A Rule Based Approach to teach Mathematics
using Animation

Nada Sharaf!, Slim Abdennadher!, Thom Friihwirth?

! The German University in Cairo
2 University of Ulm
{nada.hamed, slim.abdennadher}@Qguc.edu.eg, thom.fruehwirth@uni-ulm.de

Abstract. There are different available methodologies for teaching math-
ematics to children. Teachers use different approaches. Some of the ex-
iting approaches include engaging students with different activities and
games. Computer games/tools have been proven effective with teaching
Maths. The aim of the paper is to provide teachers with no background
in Computer Science with a utility that enables them to build their own
games. In this way, teachers will be able to customize games according
to the principles they want their students to learn.

Keywords: Constraint Handling Rules, Maths, Learning, Program An-
imation, Visualization

1 Introduction

One of the recently introduced activities for teaching mathematics is using com-
puter games [Il2]. Students have proven to have positive attitudes towards games
involving maths [3]. Such approach encourage active learning [4]. Such tools have
been proven to be effective in enhancing learning of complex content as well [5].

The provided tools are however static ones. Teachers do not have the option to
customize the games in any way. For example, the appearance cannot be changed.
Users will have to stick to the look provided by the original programmers of the
tools. In addition, teachers cannot customize the mathematical concepts tackled
by the tools. They would thus have to use different games/tools in case they need
to tackle more than one concept. The work in this paper aims at overcoming
this drawback. It introduces a new rule-based approach for generating different
interactive customizable games. Through the offered tool, teachers are able to
define the mathematical concepts students should practice. They are then able
to state how numbers should be visualized.

The tool makes use of the recently introduced annotation rules for animat-
ing Constraint Handling Rules (CHR) programs [6]. Such rules were able to
embed visualization features into CHR programs. With the new extension, CHR
programs were animated while execution. The tool used source-to-source trans-
formation to eliminate the need of changing the CHR compiler.

The tool introduced in the paper generates CHR programs representing the
different mathematical concepts entered by the teacher. Annotation rules are

then utilized to visualize the execution of the program using the inputs of the
teacher.

The paper is organized as follows: Section [2] introduces CHR. In Section
annotation rules are discussed in more details. Section [introduces the different
features offered to teachers. Section 5 shows how students can use the platform.
Finally, conclusions and directions to future work are offered.

2 Constraint Handling Rules

CHR [7I8I9/10] was initially introduced for writing constraints solvers. However,
over the years it has been used as a general purpose language. CHR programs
consist of different rules that rewrite constraints in the constraint store until a
fixed point is reached. A CHR rule has a head and a body and an optional guard.
A rule is only applied if the constraint store contains constraints matching the
head constraints and if the guard is satisfied. For example the below “simplifica-
tion rule” is able to sort a list of numbers. Each element in the list is represented
by the CHR constraint 1ist(Index,Value).
list(I1,V1),1ist(I2,V2)<=>I1<I2,V1>V2|1list(I2,V1),1list(I1,V2).

The rule is applied on any two elements that are not sorted. The elements are
then swapped with respect to each other by removing the head constraints from
the store and adding the constraints in the body. In order for the rule to be
applied, two list constraints have to be in the store. The two constraints have
to satisfy the guard as well. On successive applications of the rule, all elements
are sorted. Propagation rules, on the other hand, do not remove the head con-
straints from the constraint store. They only add the body constraints such as
the transitivity rule:

leq(A,B),leq(B,C)==>1leq(A,C).

The last, and more general, type is the simpagation rule. A simpagation rule
has two types of head constraints separated by a backslash: “\”. On executing
a simpagation rule, the constraints before the backslash are kept and the ones
after are removed. For example the rule min(A)\min (B) <=>A<B|true compares
two constraints and keeps only the one having the lower number. Thus on ap-
plying this rule successively, the only constraint remaining is the one with the
lowest number.

3 Annotation Rules for Animating CHR Programs

With CHR becoming a general purpose language, the need of tracing tools
aroused. In [II], a tracing utility for CHR was added. It was able to show at
each step of the execution, the constraint store and which rules were being ap-
plied. However, since CHR is used with different types of algorithms (such as
sorting, tree and graph algorithms), an algorithm animation tool was required.
In order to keep the platform a generic one, visual annotation rules were added
[6]. The idea is that every CHR constraint was linked to a visual object. CHR

rules operate on constraints, adding and removing them. Each time a new con-
straint is added to the store, its corresponding visual object(s) (if any) is added.
Users are thus supplied with an interface to mark the interesting constraints.
Such constraints affect the visualization and are linked to visual objects. For
example, in the sorting program shown in Section [2] the interesting constraint
is 1ist/2. Every list constraint could be visualized as a bar where the height of
the bar is a factor of the “value” of the list element. The x-position of the bar
is a factor of the “index” of the list element. The whole list is visualized to the
user in this case. When a list constraint is added /removed, its corresponding bar
is added/removed thus animating the algorithm executed. To keep the system
generic, the scripting tool J awazﬂ was used. Jawaa offers users with a wide range
of visual objects.

