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Abstract. Cognitive architectures are used to abstract and simplify
the process of computational cognitive modeling. The popular cognitive
architecture ACT-R has a well-defined psychological theory, but lacks a
formalization of its computational system. This inhibits computational
analysis of cognitive models, e.g. confluence or complexity analysis.
In this paper we present a source to source transformation of ACT-R
models to Constraint Handling Rules (CHR) programs enabling the use
of analysis tools for CHR to analyze computational cognitive models.
This translation is the first that matches the current abstract operational
semantics of ACT-R.
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1 Introduction

Computational cognitive modeling is a research field at the interface of computer
science and psychology. It tries to explore human cognition by building detailed
computational models of cognitive processes [20]. Cognitive architectures support
the modeling process by offering a formal, well-investigated base that unifies
various psychological theories to an abstract theory of cognition. Based upon the
architecture, domain specific models are built. In the best case, cognitive archi-
tectures constrain the model space to models that are plausible, i.e. a cognitive
architecture should only allow models that correspond to human behavior [21].

Adaptive Control of Thought – Rational (ACT-R) [5] is a popular cognitive
architecture. It is a modular production rule system with a special architecture of
the working memory that operates on data stored as so-called chunks, i.e. the unit
of knowledge in the human brain. Although it has a well-defined psychological
theory, its computational system is not described formally leading to implemen-
tations that are full of technical artifacts [14, 4, 19]. This inhibits analysis of
cognitive models for features like confluence, termination and computational
complexity. Thus, to the best of our knowledge, there are no theoretical results
on (semi-)automatic methods deciding one of those computational properties
for ACT-R. Nevertheless, since computational models are computer programs,
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those properties are important since they reveal a lot of information about the
semantics of the program or model. For instance, cognitive models with expo-
nential complexity are often implausible, when humans usually find approximate
solutions with non-exponential time complexity [17].

Constraint Handling Rules (CHR)1 [10] is a rule-based language with a strong
foundation in logic. In contrast to ACT-R, it has a well-defined operational
semantics [6] and even a declarative semantics – the logical reading of a program.
There are many theoretical results and practical applications [11] like an automatic
confluence test [2, 10], an algorithm to decide operational equivalence [1, 10] and
semi-automatic methods for complexity analysis [9].

Due to the strong relation of logic to human deduction and the analysis
features of CHR, we want to use CHR for analysis of cognitive models. This
approach already has been used successfully for analysis of graph transformation
systems [16]. In this paper we therefore build on our work in [14], where we
have defined the abstract operational semantics of ACT-R. We use the abstract
semantics and not an implementation semantics because it is most suitable for
analysis of the aforementioned computational properties as it abstracts from
details like timings or conflict resolution. Thus it captures the essence of the core
transition system of ACT-R as we have shown by a soundness result between the
abstract and the implementation semantics in [14]. This makes analysis of the
abstract semantics meaningful for implementations.

The main contribution of this paper is the translation scheme from ACT-R
models to CHR programs to make CHR analysis tools accessible for cognitive
models. The translation is constructed such that every computation in the original
ACT-R model is also possible in the translated CHR program and, vice versa,
only the computations that are possible in ACT-R are possible in the CHR
translation. This is important to ensure that the analytical tools of CHR can be
used for cognitive models.

The work in this paper extends our prior work from [14] where we have defined
the abstract semantics of ACT-R that is suitable for analysis of cognitive models
due to its abstraction level. In [13] we have given a first, rough definition of the
abstract semantics of ACT-R and a corresponding simple translation to CHR.
However, due to differences between the semantics and errors in the previous
formulations, the translation from prior work cannot be used for the current,
improved semantics of ACT-R in [14]. We want to close this gap in this paper by
a formally defined translation of cognitive models to CHR suiting the current
operational semantics of ACT-R. This enables sound, elegant analysis of cognitive
models through CHR.

2 Preliminaries

In this section we give a short description of Constraint Handling Rules and
the cognitive architecture ACT-R. Therefore, we first describe ACT-R very
1 http://www.constraint-handling-rules.org
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briefly and then summarize our results on syntax and semantics from [14]. We
concentrate on our so-called abstract semantics that we have first described in
[13] and improved under the consideration of recent work [4] in [14].

