
Repeated Recursion Unfolding for Super-Linear
Speedup within Bounds

Thom Frühwirth

University of Ulm, Germany

LOPSTR 2020



Repeated Recursion Unfolding

Repeated Recursion Unfolding repeatedly unfolds a recursion with itself
and simplifies it while keeping all unfolded rules.

Each unfolding doubles the number of recursive steps covered.
Best-case simplification keeps runtime bounded.

Super-linear speedup in the best case up to a chosen bound.

In an implementation, we remove recursion up to the chosen bound.

Runtime improvement quickly reaches several orders of magnitude.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 2 / 19



Example Summation

We define and implement our approach in Constraint Handling Rules (CHR).

Example (Summation)
Add all numbers from 1 to n.

sum(N, S)⇔ N > 1 | S := N+S1, sum(N−1, S1)

sum(N, S)⇔ N = 1 | S = 1

We never unfold with the base case. It is ignored.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 3 / 19



Example Summation

We define and implement our approach in Constraint Handling Rules (CHR).

Example (Summation)
Add all numbers from 1 to n.

sum(N, S)⇔ N>1,N−1>1 | S:=N+S1,N′=N−1, S1:=N′+S1′, sum(N′−1, S1′)

sum(N, S)⇔ N > 1 | S := N+S1, sum(N−1, S1)

sum(N, S)⇔ N = 1 | S = 1

We never unfold with the base case. It is ignored.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 3 / 19



Example Summation

We define and implement our approach in Constraint Handling Rules (CHR).

Example (Summation)
Add all numbers from 1 to n.

sum(N, S)⇔ N > 2 | S := 2∗N−1+S1′, sum(N−2, S1′)

sum(N, S)⇔ N > 1 | S := N+S1, sum(N−1, S1)

sum(N, S)⇔ N = 1 | S = 1

We never unfold with the base case. It is ignored.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 3 / 19



Example Summation Recursively Unfolded

Example (Summation, contd.)

sum(N, S)⇔ N > 8 | S := 8 ∗ N−28+S1, sum(N−8, S1)

sum(N, S)⇔ N > 4 | S := 4 ∗ N−6 + S1, sum(N−4, S1)

sum(N, S)⇔ N > 2 | S := 2 ∗ N−1 + S1, sum(N−2, S1)

sum(N, S)⇔ N > 1 | S := N + S1, sum(N−1, S1)

sum(N, S)⇔ N = 1 | S = 1

Apply the most unfolded rule possible in each recursive step (rule order).

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 4 / 19



Example Summation Benchmarks

Repeated Recursion Unfolding improves runtime from linear to constant.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 5 / 19



Rule Unfolding

Definition (Unfolding)

[Gabrielli et.al. 2015] Given two rules

r : H ⇔ C |D ∧ B ∧ S
v : H′ ⇔ C′ |B′,

where S matches H′, i.e. S=H′θ, then

unfold(r, v) = r′ : H ⇔ C ∧ C′′θ |D ∧ B ∧ S=H′ ∧ B′,

where C′′θ is C′θ with constraints also in C and D removed.

Proven correct if the variables shared between H′θ and C′′θ also occur in H.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 6 / 19



Rule Simplification

Definition (Simplification)

Given a rule
r : H ⇔ C |D ∧ B,

where D are the built-in constraints, then

simplify(r) = (H′ ⇔ C′ |D′′ ∧ B′) such that

(H ∧ C) ≡ (H′ ∧ C′) and (C ∧ D ∧ B) ≡ (D′ ∧ B′),

where D′′ is D′ with constraints already in C′ removed.
Relation ≡ denotes equivalence between constraints.

Proven correct: the simplified rule behaves like the original rule.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 7 / 19



Repeated Recursion Unfolding

Definition (Repeated Recursion Unfolding)

The unfolding of a recursive rule r is

unfold(r) = unfold(r, r)

The repeated unfolding is a sequence of rules r0, r1, . . . , ri, . . . where

r0 = r

ri+1 = simplify(unfold(ri))

Let n be an upper bound on the number of recursive steps (recursion depth).
The recursively unfolded program is

P r,n = P ∪
blog2(n)c⋃

i=1

ri

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 8 / 19



Optimal Rule Applications

Lemma (Optimal Rule Applications)

Given unfolded program P r,n.
IF
If a rule ri can perform two recursive computation steps, then rule ri+1 can
perform one computation step with the same result.
THEN
If original rule r takes n recursion steps, then we can do with at most log2(n)

rule applications by always applying the most unfolded rule possible.

We can reduce the number of recursive rule applications to its logarithm at the
expense of introducing a logarithmic number of unfolded rules to the program.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 9 / 19



Super-Linear Speedup Theorem

Definition
Function c(n) computes a time bound for the first recursive step with any
recursive rule ri with i ≤ log2(n) for any query with recursion depth n.
Best-case simplification: unfolded rules have the same time bound c(n) as
original rule.