4 Teacher Module

In this section, the “teacher module” is introduced. This module is used by
teachers to specify the mathematical concepts students should learn and the
appearance of the output game. Figure [1] shows the first screen teachers get.
They have the option to define a “simple rule” and a “Rule with Steps”. A
simple rule is a rule computed through one step. Teachers can also define a rule
with several cases/steps.

Simple Rules In the case of simple rules, teachers have to define the input(s)
and output. Figure shows the view teachers get once they decide to add a
simple rule. The name of the rule is editable. As seen in Figure[2B] it was changed
to sum. Users can enter any number of inputs. An input could be a variable name
or an actual value as seen in Figure 2D] The output could also be a value or an
expression as shown in Figure

Rules with Steps In this case instead of only defining the expression for the
output, teachers define steps. Except for the first step each step takes the output
of the previous step as one of its inputs. There is an upper limit to the number
of steps that could be performed. For space issues, the paper will focus only on
the case of simple rules since the core principles for generating the animations
in both cases are the same.

4.1 Defining Animations

After teachers define the mathematical rule that students should practice, they
can define how the quizzes students get look like. They can first choose color or
an image for the background. They can also specify how numbers should appear.
The idea is that each number n could be represented by a visual object or n visual
objects. Teachers can customize what the objects are. Objects could be simple
shapes (provided by Jawaa) such as circles, rectangles, etc. Objects could also
be linked to pictures to match a specific theme. Teachers get the window shown

! http://www.cs.duke.edu/csed/jawaa2/

http://www.cs.duke.edu/csed/jawaa2/

Simple Rule

Rule with Steps

Fig. 1: Teacher Module Welcome Page

(a) Simple Rule: Homepage (b) Adding a new input

(c¢) Editing Output (d) Summation Rule defined

Fig. 2: Simple Rules: Inputs and Outputs.

in Figure 3 where they can link a number to its corresponding visual object to
produce the required annotation rules. Once the teacher chooses an object, the
panel gets populated with the corresponding parameters that have to be filled.
In order to link a number to a number of objects, the teacher should choose

to connect it with the visual object “nObjects”. nObjects is an abstraction of
grouping several visual objects together.

For the example shown in the Figure[3] it was required that a number X gets
associated with X different objects. The number was thus linked with “nObjects”.
The teacher should then choose which type of visual object should be generated
N times for each number. The object “imageobject” was used in this case. An
imageobject is an actual image with the extension “jpg” or “png”. For each
imageobject users have to specify where the image should be shown (x and y
coordinates) in addition to the location of the image (path). In general, each
parameter could have one of the following values:

1. a constant e.g. 30, red, etc

2. the built-in function valueO f(X) representing the value of the number X.

3. the keyword valueO f(N) used in the case of nObjects to represent the vary-
ing number. For example the first generated object would have an N=0, the
second would have an N=1 , etc.

rlél . . . W - oo B e
How should a number (X) be visualized ?
Enter the object name |n0hjects | -
A imageobject
valueOf(X)

imagevalueOf(N)

name

30+valueOf(N)*40

x-coord

10

y-coord

D:/chriMaths/apple.
(oo chr/Maths/apple.png|

Fig. 3: Link a Number to a Visual Object

In the previous example the x-coordinate of each shown imageobject was set to
30 + valueO f(N) x 40. Thus for the first image shown the x-coordinate will be
3040 x 40 which is 40. The second image will have an x-coordinate of 30+ 1 x 40
or 70, etc. A user can also associate a number through more than one rule. For

example, a number could be associated with a colored circle and a text object.
Thus more than one object are shown for the same number.

Once the teacher defines the needed annotation rule, they move to the next
(optional) step. In this step, teachers can define any number of constraints on the
input numbers students will get. For example teachers can add constraints for
an input to be a one-digit number (i.e. < 10 and > 0). Constraints can also link
more than one input together (e.g. X <Y). Figure @ shows an example where
every input has more than one associated constraint. The available constraints
are <, >, <, >, =, | =. Teachers also choose lower and upper bounds for the
generated numbers.

'Iél Mew Frame '-T_‘—LI_IM]

| Range of Inputs @ to @
X 1= |3 o
= w |5 o
(X=T
Y1=0
=ty

Fig. 4: Restricting generated numbers

4.2 Translation to CHR Programs

Every simple rule named rule name with inputs Xy, ..., Xy_1 is represented
with the CHR constraint rule(rule name, N). Inputs are represented sepa-
rately through the constraints input (Rule_name,Var,Index) The output of the
rule contains in most of the cases an expression to be evaluated. The evaluated
output is stored inside the constraint output (Rule_name,Output). Thus such a
simple rule is represented by the following CHR, rule:

:-chr_constraint rule/2, input/3, output/2.
rule(Rule_name,N) ,input (Rule_name,X0,0),...,input (Rule_name,XN,N),
<=> Qutput is Expression, output(Rule_name,Qutput).

