
J. LOGIC PROGRAMMING 1994:19, 20:1{679 1Theory and Practice of Constraint Handling Rules
Thom Fr�uhwirth. Constraint Handling Rules (CHR) are our proposal to allow more 
exibilityand application-oriented customization of constraint systems. CHR are adeclarative language extension especially designed for writing user-de�nedconstraints. CHR are essentially a committed-choice language consisting ofmulti-headed guarded rules that rewrite constraints into simpler ones untilthey are solved.In this broad survey we aim at covering all aspects of CHR as they cur-rently present themselves. Going from theory to practice, we will de�nesyntax and semantics for CHR, introduce an important decidable property,con
uence, of CHR programs and de�ne a tight integration of CHR withconstraint logic programming languages. This survey then describes im-plementations of the language before we review several constraint solvers- both traditional and non-standard ones - written in the CHR language.Finally we introduce two innovative applications that bene�ted from usingCHR. /1. INTRODUCTIONThe advent of constraints in logic programming (LP) is one of the rare cases wheretheoretical, practical and commercial aspects of a programming language havebeen improved simultaneously. Constraint logic programming [JaLa87, vH89, vH91,Fr*92, JaMa94, FrAb97] (CLP) combines the advantages of logic programming andconstraint solving. In logic programming, problems are stated in a declarative wayusing rules to de�ne relations (predicates). Problems are solved by the built-inlogic programming engine using chronological backtrack search to explore choices.In constraint solving, e�cient special-purpose algorithms are employed to solve sub-problems involving distinguished relations referred to as constraints. A constraintsolver can thus be seen as inference system. The solver supports some if not all ofAddress correspondence to Ludwig-Maximilians-Universit�at Muenchen (LMU), Institutfuer Informatik, Oettingenstrasse 67, D-80538 Munich, Germany, fruehwir@informatik.uni-muenchen.de, http://www.pst.informatik.uni-muenchen.de/personen/fruehwir/THE JOURNAL OF LOGIC PROGRAMMINGc
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2 the basic operations on constraints: solving (satisfaction), simpli�cation, propaga-tion, normalization, entailment (deciding implication) and optimization (computing\best" solutions).In the beginning of CLP, constraint solving was \hard-wired" in a built-in con-straint solver written in a low-level language. While e�cient, this so-called \black-box" approach makes it hard to modify a solver or build a solver over a new domain,let alone debug, reason about and analyze it. This is a problem, since one lessonlearned from practical applications is that constraints are often heterogeneous andapplication-speci�c.Actually, it has been demanded from the beginning of CLP that \constraintsolvers must be completely changeable by users" (p. 276 in [Ai*88]). By \user" wemean the application programmer. Since then, several proposals have been madeto allow more for 
exibility and costumization of constraint systems (\glass-box"or even \no-box" approaches):� Demons, forward rules and conditionals, CHIP [Di*88, vH89], allow de�ningpropagation of constraints in a limited way (Section 3).� Constraint combinators, cc(FD) [vH91], allow building more complex con-straints from simpler constraints (see also Section 8.1).� Constraints connected to a Boolean variable, BNR-Prolog [BeOl92], \nestedconstraints" [Sid93], allow expressing any logical formula over primitive con-straints.� Indexicals, clp(FD) [CoDi96], allow implementing constraints over �nite do-mains at a medium level of abstraction.� Meta- and attributed variables [Hol92], allow attaching constraints to vari-ables (Section 7).It should be noted that all the approaches but the last can only extend a solver overa given, speci�c constraint domain, typically �nite domains. Application-speci�cdomains can only be implemented directly using the last approach, however thisis tedious, a kind of \constraint assembler" programming, which is currently thelow-level basis for most delay mechanisms and constraint solver extensions.Our proposal is a high-level language extension especially designed for writingconstraint solvers, called constraint handling rules (CHR) [Fru91, FrBr95a, Fru95,FrBr95b, FAM97]. With CHR, one can introduce user-de�ned constraints into agiven host language, be it Prolog or Lisp. As language extension, CHR themselvesare only concerned with constraints, all auxiliary computations are performed di-rectly in the host language. CHR are typically a library containing a compiler andrun-time system written in the host language and solvers written in CHR.CHR are essentially a committed-choice language consisting of guarded rules thatrewrite constraints into simpler ones until they are solved. CHR de�ne both sim-pli�cation of and propagation over user-de�ned constraints. Simpli�cation replacesconstraints by simpler constraints while preserving logical equivalence. Propaga-tion adds new constraints which are logically redundant but may cause furthersimpli�cation. CHR can be seen of generalization of the various CHIP constructsfor user-de�ned constraints.



3In contrast to the family of the general-purpose concurrent logic programminglanguages [Sha89], concurrent constraint languages [Sar93] and the ALPS frame-work [Mah87], CHR are a special-purpose language concerned with de�ning declara-tive constraints, not procedures in their generality. In another sense, CHR are moregeneral, since they allow \multiple heads", i.e. conjunctions of constraints in thehead of a rule. Multiple heads are a feature that is essential in solving conjunctionsof constraints. With single-headed CHR alone, unsatis�ability of constraints couldnot always be detected (e.g X<Y,Y<X) and global constraint satisfaction could notbe achieved.Overview of the Survey PaperIn the next section, we introduce CHR by example. Then we talk about relatedwork. On our way from theory to practice, we will �rst give syntax and semanticsas well as soundness and completeness results for CHR. We will then introduce animportant property for constraint solvers, con
uence, and a decidable, necessaryand su�cient test for it. We will next discuss the speci�cs of extending a CLPlanguage with CHR (like automatic labeling). We will also describe the principlesand characteristics of several existing implementations of CHR in Prolog and LISP.CHR have been used to encode a wide range of constraint solvers, including newdomains such as terminological and temporal reasoning. We will give an overviewof several solvers, show how they can be extended or modi�ed and we will brie
ydescribe related work that builds on these solvers. Finally, we will mention twoapplications in non-standard domains, one optimizes the placement of radio cellsfor transmitters, the other gives rent advice over the internet.2. CHR BY EXAMPLEWe de�ne a user-de�ned constraint for less-than-or-equal, =<, that can handle vari-able arguments. The implementation will rely on syntactical equality, =, which isassumed to be a prede�ned (built-in) constraint.reflexivity @ X=<Y <=> X=Y | true.antisymmetry @ X=<Y,Y=<X <=> X=Y.transitivity @ X=<Y,Y=<Z ==> X=<Z.The CHR specify how =< simpli�es and propagates as a constraint. They im-plement re
exivity, antisymmetry and transitivity in a straightforward way. CHRreflexivity states that X=<Y is logically true, provided it is the case that X=Y. Thistest forms the (optional) guard of a rule, a precondition on the applicability of therule. Hence, whenever we see the constraint X=<X we can simplify it to true. CHRantisymmetrymeans that if we �nd X=<Y as well as Y=<X in the current constraint,we can replace it by the logically equivalent X=Y. Note the di�erent use of X=Y inthe two rules: In the reflexivity rule the equality is a precondition (test) on therule, while in the antisymmetry rule it is enforced when the rule �res.The rules reflexivity and antisymmetry are simpli�cation CHR. The ruletransitivity propagates constraints. It states that the conjunction X=<Y, Y=<Z



4 implies X=<Z. Operationally, we add logical consequences as a redundant constraint.This kind of CHR is called propagation CHR.Redundancy from propagation CHR is useful, as the query A=<B,C=<A,B=<Cshows: The �rst two constraints cause CHR transitivity to �re and add C=<Bto the query. This new constraint together with B=<C matches the head of CHRantisymmetry, X=<Y,Y=<X. So the two constraints are replaced by B=C. In gen-eral, matching takes into account the syntactical equalities that are implied bybuilt-in constraints. Therefore, since the built-in constraint B=C was added, CHRantisymmetry applies to the constraints A=<B,C=<A, resulting in A=B. The querycontains no more inequalities, the simpli�cation stops. The constraint solver webuilt has solved A=<B,C=<A,B=<C and produced the answer A=B,B=C:A=<B,C=<A,B=<C.% C=<A,A=<B propagates C=<B by transitivity.% C=<B,B=<C simplifies to B=C by antisymmetry.% A=<B,C=<A simplifies to A=B by antisymmetry since B=C.A=B,B=C.Note that multiple heads of rules are essential in solving these constraints. Alsonote that this solver implements a (partial) order constraint over any constraintdomain, this generality is only possible with CHR.For the solver to work, we require conjunctions of constraints to be idempotent,so that multiple occurrences of the same constraint are absorbed. This ensurestermination of the solver, since given a �nite number of variables, there can onlybe a �nite number of di�erent =< constraints between them. Then, the solver iscon
uent, this means that from a given query, the answer will always be the same,regardless of which order we apply the rules. E.g. in the above query we could havestarted with applying transitivity to C=<A,B=<C.3. RELATED WORK3.1. Languages for De�ning ConstraintsCS-Prolog [KOM87] was presumably the �rst proposal to implement constraintsolvers in a LP language itself utilizing a delay mechanism. Conditional rewriterules were used to describe the behavior of the solver. However, it was years tooearly to be able to re�ne this idea and implement it e�ciently.CHIP was the �rst CLP language to introduce feasible constructs (demons, for-ward rules, conditionals) [Di*88, vH89] for user-de�ned constraints. These variousconstructs have been generalized into and made uniform by CHR. Demons are es-sentially single-headed simpli�cation CHR without guards. One version of CHIPalso included forward rules [Gr89], which correspond to CHR without guards. Inpractice, demons and forward rules have been proven useful in CHIP applicationsin the boolean domain for circuit design and veri�cation. Their potential to de�neconstraint solvers in general was not realized, maybe because of their limitations.The Guarded Rules [Smo93] correspond to single headed simpli�cation CHR.However, they are only used as \shortcuts" (lemmata) for predicates, not as de�-nitions for user-written constraints. Interestingly, Smolka de�nes the built-in con-



5straint system as a terminating and determinate reduction system. Hence it couldbe implemented by simpli�cation CHR.We have already mentioned the other approaches towards user-de�ned con-straints in LP in the introduction. There are also other languages outside of theLP paradigm, that aim at de�ning constraint systems.The functional language Betrand [Lel88] uses augmented term rewriting, whichis standard term rewriting extended by an equality theory, local variables, objectsand types. Con
uence is preserved. An extension to allow multiple solutions is alsodiscussed, which would allow Betrand retaining the expressive power of LP. Theextensions of Bertrand mimic what is already present in LP: the equality theoryfor uni�cation of Herbrand terms and local variables.The object-oriented language extension EQUATE [Wil91] simpli�es arithmeticconstraints into a sequence of procedural solution steps. EQUATE uses rewriterules, which can be seen as LP rules. The procedural solutions use destructiveassignment, thus an ordering has to be imposed on the solutions steps to avoidread-write con
icts. The approach has some capabilities to deal with added andremoved constraints.3.2. Multiple Head AtomsAccording to [Coh88] at the very beginning of the development of Prolog in theearly 70's by Colmerauer and Kowalski, experiments were performed with clauseshaving multiple head atoms. In committed-choice languages, multiple head atomshave been considered only rarely. In his thesis, Saraswat remarks on multiple headatoms that \the notion seems to be very powerful" and that \extensive furtherinvestigations seems warranted" ([Sar89], p. 314). He motivates joint reductionsof multiple atoms as analogous to production rules of expert system languages likeOPS5. The examples given suggest the use of joint reductions to model objects ina spirit similar to what is worked out in [AnPa90].Indeed, clauses with multiple head atoms were proposed in the literature tomodel parallelism and distributed processing as well as objects. The similarity withCHR is merely syntactical. Rules about distribution, objects or agents involve non-monotonicity, e.g. state changes caused by actions or method calls, as opposed todeclarative constraint solving. However, CHR can be (ab)used to model objects oragents, e.g. a stack object equipped with a method push:push(X), stack(S) <=> stack([X|S])Multi-headed simpli�cation CHR are su�cient to simulate the parallel machinefor multiset transformation proposed in [BCL88]. This \chemical abstract machine"is based on the chemical reaction metaphor as a means to describe highly parallelcomputations. Following [BCL88], we can implement the sieve of Eratosthenes tocompute primes simply as:primes(1) <=> true.primes(N) <=> N>1 | M is N-1,prime(N),primes(M).% generate candidatesprime(I),prime(J) <=> 0 is J mod I | prime(I). % J is multiple of IThe answer to the query primes(n) will be a conjunction of prime(pi) where