2.1 Constraint Handling Rules

We recapitulate syntax and semantics of CHR briefly. For an extensive introduc-
tion to CHR, its semantics, analysis and applications, we refer to [10]. The syntax
of CHR is defined over constraints, i.e. (first-order) logical predicates. There
are two disjoint sets of constraints: user-defined (CHR) constraints and built-in
constraints (that come from the host-language CHR is embedded in). A CHR
program consists of rules of the form Hk \ Hr ⇔ G | B where the heads Hk and
Hr are conjunctions of user-defined constraints, the guard G is a conjunction of
built-in constraints and the body B is a conjunction of both types of constraints.
Note that at most one of Hk and Hr can be empty. If G is empty, it is interpreted
as the built-in constraint true.

The operational semantics is defined by the following transition scheme over
CHR states that are defined as conjunctions of constraints:

(Hk ∧Hr ∧ C) 7→ (Hk ∧G ∧B ∧ C)

if there is an instance with new local variables x̄ of above rule in head normal
form, i.e. all constants in the head of the rule are replaced by variables and
respective bindings in the guard, and CT |= ∀(C → ∃x̄G) for a constraint theory
CT [10].

Informally, a CHR program is run on a constraint store, that is a conjunction
of constraints. A rule is applicable, if the head matches constraints from the store
and the guard holds. In that case, the matching constraints from Hk are kept in
the store, the constraints matching Hr are removed and the constraints from B
and G are added.

Throughout this paper, we use multi-set notation to describe logical conjunc-
tions, e.g. to describe CHR states. Thereby, ] denotes multi-set union. We also
implicitly convert (multi-)sets to corresponding lists (denoted by square brackets)
when using them within a constraint.

2.2 Informal Description of ACT-R

ACT-R is a modular production rule system. Its data elements are so-called
chunks. A chunk has a type and a set of slots (determined by the type) that are
connected to other chunks. Hence, human declarative knowledge is represented
in ACT-R as a network of chunks. Figure 1 shows an example chunk network
that models the family relations between some persons.

In figure 2, there is an overview of ACT-R’s architecture. The modules are
responsible for different cognitive features. For instance, the declarative knowledge
(represented as a chunk network) can be found in the declarative module. The
heart of ACT-R is the procedural system that consists of a set of production rules.
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Fig. 1. A chunk network that stores some family relations. Thereby, the chunks named
Alice, Bob and Max are of a chunk type that does not have further slots. The central
chunk (not named in the figure) is of type parent with three slots: mother, father and
child. If Alice and Bob had more children, there would be more such chunks connecting
them to the chunks representing their other children.

Those rules do not have access to all information from other modules, but only
to parts of it that are stored in buffers. A buffer is connected to a module and
can hold at most one chunk at a time. Rules match the contents of the buffer,
i.e. they check if the chunks of particular buffers have certain values. If a rule is
applicable, it can modify particular slots of the chunk in the buffer, request the
module to put a whole new chunk in its buffer or clear a buffer. Modifications
and clearings are available for the production rule system, whereas requests can
take some time while the procedural system is continuing work in parallel.

goal module

goal buffer

imaginal module

imaginal buffer

declarative module

declarative buffer

procedural module

visual module

visual buffer

manual module

manual buffer

environment

Fig. 2. Modular architecture of ACT-R. This illustration is inspired by [21] and [5].

2.3 Syntax

We use the term representation of the ACT-R syntax that we have introduced in
[14]. This syntax can be obtained directly from the original syntax of ACT-R.
However, it simplifies its handling using logical or set operators.

All terms in ACT-R are defined over two disjoint, possibly infinite sets of
constant symbols C and variable symbols V. An ACT-R architecture defines the
set of buffers B ⊆ C and the set of actions A. In this paper, we restrict the set of
actions to {=, +, -} for modifications, requests and clearings respectively.
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An ACT-R model consists of a set of rules Σ, a set of type names T ⊆ C
and a (total) typing function τ : T→ 2C that defines the slots for each type. A
production rule in Σ is defined as L⇒ R, where L is a set of buffer tests of the
form =(b, t,P) and R is a set of actions of the form a(b, t, P ) where a ∈ A is an
action symbol, b ∈ B is a buffer, t ∈ T is a type and P ⊆ C × (C ∪ V) is a set of
slot-value pairs.

