
Under consideration for publication in Theory and Practice of Logic Programming 1

Probabilistic Legal Reasoning in CHRiSM

JON SNEYERS, DANNY DE SCHREYE

Dept. of Computer Science, KU Leuven, Belgium

(e-mail: FirstName.LastName@cs.kuleuven.be)

THOM FRÜHWIRTH

University of Ulm, Germany

(e-mail: thom.fruehwirth@uni-ulm.de)

submitted February 2012; revised X; accepted X

Abstract

Riveret et al. have proposed a framework for probabilistic legal reasoning. Their goal is to
determine the chance of winning a court case, given the probabilities of the judge accepting
certain claimed facts and legal rules.

In this paper we tackle the same problem by defining and implementing a new formalism,
called probabilistic argumentation logic, which can be seen as a probabilistic generalization
of Nute’s defeasible logic. Not only does this provide an automation of the — only hand-
performed — computations in Riveret et al, it also provides a solution to one of their open
problems: a method to determine the initial probabilities from a given body of precedents.

1 Introduction

Riveret, Rotolo et al. (2007) have proposed a framework of probabilistic legal rea-

soning based on the argumentation framework of Prakken and Sartor (1997), which

provides a dialectical proof theory in the formal setting of Dung (1995). Their goal

is to determine the chance of winning a court case, given the probabilities of the

judge accepting certain claimed facts to be valid and legal rules to be apply.

Roth, Riveret et al. (2007) tackle a similar problem, but with the focus on finding

legal strategies for the involved parties to maximize their chances of winning. They

propose a rather complex framework, based on a logic layer, an argument layer, a

dialectical layer, a procedural layer, and finally a probabilistic weighting.

To our knowledge, none of these approaches have been implemented so far. Both

papers only contain a hand-performed computation to illustrate their approach on

an example. Such an implementation of an ‘argument assistance system’ is left

explicitly as future work in (Riveret, Rotolo et al. 2007).

Another issue is how to determine or verify the probabilities, which are assumed

to be known in advance. Riveret, Rotolo et al. (2007) suggest that maybe somehow

a statistical analysis of how the judge has decided in the past could be performed,

but they again leave this issue to future work.

In this paper we tackle the problem by defining a new formalism, called proba-

bilistic argumentation logic, which can be seen as a probabilistic generalization of

defeasible logic where assumptions underlying defeasible rules are made explicit.

2 Jon Sneyers, Danny De Schreye and Thom Frühwirth

We formalize our approach and implement it in CHRiSM (Sneyers, Meert et al.

2010). CHRiSM is a rule-based probabilistic logic programming language based on

CHR (Frühwirth 2009) in the host language PRISM (Sato 2008).

Our implementation provides an automation of the probability computations

that were hand-performed in (Riveret, Rotolo et al. 2007). The built-in learning

algorithm of CHRiSM also provides a solution to the open problem of determining

the initial probabilities from a given body of precedents.

The remainder of this paper is organized as follows. Section 2 briefly introduces

CHRiSM. Then, in Section 3 we introduce the approach of Riveret, Rotolo et al.

(2007) and the running example in their paper. We show how this example can be

encoded in CHRiSM. Section 4 introduces our new formalism, probabilistic argu-

mentation logic. We implement it in CHRiSM. In Section 5 we demonstrate how

the CHRiSM program can be used for learning. Finally we conclude in Section 6.

2 CHRiSM

Constraint Handling Rules (Frühwirth 2009; Sneyers, VanWeert et al. 2010; Frühwirth

and Raiser 2011) is a high-level language extension based on multi-headed rules.

Being a language extension, CHR is implemented on top of an existing program-

ming language, which is called the host language. An implementation of CHR in

host language X is called CHR(X). Several CHR(Prolog) systems are available.

PRISM (PRogramming In Statistical Modeling) is a probabilistic extension of

Prolog (Sato 2008). It supports several probabilistic inference tasks, including sam-

pling, probability computation, and expectation-maximization (EM) learning.

In (Sneyers, Meert et al. 2010), a new rule-based probabilistic logic program-

ming language was introduced, called CHRiSM — short for CHance Rules induce

Statistical Models. It is based on CHR(PRISM) and it combines the advantages

of CHR and those of PRISM. Like CHR, it is a very concise and expressive pro-

gramming language. Like PRISM, it has built-in support for several probabilistic

inference tasks. Furthermore, CHRiSM rules can be freely mixed with CHR rules

and Prolog clauses.

Syntax and Informal Semantics. A CHRiSM program P consists of a sequence of

chance rules. Chance rules rewrite a multiset S of data elements, which are called

(CHRiSM) constraints (mostly for historical reasons). Syntactically, a constraint

c(X1,..,Xn) looks like a Prolog atom: it has a functor c of some arity n and

arguments X1,..,Xn which are Prolog terms. The multiset S of constraints is called

the constraint store or just store. The initial store is called the query or goal, the

final store (obtained by exhaustive rule application) is called the answer or result.