6 each pi is a prime (2 � pi � n). One should compare this to the standard concurrentprogram as given in [Sha89] to appreciate the expressive power of multiple heads.It is about three times as long. Programs for computing primes are contained inthe solver primes.chr of the CHR library [FrBr96].4. SYNTAX AND SEMANTICSIn this section we give an overview of syntax and semantics as well as soundness andcompleteness results for constraint handling rules. More detailed presentations canbe found in [FAM97, Abd97, Abd98]. We assume some familiarity with (concurrent)constraint (logic) programming [JaLa87, vH91, Fr*92, Sar93, JaMa94].As a special purpose language, CHR extend a host language with (more) con-straint solving capabilities. Auxiliary computations in CHR programs are directlyexecuted as host language statements. To keep this section essential and self-contained, we will not address host language issues here.A constraint is considered to be a distinguished, special �rst-order predicate(atomic formula). We use two disjoint sorts of predicate symbols for two di�erentclasses of constraints: One sort for built-in (prede�ned) constraints and one sort forCHR (user-de�ned) constraints. Built-in constraints are those handled by a prede-�ned constraint solver that already exists in the host language. CHR constraintsare those de�ned by a CHR program. Since host language statements that appearin CHR must be declarative, we can consider them as built-in constraints in thissection (with a rather incomplete solver, the host language).4.1. SyntaxDe�nition 4.1. A CHR program is a �nite set of CHR. There are three kinds ofCHR. A simpli�cation CHR is of the formH1; : : : ; Hi <=> G1; : : : ; Gj j B1; : : : ; Bk,a propagation CHR is of the formH1; : : : ; Hi ==> G1; : : : ; Gj j B1; : : : ; Bk,a simpagation CHR is of the formH1; : : : ; Hl nHl+1; : : : ; Hi <=> G1; : : : ; Gj j B1; : : : ; Bk,with i > 0; j � 0; k � 0; l > 0 and where the multi-headH1; : : : ; Hi is a nonemptysequence of CHR constraints, the guard G1; : : : ; Gj is a sequence of built-in con-straints, and the body B1; : : : ; Bk is a sequence of built-in and CHR constraints.Empty sequences are represented by the built-in constraint true. For simplicity,the empty guard, true, can be removed from a rule together with the commitoperator j.Since a propagation rule could likewise be thought of as an abbreviation of asimpli�cation ruleH1; : : : ; Hl; Hl+1; : : : ; Hi <=> G1; : : : ; Gj j H1; : : : ; Hl; B1; : : : ; Bkthere is no need to discuss them further in this section, but we use them later whenwe describe implementations and applications of CHR.



74.2. Declarative SemanticsUnlike general committed-choice programs, CHR programs can be a given a declar-ative semantics since they are only concerned with de�ning constraints, not proce-dures in their generality.The declarative interpretation of a CHR program P is given by a conjunction ofuniversally quanti�ed logical formulas (one for each rule), P , and a consistent built{in constraint theory CT which determines the meaning of the built{in constraintsappearing in the program. The theory CT is expected to include an equalityconstraint = and the basic constraints true and false.Let �x denote the sequence of (global) variables occurring in the head atomsH1; : : : ; Hi of a CHR. Then �y (�z) are the other (local) variables occurring in theguard G1; : : : ; Gj (body B1; : : : ; Bk) of the rule (they do not occur in the heads).For simplicity we assume that there are no local variables that occur in both theguard and the body of a rule1.De�nition 4.2. Declaratively, a simpli�cation CHR is a logical equivalence if theguard is satis�ed:8�x (9�y (G1 ^ : : : ^Gj))! (H1 ^ : : : ^Hi $ 9�z (B1 ^ : : : ^Bk))A propagation CHR is an implication if the guard is satis�ed:8�x (9�y (G1 ^ : : : ^Gj))! (H1 ^ : : : ^Hi ! 9�z (B1 ^ : : : ^Bk))Example 4.1. The CHRreflexivity @ X=<Y <=> X=Y | truefrom the introductory example in Section 2 has the logical reading8X; Y (X = Y)! (X =< Y$ true).4.3. Operational SemanticsThe operational semantics of CHR programs is given by a transition system.De�nition 4.3. A state is an annotated tuplehF;E;DiV ,where F is a conjunction of CHR and built-in constraints called goal (store), Eis a conjunction of CHR constraints, D is a conjunction of built-in constraints,called (constraint) stores, and the annotation V is a sequence of variables. Emptyconjunctions are represented by the built-in constraint true.We attribute to each state hF;E;DiV the formula9�y F ^ E ^D1Else use e.g. 8�x8�y ((G1 ^ : : : ^Gj)! (H1 ^ : : : ^Hi $ 9�z (B1 ^ : : : ^ Bk))) [Fru97].



8 as its logical meaning, where �y are the variables occurring in the state exceptthe ones appearing in V , which remain free in the formula.When it is clear from the context, we will confuse a state S and its logical reading.We also will drop the annotation V from a state if it is not of interest.TransitionsWith computation steps (transitions, reductions) one can proceed from one stateto the next. Intuitively, in a state hF;E;DiV , F are the constraints that remainto be solved, and D and E are the constraints that have been accumulated andsimpli�ed so far. The aim of the computation is to incrementally reduce arbitrarystates to states that contain no more goals. There will be one transition for solvingbuilt-in constraints, one transition that introduces CHR constraints into their storeand three transitions for applying each kind of CHR to them. All transitions leavethe annotation V unchanged.De�nition 4.4. Let P be a CHR program for the CHR constraints and CT bea constraint theory for the built-in constraints. The transition relation 7�! forCHR is as follows. All variables occurring in states stand for conjunctions ofconstraints. �x denotes the program variables occurring in the multi-head H .SolvehC ^ F;E;DiV 7�! hF;E;D0iVif C is a built-in constraint and CT j= (C ^D)$ D0IntroducehH ^ F;E;DiV 7�! hF;H ^ E;DiVif H is a CHR constraintSimplifyhF;H 0 ^ E;DiV 7�! hB ^ F;E;H = H 0 ^DiVif (H <=> G j B) in P and CT j= D ! 9�x(H = H 0 ^G)PropagatehF;H 0 ^ E;DiV 7�! hB ^ F;H 0 ^ E;H = H 0 ^DiVif (H ==> G j B) in P and CT j= D ! 9�x(H = H 0 ^G)By equating two constraints, c(t1; : : : ; tn) = c(s1; : : : ; sn), we mean t1 = s1^: : :^tn = sn. By (H1^ : : :^Hn) = (H 01^ : : :^H 0n) we mean H1 = H 01^ : : :^Hn = H 0n.Note that the conjuncts can be permuted since conjunction is assumed to beassociative and commutative.In the Solve transition, the built-in solver updates the constraint store D witha new constraint C from the goal store. To update the constraint store meansto deterministically produce a new constraint store D0 that is - according to theconstraint theory CT - logically equivalent to the conjunction of the new constraintand the old constraint store.The Introduce transition transports a CHR constraint H from the goal storeinto the CHR constraint store. There it can be handled together with other CHR



9constraints by applying rules. A CHR is applicable to CHR constraints H 0 when-ever these constraints match the head atoms H of the rule2(taking into accountsyntactical equalities implied by the built-in constraint store D) and the guard Gis implied (entailed) by the store D.If a simpli�cation rule (H <=> G | B) appearing3 in the given CHR programP is applicable to the CHR constraint H 0, the Simplify transition removes H 0from the CHR constraints store, adds B to the goal store and adds the equationH = H 0 expressing the match between H 0 and the head atoms H to the built-inconstraint store.If a propagation rule (H ==> G | B) is applicable to H 0, the Propagte tran-sition adds B to the goal store and adds the equation H = H 0 to the built-inconstraint store.We require that the rules are applied fairly, i.e. that every rule that is applicableis applied eventually. Fairness is respected and trivial non-termination is avoided byapplying a propagation rule at most once to the same constraints. A more complexoperational semantics that addresses these issues can be found in [Abd97, Abd98].Initial and Final StatesDe�nition 4.5. The initial state consists of a goal F and empty constraint stores,hF; true; trueiV ,where V is the sequence of variables occurring in F . A �nal state is either of theformhF;E; falseiV(such a state is called failed), or of the formhtrue; E;DiVwith no fair computation step possible anymore and D not false (such a stateis called successful).F is also called query. A �nal state is called (conditional or quali�ed) answer forthe query F .Thus the annotation V allows distinguishing between the query variables andthe variables introduced during the computation.Example 4.2. A computation of the goal A � B^C � A^B � C for the introductoryexample in Section 2 proceeds as follows:2This is the e�ect of the existential quanti�cation over the head equalities, e.g. 9�x(H = H0).3As usual, variables are renamed apart.



10 hA � B ^ C � A ^ B � C; true; truei[A;B;C]7!3Introduce htrue; A � B ^ C � A ^ B � C; truei[A;B;C]7!Propagate Transitivity hC � B; A � B ^ C � A ^ B � C; truei[A;B;C]7!Introduce htrue; A � B ^ C � A ^ B � C ^ C � B; truei[A;B;C]7!Simplify Antisymmetry hB = C; A � B ^ C � A; truei[A;B;C]7!Solve htrue; A � B ^ C � A; B = Ci[A;B;C]7!Simplify Antisymmetry hA = B; true; B = Ci[A;B;C]7!Solve htrue; true; A = B ^ B = Ci[A;B;C]4.4. Soundness and CompletenessWe now relate the operational and declarative semantics of CHR. These results arebased on [JaLa87, Mah87, vH91] and can be found with with proofs in [FAM97,Abd98].De�nition 4.6. A computation of a goal G is a sequence S0; S1; : : : of states withSi 7! Si+1 beginning with the the initial state S0 = hG; true; trueiV and endingin a �nal state or diverging. A �nite computation is successful if the �nal stateis successful. It is failed otherwise.De�nition 4.7. S 7!� S0 holds i� S = S0 or S 7! S1 7! : : : 7! Sn 7! S0 (n � 0):The following results are based on the fact that the transitions for CHR preservethe logical meaning of states. All states in a computation are logically equivalent.Lemma 4.1. Let P be a CHR program and G be a goal. If C is the logical readingof a state appearing in a computation of G, thenP ; CT j= 8 (C $ G)where 8F denotes the universal closure of a formula F .Proof. By structural induction over the computation steps.In the soundness and completeness results for CHR, there is no need to distin-guish between successful and failed computations.Theorem 4.1 Soundness. Let P be a CHR program and G be a goal. If G has acomputation with answer C thenP ; CT j= 8 (C $ G):Proof. Immediately from lemma 4.1.Theorem 4.2 Completeness. Let P be a CHR program,G be a goal with at least one�nite computation and C be a conjunction of constraints. If P ; CT j= 8 (C $ G),then G has a computation with answer C 0 such thatP ; CT j= 8 (C $ C 0):Proof. Immediately from Theorem 4.1.The theorem is stronger than the completeness result for CLP languages pre-sented in [Mah87], in the way that we can reduce the disjunction in the strong com-



11pleteness theorem to a single disjunct (due to lemma 4.1). The following exampleshows that the completeness theorem does not hold if G has no �nite computations.Example 4.3. Let P be the CHR program:p <=> p.Let G be p. It holds that P ; CT j= p$ p since P is fp$ pg. However, G has onlyin�nite computations.The soundness result, Theorem 4.1, can be specialized to failed computations.Corollary 4.1. Let P be a CHR program and G be a goal. If G has a �nitely failedcomputation, then P ; CT j= :9G.Proof. By Theorem 4.1.However, an analogous completeness result, that is, the converse of Corollary4.1, does not hold in general:Example 4.4. Let P be the CHR program:p <=> q.p <=> false.P ; CT j= :q, but q has no �nitely failed computation.Thus the completeness theorem 4.2 is rather weak for failed computations. Astronger completeness result can be given for correct programs and data-su�cientgoals4. Data-su�ciency was introduced for completeness of deterministic ALPSprograms in [Mah87] (see also Section 5.1).De�nition 4.8. A CHR program P is correct i� P [ CT is consistent.De�nition 4.9. A goal is data-su�cient if it has a computation ending in a �nalstate of the form htrue; true; DiV .Theorem 4.3 Stronger Completeness of Failed Computations. Let P be a correctCHR program and G be a data-su�cient goal. If P ; CT j= :9G then G hasa �nitely failed computation.Proof. By Theorem 4.1, the de�nition of correctness and the fact that a �nalstate contains only built-in constraints, because G is data-su�cient.We will see that the con
uence property introduced next will further improveour soundness and completeness results.5. CONFLUENCEWe have already shown in the previous section (Lemma 4.1) that in a CHR program,the result of a computation from a given goal will always have the same meaning.4Data-su�ciency is missing from Theorem 19 in [FAM96], thus it is stated wrongly.