The function vars maps an arbitrary set of terms to its set of variables in V.
We require vars(R) ⊆ vars(L) for a production rule L⇒ R, i.e. no new variables
must be introduced on the right-hand side.

There are some further syntactic restrictions: Actions a(b, t, P ) ∈ R are only
allowed for tested buffers, i.e. if =(b, t′,P ′) ∈ L. A modification action may not
change the type of the chunk, i.e. if =(b, t,P) ∈ R then =(b, t,P ′) ∈ L. We also
require that each test refers to another buffer. Additionally, the actions are only
allowed to specify each slot at most once in their set of slot-value pairs.

In the following example, we show the syntax of an ACT-R production rule
and its informal semantics.

Example 1 (production rules). This example builds on chunks of type parent as in
figure 1. By the following rule we want to determine the parents of a given person.
Therefore, we have special goal chunks of type g that represent our query. They
have the slots query, mother, father and state. This means that they hold the
person whose parents are of interest (query), the current state of the derivation
(state) and the result (mother and father). In the beginning, a goal chunk is only
connected to a person chunk by the query slot and has the value start in its state
slot. The model will connect the other slots with corresponding chunks.

Our example rule starts the retrieval of the queried chunk:

{=(goal, g, {(state, start), (query,X)})}
⇒ {+(retrieval, parent, {(child,X)}), =(goal, g, {(state, retrieval)})}

The variable X denotes the name of the child. In the actions, we state a request
to the retrieval buffer to look for a chunk of type parent that has X in its child
slot. The state is modified from start to retrieval.

To complete the computation, we would need a second rule that takes the
result in the retrieval buffer modifies the mother and father slots of the goal
chunk accordingly.

2.4 Operational Semantics

In this section we describe the semantics of an ACT-R model as a state transition
system based on our prior work [14]. Therefore, we first introduce the notion of
an ACT-R state and then give the transition relation �.

States ACT-R operates on a network of typed chunks that we call a chunk store.
It is defined over a set of types T and a typing function τ . Chunks are defined as
unique, immutable entities with a type and connections to other chunks:
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Definition 1 (chunk store). A chunk store ∆ is a multi-set of tuples (t, val)
where t ∈ T is a chunk type and val : τ(t) → ∆ is a function that maps each
slot of the chunk (determined by the type t) to another chunk. To identify an
individual chunk, we define the total function id : ∆→ C that maps each chunk
to a unique identifier from the set of constants that is determined by its type and
slot-value pairs.

The typing function τ maps a type t from the set of type names T to a set of
allowed slots, hence the function val of chunk c has the slots of c as domain. Note
that a chunk store can contain multiple elements with the same values that still
are unique entities representing different concepts.

We assume that there is a special type chunk ∈ T with τ(chunk) = ∅.
Additionally, there is a chunk nil ∈ ∆ that is defined as nil := (chunk, ∅).

We now define the notion of a cognitive state as the content of the buffers:

Definition 2 (cognitive state). A cognitive state γ is a function B→ ∆×R+
0

that maps each buffer to a chunk and a delay. The set of cognitive states is denoted
as Γ , whereas Γpart denotes the set of partial cognitive states, i.e. cognitive states
that are partial functions and do not necessarily map each buffer to a chunk. A
buffer b is called empty, if γ(b) = nil.

The delay decides at which point in time the chunk in the buffer is available to
the production system. A delay d > 0 indicates that the chunk is not yet available
to the production system. This implements delays of the processing of requests.

Definition 3 (ACT-R states). An abstract ACT-R state is a tuple 〈∆; γ; υ〉V
where ∆ is a chunk store, γ is a cognitive state using ∆, υ is a multi-set of
first-order predicates (called additional information) and V is a set of variable
bindings. The set of allowed parameter valuations Υ is defined by the concrete
architecture.

The additional information is used to model the modularity of ACT-R where the
procedural system does not have direct access to all information in the individual
modules. For instance, it contains so-called sub-symbolic information that is used
to define activation levels of chunks, e.g., to model learning and forgetting.