Chance rules. A chance rule is of the form: “P ?? Hk Hr <=> G | B.”, where P

is a probability expression (as defined below), Hk is a conjunction of (kept head)

constraints, Hr is a conjunction of (removed head) constraints, G is a guard condition

(a Prolog goal to be satisfied), and B is the body of the rule. If Hk is empty, the rule

is called a simplification rule and the backslash is omitted; if Hr is empty, the rule

Probabilistic Legal Reasoning in CHRiSM 3

is called a propagation rule and it is written as “P ?? Hk ==> G | B”. The guard

G is optional; if it is removed, the “|” is also removed. The body B is recursively

defined as a conjunction of CHRiSM constraints, Prolog goals, and probabilistic

disjunctions (defined in (Sneyers, Meert et al. 2010); we do not need them here).

Intuitively, the meaning of a chance rule is as follows: If the constraint store

S contains elements that match with the head of the rule, and furthermore, the

guard G is satisfied, then we can consider rule application. The subset of S that

corresponds to the head of the rule is called a rule instance. Depending on a coin

flip with a probability given by P, the rule instance is either ignored or it actually

leads to a rule application. Every rule instance may only be considered once. A rule

with probability 1 corresponds to a regular CHR rule; the “1 ??” may be dropped.

Rule application has the following effects: the constraints matching Hr are re-

moved from the constraint store, and then the body B is executed, that is, Prolog

goals are called and CHRiSM constraints are added into the store.

Operational Semantics. The abstract operational semantics ω??
t of a CHRiSM pro-

gram P is given by a state-transition system that resembles1 the abstract opera-

tional semantics ωt of CHR (Sneyers, Van Weert et al. 2010). We refer to (Sneyers,

Meert et al. 2010) for the formal definition of ω??
t .

Just like CHR, CHRiSM can also be given a refined operational semantics, in

which execution proceeds by evaluating conjunctions from left to right in a depth-

first way, considering all occurrences of the “active” constraint from top to bottom.

Observations. A full observation Q <==> A denotes that there exist a series of prob-

abilistic choices such that a derivation starting with query Q results in the answer

A. A partial observation Q ===> A denotes that some answer for query Q contains

at least A: in other words, Q ===> A holds iff Q <==> B with A F B.

The following PRISM built-ins can be used to query a CHRiSM program:

• sample Q : execute the query Q while making probabilistic choices;

• prob Q <==> A : compute the probability that Q <==> A holds, i.e. the chance

that the choices are such that query Q results in answer A;

• prob Q ===> A : compute the probability that an answer for Q contains A;

• learn(L) : do expectation-maximization learning from observations L

3 The mad cow example and dialogue games

The running example in (Riveret, Rotolo et al. 2007) is the following. John, the

proponent, wants to sue Henry, the opponent, claiming compensation for the dam-

age that Henry’s cow caused to him when he drove off the road to avoid the cow.

John argues that an animal’s owner has to pay damages caused by their animal,

1 If all rule probabilities are 1 and the program contains no probabilistic disjunctions — i.e. if
the CHRiSM program is actually just a regular CHR program — then the ω

??
t

semantics boils
down to the ωt semantics of CHR.

4 Jon Sneyers, Danny De Schreye and Thom Frühwirth

that Henry is the owner of the cow, and that the accident was caused by the need to

avoid the cow (argument A). Henry can counterattack in various ways: he can claim

that the damage was due to John’s negligence (he did not pay sufficient attention

to crossing animals) – argument B – or that it was a case of force majeure: the cow

suddenly went crazy and crossed into the street – argument C. The last objection

could be replied to by using the debated rule that only exogenous events count as

force majeure, and the cow’s madness is endogenous (argument D).

Riveret, Rotolo et al. (2007) assume an abstract argumentation framework (Dung

1995), which consists of a set of arguments and a binary “defeats” relation. They

then define the notion of a dialogue game which captures the rules of legal argu-

mentation. A dialogue is a sequence of abstract arguments, in which the proponent

and the opponent alternate, each argument defeats the previous argument, and the

proponent cannot repeat arguments and his arguments have to strictly defeat the

previous argument of the opponent.

Moreover, each of the arguments has some given “construction chance”, which

is the probability that the judge will actually accept the argument. The aim is to

estimate the overall chance that the case is won.

CHRiSM encoding of the mad cow example. For reasons of space, we omit the

CHRiSM encoding of dialogue games with abstract arguments, in which the argu-

ments are treated as black boxes that only interact through the “defeats” relation.

We will immediately proceed with a finer level of granularity.

The arguments in (Riveret, Rotolo et al. 2007) are assumed to consist of premises

and rules, which each have a probability of being accepted by the judge. For ex-

ample, argument A consists of the premises that Henry owns the cow (a), and

that the accident was caused by the need to avoid the cow (b), together with the

rule “a ∧ b → c”, where c stands for “Henry has to compensate damages”. If a

will certainly be accepted, b is accepted with a probability of 0.9, and the rule

“a∧ b→ c” is certainly accepted, then the overall construction chance of argument

A is 1× 0.9× 1 = 0.9.

We will call both premises and conclusions “statements” and use ground Prolog

terms to denote them. The auxiliary predicate neg/2 simply negates a literal in a

way that avoids double negations.