12 However it is not guaranteed that the result is syntactically the same. The con-
uence property of a program guarantees that any computation starting from anarbitrary given initial state, i.e. any possible order of rule applications, results inthe same �nal state. It does not guarantee that the solver will be (satisfaction)complete, i.e. detect all inconsistencies.Due to space limitations, we can just give an overview on con
uence where somede�nitions are just informal. Detailed con
uence results for simpli�cation rules onlyare published in [FAM97]. Recently, these results have been simpli�ed and extendedto all three kinds of CHR [Abd97, Abd98]. The papers adopt and extend theterminology and techniques of conditional term rewriting systems [DOS88, KiKi91]about con
uence. The extensions enable handling of global knowledge (the built-inconstraint store), local variables and propagation rules. In [Abd98], it was alsopossible to adapt to CHR the idea of Knuth-Bendix completion, an algorithm thatmakes a set of rules con
uent by introducing additional rules.We require that states are normalized so that they can be compared syntacticallyin a meaningful way. Since the formal de�nition of the normalization function isquite involved, we describe normalized states just informally. Basically, we requirethat the built-in constraints are in a (unique) normal form where all equalities aremade explicit and are propagated to all components of the state. The normalizationalso has to make identical all failed states.Furthermore, we require a more re�ned operational semantics. We augmentstates with a second annotation. The new annotation T is a multiset of tokensrepresenting potential applications of propagation rules to constraints. When apropagation rule is applied, the corresponding token is removed so that the rulecannot be reapplied again to the same constraints. When a simpli�cation rule isapplied, the appropriate tokens in which the removed constraints occur are removed.In the rest of this section we assume that states are normalized and annotated.De�nition 5.1. Two states are variants if they can be obtained from each otherby a variable renaming.Two states S1 and S2 are called joinable if there exist states S01; S02 such thatS1 7!� S01 and S2 7!� S02 and S01 is a variant of S02.De�nition 5.2. A CHR program is called con
uent if for all states S; S1; S2:If S 7!� S1; S 7!� S2 then S1 and S2 are joinable.A CHR program is called locally con
uent if for all states S; S1; S2: If S 7!S1; S 7! S2 then S1 and S2 are joinable.Example 5.1. The CHR program from example 4.4 is not con
uent since p caneither be simpli�ed to q or false. The corresponding states are �nal and di�er.However the following program is con
uent:p <=> q.p <=> false.q <=> false.



13We give a new motivation for critical pairs here based on the notion of nontrivialdirect common ancestor states.To analyze local con
uence of a given CHR program we cannot check joinabilityof all pairs of states that derive from a common ancestor state, because in generalthere are in�nitely many such states. However one can construct a �nite number ofminimal states where more than one rule is applicable: A direct common ancestorstate consists of the heads and guards of the rules. It su�ces to construct non-failed states from two rules. It is obvious that there is only a �nite number of suchstates for a given program. Due to the monotonicity property of CHR, these statescan be extended to any context, i.e. to all possible ancestor states. Monotonicitystates that adding constraints to the components of the state cannot inhibit theapplication of a rule as long as the built-in constraint store remains consistent.We now further restrict ourselves to nontrivial direct common ancestor states:Joinability can only be destroyed if one rule inhibits the application of the otherrule. The application of a rule may remove CHR constraints from the user-de�nedstore and introduce new constraints. Only the removal of constraints can e�ect theapplicability of another rule, in case the removed constraint is needed by the otherrule. To possibly inhibit each other, at least one rule must be a simpli�cation CHRand the two rules must overlap, i.e. have at least one head atom in common inthe ancestor state. This is achieved by equating head atoms in the state and byremoving the resulting identical copies of head atoms.De�nition 5.3. Given a simpli�cation rule R1 and an arbitrary (not necessarilydi�erent) rule R2 from a CHR program P , whose variables have been renamedapart. Let Gi denote the guard, Bi denote the body of rule Ri (i = 1; 2). Let Hciand Hi be a partition of the head of the rule Ri into two conjunctions, where theconjunction of common head atoms Hci is nonempty. Then a nontrivial directcommon ancestor state S of R1 and R2 ishtrue; Hc1 ^H1 ^H2; (Hc1 = Hc2) ^G1 ^G2iTV ;provided (Hc1 = Hc2) ^ G1 ^ G2 is consistent. V is the sequence of variablesappearing in Hc1 ^H1 ^H2. If R2 is a simpli�cation rule, T is the empty set, ifR2 is a propagation rule, T is fhR2; Hc1 ^H2ig.The choice of T is motivated by the minimality criterion for the state: It coversthe case that all propagation rules (except possibly R2) have already been appliedto the constraints of the user-de�ned store before the ancestor state S was reached.The application of R1 and R2 respectively to S leads to two states that form theso-called critical pair. In the states of the critical pair, the body Bi of the rule Riis in the goal store, Hci and Hi have been removed from the CHR constraint storein case Ri is a simpli�cation rule, T will be empty and the built-in constraint storeand the V annotation remain the same.De�nition 5.4. Let S be a nontrivial direct common ancestor state. If S 7!R1 S1and S 7!R2 S2 then the tuple (S1; S2) is the critical pair5of S.A critical pair (S1; S2) is joinable, if S1 and S2 are joinable.5Due to the condensed presentation, this de�nition di�ers from the one in [Abd97]. However,the di�erence is only syntactical, in the way the critical pair is represented.



14 Example 5.2. Consider the example of Section 2. The following nontrivial ancestorstate comes from equating the �rst head atom of the antisymmetry rule with the�rst head atom of the transitivity rule: htrue, X�Y^Y�Z^Y�X, trueiTV , where Vis the sequence of variables X,Y,Z and T contains just the token h transitivity,X�Y^Y�Z i.The critical pair is (hX � Z; X � Y ^ Y � Z ^ Y � X; truei;V ; hX = Y; Y � Z; truei;V).The critical pair is joinable, since there are computations from its two states withempty multisets of tokens that result in the same �nal state htrue; X � Z; X = Yi;V .We are now able to give the main theorem connecting joinability of critical pairswith local con
uence:Theorem 5.1. A CHR program is locally con
uent i� all its critical pairs are join-able.Proof. The if-direction: Assume that we are in state S where there are twoor more possibilities for computation steps. We investigate all pairs of possiblecomputation steps and show that they are joinable.The only-if-direction: By contradiction. We assume that we have a locally con-
uent CHR program with a critical pair that is not joinable.The following corollary gives us a decidable, su�cient and necessary test forcon
uence of a terminating program:De�nition 5.5. A CHR program is called terminating, if there are no in�nite com-putations.Corollary 5.1. A terminating CHR program is con
uent i� all its critical pairs arejoinable.Proof. Immediately from Theorem 5.1 and Newman's lemma [New42].Our notion of con
uence subsumes the notion of determinacy as used by Maher[Mah87] and Saraswat [Sar93] for (concurrent) constraint (logic) programs. In adeterminate program, guards of rules for the same predicate are mutually exclusive.Thus they are trivially con
uent, since no critical pairs exist.5.1. Soundness and Completeness RevisitedWe showed in [FAM97, Abd98] that con
uence implies correctness (see De�nition8).Theorem 5.2. If P is con
uent, then P [ CT is consistent.The following theorem shows that we can improve on soundness and completenessif a CHR program is con
uent and terminating.Theorem 5.3 Strong Soundness and Completeness. Let P be a terminating and con-
uent CHR program and G be a goal. Then the following are equivalent:a) P ; CT j= 8 (C$G).



15b) G has a computation with answer C 0 such that P ; CT j= 8 (C$C 0).c) Every computation of G has an answer C 0 such that P ; CT j= 8 (C$C 0).Proof. \a) ) b)" by Theorem 4.2.\b) ) c)" by con
uence and termination.\c) ) a)" by Theorem 4.1.The following corollary is a soundness and completeness result for �nitely failedcomputations.Corollary 5.2. (Soundness and Completeness of Finite Failure) Let P be a termi-nating and con
uent CHR program and G be a data-su�cient goal. Then thefollowing are equivalent:a) P ; CT j= :9Gb) G has a �nitely failed computation.c) Every computation of G is �nitely failed.Proof. By Theorems 5.3, 5.2 and 4.3.Maher proved similar soundness and completeness results for deterministic ALPSprograms with data-su�cient goals. Our results hold for a substantially larger classof programs, con
uent and terminating CHR programs. Note, however, that ALPSin general has a di�erent semantics (based on Clark's completion) and a di�erentoperational semantics (rules can commit more often) than CHR.6. CLP + CHRWe now assume that constraint handling rules extend a given CLP language andextend the de�nitions from the previous sections accordingly. For CLP, a tightintegration is possible: We allow clauses for CHR constraints. These are usedfor labeling, i.e. introducing choices. The idea is that if no simpli�cation andpropagation is possible anymore, a constraint is automatically chosen for labeling.Conversely, we can regard any predicate as a (labeling routine of a) constraintand add some CHR for it. Seen this way, CHR are lemmata that allow expressingthe determinate information contained in a predicate. Predicates and constraintsare just alternate views, don't know and don't care nondeterminism are combinedin a declarative way. This is also the idea of Guarded Rules [Smo93] mentioned insection 3. To see the power of such lemmata consider the rule append(L1,[],L)<=> L1=L. The recursion on the list L1 in the usual de�nition of append is replacedby a simple uni�cation L1=L.Example 6.1. We continue with the example from Section 2. To illustrate auto-matic labeling with the CHR constraint =<, we use successor notation for numbers.label with X=<Y if ground(X).label with X=<Y if ground(Y).0=<Y.



16 s(X)=<s(Y) :- X=<Y.The labeling declarations (starting with label with) state that one may labelwith X=<Y if either X or Y are ground (variable-free terms).s(s(0))=<A,A=<s(s(s(0))).% s(s(0))=<A,A=<s(s(s(0))) propagates s(s(0))=<s(s(s(0))).% Labeling using s(s(0))=<s(s(s(0))) succeeds.% Labeling using s(s(0))=<A succeeds with A=s(s(X)).% Labeling using A=<s(s(s(0))) succeeds with X=0.A=s(s(0)).% On backtracking A=<s(s(s(0))) succeeds with X=s(0).A=s(s(s(0))).% On backtracking A=<s(s(s(0))) fails.De�nition 6.1. A CLP+CHR program is a �nite set of CLP clauses for predicatesand CHR constraints and of CHR rules for CHR constraints. As usual, a CLPclause is of the formH:- B1; : : : ; Bk: (k � 0)where the head H is an atom but not a built-in constraint, the body B1; : : : ; Bkis a conjunction of atoms. A labeling declaration for a CHR constraint HL is ofthe formlabel with HL if G1; : : : ; Gj .De�nition 6.2. Let (H1:- B11; : : : ; Bn1); : : : ; (Hs :- B1s; : : : ; Bns); (1 � s) beall the clauses with the same predicate p in the head with all the variables indi�erent clauses renamed apart. Then the logical reading of the predicate p byClark's completion is de�ned as:8�x (H $ 9�z ((H = H1 ^ B11 ^ : : : ^ Bn1) _ : : : _ (H = Hs ^ B1s ^: : : ^ Bns)))H is of the form p(X1; : : : ; Xr) where X1; : : : ; Xr are new, pairwise di�erentvariables. The labeling declaration serves as a precondition in the logical meaningof the clauses for the CHR constraint:8�x (9�y (HL = H ^G1 ^ : : : ^Gj)! (H $ 9�z (B1 _ : : : _ Bs))).where (H $ 9�z (B1 _ : : : _ Bs))) is Clark's completion.De�nition 6.3. The computation steps involving clauses are:UnfoldhH 0 ^ F;E;Di 7�! hB ^ F;E;H = H 0 ^ Diif (H :- B) in P and H is not a CHR constraintLabelhF;H 0 ^ E;Di 7�! hB ^ F;E;H = H 0 ^ Diif (H :- B) in P and (label with H 00 if G) in P andD ! 9�x (H 0 = H 00 ^G)