Theorem (Super-Linear Speedup of Repeated Recursion
Unfolding)
Given P r,n with optimal rule applications and best-case simplification,
THEN

Time Complexity Class Rec.Step c(n) Rec. Unfolded
(poly)logarithmic, constant k ≥ 0 log2(n)k nlog2(n)k log2(n)k+1

polynomial, linear k ≥ 1 nk nk+1 2nk

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 10 / 19



Recursionless Recursion

Semi-naive implementation of optimal rule applications that removes
recursion.

Definition (Recursionless Recursion)
Replace each rule ri with recursive call R = r(. . .)

ri : H ⇔ C |D ∧ B ∧ R

by the pair of rules

ri : Hi ⇔ C |D ∧ B ∧ Ri−1

r′i : r(x̄)i ⇔ r(x̄)i−1

where x̄ are disjoint variables as arguments.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 11 / 19



Super-Linear Speedup with Rule Order and
Recursionless Recursion

Rule Order means to try rules in order given in the program.

Lemma (Speedup with Worst-Case Overhead)
Let N > n > 1. Repeatedly unfold for recursion depth N.
THEN
The worst-case slow-down over optimal rule applications is linear in the
number of unfolded rules log2(N).

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 12 / 19



Example List Reversal

Example (List Reversal)
The original recursion reverses a given list in a naive way.

r([J, I,H,G,F,E,D,C|A],K)⇔ r(A,B), a(B, [C,D,E,F,G,H, I, J],K)

r([F,E,D,C|A],G)⇔ r(A,B), a(B, [C,D,E,F],G)

r([D,C|A],E)⇔ r(A,B), a(B, [C,D],E)

r([C|A],D)⇔ r(A,B), a(B, [C],D)

r([],D)⇔ D = []

The built-in constraint a(X,Y,Z) appends two lists X and Y.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 13 / 19



Example List Reversal

Example (List Reversal)
The original recursion reverses a given list in a naive way.

r([J, I,H,G,F,E,D,C|A],K)⇔ r(A,B), a(B, [C,D,E,F,G,H, I, J],K)

r([F,E,D,C|A],G)⇔ r(A,B), a(B, [C,D,E,F],G)

r([D,C|A],E)⇔ r(A,B), a(B, [C,D],E)

r([C|A],D)⇔ r(A,B), a(B, [C],D)

r([],D)⇔ D = []

The built-in constraint a(X,Y,Z) appends two lists X and Y.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 13 / 19



Example List Reversal Benchmarks

Repeated Recursion Unfolding improves runtime from quadratic to linear.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 14 / 19



Example List Reversal Benchmarks

Zoom previous chart by two orders of magnitude:

Twice as fast as the hand-optimized and faster than built-in reversal.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 15 / 19



Related Work

Program transformations for efficiency use unfolding and folding to
replace code. Recursion typically unfolded with base case.
BUT Repeated Recursion Unfolding only generates and keeps redundant
recursive rules. It ignores the base case.

Super-linear speedups are rare and mostly for parallel programs.
BUT Repeated Recursion Unfolding applies to sequential programs.

Exception: supercompilation extended with generalisation.
BUT Repeated Recursion Unfolding is without generalisation and folding.

Related: Unfolding-based meta-level systems [Amtoft 1991] for Prolog
consist of a hierarchy of meta-rules and a hierarchical execution scheme.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 16 / 19



Conclusions

Repeated Recursion Unfolding unfolds a recursion with itself and
simplifies it while keeping all unfolded rules up to a given bound.

We proved a super-linear speedup theorem in case of best-case
simplification.

Rule Order and Recursionless Recursion: semi-naive implementations
sufficient for super-linear speedup. Runtime improvement quickly
reaches several orders of magnitude.

Best-case simplification requires some insight and is not always
possible.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 17 / 19



Ongoing and Future Work

Use indexing on recursion depth for optimal rule applications.
DONE for the examples in this paper.

Extend to double and mutual recursion as well as multiple recursive
rules.
DONE linear-time double recursion from exponential-time Fibonacci.

Go for unbounded super-linear speedup: run-time dynamic on-the-fly
just-in-time Repeated Recursion Unfolding.
DONE for the examples in this paper.

Transfer our approach to other programming languages and from
recursion to loop constructs.
DONE for examples in Java.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 18 / 19



Acknowledgements

Part of this research work was performed during the sabbatical of the
author in summer semester 2020.

We thank the anonymous reviewers for their skepticism which helped to
clarify the contribution of the paper.

Thom Frühwirth (University of Ulm, Germany) Super-Linear Recursion Unfolding 19 / 19