We use a dummy predicate begin/0 (to be used as the initial goal). The main

constraint predicate is accept/2, which indicates that the judge conditionally ac-

cepts some statement: accept(S,C) denotes that statement S is accepted if all

conditions C (a Prolog list of statements) hold. If C is the empty list, the statement

is unconditionally accepted; otherwise the acceptance of the statement can still be

retracted if one of the conditions turn out to be unacceptable.

First of all, we allow no contradictions:

accept(X,A), accept(Y,B) ==> subset(A,B), neg(X,Y) | fail.

If a statement is already accepted with conditions A, then it is redundant to also

accept it with stronger conditions B ⊇ A.

accept(X,A) \ accept(X,B) <=> subset(A,B) | true.

Probabilistic Legal Reasoning in CHRiSM 5

The above rule implies a set semantics for unconditionally accepted statements.

If a statement Y was accepted with conditions B, but Y itself or one of its conditions

are contradicted (“undercut”) by a statement X with weaker conditions A that are

implied by B, then the acceptance of Y has to be retracted — we use a simpagation

rule to remove the accept(Y,B) constraint:

accept(X,A) \ accept(Y,B) <=>

subset(A,B), neg(X,NX), member(NX,[Y|B]) | true.

Now we encode the premises and the rules of the arguments:

% Argument A (rule r1, premises a and b):

% "If Henry is the owner of the cow (a) and the accident was caused by the

% need to avoid the cow (b), then Henry has to compensate damages (c)."

1.0 ?? accept(a,[]), accept(b,[]) ==> accept(c, [app(r1)]).

1.0 ?? begin ==> accept(a,[]).

0.9 ?? begin ==> accept(b,[]).

The rule being used is a defeasible rule, so its conclusion c will be accepted with

the condition that the rule is actually applicable (app(r1)).

The rule can be “undercut” by arguments B or C.

% Argument B (rule r2, premise d):

% "If John was negligent (d), then r1 is not applicable."

0.8 ?? accept(d,[]) ==> accept(not(app(r1)),[]).

0.5 ?? begin ==> accept(d,[]).

For example, the judge could accept a, b and d and both rules, to reach the state

“accept(c,[app(r1)]), accept(not(app(r1)),[])”. Now the undercutting rule

removes the conditional acceptance of c, because its condition was contradicted.

% Argument C (rule r3, premise e):

% "If the cow was mad (e), it was a case of force majeure.

% so r1 is not applicable."

0.5 ?? accept(e,[]) ==> accept(not(app(r1)), [app(r3)]).

0.2 ?? begin ==> accept(e,[]).

Again, the above rule (r3) is defeasible, so its conclusion can only be accepted with

the condition app(r3), which can be undercut by the final argument:

% Argument D (rule r4, premise f):

% "If the cow’s madness is endogenous (f), then the ’force majeure’

% rule r3 is not applicable."

0.5 ?? accept(f,[]) ==> accept(not(app(r3)), []).

0.3 ?? begin ==> accept(f,[]).

The only thing now left to do, is to resolve the conditions by making assumptions.

For example, one possible result of the query begin is the following:

6 Jon Sneyers, Danny De Schreye and Thom Frühwirth

accept(a, []), accept(b, []), accept(e, []),

accept(c, [app(r1)]), accept(not(app(r1)), [app(r3)])

In this case, both c and not(app(r1)) are conditionally accepted. Although not(app(r1))

undercuts the conditions of c, the “undercut” rule is not applicable (yet) because

the condition [app(r3)] is not weaker than the condition [app(r1)]. However,

since there is no counterevidence for app(r3), we can assume this condition to

hold, “promoting” not(app(r1)) to an unconditionally accepted statement, which

then causes the acceptance of c to be retracted.

To implement this idea, we add the following rules at the end of the program:

begin <=> assume.

assume, accept(X,C) ==> select(A,C,C2), neg(A,NA),

\+ find_chr_constraint(accept(NA,_)) | accept(X,C2) ; true.

assume <=> true.

The middle rule looks for statements with a condition that can be safely assumed

to hold (by lack of counterevidence) and removes the condition. The “; true” part

is needed in case removing the condition would lead to a contradiction.

This concludes our program. We can now compute the desired probability —

which took several pages of manual calculations in (Riveret, Rotolo et al. 2007) —

with a simple CHRiSM query:

?- prob begin ===> accept(c,[]).

Probability of begin ===> accept(c,[]) is: 0.494100000000000

4 Generalization and Formalization

In order to generalize the running example, we will propose a transformation from

an arbitrary probabilistic legal argumentation logic A — a notion that will be

introduced in this section — to a CHRiSM program PCHRiSM (A).

4.1 Probabilistic Argumentation Logic

We use lit(A) to denote the set of literals over a set of atomic formulas A, i.e.

lit(A) = A ∪ {¬a | a ∈ A}. We will sometimes denote conjunctions over literals as

sets since the order of the conjuncts is irrelevant.