17where �x denotes the program variables occurring in H 00.To unfold an atomic goal H 0 in F means to look for a CLP clause (H : � B)and to replace H 0 by (H = H 0) and B. Unfolding is nondeterministic and thus agoal can be solved in di�erent ways using di�erent clauses. The clauses for CHRconstraints can only be unfolded by the Label transition provided the label withdeclaration is satis�ed.7. IMPLEMENTATIONSThe �rst implementation of CHR in summer 1991 was an interpreter written inECLiPSe Prolog, called Cheer6[Fru91, Fru92, Fru93b, FrBr95a]. Since then, theCHR language has been implemented in 1993 in Common LISP at the GermanResearch Institute for Arti�cial Intelligence (DFKI) [Her93] and in 1994 as a libraryof ECLiPSe [FrBr95a, FrBr95b, FrBr96]. It is currently implemented in SicstusProlog at LMU, Munich, in ECLiPSe 2 at IC-Parc of Imperial College and in theconcurrent logical object-oriented constraint language OZ [SmTr94a].Cheer [Fru91, Fru92, Fru93b] was a small but fully functional interpreter. Bysmall we mean about 300 clauses, 900 lines, 25KB of code. By fully functional wemean that Cheer included a preprocessor for CHR, delaying conjunction, incremen-tal constraints residuation, a tracing tool for CHR constraints and variable bindings,a simple partial evaluator based on simpli�cations, and simple statistics (number ofrules �red per kind, timings). First solvers were term equality (uni�cation), �nitedomains, term manipulation, maximum, types and temporal reasoning.The LISP implementation [Her93] does not provide for simpagation rules, buto�ers some interesting extensions. First, rules can be given priorities (encoded asintegers). Second, nondeterminism is introduced by disjunction in rule bodies. Thisextension also allows expressing Prolog clauses. Rules with disjunction usually getthe lowest priority. The algorithm for executing CHR is somewhat similar to the�rst implementation of CHR in Prolog. However, matching a head constraint in arule with several heads dynamically adds a new rule with the matched head removedand the variables instantiated as in the matching. In [Her93], constraint solvers forterminological reasoning with negation and concrete domains, further equality overHerbrand terms, inequalities, �nite domains, linear polynomial inequalities usingFouriers algorithm and an implementation of the terminological language TAXLOGare described as applications.The CHR library, version 2, of ECLiPSe 3.5.3 [FrBr95a, FrBr95b, FrBr96] in-cludes a compiler, a run-time system with debugger, 25 solvers (see Section 8)with examples as well as a full color demo using geometric constraints in a real-lifeapplication for wireless telecommunication (see Section 9). In extension to the def-initions given earlier, CHR rules can have deep guards7and local variables can beshared between guard and body of a rule. Prolog and CHR statements can be freelycombined. With the library, a complete committed-choice language is available asa side-e�ect. The compiler utilizes the delay-mechanism and the built-in predicatesof ECLiPSe to create, inspect and manipulate constraints as delayed goals based6Ch for constraint handling, ee for extension of ECLiPSe, and r for rules.7Guards that allow for user-de�ned predicates in addition to built-in constraints.



18 on attributed variables. The compiler is about 450 clauses, 2700 lines, 26kB ofcode, the run-time system is about 360 clauses, 1900 lines, 17kB of code includingcomments.The compilers in ECLiPSeand Sicstus Prolog are based on the idea that all threetypes of CHR can be transformed into multi-headed and further into single-headedsimpli�cation rules, i.e. into the guarded rules of a typical concurrent committed-choice language [Sha89, Sar93] - provided the language can access delayed goalsand has deep guards. CHR constraint goals are modeled as goals that can delay.Then these guarded rules are further translated into clauses of a CLP languageusing its delay-mechanism (coroutining) based on attributed variables. A detaileddescription of the compilation scheme and its actual implementation can be foundin [FrBr95a].
PerformanceOn a range of solvers and examples, the run-time penalty for our declarative andhigh-level approach turned out to be a constant factor in comparison to dedicatedbuilt-in solvers (if available). The slow-down is often within an order of magnitude.On some examples (e.g. those involving �nite domains with the element-constraintor linear polynomial equations over rationals, see Section 8), and in some applica-tions, our approach is faster, since we can exactly de�ne and tune the amount ofconstraint simpli�cation and propagation as needed. For performance and simplic-ity the solver can be kept as incomplete as the application allows it.Besides the well-de�ned low-level support for manipulating delayed goals (adding,searching for, activating and removing delayed goals) provided through attributedvariables, the reason for the good performance are a number of signi�cant opti-mizations which are the result of many experiments performed with the interpreterCheer.For example, based on the observation that usually the head atoms of a rule areconnected through common variables, given one constraint, we usually only searchfor other constraints in those that delay on a common variable. Since in manyconstraint domains, the number of constraints in the normal form is linear in thenumber of variables, one can often �nd the other constraints in constant time.Moreover, the order in which the rules are tried matters. The ECLiPSe CHRcompiler prefers simpli�cation to propagation rules, single-headed to multi-headedrules. Propagation from a constraint may cause further propagations from theredundant constraints. The compiler �rst adds all constraints propagated froma constraint before considering the new ones in turn. In simpagation rules, it ispreferred to remove the most recent constraint if there is a choice. In the newSicstus implementation of CHR the user can control the order of the rules.Last but not least, there are user declarations and rule annotations that enforceidempotence of constraints. One optimization related to idempotence is not toremove a constraint that is generated again in the body of the rule that wants toremove it. This may speed up the computation, improve the complexity of theresulting algorithm and even avoid non-termination.



198. CONSTRAINT SOLVERSIn this section we introduce some of 25 constraint solvers that are part of the CHRlibrary of ECLiPSe 3.5.3 (see �gure 8) [FrBr95b, FrBr96] - among them solvers for�nite domains over arbitrary ground terms, including reals and pairs, incrementalpath consistency, temporal reasoning, for solving linear polynomials over the realsand rationals, and last but not least for terminological reasoning.Many of the solvers are described here for the �rst time. The solver may beslightly edited, mainly to make them self-contained, consistent in presentation andmore readable. When we know about it, we also mention related work, i.e. howthese solvers have been used by other researchers, and related solvers written byother researchers using CHR.While we cannot - within the space limitations - introduce each constraint do-main, we still can give an idea how one implements it using CHR. The usual ab-stract formalism to describe a constraint system, i.e. inference rules, rewrite rules,sequents, formulas expressing axioms and theorems, can be written as CHR in astraightforward way. Starting from this executable speci�cation, the rules can bere�ned and adapted to the speci�cs of the application.Note that any solver written with CHR will be determinate, incremental andconcurrent by nature. By \determinate" we mean that the user-de�ned solvercommits to every constraint simpli�cation it makes. By \incremental" we mean thatconstraints can be added to the constraint store one at a time (without a�ectingcomputational cost). The rules can be applied concurrently to di�erent constraints,because logically correct CHR can only replace constraints by equivalent ones oradd redundant constraints.Note that many solvers rely on an order on variables and terms (using the built-inpredicate <).8.1. BooleansThe domain of Boolean constraints includes the constants 0 for falsity, 1 for truthand the usual logical connectives of propositional logic, e.g. and, or, neg, imp,exor, modeled here as relations. We assume that equality = is a built-in constraint.The program bool.chr8is a simple solver mainly based on value propagation usingsingle-headed simpli�cation rules and automatic labeling. For more sophisticatedalgorithms see [Me*93].We can de�ne an and-gate with constraint handling rules (assuming that vari-ables can only take Boolean values):and(X,Y,Z) <=> X=0 | Z=0.and(X,Y,Z) <=> Y=0 | Z=0.and(X,Y,Z) <=> X=1 | Y=Z.and(X,Y,Z) <=> Y=1 | X=Z.and(X,Y,Z) <=> Z=1 | X=1,Y=1.and(X,Y,Z) <=> X=Y | Y=Z.For example, the �rst rule says that the constraint and(X,Y,Z), when it is knownthat the �rst input argument X is 0, can be reduced to asserting that the output Z8File names refer to [FrBr96].



20 Library File Constraint Domain <=> ==> n Co |arc.chr Arc consistency 1 3 0 3 1bool.chr Booleans 56 0 19 7 3cft.chr Feature Trees 2 1 3 3 2control.chr Sound control primitives 6 0 0 5 4domain.chr Finite domains 65 14 4 8 54geons.chr Geometric objects 1 0 0 1 0kl-one.chr Terminological reasoning 25 13 4 3 6leq.chr Partially ordered variables 2 1 0 1 0list.chr Lists with lengths 9 0 0 2 3math-gauss.chr Linear polynomial equations 1 0 1 2 1math-elim.chr + Inequations by slacks 26 0 4 8 16math-fougau.chr + Fouriers algorithm 28 5 3 8 16math-fourier.chr + Fouriers algorithm 25 1 2 8 15math-eager.chr + Inequations by slacks 7 0 2 2 7math-ineq.chr + Inequations by slacks 16 0 0 6 10math-lazy.chr + Inequations by slacks 7 0 3 2 9minmax.chr Minima and maxima 17 6 24 5 23osf.chr Order-Sorted Feature Trees 5 1 1 2 4path.chr Path consistency 2 3 4 1 0primes.chr Prime numbers 12 0 2 8 9set.chr Finite Sets 22 13 6 12 4term.chr Prolog term constructors 10 7 8 7 8time-pc.chr Temporal reasoning 11 3 0 2 6time-point.chr Time-points 4 2 0 2 4tree.chr Rational trees + negation 9 1 2 3 8FIGURE 8.1. The constraint solvers of the CHR library in ECLiPSe 3.5.3.<=> standsfor the number of simpli�cation, ==> propagation, n simpagation rules; Co for the numberof CHR constraints, | nonempty guards in the rules.must be 0. Hence the query and(X,Y,Z),X=0 will result in X=0, Z=0.It is obvious that the above rules terminate, since the CHR constraints andis always reduced to the built-in constraint =. It is also con
uent. The criticalpairs are easy to construct, since all the heads are identical. For example, therules and(X,Y,Z) <=> Z=1 | X=1,Y=1 and and(X,Y,Z) <=> X=Y | Y=Z lead tothe critical pair (htrue; X=1 ^ Y=1, X=Y ^ Z=1 i; htrue; Y=Z, X=Y ^ Z=1 i). Bothstates simplify to X=1 ^ Y=1 ^ Z=1.Example 8.1. Consider the predicate add/4 taken from the well-known full-addercircuit. It adds three single digit binary numbers to produce a single numberconsisting of two digits:add(I1,I2,I3,[O1,O2]):-xor(I1,I2,X1), and(I1,I2,A1),xor(X1,I3,O2), and(I3,X1,A2),or(A1,A2,O1).The query add(I1,I2,I3,[O1,O2]),I3=0,O1=1 will reduce to I3=0,O1=1,I1=1,



21I2=1,O2=0. The computation proceeds as follows: Because I3=0, the output A2of the and-gate with input I3 must be 0. As O1=1 and A2=0, the other input A1of the or-gate must be 1. Because A1 is also the output of an and-gate, its inputsI1 and I2 must be both 1. Hence the output X1 of the �rst xor-gate must be 0,and therefore also the output O2 of the second xor-gate must be 0. The queryadd(1,1,I3,[O1,O2]) reduces to I3=O2,O1=1. This example illustrates the powerof this simple but incomplete solver.Flexibility and ExtensionsThe cardinality constraint combinator was introduced in the CLP language cc(FD)[vH91, HSD95] for �nite domains. Here we adapt it for Boolean variables. TheBoolean cardinality constraint #(L,U,BL,N) holds if between L and U Boolean vari-ables in the list BL of length N are equal to 1. In the solver, we assume thatfor a constraint #(L,U,BL,N), the condition L=<U,0=<U,0=<N,L=<N initially holds,where N is the length of the �nite (closed) list BL. We also assume that arithmeticconstraints (or at least tests) between integers involving =< and subtraction arebuilt-in. delete/3 is the usual Prolog predicate removing an element from a list.% trivial, positive and negative satisfactiontriv_sat@ #(L,U,BL,N) <=> L=<0,N=<U | true.pos_sat @ #(L,U,BL,N) <=> L=N | all_true(BL).neg_sat @ #(L,U,BL,N) <=> U=0 | all_false(BL).% positive and negative reductionpos_red @ #(L,U,BL,N) <=> delete(1,BL,BL1) | 0<U,#(L-1,U-1,BL1,N-1).neg_red @ #(L,U,BL,N) <=> delete(0,BL,BL1) | L<N,#(L,U,BL1,N-1).% labeling, choice between positive and negative reductionlabel_with #(L,U,[X|BL],N) if true.#(L,U,[1|BL],N):- 0<U, #(L-1,U-1,BL,N-1).#(L,U,[0|BL],N):- L<N, #(L,U,BL,N-1).When delete/3 is used in the guard, it will only succeed if the element to beremoved actually occurs in the list. E.g. delete(1,BL,BL1) will delay if it triesto bind a variable in BL to 1. It can only succeed if there actually is a 1 in thelist. It will fail, if all elements of the list are zeros. The predicate all true (resp.all false) binds all elements of the list BL to 1 (resp. 0). Note that the call to#/4 in the bodies of the labeling clauses is a call to the cardinality as constraint.Since the cardinality constraint is either simpli�ed into a built-in constraint orreduced to a cardinality with a shorter list, this implementation terminates. If thelist of an initial cardinality constraint were open(-ended), i.e. its length not �xed,there could be contexts in which the cardinality constraint does not terminate.One can also show that the solver maintains the above condition, i.e. that it is aninvariant. With the invariant, the implementation is also con
uent.Related Solvers and WorkIn [Dum95] experiments were performed in applying resolution and backtracking tosolving Boolean constraint satisfaction problems. A limited version of resolution,