State Transitions First of all, we define the notion of matchings:

Definition 4 (matching). A buffer test θ := =(b, t,P) for a buffer b ∈ B
testing for a type t and slot-value pairs P ⊆ C × (C ∪ V) matches a state σ :=
〈∆; γ; υ〉V, written θ v σ, if and only if γ(b) = ((t, val) , 0) and for all (s, v) ∈
P : ∀ (V→ ∃v′ ∈ V : id(val(s)) = v′ ∧ v = v′) for a fresh variable v′.

A rule r := L ⇒ R matches a state σ, written as r v σ, if and only if all
buffer tests t ∈ L match σ. We define the set Bindings(r, σ) as the bindings of
the variables that follow from the matching r v σ.

A buffer test matches a state, if and only if all its slot tests hold in the state,
i.e. the variable bindings imply that the values in the rule are the same as in
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the state (for the tested buffer). Note that a test can only match chunks in the
cognitive state that are visible to the system, i.e. whose delay is zero. A test
cannot match chunks with a delay greater than zero.

The modification of a state by a transition is defined by interpretation
functions I : A×Sva → 2Γpart×Υ of actions that determine the possible effects of
an action. An interpretation maps each state and action of the form a(b, t, P ) –
where a ∈ A is an action symbol, b ∈ C a constant denoting a buffer, t ∈ C a type,
and P ⊆ C × (C ∪ V) is a set of slot-value pairs – to a tuple (γpart, υ). Thereby,
γpart is a partial cognitive state, i.e. a partial function that assigns some buffers a
chunk. The partial cognitive state γpart will be taken in the operational semantics
to overwrite the changed buffer contents, i.e. it contains the new contents of the
changed buffers. Analogously, the additional information υ defines changes of
parameter valuations induced by the action.

Note that the interpretation of an action can return more than one possible
effect. For example, the declarative module can find more than one chunk matching
the retrieval request. In implementations usually one chunk is returned according
to certain additional information (called chunk activation which is an elementary
concept of ACT-R to model learning). However, in the abstract semantics all
matching chunks are regarded to find potential conflicts in a model.

From the interpretation of one action, the interpretation of a rule can be
derived by combining the individual actions. Since the actions refer to different
buffers, the changes of the partial cognitive state are disjoint and can be combined
to a larger partial cognitive states. Additional parameters can simply be merged
by multi-set union. Due to space reasons, we refer to [14] for a formal description.

We now define the transition relation � of ACT-R. The first class of tran-
sitions (rule transitions) is defined for a fresh variant r′ of a rule r ∈ Σ with
vars(r′) = ȳ:

r′ v σ ∧ V∗ = Bindings(r′, σ) ∧ (γpart, υ
∗) ∈ I(r′)

σ := 〈∆; γ; υ〉V � 〈∆ ]∆′; γ′; υ′〉V∪V∗

where ∆′ are the chunks added in the interpretation function. The id function is
extended for the chunks in ∆′ by fresh names from C. γ′ has the values of γpart
where defined or the values of γ otherwise, and υ′ := υ ] υ∗. The interpretation
function I is defined as follows:

– I(=(b, t,P), σ) = {(γp, ∅)} for modifications where γp(b) := ((t, val ′b), 0).
For γ(b) = ((t, valb), d) (from the state σ), the new values are defined as
val ′b(s) := v if (s, v) ∈ P and val ′b(s) := valb(s) otherwise.
Thus, a modification creates a copy of the chunk in the buffer with modified
values as specified in P . Modifications are deterministic, i.e. that there is
only one possible effect.

– (γp, υb) ∈ I(+(b, t,P), σ) for requests if (cb, υb) ∈ requestb(t, P, υ) and γp(b) :=
(cb, 1). Thereby, the function requestb : T×2C×(C∪V)×Υ → 2∆×Υ is a function
defined by the architecture for each buffer. It calculates the set of possible
answers for a request that is specified by a type and a set of slot value pairs.
Possible answers are tuples of a chunk and additional information.
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– (γp, υp) ∈ I(-(b, chunk, nil), σ) for clearings where γp(b) = (nil, 0) and

υp := {dmchunk(id(c), t) | γ(b) = (c, d) ∧ c = (t, val)} ]
{dmchs(id(c), s, v) | γ(b) = (c, d) ∧ c = (t, val) ∧ s ∈ τ(t) ∧ val(s) = v}.