Definition 4.1 (Probabilistic argumentation logic)

A probabilistic argumentation logic or PAL is a tuple (S,A,R, P), where S is a set

of statements and A is a set of assumptions (with S ∩ A = ∅), R is a set of rules,

and P is a function assigning probabilities to each rule, P : R 7→ [0, 1]. The rules

in R have the following form:

s1 ∧ . . . ∧ sn ⇒ c1 ∧ . . . ∧ cm assuming a1 ∧ . . . ∧ ak

where the left hand side (the antecedent) is a conjunction of literals (si ∈ lit(S∪A))

which can be empty (n ≥ 0), the right hand side (the consequent) is a non-empty

(m ≥ 1) conjunction of literals (ci ∈ lit(S ∪ A), and the part after “assuming”

Probabilistic Legal Reasoning in CHRiSM 7

(the assumption) is a possibly empty (k ≥ 0) conjunction of assumption literals

(ai ∈ lit(A)). If the left hand side is empty, the rule is also called a fact and the

arrow can be omitted; if the part after “assuming” is empty, the rule is called

unconditional and the keyword “assuming” can be omitted.

To illustrate the definition, we now write out the running mad cow example as a

formal probabilistic argumentation logic

Amc := ({a, b, c, d, e, f}, {app(r1), app(r3)}, Rmc, Pmc)

where the rules Rmc are the following:

Rmc := {r1, r2, r3, r4, sa, sb, sd, se, sf}

r1 := a ∧ b⇒ c assuming app(r1)

r2 := d⇒ ¬app(r1)

r3 := e⇒ ¬app(r1) assuming app(r3)

r4 := f ⇒ ¬app(r3)

∀x ∈ {a, b, d, e, f} : sx := x

and the probabilities Pmc are the following:

Pmc := {(r1, 1), (r2, 0.8), (r3, 0.5), (r4, 0.5), (sa, 1), (sb, 0.9), (sd, 0.5), (se, 0.2), (sf , 0.3)}

Now we define an interpretation of a PAL as a set of conditional statements.

Definition 4.2 (Conditional statement)
Given a PAL A = (S,A,R, P), a conditional statement is a pair (s, C) with s ∈

lit(S ∪A) and C ⊆ lit(A), such that C is not self-contradictory, that is, there is no

c ∈ A such that both c ∈ C and ¬c ∈ C.

Definition 4.3 (Interpretation)
Given a PAL A, an interpretation is a set I of conditional statements of A such

that if (s, C1) ∈ I and (¬s, C2) ∈ I, then C1 6⊆ C2 and C2 6⊆ C1.

In other words, the conditional statements are not directly contradictory — al-

though both a statement and its negation can be conditionally accepted at the same

time, as long as the assumptions are different.

Definition 4.4 (Partial Ordering of Interpretations)
We say an interpretation I1 is smaller than an interpretation I2, denoted I1 ≤i I2,

if for all conditional statements (s, c1) ∈ I1, there is a corresponding conditional

statement (s, c2) ∈ I2 such that c1 ⊆ c2.

Note that I1 ≤i I2 implies that the set of statements in I1 is a subset of the

statements in I2, so I1 makes less claims than I2 (which is why we call it smaller),

but the claims in I1 are in a sense stronger since they have a weaker condition.

We now define the semantics of a PAL, somewhat inspired by the definitions in

(Nute 2001), but extending them to take the explicit conditions into account, as

well as the rule selection (which will be needed to introduce the rule probabilities).

8 Jon Sneyers, Danny De Schreye and Thom Frühwirth

Definition 4.5 (Compliant Interpretation w.r.t. Rule Selection)

Given a PAL A = (S,A,R, P) and a set of selected rules Rs ⊆ R, a compliant

interpretation I w.r.t. the selected rules Rs is a minimal (w.r.t. ≤i) interpretation

that satisfies the following additional criterion:

• if Rs contains a rule r = (Sr ⇒ Cr assuming Ar),

• and ∀s ∈ Sr : ∃c : (s, c) ∈ I (the antecedent is conditionally accepted),

• and ∀a ∈ Ar : ¬∃c : (¬a, c) ∈ I (the assumption is not questioned),

• then for every set {(s1, c1), . . . , (sn, cn)} ⊆ I such that Sr = s1 ∧ . . . ∧ sn, it

must hold that ∀x ∈ Cr : ∃y ⊆ Ar ∪ {c1, . . . , cn} : (x, y) ∈ I (the consequent

is conditionally accepted).

Definition 4.6 (Valid Interpretation w.r.t. Rule Selection)

Given a PAL A = (S,A,R, P) and a set of selected rules Rs ⊆ R, a valid interpre-

tation I w.r.t. the selected rules Rs is a compliant interpretation without gratuitous

statements, that is, there is no subset K ⊆ I with K 6= ∅ such that:

• if Rs contains a rule r = (Sr ⇒ Cr assuming Ar),

• and ∀s ∈ Sr : ∃c : (s, c) ∈ I \K, and ∀a ∈ Ar : ¬∃c : (¬a, c) ∈ I,

• then for every set {(s1, c1), . . . , (sn, cn)} ⊆ I \K such that Sr = s1 ∧ . . .∧ sn,

it must hold that ∀x ∈ Cr : ∀y ⊆ Ar ∪ {c1, . . . , cn} : (x, y) 6∈ K.

