(A,B), q(B,C), q(A,C), p(D,A), q(D,C)

24 Getting Started

q4 @ q(Z,Y), p(X,Z) ==> q(X,Y).

b) p(A,B), q(B,C), q(A,C)

c) p(A,B), q(B,C), q(A,C), p(D,A), q(D,C)

q5 @ p(X,Z) \ q(Z,Y) <=> q(X,Y).

b) p(A,B), q(A,C)

c) p(A,B), p(D,A), q(D,C)

q6 @ q(Z,Y) \ p(X,Z) <=> q(X,Y).

b) q(B,C), q(A,C)

c) q(B,C), q(A,C), q(D,C)

1.4 Origins and Applications of CHR

CHR [Frü98, HF00, FA03, AFH05, FMS06, SWSK08] has many roots and

combines their features in an attractive way, enabling powerful applications.

Origins. Prolog and Logic programming (LP) [Kow86, CR93], constraint

logic programming (CLP) [Hen91, JM94, JL87, MS98, FA03, RBW06] and

concurrent committed-choice logic programming (CC) [Mah87, Ued88, Sha89,

Sar93] are direct ancestors of CHR. CHIP was the first CLP language to in-

troduce feasible constructs (demons, forward rules, conditionals) [DHS+88,

Hen89] for user-defined constraints. These various constructs have been

generalized into and made uniform by CHR.

CHR adapts concepts from term rewriting systems (TRS) [BN98] for pro-

gram analysis. Augmented term rewriting was used in the functional lan-

guage Bertrand [Lel88] to implement constraint-based algorithms.

Other influences for the design of CHR were the General Abstract Model

for Multiset Manipulation (GAMMA) [BCM88, BM93], the Chemical Ab-

stract Machine (CHAM) based on it [BB92], and, of course, production

rule systems like OPS5 [BFKM85], but also integrity constraints and event-

condition-action rules found in relational and deductive database systems.

Executable rules with multiple head constraints were also proposed in the

literature to model parallelism and distributed agent processing as well as

logical objects [BCM88, AP90] and for constraint solving [Gra89].

In comparison to all these languages, the combination of multiple heads,

propagation rules and logical variables with built-in constraints is unique

for CHR.

50 My First CHR Programs

2.5 Exercises

Exercises

2.1 Given some cities as propositional CHR constraints, write some prop-

agation rules that can express which city can be reached directly from

which other city. What is the answer to a query that consists of a

city? How do you avoid nontermination?

Now use unary CHR constraints of the form city(NameOfCity).

What becomes simpler, what not? Use a set of CHR constraints

direct(City1,City2) to implement the propagation rules.

Answer:

ulm \ ulm <=> true.

...

ulm ==> munich.

munich ==> ulm.

munich ==> salzburg.

...

All cities reachable form the city in the query are computed. The

duplicate removal rule avoids nontermination.

city(A) \ city(A) <=> true.

...

city(ulm) ==> city(munich).

city(munich) ==> city(ulm).

city(munich) ==> city(salzburg).

...

Simpagation rules for each city can be merged into one. Propagation

rules become more verbose.

city(A) \ city(A) <=> true.

...

direct(City1,City2), city(City1) ==> city(City2).

...

2.2 Represent colors as propositional CHR constraints red, blue,....

Write simplification rules that describe the result of mixing two pri-

mary colors. Observe what happens if you have all three primary

colors, in different orders, in the query. How to ensure that the

answer is always the same, say brown?

Exercises 51

Answer:

red, blue <=> violet.

red, yellow <=> orange.

blue, yellow <=> green.

red, blue, yellow <=> brown.

Confluence can be regained by additional rules, e.g.

violet, yellow <=> brown.

2.3 In an example from geometry, assume that lines are given by vari-

ables (or constants) and that CHR constraints express the relation-

ships between two lines, parallel and orthogonal. Write prop-

agation rules that derive further such relationships from the given

relationships. Ensure termination.

Answer:

parallel(L1,L2) \ parallel(L1,L2) <=> true.