The buffer is emptied and its chunk is added to declarative memory repre-
sented as additional information.

There are also transitions without a rule (no rule transitions):

b∗ ∈ B ∧ γ(b∗) = (c∗, d∗) ∧ d∗ > 0
σ := 〈∆; γ; υ〉V � 〈∆; γ′; υ〉V

where γ′(b∗) := (c∗, 0). Thus, one pending request is chosen non-deterministically
to be applied for one buffer b∗.

3 Translation

In this section we show how to translate an ACT-R model to a CHR program.
This is the main contribution of this paper. The translation is the first that
matches the current operational semantics of ACT-R.

3.1 Set Normal Form

To simplify the translation scheme, we assume the ACT-R production rules to
be in set normal form, i.e. that each buffer test only contains each slot at most
once. Every production rule can be transformed to a production rule preserving
operational semantics: If a rule has (s, v) and (s, v′) in one buffer test, then one
of the two must be a variable or v = v′, otherwise the rule can never fire since
one slot cannot have two different values. Let v be a variable and v′ a variable
or constant. Then the operational semantics will add the following bindings to
the state: v = v′ = v∗ for some constant v∗ (that is the identifier of a chunk)
from the state. We can now simply replace each occurrence of v by v′ in the rule
directly and have the same semantics.

3.2 Translation of States

An ACT-R state σ := 〈∆; γ; υ〉V can be translated to the following CHR state:⊎
b∈B
{buffer(b, id(c), t, d) | γ(b) = (c, d) ∧ c = (t, valc)}

]
⊎
b∈B
{chs(id(c), s, id(v)) | (c, d) ∈ ∆ ∧ c = (t, valc) ∧ valc(s) = v}

] υ ] V ] {fire}.
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Hence, for every buffer a buffer constraint with the chunk id, the type and the
delay is constructed. For every slot-value pair in the valuation function of a
chunk, a corresponding chs constraint is added to the store that keeps track of
the connections of a chunk. Note that by this definition chunks that appear in
more than one buffer are copied in the CHR state and have the same identifier.
This is made explicit in the definition by the multi-set union over all buffers.

Additional information and variable bindings are translated to corresponding
built-in constraints. As we will see in the following sections, the fire constraint
is needed to enable translated ACT-R rules to fire. This is necessary, since our
translation needs additional transitions for one original rule application. Those
additional transitions must not be interfered by other rule applications.

3.3 Translation of Rules

In our translation scheme, ACT-R rules are translated to corresponding CHR
rules. However, as we will see, there are some additional rules needed to achieve
the same behavior in both languages.

First of all, to manage relations between newly introduced variables, we define
some auxiliary functions: Both the chunk variable function cvar : B→ V1 and
the modified chunk function mvar : B→ V2 are defined as b 7→ Cb and return a
fresh, unique variable Cb for each buffer b. The codomains V1 and V2 are disjoint
subsets of V. The first function will identify the chunk of a particular buffer in
the translation. The second function is needed to introduce copies of chunks
in the translation. Finally, the value function chrval : B× C → V, (b, s) 7→ Vb,s
returns a fresh, unique variable Vb,s for each buffer b and slot name s. Those
variables are needed to identify the values of slot-value pairs. Note that in the
following we implicitly translate ACT-R constants and variables from C and V
to corresponding CHR variables.

We define the translation of a production rule r of the form L ⇒ R to a
CHR rule Hk \ Hr ⇔ G= ]G+ | B ]B= ]B+ ]B- in the following sections that
describe the translation of the individual parts of the rule.