Returning to the mad cow example, consider the rule selection Rmc of all rules.

The following is the only valid interpretation w.r.t. Rmc:

{(a, ∅), (b, ∅), (d, ∅), (e, ∅), (f, ∅), (¬app(r1), ∅), (¬app(r3), ∅)}

This is the only valid interpretation w.r.t. R′ = {r1, r3, r4, sa, sb, se, sf}:

{(a, ∅), (b, ∅), (c, ∅), (e, ∅), (f, ∅), (¬app(r3), ∅)}

An interpretation like the above, but with (c, {app(r1)}) instead of (c, ∅) also

satisfies the criterion of Def. 4.5, but it is not compliant because it is not minimal

w.r.t. ≤i. The condition for the acceptance of the consequent of applicable rules is

allowed to be weaker than (i.e. a subset of) the union of all the conditions arising

from the antecedent and assumption. This relaxation serves two goals. Firstly, it

means that if a consequent can be derived in different ways such that it would

be accepted multiple times with varying conditions, it suffices to have only the

weakest conditions in the interpretation. Secondly, because the interpretation has

to be minimal w.r.t. ≤i, conditions will only be present in the interpretation to

avoid contradiction. The following example illustrates this point.

r1 := bird ⇒ flies assuming normal-bird

r2 := tux ⇒ bird ∧ tuxedo-plumage assuming perception-OK

r3 := tuxedo-plumage ⇒ penguin assuming feathers-make-bird

r4 := penguin ⇒ ¬flies

r5 := tux

Probabilistic Legal Reasoning in CHRiSM 9

Consider the selection of all rules. The following interpretation is compliant:

{(tux, ∅), (¬perception-OK, ∅)}

but it is not a valid interpretation since the statement ¬perception-OK is trivially

gratuitous: there is not even a rule that could derive it.

The following interpretation satisfies the criterion of Def. 4.5:

{(tux, ∅), (bird, {perception-OK}), (tuxedo-plumage, {perception-OK}),

(flies, {perception-OK, normal-bird}),

(penguin, {perception-OK, feathers-make-bird}),

(¬flies, {perception-OK, feathers-make-bird})}

but it is not minimal w.r.t. ≤i; we can relax some conditions to get a minimal

interpretation, for example: (in this case there are three minimal interpretations)

{(tux, ∅), (bird, ∅), (tuxedo-plumage, ∅), (flies, {normal-bird}),

(penguin, {perception-OK}), (¬flies, {perception-OK})}

Note that some conditions have to be kept in order to avoid a direct contradiction

between flies and ¬flies. Also note that in the above program, one could replace

r4 with penguin ⇒ ¬normal-bird,¬flies to get rid of these conditions and have

a unique minimal interpretation which contains (¬flies, ∅).

Definition 4.7 (Plausibility of a statement)

Given a PAL A = (S,A,R, P), a statement literal s ∈ lit(S) is called plausible

w.r.t. a rule selection Rs if all valid interpretations w.r.t. Rs contain a conditional

statement (s, c) for some c.

Definition 4.8 (Acceptability of a statement)

Given a PAL A = (S,A,R, P), a statement literal s ∈ lit(S) is called acceptable

w.r.t. a rule selection Rs if it is plausible and there exists a valid interpretation

w.r.t. Rs which contains the conditional statement (s, ∅).

In the above example, tux, bird, and tuxedo-plumage are acceptable statements,

while flies, ¬flies, and penguin are plausible but not acceptable. All other

literals are not even plausible.

The probability prob(Rs) of a rule selection Rs ⊆ R is defined as follows:

prob(Rs) =

(

∏

r∈Rs

P (r)

)

∏

r∈R\Rs

1− P (r)

which ensures that
∑

Rs∈P(R) prob(Rs) = 1.

Definition 4.9 (Probability of a statement)
Given a PAL A = (S,A,R, P), the probability of a statement s ∈ lit(S) is defined as

the sum of the probabilities of all rule selections Rs ∈ P(R) in which s is acceptable.

10 Jon Sneyers, Danny De Schreye and Thom Frühwirth

4.2 Transformation to CHRiSM

We now introduce a transformation from an arbitrary probabilistic legal argumen-

tation logic A = (S,A,R, P) to a CHRiSM program PCHRiSM (A). The transfor-

mation is a generalization of the example discussed in Section 3. We assume the

list predicates member/2, subset/2, and append/2 (whose first argument is a list

of lists) are already defined in the host language (Prolog).

The transformed program starts with the same three rules as in Section 3. These

rules insure that accept/2 encodes an interpretation, redundant conditional state-

ments are removed, as well as defeated statements. It ends with the rules for the

assume phase as in Section 3.

In between, there are two CHRiSM rules for each rule of A. Each rule r ∈ R:

s1 ∧ . . . ∧ sn ⇒ c1 ∧ . . . ∧ cm assuming a1 ∧ . . . ∧ ak

is transformed into one simple probabilistic CHRiSM rule:

P (r) ?? begin ==> selected(r).

and one non-probabilistic CHRiSM rule:

1 ?? selected(r), accept(s1,C1), . . ., accept(sn,Cn)

==> append([C1, . . ., Cn, [a1, . . ., ak]], NC),

accept(c1,NC), . . ., accept(cm,NC).

where all literals of the form ¬x are encoded as not(x).