...

parallel(L1,L2), parallel(L2,L3) ==> parallel(L1,L3).

orthogonal(L1,L2), orthogonal(L2,L3) ==> parallel(L1,L3).

...

2.4 Compute the factorial of a number n, given fact(1),...,fact(n).

Answer:

fact(N), fact(M) <=> fact(N*M).

2.5 Extend the Prime numbers program to factorize numbers.

2.6 What happens if the exchange sort rule is run backwards, i.e. head

and body are exchanged?

2.7 The exchange sort rule can be restricted to considering only neigh-

boring array entries.

a(I,V), a(J,W) <=> I=:=J+1, V<W | a(I,W), a(J,V).

By a similar reasoning as before we can still be sure that the final

array will be sorted.

2.8 What does the exchange sort rule with array constraints where value

and index are exchanged, i.e. a(Value, Index)?

52 My First CHR Programs

2.9 Add several natural numbers. Write numbers in successor notation,

i.e. s(s(0)) denotes the number 2. Use two CHR constraints, add

for each number to add, and sum for the resulting sum of all the

numbers.

Our query then has the form add(V1),...,add(Vn),sum(0). In

the rules consider one add constraint at a time. If it contains zero,

delete it, because it cannot change the sum. If it is not zero, it is

the successor of some number X, and so move one successor symbol

to the sum.

Answer:

add(0) <=> true.

add(s(X)), sum(Y) <=> add(X), sum(s(Y)).

The second rule applies until all add constraints contain zero, at

which point they will be deleted and only the output remains with

the sum.

2.10 Compute the number of days in a given year. The calculation is

based on the modulo operation for the year and rules to find out, if

the given year is a leap year. For example, consider the years 1991,

2000, 2004.

Answer:

days(Y,D) <=> days(Y mod 4, Y mod 100, Y mod 400, D).

days(Ym4, Ym100, 0, D) <=> D=366.

days(Ym4, 0, Ym400, D) <=> Ym400>0 | D=365.

days(0, Ym100, Ym400, D) <=> Ym100>0 | D=366.

days(Ym4, Ym100, Ym400, D) <=> Ym4>0, Ym400>0 | D=365.

2.11 In the Newton approximation of the square root, extend the con-

straint improve with a counter.

2.12 Like the Newton approximation of the square root, implement the

approximation of the reciprocal using the formula Gi+1 = 2Gi−XG2
i
.

2.13 Binomial coefficients (Pascal’s triangle) can be computed based on

the double recursive definition (in functional notation):

cb(n, k) :=

if k = 0 or k = n then 1

if k > 0 and k < n then cb(n − 1, k) + cb(n − 1, k − 1)

where 0 ≤ k ≤ n. Use a CHR constraint cb(N,K,B) and experiment

Exercises 53

with top-down and bottom-up implementations in analogy to the

Fibonacci example.

2.14 Consider the program for transitive closure. What happens if we

replace p(X,Y) in the first propagation rule of the original program

by p(X,X)? What happens in the program variations?

2.15 Consider the program for transitive closure. To ensure termination,

we may have the idea to avoid applications of the second propagation

rule when it produces some path again. The same path is produced

again if X=Y. Similarly, if Y=Z, we will produce a path that can already

be produced by the first propagation rule. Is this sufficient to ensure

termination?

Answer: We add a guard to the original propagation rule:

e(X,Y), p(Y,Z) ==> X\==Y,Y\==Z | p(X,Z).

However this alone is not enough to guarantee termination, as soon

as we have more than one cycle in the graph. Consider e(1,2),

e(2,3), e(3,1), e(2,1).

2.16 Consider the program for computing path lengths. What happens if

we replace the guard N=<M of the modified duplicate elimination rule

by N=M?

Answer: For the query e(X,Y), e(Y,Z), e(X,Z) the answer will

be p(X,Z,1), p(X,Z,2), p(Y,Z,1), p(X,Y,1). The answer shows

that there are two paths of different length from node X to node

Z. The duplicate rule only removes paths that are also identical in

the length. But this now causes nontermination, since e.g. already

e(X,X) has infinitely many paths with different lengths from X to X

itself (we essentially just count the path length up).