Tests The tests of the ACT-R production rule roughly correspond to the head
of the CHR rule, i.e. the head of the CHR rule mainly depends on the tests in L.
If there is an action for a tested buffer, then the buffer constraint is removed,
otherwise it is kept. We add chs constraints for all slots of every tested chunk to
access all values. Hence, the heads of our CHR rule are defined as follows:

Hr :={fire} ] {buffer(b, cvar(b), t, 0) | =(b, t,P) ∈ L ∧ a ∈ A ∧ a(b, t′, P ′) ∈ R}
Hk :={buffer(b, cvar(b), t, 0) | =(b, t,P) ∈ L ∧ a ∈ A ∧ a(b, t, P ′) /∈ R}
] {chs(cvar(b), s, v) | =(b, t,P) ∈ L ∧ (s, v) ∈ P}
] {chs(cvar(b), s, chrval(b, s)) | =(b, t,P) ∈ L ∧ s ∈ τ(t) ∧ s /∈ slots(P )}.

We require the fire constraint and remove it, hence no other translated production
rule can fire. As mentioned before, we want to ensure that certain maintenance
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rules that are described in the following are completed before another rule is fired.
Additionally, the rule deletes the connection between the buffer and its chunk, if
there is an action for this buffer on the right hand side of the rule. The removed
buffer constraints are later on replaced by new constraints that are connected to
other chunks. This is because actions modify a copy of the original chunk instead
of modifying it in-place.

General Translation of Actions As can be seen in the operational semantics
of ACT-R, actions specify a (partial) cognitive state that describes how the
contents of the buffers change. All types of actions can be described by this
abstraction. We will implement this concept in CHR to handle rule actions.
Therefore, we first need to solve the technical problem that we have to know how
many actions a rule has to perform to make sure that no other rules interfere
with the process of applying the modifications. We keep track of this information
in the actions constraint that holds the value of pending actions. Note that this
is a static information that is known at compile time. Hence, we can add this
constraint in the general part of the translated rule: B := {actions(|R|)}.

The following two general rules are added to the translated program. They
are needed to actually perform the actions:

actions(N) ∧mod(C, [])⇔ N > 0 | actions(N − 1).
actions(N) \ mod(C, [(S, V )|P ])⇔ N > 0 | chs(C, S, V ) ∧mod(C,P ).

The two rules add chs constraints for a chunk C as specified in the list of slot-value
pairs until it is empty. If all actions have been performed, i.e. the execution of
the rule is finished, we make system able to fire again by the following general
rule that is part of the translated program: actions(0)⇔ fire. In the following
we describe how the particular actions are translated to such mod constraints.

Modifications Modifications copy the chunk from the buffer and modify partic-
ular slots in it. The previous chunks are not removed from the chunk store, but
their link to the buffer is removed by removing the buffer constraint if a modifica-
tion of the corresponding buffer is present in the rule. Hence, a modification has
to add a new buffer constraint that links the buffer to the modified copy of the
chunk. Therefore, we call the function completionb : T× 2(C∪V) → 2(C∪V) for a
buffer b ∈ B a chunk completion function that is defined as completionb(t, P ) :=
{(s, chrval(b, s)) | s ∈ τ(t) ∧ s /∈ slots(P )}. The function gets a type and a set of
slot-value pairs and returns the set of slot-value pairs for the slots that do not
appear in P , but are part of the type t. The values in the result are variables
that are generated by the chrval function depending on the buffer b to avoid
variable name clashes.

The modification part of the translated rule is then defined as:

G= :={newID(mvar(b)) | =(b, t,P) ∈ R}
B= :={buffer(b,mvar(b), t, 0) | =(b, t,P) ∈ R}
] {mod(mvar(b), P ∪ completionb(t, P )) | =(b, t,P) ∈ R}
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The built-in constraint newID/1 binds a new constant name to the variable that
we obtain from the mvar function in the guard. This name corresponds to the
new id in the operational semantics. Then a copy of the old chunk with some
modified values is placed into the buffer.

Requests Requests to a module are modeled as built-in constraints. This means
that the request function from the operational semantics of ACT-R is modeled by
a built-in constraint request(b, t, cr ,T ,V ) whose answer depends on the built-in
store (that corresponds to the additional information υ). Hence, the following
parts are added to our translated CHR rule, where for every buffer there are
unique, fresh variables T ab and V ab :

G+ :={request(b, t, p, T ab , V ab ) | +(b, t, p) ∈ R} ] {newID(mvar(b))}
B+ :={buffer(b,mvar(b), T ab , 1) | +(b, t, p) ∈ R}
] {mod(mvar(b), V ab ) | +(b, t, cr) ∈ R}

A request simply takes the answer of the built-in request and puts it into the
requested buffer. The newID built-in constraint again produces a new name for
the chunk.