22 called ordered resolution, was introduced and compared to that of the Davis Putnammethod [DaPu60].The DP procedure has been extensively used on satis�ability problems, it is asound procedure that basically restricts resolution to unit clauses. A labeling phaseis added that tries truth values using backtracking for the variables one by one, thusretaining completeness. Ordered resolution is a sound and complete restriction ofresolution where the literals in the clauses are globally ordered and resolution canonly be performed with the leftmost literals of each clause. This method was foundto be an improvement over DP when the length of the clauses generated was limitedto some small number and then again labeling was used for preserving completeness.Here is an incremental version of the DP procedure9, other versions of resolutioncan also be found in [Dum95]. Boolean CSPs are modeled as conjunctions of clauses,where a clause is a disjunction of literals (positive or negative atomic propositions).A clause is represented as a list of signed Boolean variables. For example, :a_ b_ cis represented as cl([-A,+B,+C]). The variables in the lists are ordered. member/2is the usual Prolog predicate about lists.empty_cl @ cl([]) <=> fail.tautology @ cl(L) <=> member(-X,L),member(+X,L) | true.unit_instantiation @ cl([+X]) <=> X=1.unit_instantiation @ cl([-X]) <=> X=0.unit_propagation @ cl(L) <=> delete(+0,L,L1) | cl(L1).unit_propagation @ cl(L) <=> delete(-1,L,L1) | cl(L1).unit_subsumption @ cl(L) <=> member(+1,L) | true.unit_subsumption @ cl(L) <=> member(-0,L) | true.% labeling only necessary if list has at least two elementslabel_with cl([_,_|_]) if true.% X is either 0 or 1 and we already applied the unit_* rulescl([+X|L]):- X=1 ; X=0, cl(L).cl([-X|L]):- X=0 ; X=1, cl(L).Note the similarity with the cardinality constraint. The argument for terminationis the same. Con
uence can be proven.8.2. Terminological ReasoningTerminological formalisms are used to represent the terminological knowledge ofa particular problem domain on an abstract logical level. To describe this kindof knowledge, one starts with atomic concepts and roles, and then de�nes newconcepts and their relationship in terms of existing concepts and roles. Althoughthere is an established notation for terminologies, we use a more verbose syntax tohelp readers not familiar with the topic.Concepts can be considered as unary relations which intensionally de�ne sets ofobjects (similar to types). Roles correspond to binary relations over objects (notnecessarily of the same kind - properties like color can be roles as well).9\Pure literal deletion" is not implemented, because it is based on a global condition which isnot sound anymore when constraints can be added incrementally as is the case in CHR.



23De�nition 8.1. Concept terms are de�ned inductively: Every concept name C isa concept term. If s and t are concept terms and R is a role name then thefollowing expressions are concept terms:s and t (conjunction),s or t (disjunction),nota s (complement),every R is s (value restriction),some R is s (exists-in restriction).Objects are constants or variables. Let a, b be objects, R a role, and C a conceptterm. Then b : C is amembership assertion and (a; b) : R is a role-�ller assertion.An A-box is a collection of membership and role-�ller assertions.De�nition 8.2. A terminology (T-box) consists of a �nite set of concept de�nitionsC isa s,where C is the newly introduced concept name and s is a concept term.Since the concept C is new, it cannot be de�ned in terms of itself, i.e. conceptde�nitions are acyclic. This also implies that there are concepts without de�nition,they are called primitive.We will represent the T-box as CLP predicates and the A-box as CHR con-straints, since we want to solve problems over a given terminology.Example 8.2. The domain of a con�guration application comprises at least devices,interfaces, and con�gurations. The concept de�nitions express that these conceptsare disjoint:interface isa nota device.configuration isa nota (interface or device).Assume that a simple device has at least one interface. We introduce a roleconnector which relates devices to interfaces and employ the exists-in restriction.simple device isa device and some connector is interface.We introduce instances of devices and interfaces as constraints:pc:device, rs231:interface, (pc,rs231):connectorSolverTerminological formalisms have a straightforward embedding in �rst-order logic.However, the limited expressiveness of terminological formalisms allows decisionprocedures for a number of interesting reasoning problems. These problems in-clude consistency of assertions and classi�cation of concepts. The key idea of[ScSm91, BDS93]) for constructing such inference algorithms is to reduce all rea-soning services to consistency checking. The unfolding and completion rules in



24 [ScSm91] and the propagation rules in [BDS93] for the consistency test translatealmost directly to CHR (library solver �le kl-one.chr). However, the former workdoes not provide an incremental algorithm and the latter does not simplify con-straints.Roughly, the consistency test of A-boxes simpli�es and propagates the assertionsin the A-box to make the knowledge more explicit and looks for obvious contradic-tions (\clashes") such as \X:device, X:nota device". We need only a single clashrule, one may need more for extensions of the formalism.I:nota S, I:S <=> false:The following simpli�cation CHR show how the complement operator nota canbe pushed towards to the leaves of a concept term, e.g.:I:nota (S or T) <=> I:nota S and nota T.I:nota every R is S <=> I:some R is nota S.An exists-in restriction generates a variable that serves as a \witness" for the re-striction:I:some R is S <=> (I,J):R, J:S.A value restriction has to be propagated to all role �llers:I:every R is S, (I,J):R ==> J:S.The unfolding rules replaces concept names by their de�nitions:I:C <=> C isa S, I:S.I:nota C <=> C isa S, I:nota S.The conjunction rule generates two new, smaller assertions:I:S and T <=> I:S,I:T.Disjunction is treated lazily by a CLP clause using automatic labeling. This iswhere the exponential complexity of the consistency test for terminologies surfaces.label with I:S or T if true.I:S or T :- (I:S ; I:T).The rules simplify terminological constraints until a normal form is reached. Inthe normal form, the only constraints are I:C, I:nota C, I:S or T, I:every Ris S, (I,J):R, where C is a primitive concept name.To show termination we show that in each rule, all membership assertions inthe body are strictly smaller than the one in the head. We prove this by mappingconcept terms into numbers called ranks as follows:rank(nota T ) = 2 � rank(T )rank(T ) = 1 + rank(S) if (T isa S) existsrank(f(T1; : : : ; Tn)) = 1 + rank(T1) + : : :+ rank(Tn) (n � 0) otherwiseNote that by de�nition, concept terms are ground (variable-free) and �nite andconcept de�nitions are acyclic and �nite.



25The solver detects all inconsistencies through the clash rule independently of theorder in which constraints are added and CHR are applied, because it is con
uent.Since all CHR except the clash rule have pairwise disjoint heads at run-time, criticalpairs can only exist with the clash rule. For example, the inconsistent constraintsI:nota every R is S, I:every R is Scan be simpli�ed by pushing nota down in the �rst constraintI:some R is nota S, I:every R is S 7�! (some-rule)(I,J):R, J:nota S, I:every R is S 7�! (every-rule)(I,J):R, J:nota S, I:every R is S, J:Sand now the clash rule can still be applied, to J:nota S, J:S.Flexibility and ExtensionsAttributes (also called features) are functional roles, i.e. their interpretation is apartial function. Assuming a declaration of an attribute F by a unary predicateattribute F , we just have to extend our implementation by(I,J1):F, (I,J2):F ==> attribute F j J1=J2.Example 8.3. Now we are ready to de�ne a simple con�guration which consists oftwo distinguished simple devices:attribute component 1.attribute component 2.simple config isa configuration andsome component 1 is simple device andsome component 2 is simple device.Then from the constraintsconfig1:simple config, (config1,dev1):component 1,(config1,dev2):component 2,the solver can derive that dev1 and dev2 are simple devices. The reason is thatthe attribute-rule constrains the witness for some component 1 is simple deviceand the second argument of the role (config1,dev1):component 1 to be equal(analogously for dev2).In [FrHa95] we illustrate that other extensions to the basic terminological for-malism proposed in the literature carry over to the implementation with CHR ina painless manner. One such extension allows parameterizing terminologies withconcrete domains, e.g. linear constraints over rational numbers [BaHa91].Related Solvers and WorkRelated solvers where implemented [FrBr96] for various forms of feature trees,namely order sorted feature trees (OSF) [APG93], osf.chr, including the arity



26 constraint [SmTr94b], cft.chr, as well as rational trees, tree.chr, including dise-quality.ConTeS is a prototype implementation of an interactive, graphical tool sup-porting the con�guration process of technical systems like process control systemsdeveloped by A. Wolf et al. at GMD FIRST, Berlin. ConTeS includes a knowl-edge base represented by an executable speci�cation language, called TRLC. Itis a generalization of the terminological reasoning language and its implementa-tion described before. The �rst version of ConTeS was presented at the LeipzigerInnovationsmesse in September 1996.Other work looked at theorem proving with constraints where terminologicalreasoning was one domain of constraints considered. In CLP, proof procedures forHorn clauses are enhanced with e�cient constraint solvers. The question ariseswhether it is possible to incorporate constraint processing into general, non-Horntheorem proving calculi. In the paper [StBa94], a positive answer is given. A newcalculus is introduced which combines model elimination with constraint solving. Aprototype system has been implemented rapidly by combining a Prolog technologyimplementation of model elimination with constraint solvers. Some example stud-ies, e.g. terminological reasoning, show the advantages and some problems withthis procedure. Using an extension of the terminological solver, the authors wereable to solve the lion and unicorn puzzle in about 0.1s on a Sun4, which the authorsconsider to be quite fast.8.3. Path ConsistencyIn this section we introduce a constraint solver that implements the classical Arti�-cial Intelligence algorithm of path consistency and backtracking to solve constraintsatisfaction problems.De�nition 8.3. A binary constraint network consists of a set of variables and aset of binary constraints between them. The network can be represented bya directed constraint graph, where the nodes denote variables and the arcs arelabeled by binary constraints.De�nition 8.4. A disjunctive binary constraint cxy between two variables X andY , also written X [r1; : : : ; rn] Y , is a �nite disjunction (X r1 Y )_ : : :_(X rn Y ),where each ri is a relation that is applicable to X and Y . The ri are also calledprimitive constraints. The converse of a primitive constraint r between X andY is the primitive constraint s that holds between Y and X as a consequence.Usually, the number of primitive constraints is �nite and they are pairwise dis-joint. For simplicity, unary (domain) constraints are modeled as binary constraintswhere one variable is �xed.For example, A [<] B;A [<;>] B;A [<;=; >] B are disjunctive binary con-straints cAB between A and B. A [<;>] B is the same as A 6= B, A [<;=; >] Bdoes not impose any restrictions on A and B, the constraint is redundant.De�nition 8.5. A solution of a constraint network is an assignment of values to thevariables that satis�es all the constraints. Such an assignment is called valid. Aconstraint network is consistent if there exists a solution. A constraint network