Correctness. It is relatively straightforward to see that when the assume phase

starts, accept/2 encodes an interpretation that satisfies the criterion of Def. 4.5

w.r.t. the rule selection encoded by selected/1. It also does not contain gratuitous

statements. However, the interpretation is not necessarily minimal. The assume

phase searches for minimal interpretations by nondeterministically relaxing the as-

sumptions. Since the relaxed accept/2 constraints will cause the transformed PAL

rules to be revisited, the criterion of Def. 4.5 remains satisfied.

5 Learning

For now, we have assumed the probabilities to be known in advance. As mentioned

in the conclusion of (Riveret, Rotolo et al. 2007), an issue is: where do these numbers

come from? They suggest a statistical analysis of known precedents. The CHRiSM

framework gives us exactly the tools needed to do this.

Instead of using fixed probabilities, we can make some or all probabilities learn-

able. We can then use a “training set” consisting of the outcomes of earlier similar

cases — we call these the observations — to find a maximum likelihood probability

distribution to fit the observations.

Some of the observations may be full observations, meaning that we not only

know the final outcome, but also how exactly the reasoning went: what statements

Probabilistic Legal Reasoning in CHRiSM 11

were put forward, what statements were accepted or rejected. More realistically,

we only have partial observations: e.g. the final outcome is known, but not the

intermediate steps. In CHRiSM we can use both.

As a proof of concept, let us try to “rediscover” the original probabilities in our

running example. Assume for the sake of the example we have a database of 1100

prior rulings, but we do not have the time and resources to read through all of them

to find out exactly what the reasoning was. Say that we take 100 random samples

and input them as full observations, like this:

begin <==> accept(not app(r1),[]),accept(d,[]),accept(b,[]),accept(a,[]).

begin <==> accept(d,[]),accept(a,[]).

begin <==> accept(c,[]),accept(b,[]),accept(a,[]).

For example, in the first case, even though both a and b were accepted, c was

not accepted, either because rule r1 was not applied (remember, we do not know

that it should have probability 1), or because it’s assumption app(r1) was refuted

because d was accepted and rule r2 was applied.
The remaining 1000 cases are not studied in that much depth: all that was checked

is who won the case (i.e. was c accepted or not?) and whether or not statement e
(“the cow was mad”) was accepted. For the four possible combinations, the following
counts were recorded:

62 times begin ===> accept(c,[]), accept(e,[]).

432 times begin ===> accept(c,[]), ~accept(e,[]).

138 times begin ===> ~accept(c,[]), accept(e,[]).

368 times begin ===> ~accept(c,[]), ~accept(e,[]).

In full observations, the right hand side of the large double arrow has to be

exhaustive, so there is no need for explicit negation. In partial observations, the

rhs is not an exhaustive enumeration, so explicit negation (denoted by tilde) can

be useful, like in the above example.

The full observations above were obtained by simply taking 100 random samples

(i.e. running the query sample begin) on the original program with the explicit

probabilities; the counts for the partial observations were obtained by computing

the probabilities for each of the four cases and multiplying them by 1000.

Now that we have a training set, we can use the built-in learning algorithm to

find a probability distribution that fits the data. The resulting probabilities are

shown in Table 1; they approximate the original probabilities reasonably well.

6 Conclusion

We have defined probabilistic argumentation logic (PAL) and showed how it can

be used for probabilistic legal reasoning in the style of Riveret, Rotolo et al. (2007).

We provided an implementation of PAL in CHRiSM through a straightforward

encoding. The resulting CHRiSM program can be used to compute the probabili-

ties of the possible outcomes, to obtain random samples, and to learn some or all

underlying probabilities, solving an open problem in (Riveret, Rotolo et al. 2007).

For reasons of space and time, we cannot currently elaborate on the relationships

between (the non-probabilistic fragment of) PAL and all the existing proposals for

12 Jon Sneyers, Danny De Schreye and Thom Frühwirth

Rule Original probability Learned probability

a 1 0.999999723
b 0.9 0.875267302
d 0.5 0.540243696
e 0.2 0.204545455
f 0.3 0.258644714
r1 1 0.999975929
r2 0.8 0.723429684
r3 0.5 0.547720330
r4 0.5 0.503165649

Table 1. Re-discovering the probabilities with CHRiSM’s learning algorithm.

defeasible reasoning, argumentation, and non-monotonic logic in general. Prelimi-

nary work indicates that Nute (2001)’s defeasible logic corresponds to a fragment

of PAL. In future work, the expressiveness of PAL has to be compared to that of

other formalisms.

References

Dung, P. M. 1995. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. A.I. 77, 2, 321–358.

Frühwirth, T. 2009. Constraint Handling Rules. Cambridge University Press.

Frühwirth, T. and Raiser, F., Eds. 2011. Constraint Handling Rules: Compilation,

Execution, and Analysis. BOD.