Clearings In ACT-R, chunks are copied to declarative memory when a buffer
is cleared. To do this, we need to know the contents of all the slots that define
the chunk. However, in the definition of our translation scheme of rules we do
not have access to all constraints defining the chunk that is removed from the
buffer. At compilation time it is not possible to know what type of chunk will
be in the buffer to be cleared. However, the kind and number of chs constraints
depends on that type. Thus, we have to delay the application of the clearing and
handle it by introducing an extra rule for each type t of the form Ht

r \ Ht
k ⇔ Bt

with fresh CHR variables N,B,C,D, and (for all s ∈ τ(t)) Vs:

Ht
r := {actions(N), clear(B), buffer(B,C, t,D)}

Ht
k := {chs(C, s, Vs) | s ∈ τ(t)}

Btc := {dmchs(C, s, Vs) | s ∈ τ(t)}
] {dmchunk(C, t), buffer(B, nil, chunk, 0), actions(N − 1)}

This rule is only applicable, if a buffer clearing was triggered by the last rule
applied (ensured by the clear/1 constraint that is introduced by the rule with the
clearing action as we will see). Note that due to the removal of the fire constraint,
only clearing rules can be applied.

Our translation of the ACT-R rule with a buffer clearing has the following
body:

B- := {clear(b) | -(b, chunk, nil) ∈ R}.

We now exemplify the translation of rules:
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Example 2 (translation of rules). The rule from example 1 can be translated to
the following CHR rule:

chs(G, state, start) ∧ chs(G, query, X) ∧ chs(G,mother ,M) ∧
chs(G, father , F )\buffer(goal, g,G, 0) ∧ fire

⇔ newID(G′) ∧ newID(R′) ∧ request(retrieval, parent, [(child,X)], T, V,_) |
buffer(goal, g,G′, 0) ∧ buffer(retrieval, T,R′, 1) ∧mod(G′, V ) ∧
mod(G′, [(state, retrieval), (query, X), (mother ,M), (father , F )]).

3.4 No Rule Transition

In addition to transitions by rule applications, ACT-R can also have state
transitions without rule applications. This is useful for instance, if no rule is
applicable (i.e. computation is stuck in a state) but there are pending requests,
then simulation time can be forwarded to the point where the next request is
finished and its results are visible to the procedural system. This may trigger
new rules and continue the computation.

The no rule transition can be modeled in CHR by one individual generic rule:

fire \ buffer(B, T,C,D)⇔ D > 0 | buffer(B, T,C, 0)

This rule application is only possible when generally a rule could fire (ensured by
the fire constraint). This transition is possible for all requests that are pending
(i.e. that have a delay D = 1). Hence, one request is chosen non-deterministically.

4 Discussion

We have constructed our translation such that the translated program behaves
equivalently to the original ACT-R model, i.e. every transition that is possi-
ble in the ACT-R model is also possible in the translated program leading to
equivalent subsequent states (soundness) and vice versa (completeness). How-
ever, our translation has the restriction that one ACT-R transition σ � σ′ can
correspond to possibly more than one but finitely many transitions in CHR:
chr(σ) 7→ . . . 7→ chr(σ′), so-called macro-steps. In the intermediate states no regu-
lar transitions are possible. This is ensured by the removal of the fire constraint in
all of those translated rules. The only rules that are applicable in an intermediate
state are the ones that replace mod constraints with their corresponding chs
constraints (or the respective constraints for clearings), i.e. that actually apply
the actions to the state described by those constraints. Each action of a rule only
introduces n such constraints, where n is the number of actions of the rules. After
n steps, all mod and clear constraints are removed and a new fire constraint is
introduced leading to a state that is equivalent to σ′.