27is minimal if each primitive constraint is satis�ed in a solution of the network;i.e. there are no primitive constraints that do not participate in at least onesolution.De�nition 8.6. A network is path consistent if for pairs of nodes (i; j) and all pathsi�i1�i2 : : : in�j between them, the direct constraint cij is tighter (or the same)than the indirect constraint along the path, i.e. the composition of constraintscii1 
 : : : 
 cinj along the path. A disjunctive constraint is tighter if it has lessdisjuncts.Path consistency can be used to approximate the minimal network. It followsfrom the de�nition of path consistency that we can intersect the direct and indirectconstraint to arrive at a tighter direct constraint. Let intersection be denoted bythe operator �. A graph is complete if there is an edge or a pair of arcs, one ineach direction, between every pair of nodes. If the graph underlying the networkis complete it su�ces to repeatedly consider paths of length 2 at most: For eachtriple of nodes (i; k; j) we repeatedly compute cij := cij � cik 
 ckj until a �xpointis reached. The complexity of such an algorithm is O(n3), where n is the numberof nodes in the network [MaFr85].For example, given I [<;=]K^K[<;=]J^I [=; >]J , and taking the triple (i; j; k),cik
ckj results in I [<;=]J , the result of intersecting with cij is I [=]J . From (j; i; k)we get J [=]K (we compute cji as the converse of cij). From (k; j; i) we get K[=]I .Another round of computation causes no more change, so the �xpoint is reachedwith J [=]K;K[=]I (which is also minimal). Compare this result with the one usingthe solver in Section 2.SolverLet the constraint cij be represented by the predicate c(I,J,C) where C is thedisjunction of primitive constraints forming the disjunctive constraint. The ba-sic operation of path consistency, cij := cij � cik 
 ckj , can be implemented byone rule performing the composition and another rule performing the intersection.c(I,K,C1),c(K,J,C2) ==> composition(C1,C2,C3), c(I,J,C3).c(I,J,C1),c(I,J,C2) <=> intersection(C1,C2,C3), c(I,J,C3).As we will see, splitting into the two operations using two rules o�ers a high de-gree of 
exibility. These two rules su�ce to implement an incremental concurrentpath consistency algorithm for complete networks. The rules are con
uent for allproperly de�ned (i.e. logically correct) composition and intersection operations.Although for a given problem, there is only a �nite number of variables andpossible disjunctive binary constraints, the solver above is too generic to terminateunder our operational semantics. The propagation rule can generate the same con-straint(s) all over again, if intermediate constraints are not absorbed early enoughby the simpli�cation rule, as the following trace shows (new constraints are addedto the right):(1) c(X,Y,A), c(Y,X,B) % propagate with A and B(2) c(X,Y,A), c(Y,X,B), c(X,X,C) % propagate with B and C(3) c(X,Y,A), c(Y,X,B), c(X,X,C), c(Y,X,D) % simplify B and D



28 (4) c(X,Y,A), c(X,X,C), c(Y,X,B) % propagate with A and B(5) c(X,Y,A), c(X,X,C), c(Y,X,B), c(X,X,C) % simplify C and C(6) c(X,Y,A), c(Y,X,B), c(X,X,C) % same as state (2)In most CHR implementations, however, even this solver will terminate when therules are applied fairly and idempotence is enforced (e.g. the new c(X,X,C) wouldbe absorbed in state (5)). Fairness means here that simpli�cation by intersectionis applied to constraints over the same variable pair before too much propagation iscaused by them. Then, any solver derived from this generic path consistency solverwill terminate as well.Generic path consistency solvers can be found in path.chr and time-pc.chr.The solver below takes the optimizations of algorithm PC-2 [Mac77] into account,but in addition is incremental, works with incomplete networks, removes redundantconstraints and implements equality by the built-in constraint =/2. More optimiza-tions are discussed in detail in [Fru94]. The solver maintains the invariant that I<Jholds for each constraint c(I,J,C), since in PC-2 converses of a constraint are nolonger explicit.% Special Casesc(I,J,C) <=> ground(I),ground(J) | choose(B,C),check c(I,J,B).c(I,J,C) <=> empty(C) | false.c(I,J,C) <=> redundant(C) | true.c(I,J,C) <=> equality(C) | I=J.c(I,I,C) <=> choose(B,C),equality(B).% Intersectionc(I,J,C1),c(I,J,C2) <=> intersection(C1,C2,C3), c(I,J,C3).% Compositionc(I,K,C1),c(K,J,C2) ==> I<J | composition(C1,C2,C3), c(I,J,C3).c(K,I,C1),c(K,J,C2) ==> I<J | composition(C1,C3,C2), c(I,J,C3).c(I,K,C1),c(J,K,C2) ==> I<J | composition(C3,C2,C1), c(I,J,C3).% Labelinglabel with c(I,J,C) if not singleton(C).c(I,J,C) :- choose(B,C), c(I,J,B).The special cases are simpli�cation CHR. The �rst checks the satis�ability of theconstraint by trying the primitive constraints in the disjunction until one is foundfor which the assignment of the variables is valid. The next one detects incon-sistent constraints (those having empty disjunctions), one replaces the equalityconstraint by the built-in constraint =/2, and one replaces a constraint between thesame nodes by a test if equality was present in the disjunction10. The de�nitionsof the auxiliary predicates check c, empty, singleton, redundant, equality,choose, intersection, composition comes with the instance of the path con-sistency solver (see Section 8.4).Another simpli�cation CHR performs the intersection, three propagation CHRthe composition. In the absence of explicit converses, the composition CHR have tocover all possible orientations of constraints while keeping the nodes I,J ordered.10If there are primitive relations which properly contain equality, the rule has to be weakenedinto a propagation rule.



29The computation of the converse is implicit in how the composition predicate isused, if necessary \computing backwards".The labeling implements backtrack search to make complete the path consistencyalgorithm. If a disjunctive constraint C is not a singleton, one nondeterministicallychooses a primitive constraint B from C and enforces B.Flexibility and ExtensionsThe solver for path consistency can be specialized to one for arc consistency by re-stricting exactly one of the binary constraints involved in the propagation CHR tobe actually unary. This is achieved by �xing one variable to a reference point, whichis smaller than any variable (e.g. zero). For such a unary constraint c(0,J,C) weuse the more common notation dom(J,C) (C is usually called the domain of J):% Special Casesdom(J,C) <=> ground(J) | choose(B,C),check dom(J,B).dom(J,C) <=> empty(C) | false.dom(J,C) <=> redundant(C) | true.% Intersectiondom(J,C1),dom(J,C2) <=> intersection(C1,C2,C3), dom(J,C3).% Compositiondom(K,C1),c(K,J,C2) ==> composition(C1,C2,C3), dom(J,C3).dom(K,C1),c(J,K,C2) ==> composition(C3,C2,C1), dom(J,C3).% Labeling...A related solver for arc consistency is arc.chr. We will use a further specializa-tion of this solver for �nite domains in Section 8.5. An instance of path consistencyfor temporal reasoning is introduced in the Section 8.4. More modi�cations arediscussed in [Fru94].Related Solvers and WorkAn application of the path consistency and backtracking algorithm in CHR toqualitative spatial reasoning is described in [EsTo96]. The framework of Freksaand Zimmermann is implemented and extended by the treatment of 2-dimensionalobjects with non-zero dimensions. In this framework, space is qualitatively dividedinto several regions which are de�ned by means of a reference system. There are15 primitive relations, which basically denote relative directions (e.g. left-front,behind). An important aspect of the work was that CLP extended with CHRprovides a level of abstraction suited for integrating di�erent aspects of space. Theresults of this research have been applied to toy examples and robot path planning.Current work by the same authors extends the solver (and framework) further tohandle distances between objects.8.4. Temporal ReasoningFollowing the framework of Meiri [Mei91], temporal reasoning is viewed as a con-straint satisfaction problem about the location of temporal variables along the time



30 line using path consistency and backtrack search. The framework integrates mostforms of temporal relations - qualitative and quantitative (metric) over time pointsand intervals - by considering them as disjunctive binary constraints. We quicklyintroduce the temporal constraints available.Qualitative Point Constraints [ViKa86]. Variables represent time pointsand there are three primitive constraints <, =, >. Composition of a constraintwith itself or equality yields the constraint again, any other composition yields theredundant constraint.Quantitative Point Constraints [DMP91]. The primitive constraints restrictthe distance of two time pointsX and Y to be in an interval a : b, i.e. a � (Y �X) �b11, where a and b are signed numbers or 1. Note that there is an in�nite numberof primitive quantitative constraints and that they can overlap. The compositionof the intervals a : b with c : d results in (a + c) : (b + d), and the intersection inmax(a; c) : min(b; d).Interval Constraints [All83]. There are 13 primitive constraints possible be-tween two intervals, equality and 6 other relations with their converses. These con-straints can be de�ned in terms of the end-points of the intervals. Let I=[X,Y],J=[U,V]. Notationally, we abbreviate chains of (in)equalities between variables.I equals J if X=U<Y=V. I before J if X<Y<U<V.I during J if U<X<Y<V. I overlaps J if X<U<Y<V.I meets J if X<Y=U<V. I starts J if X=U<Y<V.I finishes J if U<X<Y=V.Converses areequals,after,contains,overlapped by,started by,finished by.Point - Interval Constraints [Mei91]. There are 5 possible primitive con-straints between a point and an interval. Let X be a point, J = [U,V] an interval.X pbefore J if X<U<V.X pafter J if U<V<X. X pduring J if U<X<V.X pstarts J if X=U<V. X pfinishes J if U<X=V.The converses express interval-point constraints.Relating Constraints of Di�erent Types [KaLa91]. Qualitative time pointconstraints can be mapped into quantitative point constraints, while quantitativeconstraints can only be approximated by qualitative constraints. Points can berepresented by end-points of intervals and interval constraints can be approximatedby constraints on their endpoints. These mappings are used to solve heterogeneousconstraints over the same variables.SolverWe instantiate the generic path consistency solver of the previous section by de�ningthe intersection and composition operations. The implementation is described indetail and with variations in [Fru94], the solver is time.chr using time-pc.chr.Disjunctive constraints are represented as list of their primitive constraints. In-tersection is simply de�ned as list intersection, while composition is de�ned in terms11For simplicity of presentation we do not distinguish between open and closed intervals.



31of pairwise combining the primitive relations. The check for validity is performedby using the de�nition of the primitive temporal constraints as CLP clauses.Since there is an in�nite number of primitive quantitative constraints and sincethey can overlap, these constraints need special treatment: Intersection and com-position have to deal with overlapping intervals. Labeling can go beyond singleintervals by performing binary search on them: A single interval is split in half aslong as its size is above a certain threshold eps. eps is a lower bound for the size ofthe smallest nonempty interval possible in the constraint problem at hand. Sincesuch a lower bound always exists, termination is not a�ected [Fru97].Example 8.4. The constraints on intervals X, Y, Zc(X,Y,[pbefore,pstarts]), c(X,Z,[pstarts,pduring]),c(Y,Z,[before,contains,after])can be tightened by path consistency toc(X,Y,[before]), c(Z,Y,[before]), c(X,Z,[starts,during]),while the constraints on points U, V and on intervals Y, Zc(V,U,[0-1,3-4]), c(U,Y,[pbefore,pstarts]),c(Z,V,[pcontains,pstarted by]), c(Y,Z,[before,contains])turn out to be inconsistent.Flexibility and ExtensionsWe specialize our temporal solver to quantitative time point constraints over singleintervals as considered in [DMP91]. Their notation for c(I,J,[A:B]) is A=<I-J=<B,meaning that the distance between I and J is between A and B. The solver can befound in time-point.chr and another derivation for it by extending the solver forinequality (section 2) is described in [Fru95].% Special CasesA=<I-J=<B <=> ground(I),ground(J) | A=<J-I, J-I=<B.A=<I-J=<B <=> A>B | false.A=<I-J=<B <=> A=-1,B=1 | true.A=<I-J=<B <=> A=0,B=0 | I=J.A=<I-I=<B <=> A=<0, 0=<B.% IntersectionA1=<I-J=<B1,A2=<I-J=<B2 <=>A3 is max(A1,A2),B3 is min(B1,B2),A3=<I-J=<B3.% CompositionA1=<I-K=<B1,A2=<K-J=<B2 ==> I<J| A3 is A1+A2,B3 is B1+B2,A3=<I-J=<B3.A1=<K-I=<B1,A2=<K-J=<B2 ==> I<J| A3 is A2-B1,B3 is B2-A1,A3=<I-J=<B3.A1=<I-K=<B1,A2=<J-K=<B2 ==> I<J| A3 is A1-B2,B3 is B1-A2,A3=<I-J=<B3.