Maier, F. and Nute, D. 2006. Ambiguity propagating defeasible logic and the well-
founded semantics. In Proceedings of JELIA 2006, 10th European Conference on Logics

in Artificial Intelligence. Lecture Notes in Computer Science, vol. 4160. Springer, 306–
318.

Nute, D. 2001. Defeasible logic: theory, implementation, and applications. In Proceedings

of INAP 2001, 14th International Conference on Applications of Prolog. 87–114.

Prakken, H. and Sartor, G. 1997. Argument-based extended logic programming with
defeasible priorities. Journal of Applied Non-Classical Logics 7, 1, 25–75.

Riveret, R., Rotolo, A., Sartor, G., Prakken, H., and Roth, B. 2007. Success
chances in argument games: a probabilistic approach to legal disputes. In JURIX.
Frontiers in Artificial Intelligence and Applications, vol. 165. IOS Press, 99–108.

Roth, B., Riveret, R., Rotolo, A., and Governatori, G. 2007. Strategic argumen-
tation: a game theoretical investigation. In ICAIL. ACM, 81–90.

Sato, T. 2008. A glimpse of symbolic-statistical modeling by PRISM. Journal of Intelli-
gent Information Systems 31, 161–176.

Sneyers, J., Meert, W., Vennekens, J., Kameya, Y., and Sato, T. 2010.
CHR(PRISM)-based probabilistic logic learning. TPLP 10, 4-6, 433–447.

Sneyers, J., Van Weert, P., Schrijvers, T., and De Koninck, L. 2010. As time goes
by: Constraint Handling Rules — a survey of CHR research between 1998 and 2007.
TPLP 10, 1, 1–47.

Probabilistic Legal Reasoning in CHRiSM 13

Appendix A Encoding of dialogue games in CHRiSM

In general, Riveret, Rotolo et al. (2007) assume an abstract argumentation frame-

work (Dung 1995), which consists of a set of arguments and a binary “defeats”

relation. Argument X stricly defeats argument Y if X defeats Y and Y does not

defeat X. For example, argument A and B defeat one another, while argument D

strictly defeats argument C.

Moreover, each of the arguments has some given “construction chance”, which

is the probability that the judge will actually accept the argument. The aim is to

estimate the overall chance that the case is won.

They consider dialogue games which capture the rules of legal argumentation.

A dialogue is a sequence of arguments, in which the proponent and the opponent

alternate, with the following conditions:

• The proponent cannot repeat arguments;

• Every opponent argument defeats the previous (proponent) argument;

• Every proponent argument strictly defeats the previous (opponent) argument;

• If a player cannot make a move, he loses.

The first argument is the main claim of the proponent. If the proponent wins all

possible dialogues, he wins the case. Otherwise the opponent wins. Obviously, the

outcome depends on the set of arguments that are actually accepted by the judge.

In the mad cow example there are two possible dialogues if the judge accepts

all arguments: [A,B] (in which the proponent loses) and [A,C,D] (in which the

proponent wins). So if the judge accepts all arguments, the proponent loses (since

he has no winning strategy in case the opponent uses argument B).

We can directly encode the rules of the dialogue game in CHRiSM, as follows.

We use a dummy constraint predicate begin/0 to initialize a dialogue:

begin <=> init_defeats, dialogue([]).

The auxiliary predicate init defeats/0 initializes the “defeats” relation:

init_defeats <=>

defeats(argA,argB),

defeats(argB,argA),

defeats(argA,argC),

defeats(argC,argA),

defeats(argD,argC).

The “strictly defeats” relation is derived from the “defeats” relation:

defeats(A,B) ==> strictly_defeats(A,B).

defeats(B,A) \ strictly_defeats(A,B) <=> true.

The main constraint predicate is dialogue/1, which contains a (reversed) list

representing a (partial) dialogue. For example, the dialogue [A,C,D] would be repre-

sented as dialogue([p-argD,o-argC,p-argA]). Note the reversed order (for con-

venient access to the last argument) and the “p-” and “o-” tags to denote the

player.

14 Jon Sneyers, Danny De Schreye and Thom Frühwirth

First of all, we make sure that the construction chances are taken into account.

If the construction chance of some argument is p, then we simply prune away a

partial dialogue that ends with that argument with probability 1− p. For example,

suppose the construction chance of argument A is 0.9, then we remove a dialogue

ending with A with probability 0.1. These are the values used in (Riveret, Rotolo

et al. 2007):

0.1 ?? dialogue([_-argA|_]) <=> true.

0.6 ?? dialogue([_-argB|_]) <=> true.

0.9 ?? dialogue([_-argC|_]) <=> true.

0.85 ?? dialogue([_-argD|_]) <=> true.

Now we add a rule for the proponent to make his main claim (argument A in

this case):

dialogue([]) ==> dialogue([p-argA]).

The rest of the dialogue is constructed according to the above conditions:

dialogue([p-A|D]), defeats(B,A) ==> dialogue([o-B,p-A|D]).

dialogue([o-A|D]), strictly_defeats(B,A) ==>

\+ member(p-B,D) | dialogue([p-B,o-A|D]).