This state allows the same macro-transitions as the original ACT-R state
and describes the equivalent cognitive state and additional information. The
latter is argued in the translation of the particular actions. The applicability
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of translated CHR rules can be seen directly from the definition of matchings
(c.f. definition 4) and the applicability condition of CHR in section 2.1. The set
normal form of rules and the copying of chunks in the CHR state ensure that
there are constraints available in the state to match the translated rule even if
two buffers hold the same chunk or two slots of the same chunk are tested twice.

For the completeness, obviously only CHR states that model valid ACT-R
states can be considered. In particular it is required that they contain a fire
constraint, the functional character of a cognitive state is maintained and chunks
are described completely according to their type by the respective constraints,
for instance. Then it can easily be seen, that both applicability and equivalence
of actions are maintained by the translation.

5 Related Work

We first want to relate the progress of this paper with our prior work. In [13]
we first have presented an abstract operational semantics and a corresponding
translation to CHR together with a soundness and completeness result. However,
this semantics has ignored some details that are crucial for ACT-R, like the
copying of chunks when they enter a buffer. The old semantics used in-place
modification which does not directly correspond to how most implementations
work. Furthermore, the formulation of the semantics led to complicated proofs.

In [14] we have improved our semantics and unified it with independent work
from [4]. There we concentrated on the semantics that we use for the CHR
translation in this paper.

Our approach abstracts from technical details that vary in different ACT-
R implementations or depend on parameter settings like timings and conflict
resolution. We rather capture all possible transitions non-deterministically. Those
non-deterministic transitions are removed by a conflict resolution mechanism
in implementations. However, when writing a model, one is often interested
in the general sequence of transitions and only later in concrete timings. Our
approach gives us the power to reason about the core of the procedural system of
ACT-R. For instance, a model that is confluent under our abstract semantics is
independent of the order of rules, initial utility values of rules (used for conflict
resolution) and timings. This gives a more concise view on the model.

We model implementation details in a refined semantics that is an instance
of our abstract semantics [14]. This leads to concise, flexible implementations as
shown in [12] by exchanging conflict resolution in our implementation of ACT-R.

There are many implementations of ACT-R in different languages that reach
from the Lisp reference implementation [7] to certain Java (e.g. [18]) or even
Python implementations [19]. All of those approaches are efforts of getting rid
of many technicalities that have been incorporated over time in the reference
implementation, but none of them deal with formal analysis of ACT-R.

Closest to our work is F-ACT-R [4, 3], a formal formulation of the ACT-R
semantics together with an implementation with the aim of simplifying model
analysis. However, there are no confluence or complexity analysis tools, yet.
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6 Conclusion and Future Work

In this paper we have presented a translation scheme of ACT-R models to
CHR programs. It is the first of its kind that suits the current definition of the
abstract operational semantics of ACT-R [14] that introduced significant changes
compared to the prior rough definition of the semantics from [13]. The translation
does not guarantee that each ACT-R transition corresponds to exactly one CHR
transition, but in finitely many steps a valid ACT-R state is reached in CHR
representing exactly the ACT-R state from the original transition.

This property enables us to use analysis methods and tools from the CHR
world to analyze cognitive models. For example, in CHR confluence is decidable
for terminating programs [10] and there is a tool that decides it automatically [15].
Another example are methods for semi-automatic complexity analysis [9, 10] that
exist for CHR. Complexity is an important property of cognitive models, since it
can decide if a model is plausible or not. For instance, there are cognitive tasks
that can be solved by humans in short time for growing problem size (but with
errors) where the best cognitive models have exponential complexity [17]. Hence,
such models are not plausible, since they seem to pursue the wrong approach.

Although CHR analysis tools can now be used on the translated programs,
there are some practical limitations: we want to investigate how our translation can
be used for analysis of cognitive models in practice. for instance, that confluence is
often too strict. Hence, the confluence criterion of CHR classifies ACT-R models
as non-confluent that should be confluent since there are certain invariants on
valid ACT-R states that are not considered by the confluence criterion. For
example, one invariant is that there can only be one buffer constraint for each
buffer. Therefore, we want to use observable confluence to improve the behavior
of the confluence criterion for cognitive models [8] in future work. Additionally,
we want to investigate how reasoning on declarative knowledge can be improved
by a constraint system using CHR.
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