32 Labeling can be performed by interval splitting (binary search).Related SolversPMON is one of the logics for modeling of dynamical systems presented in [San94].Syntactically, a scenario description (a description of a dynamical system) in PMONconsists of three parts: Observations (formulas that hold at speci�c time points),action laws (formulas that de�nes possible change of values of symbols), schedulestatements (statements that describes occurrences of and the temporal relationsbetween actions). Additionally there are nochange axioms that specify when aproposition cannot possibly change (to implement inertia). The basic idea of theimplementation [Bja96] was to see formulas as constraints and encode the actionlaws as rules. Many ideas where borrowed from the CHR implementation of theMeiri framework, such as disjunctions handled by the labeling mechanism. Amongstother cases, various classical Turkey Shooting Problems were investigated.The European Community funded ESPRIT project no. 2409, "Environment forQualitative Temporal Reasoning" (EQUATOR), 1989-93, was concerned with mod-eling process-based systems for industrial applications like aircraft scheduling andurban tra�c control. An extension of the event calculus [KoSe86, SaKo95] calledGRF including time granularity (di�erent time scales) and continuous processes,was implemented in several versions, one using CHR [Don93]. This version wasconstraint-based in several ways: It used an extension of a CHR solver for inequal-ities and �nite domains (the interval part) for modeling temporal order. It alsoused a simpli�ed version of the solver for linear equations for conversion betweendi�erent time scales. It modeled negation as a CHR constraint to avoid 
ounderingand achieve maximum propagation. Thus the predicates of the event calculus couldbe called even when the time parameter was unknown.8.5. Finite domainsFinite domains appeared �rst in CHIP [vH89], more recent and more advanced CLPlanguages are clp(FD) [CoDi96] and cc(FD) [HSD95]. Since integers are used asdomain, some arithmetic is possible. The theory underlying this constraint domainis Presburgers arithmetic. It axiomatizes the linear fragment of integer arithmeticand is decidable. The constraint X::Dom means that the value for the variable Xmust be in the given �nite domain Dom. More precisely, if Dom is an� enumeration domain, List, then X is a ground term12 in the list List,� interval domain, Min:Max, then X is a ground term between Min and Max.The di�erence between an interval domain and an enumeration domain is thatin the former constraint simpli�cation is performed only on the interval bounds,while in the latter constraint simpli�cation is performed on each element in theenumeration. Thus enumeration domains allow more constraint simpli�cation buton the other hand are only tractable for su�ciently small enumerations.We will derive our solver, domain.chr, as an instance of the arc consistencysolver of Section 8.3 and time-point solver of Section 8.4. The latter already gives12With CHR, there is no need for restricting the representation to integers.



33us a partial solver for interval domains if we specialize it to A=<0-J=<B and writeit as J::A:B. In this specialization, the treatment of equality changes and we addcomposition with binary constraints, as in the arc consistency solver:% Special CasesJ::A:B <=> ground(J) | A=<J, J=<B.J::A:B <=> A>B | false.J::A:B <=> A=-1,B=1 | true.J::A:B <=> A=B | B=J.% IntersectionJ::A1:B1,J::A2:B2 <=> A3 is max(A1,A2),B3 is min(B1,B2),J::A3:B3.% CompositionK::C1,c(K,J,C2) ==> composition(C1,C2,C3), J::C3.K::C1,c(J,K,C2) ==> composition(C3,C2,C1), J::C3.One possible instance of c(I,J,C) is the constraint I=<J:K::A:B, K=<J ==> J::A:1.K::A:B, J=<K ==> J::�1:B.If an argument is known, the two rules can be strengthened to simpli�cationrules by projection onto the other argument:K=<J <=> ground(K) | J::K:1.J=<K <=> ground(K) | J::�1:K.For example, from X::1:2.5, Y::2.5:3, Y=<X we get X=2.5,Y=2.5 by apply-ing the rules for composition and intersection yielding X::2.5:2.5, simplifying it toan equality, projecting the inequality on Y, then intersecting and simplifying again.For enumeration domains, we specialize the arc consistency solver:% Special CasesX::L <=> ground(X) | member(X,L).X::[] <=> false.X::[Y] <=> X=Y.% IntersectionX::L1,X::L2 <=> L1=[ | ], L2=[ | ] | intersect list(L1,L2,L),X::L.% Labelinglabel with X::[Y,Z|L] if true.X::[Y|L]:- member(X,[Y|L]).Flexibility and ExtensionsCHIP �nite domains included n-ary arithmetic constraints (linear polynomials) andconstraints such as alldifferent, circuit, atmost, element. In the solverdomain.chr we implemented a version of element constraint which has lower com-plexity than in CHIP by introducing path consistency for this constraint. Thismakes sense, since the constraint is binary. It can be seen as an enumeration do-main over pairs, I-V. Therefore we simply reused the special cases and intersection



34 of normal unary enumeration domains but also introduce some new special cases.Sample rules for arithmetic constraints are (see also Section 9.2):addz @ X+Y equal Z, X::MinX:MaxX, Y::MinY:MaxZ ==>MinZ is MinX+MinY, MaxZ is MaxX+MaxY, Z::MinZ:MaxZ.addy @ X+Y equal Z, X::MinX:MaxX, Z::MinZ:MaxZ ==>MinY is MinZ-MaxX, MaxY is MaxZ-MinX, Y::MinY:MaxY.For example: A::1:3, B::2:4, C::0:4, A+B equal C7!addz A::1:3, B::2:4, C::0:4, A+B equal C, C::3:77!intersection A::1:3, B::2:4, A+B equal C, C::3:47!addx 7!addy A::1:3, B::2:4, A+B equal C, A::-1:2, B::0:3, C::3:47!2intersection A+B equal C, A::1:2, B::2:3, C::3:4Related SolversIn the work [Due96] structural character descriptions for east Asian ideograms(Kanji) are both analyzed and generated. Sketches of characters can be producedfrom a symbolic coordinate free description, when the description is interpretedas a system of constraints. However, the constraints are highly underdetermined,as there is no exact geometry information, and sometimes implicit, such as thecondition that the �nal sketch has to �ll a square of �xed size. Therefore a specialconstraint solving algorithm tailored to the problem was developed.An initial solution was rewritten using the �nite domain constraint solver of theCHR library. According to the author, CHR lead to improvements in performance,allowing generating sketches for characters with ten or more equivalence classes inone direction. This was not feasible with the original solution that heavily reliedon the generate-and-test approach of LP.8.6. Linear (and Non-Linear) PolynomialsThe initial motivation for introducing constraints in LP was the non-declarativenature of the built-in predicates for arithmetic computations. Therefore, fromthe very beginning, CLP languages included constraint solving for linear equa-tions and inequations over reals (CLP(R) [Ja*92]) or rationals (Prolog-III [Col90],CHIP [Di*88]) adopting variants of Gaussian elimination and the Simplex algorithm[Imb95]. The theory underlying this constraint system is that of real closed �elds,which covers linear and non-linear polynomials and was shown to be decidable byTarski.In the CHR solver math-gauss.chr a minimalistic but powerful variant of vari-able elimination is employed. A linear polynomial is represented as Poly equalsConstant where Poly is a list of monomials of the form Variable * Coefficientwith coe�cients di�erent from zero and the list is sorted on the variables in strictlydescending order. The two rules below su�ce to implement a complete and e�cientsolver for linear equations over both 
oating point numbers and rational numbers.empty @ [] equals K <=> zero(K).



35eliminate @ [X*C1|P1] equals K1 \ [X*C2|P2] equals K2 <=>multiply_poly_const(P1-K1,C2/C1,P3-K3),subtract_poly_poly(P2-K2,P3-K3,P4-K4),P4 equals K4.The empty rule says that if the polynomial is empty, the constant must be zero.The predicate zero tests for zero with a user-de�nable error margin in case of a
oating point number. The eliminate rule is the workhorse that performs thevariable elimination. It takes two equations that start with the same variable, the�rst equation is left unchanged, it is used to eliminate the occurrence of the commonvariable in the second equation. Note that no variable is ever made explicit, i.e.no pivoting is performed: Any two equations with the same �rst variable can reactwith each other.The solver terminates since the polynomial is ordered and a large variable isreplaced by several strictly smaller ones. The solver is complete since it results ina normal form where the left-most variable of each equation is the only left-mostoccurrence of this variable. However, it does not create explicit variable bindingsor necessarily make implicit equalities between variables explicit.Even though the solver is not con
uent (any of the two equations in the ruleeliminate could be chosen for eliminating its variable, resulting in di�erent newequations), it could be easily made so by introducing an order on equations. Therule is more e�cient as it is, and the result in terms of satis�ability and variablesthat are uniquely determined are the same.Flexibility and ExtensionsBindings of variables are introduced as special cases by the rules:unify @ [X*C] equals K <=> X is K/C.unified @ P equals K <=> delete(X*C,P,P1), ground(X) |K1 is K-X*C,P1 equals K1.A more eager variant of the eliminate rule is possible, that eliminates a variableno matter where it occurs in the equation.eager @ [X*C1|P1] equals K1 \ P equals K2 <=> delete(X*C2,P,P2) |% rule body as in rule eliminateThe rule makes all implicit equalities explicit. The remarks about termination andcon
uence of the solver still apply. On an equation solving benchmark proposedby Van Caneghem13, using rational numbers the above solvers were slightly fasterthan the lower level implementation of a rational solver in ECLiPSe3.5.1. It solveda system of 50 variables and 50 equations in less than a minute on a 50MHz SUNSPARC. However our solver does not implement optimization and variable projec-tion.As in the Simplex algorithm, an inequation is handled by replacing it with anequation with the help of an additional variable, called a slack variable, that isconstrained to be positive. Then one has to introduce additional rules that maintain13Solving Ax = b for x where A is a dense matrix with A[i; j] = ij mod 101.



36 a normal form for equations that consist only of slack variables. This normal formis more constrained than the standard one. The slack variables have to be re-ordered such that the left-most slack variable of an equation has the same sign asthe constant. If this is not possible, the equations are inconsistent. Also, if all slackvariables have the same sign and the constant is zero, then all slack variables mustbe zero. The solver can be found in math-elim.chr.Another solver, math-fougau.chr, is the result of combining the above solver forequations with a solver performing the classical Fourier algorithm for inequations.The idea is to perform variable elimination as long as at least one equation isinvolved in the process, otherwise - in the case of two inequations - the transitivityrule (i.e. propagation) as suggested by Fourier is used. The combined solver ismore e�cient than Fouriers algorithm alone and avoids the introduction of slackvariables.Related Solvers and WorkGroAK [MRS96] is a CLP system over non-linear polynomial constraints whichappear e.g. in geometric reasoning. Before, techniques like Groebner Bases overcomplex numbers (CAL [Ai*88]) and Partial Cylindrical Algebraic Decomposition(RISC-CLP(Real) [Hon92]) have been utilized to tackle non-linear polynomials.Another approach is to use interval arithmetic as in CLP(BNR) [Ben95], Newton[BMH94] and Numerica [HMD97]. This approach can basically be seen as a sophis-ticated extension of interval domains to the reals and to non-linear polynomials.Instead of using a general and often ine�cient decision procedure, GroAK han-dles these constraints by cooperation of specialized solvers. This approach requiresthe design of a client-server architecture to enable communication between the var-ious components and solvers. CHR are used to introduce the constraints and toplan the distribution of constraints to the solvers.Each solver works on a special domain, with speci�c constraints: In order totreat the linear constraints,GroAK uses the CHR equation solver math-elim.chrwith rational numbers. GB [Fau94], a software for fast Gr�obner bases computation,yields a canonical form of the non-linear constraints from which the solutions can beextracted. The symbolic computation software Maple [GGL91] is used to computethe roots of univariate polynomials. Maple also simpli�es polynomials before theyare treated by the other solvers.9. APPLICATIONSWe present two innovative, non-standard uses of constraint techniques, that charac-terize a large class of potential applications. The necessary constraint handling wasexpressed and implemented with ease in CHR. Simplicity, 
exibility, e�ciency andrapid prototyping were the advantages of using CHR. The applications were done atthe European Computer-Industry Research Center (ECRC) with the collaborationfrom visitors, other research institutions and industry.9.1. Planning Cordless Business Communication SystemsMobile communications comes to company sites. Employees can be reached atany time at any place. No cabling is required, but small, local radio transmitters