Now comes a tricky part: if a partial dialogue has been extended (but only after

it has been extended in all possible ways), we can discard it. If it could not be

extended, we have a final dialogue, which was won by the last player. One way to

implement this is as follows: (exploiting the refined operational semantics and the

passive pragma)

% dialogue was extended: remove prefix

dialogue([_|D])#passive \ dialogue(D) <=> true.

% dialogue was not extended: last player wins

dialogue([X-_|_]) ==> winner(X).

Finally, as soon as there is one dialogue which is won by the opponent, then the

proponent cannot be a winner.

winner(o) \ winner(p) <=> true.

In (Riveret, Rotolo et al. 2007), several pages are used to calculate the probability

that the proponent wins the case. In CHRiSM, we can simply use the following

query:

?- prob begin ===> winner(p).

Probability of begin ===> winner(p) is: 0.494100000000000

Probabilistic Legal Reasoning in CHRiSM 15

Appendix B Where did the dialog go?

In the encoding of the arguments in Section 3, we abstract away the turn-based

dialog. We impose no total order on the arguments, nor strict alternation between

the players; in fact, we do not even record which party (proponent or opponent)

makes which claim. The essential structure of the reasoning is left intact though.

The rules were written as if both the proponent and the opponent make all of

their claims and arguments simultaneously at the start. In order to model more

accurately that some arguments will only be put forward as a “reaction” to the

acceptance of other statements, we can also write the rules in a different way, for

example, instead of always claiming that the cow was mad:

0.2 ?? begin ==> accept(e,[]).

the opponent Henry only makes that claim if the judge is tempted to make him

compensate John’s damages:

0.2 ?? accept(c,_) ==> accept(e,[]).

Similarily, instead of always insisting that cow madness is endogenous:

0.3 ?? begin ==> accept(f,[]).

the proponent John only makes that claim if the judge has actually accepted that

the cow was mad:

0.3 ?? accept(e,_) ==> accept(f,[]).

With respect to the outcome of the case (whether or not statement c gets accepted),

there is no difference between both ways of encoding. The only difference is that

the “put everything on the table at once” approach can introduce irrelevant claims,

while the “reactive” approach more closely models the dialog, since claims are only

triggered when they are needed.

Appendix C Relationship between PAL and Defeasible Logic

In defeasible logic (Nute 2001), there are three kinds of rules: strict rules (denoted

with →), defeasible rules (denoted with ⇒), and undercutting defeaters (denoted

with ;). There is also a precedence relation ≺ over the non-strict rules, to settle

conflicting rules. Conflicts are defined using a set of conflict sets, which should

contain at least all sets of the form {φ,¬φ}.

Without loss of generality (cf. Theorem 6 of (Maier and Nute 2006)) we can

assume that the precedence relation is empty, there are no undercutting defeaters,

and the conflict set are just the atomic formulas and their negations.

Given a closed defeasible theory D with a set of initial facts F and a set of rules

RS ∪ RD (where RS are the strict rules and RD are the defeasible rules), we can

translate it to a probabilistic argumentation logic PAL(D) = (S,A,R, P) as follows:

• The set of statements S is the set of atoms appearing in F , RS and RD;

• The set of assumptions A consists of fresh symbols a1, . . . , a|RD|;

16 Jon Sneyers, Danny De Schreye and Thom Frühwirth

• The probability function P is the constant function 1;

• The rules R are constructed as follows:

— For every fact f ∈ F , we add a rule ⇒ f .

— For every strict rule (X → Y) ∈ RS , we add a rule X ⇒ Y .

— For every defeasible rule (X ⇒ Y) ∈ RD, we add a ruleX ⇒ Y assuming ai,

where i is the number corresponding to the defeasible rule.

— If the i-th and the j-th defeasible rule are conflicting rules, that is, if rule

i is of the form (X ⇒ ψ) ∈ RD and rule j is of the form (Y ⇒ ¬ψ) ∈ RD,

then we add the rules ψ ⇒ ¬aj and ¬psi⇒ ¬ai.

— If the i-th defeasible rule (X ⇒ ψ) ∈ RD conflicts with a strict rule

(Y → ψ̄) ∈ RS , then we add the rule ψ̄ ⇒ ¬ai

To illustrate this translation, let us look at a trivial example: the defeasible rules

⇒ p and ⇒ ¬p. Since these rules contradict one another, neither p nor ¬p can be

inferred. The translated PAL rules are the following:

⇒ p assuming a1

⇒ ¬p assuming a2

p⇒ ¬a2

¬p⇒ ¬a1

This PAL has two valid interpretations (w.r.t. all rules): {(p, ∅), (¬a2)} and {(¬p, ∅), (¬a1)}.

As desired, neither p nor ¬p are acceptable.

Conjecture Appendix C.1 (Weak Completeness)

The above translation is complete in the following sense: for all literals p in LitD,

we have that if D |∼ p, then p is plausible in PAL(D) (w.r.t. the selection of all

rules) and if D ∼| p, then p is not acceptable in PAL(D).

Conjecture Appendix C.2 (Soundness)

The above translation is sound in the following sense: if the probability of p in

PAL(D) is 1, then D |≈ p, and if the probability of p in PAL(D) is 0, then D |6≈ p.