2.17 For a car routing application, where nodes correspond to cities, ex-

tend the edge constraint e by a third argument that contains the

distance between the two cities. Adapt the shortest path program

accordingly.

2.18 Consider the program for transitive closure, modified for single sources

or target nodes. What happens if there are several target and/or

source nodes?

2.19 Based on the for transitive closure, implement rules for the single-

source shortest path computation.

54 My First CHR Programs

Answer: Specialize the propagation rule with source/1 and extend

to shortest paths:

source(X),e(X,Y) ==> p(X,Y,1).

source(X),p(X,Y,N),e(Y,Z) ==> p(X,Z,N+1).

2.20 Find the shortest path from a given source vertex s ∈ V to all

other vertices v ∈ V in a weighted directed graph G = (V,E). The

weight-function w : E → R is lifted for a path p = 〈v0, v1, ..., vk〉 to

w(p) =
∑

k

i=1
w(vi−1, vi). The shortest path between vertices u and

v is the minimum weight of all paths u 7→ v, or if there is no such

path it is ∞.

To avoid negative weight cycles we allow nonnegative weights only.

a) Write a CHR program to solve the SSSP problem using the stan-

dard relaxation method.

b) Enhance your program, s.t. for all vertices v ∈ V the path from s

to v yielding minimal weight is stored.

2.21 In a connected Eulerian graph, there exists a path that traverses all

nodes. Write a simple program to check if a graph is Eulerian. It

suffices to check if each node has the same number of incoming and

outgoing edges.

Answer:

e(X,Y) ==> e_in(X,Y), e_out(X,Y).

e_in(X,Y), e_out(Y,Z) <=> true.

The graph is Eulerian, if no auxiliary edges e in and e out are left.

2.22 Take your last name with leq constraints from the partial order ex-

ample program 2.4.2 between succeeding characters written as vari-

ables. For example, the name Fruehwirth translates to the query

F leq R, R leq U, U leq E, E leq H, H leq W, W leq I, I leq

R, R leq T, T leq H

and leads to the answer

F leq E, H=E, I=E, R=E, T=E, U=E, W=E.

2.23 Define a grammar that admits repetitive sentences about roses, “a

rose is a rose”, “a rose is a rose is a rose”,... where the terminal

symbols are the words in such a sentence.

2.24 Write a rule for admitting grammar rules of the form A->empty,

where the special symbol empty stands for the empty string. These

type of rules is usually allowed for regular languages. This extension

does not change the expressitivity.

Exercises 55

2.25 What happens to the merge sort rule if the guard is weakened to

allow the rule to be applicable to A->A arcs?

A -> B \ A -> C <=> A<B, B<C | B -> C.

Answer: If the rule guard allows A=B,

A -> B \ A -> C <=> A=<B, B<C | B -> C.

then the query A -> A, A -> C removes and adds A -> C again and

again. The query does not terminate.

2.26 Consider the classical Hamming’s Problem, which is to compute an

ordered ascending chain of all numbers whose only prime factors are

2, 3 or 5. The chain starts with the numbers

(1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25,

Two neighboring numbers later in the chain are 79164837199872 and

79254226206720.

Generate the infinite sequence of Hamming numbers using the

merge sort rule with duplicate removal.

The idea for solving this problem is based on the observation:

any element of the chain can be obtained by multiplying a previous

number of the chain with 2, 3 or 5. The only exception is the initial

number 1.

Define a nonterminating process hamming(N) that will produce the

numbers as elements of the infinite chain starting with value N. We

multiply the number N with 2, 3, and 5, and merge them using merge

sort. Once we have done this, we know that the successor of N in the

chain must be determined, and we can move along the arc starting

in N to recursively call hamming with that new value.

Answer: To the rules for merge sort we add one of the following

pair of rules:

hamming(X) <=> X->X*2, X->X*3, X->X*5, next(X).

X->A \ next(X) <=> writeln(X), hamming(A).

hamming <=> start->1, next(1).

X->A \ next(X) <=> writeln(X), A->A*2, A->A*3, A->A*5, next(A).