37(senders) have to be installed. When planning their locations, the speci�cs of radiowave propagation have to be taken into account. Since radio waves are absorbedand re
ected by walls and 
oors of a building, the received power at a single pointmay exhibit discontinuities because of tiny changes in the sender location - forexample, a move around the corner.The advanced industrial prototype POPULAR (Planning of Picocellular Radio)[Mol94, FMB96, FrBr97], one of the �rst systems of its kind, computes the minimalnumber of senders and their location, given a blue-print of the building and infor-mation about the materials used for walls and ceilings. It does so by simulatingthe propagation of radio-waves using ray tracing and subsequent constraint-basedoptimization of the number of senders needed to cover the whole building. POP-ULAR was developed by ECRC, Siemens Research and Development (ZFE), theSiemens Personal Networks Department (PN), and the Institute of CommunicationNetworks at the Aachen University of Technology.First, the characteristics of the building are computed using a grid of test points.Each test point represents a possible receiver position. For each test point the spacewhere a sender could be put to cover the test point, the \radio cell", is calculated.The radio cell will usually be a rather odd-shaped object, since the coverage is not asmooth or even di�erentiable function. If the test grid is su�ciently small (severalper square meter), we can expect that if two neighbouring test points are covered,the space inbetween - hence the whole building - can also be covered.For each radio cell a constraint is set up that there must be (at least) one locationof a sender (geometrically speaking, a point) somewhere in that space. Then, wetry to �nd locations that are in as many radio cell planes at the same time aspossible. Thus the possible locations are constrained to be in the intersections ofthe radio cell planes covered. A sender at one of these locations will cover severaltest points at once. In this way, a �rst solution is computed. To minimize thenumber of senders, we use a branch-and-bound method. It consists in repeatedlysearching for a solution with a smaller number of senders until the minimal numberis found.SolverIn a �rst attempt restricted to two dimensions, we approximated the radio cell by asingle rectangle. The 2-D coordinates are of the form X#Y, rectangles are orthogonalto the coordinate system and are represented by a pair of their left upper andright lower corner coordinates. For each radio cell, a constraint inside(Sender,Rectangle) is imposed, where Sender is a point that must be inside Rectangle.% inside(Sender, LeftLowerCorner - RightUpperCorner)nonempty @ inside(S,A#B-C#D) ==> A<C,B<D.intersect @ inside(S,A1#B1-C1#D1),inside(S,A2#B2-C2#D2) <=>A is max(A1,A2), B is max(B1,B2),C is min(C1,C2), D is min(D1,D2),inside(S,A#B-C#D).The �rst rule (named nonempty) says that the constraint inside(S,A#B-C#D) isonly valid if also the condition A<C,B<D is ful�lled, so that the rectangle has anonempty area. The intersect rule says that if a senders location S is constrained



38 by two inside constraints to be in two rectangles at once, we can replace thesetwo constraints by a single inside constraint whose rectangle is computed as theintersection of the two initial rectangles.To compute a solution, we try to equate as many senders as possible using thefollowing labeling procedure:equate_senders([]).equate_senders([S|L]) :-(member(S,L) ; true), % equate S with another sender or notequate_senders(L).For each sender S, (member(S,L) ; true) nondeterministically equates S withone of the remaining senders in the list L using member or does not do so (true).Equating senders causes the intersect rule to �re with the constraints associatedwith the senders. As a result of this labeling procedure, a senders location will beconstrained more and more and thus the intersect rule will be applied again andagain until the rectangle becomes very small and �nally empty. Then the nonemptyrule applies, causes failure and so initiates backtracking. A good labeling heuristicis to equate senders from radio cells associated with nearby test points �rst.It took just 10 minutes to extend this solver so that it works with union ofrectangles, that can describe the radio cell to any desired degree of precision. Thiscorresponds to a disjunctive constraint inside(S,R1) _ ... _ inside(S,Rn)which is more compactly implemented as inside(S,[R1,...,Rn]).% inside(Sender, List)intersect @ inside(S, L1), inside(S, L2) <=>intersect(L1, L2, L3),L3 = [_|_], % at least one rectangle leftinside(S, L3).intersect(L1, L2, L3) :-setof(R, intersect1(L1,L2,R), L3).intersect1(L1, L2, rect(A#B,C#D)) :-member(rect(A1#B1,C1#D1), L1),member(rect(A2#B2,C2#D2), L2),A is max(A1,A2), B is max(B1,B2),C is min(C1,C2), D is min(D1,D2),A<C, B<D. % nonemptyThe above solver can be adapted quickly to work with other geometric objectsthan rectangles by changing the de�nition of intersect1/3. Also, the lifting tothree dimensions just amounted to adding a third coordinate and code analogousto the one for the other dimensions. The simplicity of the solver does not meanprimitiveness or triviality, it rather illustrates the power of CHR.It would be quite hard to implement the functionality in a hard-wired black-boxsolver. With �nite domains coordinates would have to be rounded to integers. Also,we found that for our application the built-in �nite domain solver of ECLiPSe wasslightly slower than the CHR implementation. Using linear polynomial constraintswould be an overkill and thus ine�cient, too. Interval arithmetic can express therequired constraints more adequately. Moreover, the disjunctive constraints needed



39would require recasting using auxiliary variables, which is expensive, error-proneand limits the amount of propagation. The cardinality constraint [HSD95] couldbe used to express the disjunction, but is only available for �nite domains.EvaluationFor a typical o�ce building, an optimal placement is found by POPULAR within afew minutes. The overall quality of the placements produced is comparable to thatof a human expert. The only other comparable tool that was available in 1994 wasWISE [FGK*95], which is written in about 7500 lines of C++. For optimizationWISE uses an adaptation of the Nelder-Mead direct search method that optimizesthe percentage of the building covered. The CLP code for POPULAR is justabout 4000 lines with more than half of it for graphics and user interface. Thebig advantage of the CLP approach is 
exibility, e.g. when changing the labelingheuristic or extending the solver.9.2. The Munich Rent AdvisorThe Munich Rent Advisor (MRA) [FrAb96], developed by ECRC and LMU, is theelectronic version of the \Mietspiegel"(MS) for Munich. MS are published regularlyby German cities. They are basically a written description of an expert system thatallows to estimate the maximum fair rent for a 
at. These estimates are legallybinding.The calculations are based on size, age and location of the 
at and a series ofdetailed questions about the 
at and the house it is in. Some of these questionsare hard to answer. However, in order to be able to calculate the rent estimateby hand, all questions must be answered. Usually, the calculation is performed byhand in about half on hour by an expert from the City of Munich or from one ofthe renter's associations. The MRA that brought the advising time down to a fewminutes that the user needs to �ll in the form. Using constraints, the user of theMRA need not answer all questions. The user may not want to give informationaway, or he does not care about the question or know the answer.The MS is derived from a statistical model compiled from sample data usingstatistical methods such as regression analysis [Al*94]. Due to the underlying sta-tistical approach, there is the problem of inherent imprecision which is ignoredin the paper version of the MS. Using constraints the MRA can account for thestatistical imprecision.The MRA is available on the internet. Using the World-Wide-Web (WWW),there is no need for the user to acquire speci�c software and computer handlingskills. To process the answers from the questionnaire and return its result, we wrotea simple stable special-purpose web-server directly in ECLiPSe using its C-socketsfor internet communication. This approach avoids the overhead of CGI interfaces.SolverFrom a CLP point of view, the MRA application is rather atypical: The computa-tion proceeds deterministically from constrained input variables (the user data) toconstrained output variables (the rent estimate), since the original MS has already



40 solved the problem. There is no need for NP-hard constraint solving and labeling,only for constraint propagation in the forward direction: The answer we expect isthe smallest interval covering all possible rents, not an enumeration of all possiblerents by backtracking.Our approach was �rst to implement the tables, rules and formulas of the \Miet-spiegel" with high-level and declarative programming in ECLiPSe, as if the provideddata was precise and completely known. Then we added constraints to capture theimprecision due to the statistical approach and incompleteness due to partial useranswers. Finally, we considered the formulas of the rent calculation as constraintsthat re�ne the rent estimate by propagation from the input variables which areconstrained by the partial answers.In the MRA, dealing with imprecise numerical information involves non-lineararithmetic computations with intervals. We simply modi�ed the existing �nite do-main solver in CHR, domain.chr, described in Section 8.5, so that it can deal withinterval constraints over non-linear equations of the formc �X1 �X2 � ::: �Xn = Ywhere c is a number and the Xi and Y are di�erent variables and n >= 0. In thesolver, c �X1 �X2 � ::: �Xn = Y is represented by mult(C:C,[X1,X2,...,Xn],Y).mult(Min:Max, [], Y) <=> Y::Min:Max.mult(Min:Max, [X|L], Y) <=> number(X) |NewMin is min(Min*X,Max*X),NewMax is max(Min*X,Max*X),mult(NewMin:NewMax, L, Y).X::XMin:XMax \ mult(Min:Max, [X|L], Y) <=>NewMin is min(min(Min*XMin,Max*XMax),min(Max*XMin,Min*XMax)),NewMax is max(max(Min*XMin,Max*XMax),max(Max*XMin,Min*XMax)),mult(NewMin:NewMax, L, Y).Since we do not need backpropagation in our application, these three rules su�ce.EvaluationIn the last two years, more than ten thousand people haved used our MRA serviceon the World-Wide-Web (WWW). It is one of the winners of the best applicationprize of the JFPLC'96 [FAB96] conference in France and was presented at theSystems'96 Computer Show in Munich.It took about four man weeks to write the WWW user interface, only two weeksto write the calculation part and one week to debug it. We think that the codingwould have dominated the implementation e�ort if a conventional programminglanguage had been used. We could presumably have used interval arithmetic toexpress the required constraints. However it would have been quite di�cult to tailorthe amount and direction of constraint propagation to the needs of the applicationat hand. Our high-level approach also implies that the program can be easilymaintained and modi�ed. This is crucial, since every city and every new versioncomes with di�erent tables and rules for the \Mietspiegel".



41The Munich Rent Advisor represents a class of applications that is rather atyp-ical for constraint logic programming, since it is not concerned with the NP-hardconstraint-pruned search for a solution, but executing an existing calculation in thepresence of partial information. Nevertheless CLP can deal with imprecise knowl-edge and partial information in an elegant, correct and e�cient way, provided itis possible to adopt the constraints to the application. We think that constrainttechnology can be applied to many engineering applications where one wants toreason with partial information without compromising correctness.10. CONCLUSIONSWe gave syntax and semantics as well as soundness and completeness results forCHR. We introduced an important property for constraint solvers, con
uence, anda decidable, necessary and su�cient test for it. CHR have been used to encode awide range of solvers, including new domains such as terminological and temporalreasoning. We gave an overview of several solvers, showed how they can be extendedor modi�ed and mentioned related work that builds on these solvers.While existing solvers are usually about datastructures and their operations(e.g. �nite domains, Booleans, numbers), CHR open the way for more generic (e.g.path consistency) and more conceptual constraint solvers (e.g. temporal, spatialand terminological reasoning). CHR have been used successfully in challengingapplications, where other existing CLP systems could not be applied with the sameresults in terms of simplicity, 
exibility and e�ciency. In most real-life applications,soft and dynamic constraints are required. Work that has just been started [Wol97]indicates that CHR are helpful in implementing general schemes to handle suchconstraints independent of the constraint domain.The topics for research mentioned in the �rst draft paper on CHR in 1991 were:� Correctness w.r.t. speci�cations� Termination and con
uence� Negation and entailment of constraints� Combination and communication of solvers� Debugging of constraint solvers� Soft constraints with priorities� Automatic labeling� Dynamic constraints, removable constraints� Variable projection� Partial evaluation� Abstract interpretation



42 Most of these topics are still an issue today. Clearly the termination property iseven more important than con
uence and has to be a topic of future research (fora start see the long version of this article, [Fru97]). While CHR solve conjunctionsof constraints, other operations typically expected from a constraint solver likevariable projection and entailment have not been investigated yet (except [Fru93a]).We think that this survey illustrated that languages like CHR can ful�ll thepromise of user-de�ned constraints as described in [ACM]: \For the theoreticianmeta-theorems can be proved and analysis techniques invented once and for all; forthe implementor di�erent constructs (backward and forward chaining, suspension,compiler optimization, debugging) can be implemented once and for all; for the useronly one set of ideas need to be understood, though with rich (albeit disciplined)variations (constraint systems)."AcknowledgementsI would like to thank my collaborators: P. Brisset, T. Fortin, P. Blenninger, all ofthem visitors to ECRC; especially S. Abdennadher, also H. Meuss, M. Marte, allcolleagues at LMU; and P. Hanschke, R. Mollwitz, Ch. Holzbaur.Many people have discussed CHR with me, contributed with comments and usedthem. Too many to thank them all by name. However, I would like to mentionmy colleagues at ECRC: M. Wallace, T. Le Provost, V. Kuechenho�, C. Gervet,E. Monfroy, all from the constraint team, and J. Schimpf, A. Herold, J. Trae� andN. Eisinger. While at ECRC from 1991 to 1996, my work on CHR was partiallysupported by ESPRIT Project 5291 CHIC.Last but not least, I thank my wife Andrea and my daughter Anna for herongoing support and patience.The CHR papers and solvers mentioned in this article are available from URLhttp://www.pst.informatik.uni-muenchen.de/personen/fruehwir/.REFERENCES[Abd97.] S. Abdennadher, Operational Semantics and Con
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