The generation of the CHR file is automatically done. Thus, the teacher does
not have to be aware of CHR to use the system. The produced file is transformed
using the CHRAnimation tool to be able to produce the required visual objects
while execution.

5 Student Module

Once users start to play, the background is set to the background chosen by the
teacher. It could be just a color or an image. Afterwards, the random generator is
used to generate numbers fulfilling the needed constraints. Once the numbers are
generated the CHR file produced in Section [4.2]is queried. The aim of querying
the CHR file is to:

— generate the correct output to be able to compare the answer of the student
to the correct one.

— represent the inputs and output as CHR constraints activating the anima-
tion.

Every input is associated with the constraint input/3. Every time, such a con-
straint is added, its corresponding visual object(s) is added. For instance, in the
previous example, every input with value X is associated with X pictures showing
an “apple”. Thus every time a constraint for an input is added, CHR Animation
adds the corresponding visual objects to the animation frame resulting in the
window shown in Figure 5a showing the two input numbers (2 and 4)|H

The student can then start to add the suggested output. Every time the
student presses “Add”, the output is incremented. Since the output is a number,
it is visualized in the same way. Figure shows the window after pressing the
button one time. The output is thus now visualized with one apple. Figure
shows the window after setting the output to 6. In this case, six apples are shown.
At any point, the student can “check” whether the current output is correct or
not. They get the corresponding message in each case.

5.1 Another Quiz
Another option for producing interesting interactive animations is to :

1. Link every input number with a normal Jawaa circular node. The text inside
the node is its value. Its background is blue.

2. Link the output with a random number of nObjects displaying a group of
nodes. Each node is placed in a random position. The text inside each node
is also a random number. CHRAnimation has the keyword “Random” that
could be utilized in this case. The background of those nodes is green.

! The y-coordinate specified by the teacher is automatically multiplied by the index
of the input to have each input on separate line

-
|£| Applet Frame

EI Al La
EI_IQ |£| Applet Frame

Add Output| Check | Next Press to Star
L

4

(a) Inputs

(b) Editing Output I

-
|£| Applet Frame

(c) Editing Output II

Fig.5: Quiz 1

3. Link the output with a Jawaa circular node with the name (jawaanodecout)
displaying the actual output of the rule. It is also placed in a random position.
Its background is also green.

4. Add an annotation rule linking the output constraint with an onclick com-
mand for the object jawaanodecout. Once it is clicked, the changeParam

command is activated changing its color to red.

Note that through the GUI, users do not have to know any details regarding
the syntax of the annotation rules. Once the generated CHR file is queried two
blue nodes representing the two inputs are shown. In addition, a group of green

nodes are shown. One of them only represents the output. Once the user clicks
on the node representing the output value, its color changes to red. If the user
clicks on any other node, nothing happens. Figure [6a] shows the initial setup
with the randomly placed nodes. Figure [6b] shows the node with the output
being highlighted after the user clicked it.

F B
| £| Applet Frame E@lﬂ

3
4 1 2)
Add Output | Check | Fress to Starl
‘ [l b

(a) Randomly placed nodes

r ™
| £| Applet Frame E@g

B
o L 3)
Add Qutput | Check | Mext Fress to Starl
‘ [l b

(b) Highlighted node after clicking

Fig. 6: Quiz 2

6 Conclusion & Future Work

This paper shows how annotation rules could be utilized for generating quizzes to
teach Maths. The tool was able to customize the look of the games according to

10

the inputs of the teachers unlike existing games with static looks and operations
(such as: http://www.iboard.co.uk/iwb/Simple-Addition-Stories-721)). The
tool does not need any computer science background. As seen through the exam-
ples, annotation rules were able to produce interactive animations that could be
used to teach mathematical rules. In the future, different mathematical concepts
should be explored and animated. The tool should be linked with different visu-
alization libraries as well. The paper offered a prototype for a proof of concept.
In the future, the tool should be extended in a way to handle different kinds of
output quizzes in a generic way.

References

1. S. Barab, M. Thomas, T. Dodge, R. Carteaux, and H. Tuzun, “Making learning
fun: Quest atlantis, a game without guns,” Educational Technology Research and
Development, vol. 53, no. 1, pp. 86-107, 2005.

2. T. Amon, “Simulations and the future of learning: An innovative (and perhaps
revolutionary) approach to e-learning,” Educational Technology & Society, vol. 7,
no. 3, pp. 149-150, 2004.

3. F. Ke, “A case study of computer gaming for math: Engaged learning from game-
play?,” Computers € Education, vol. 51, no. 4, pp. 1609-1620, 2008.

4. R. Garris, R. Ahlers, and J. E. Driskell, “Games, motivation, and learning: A
research and practice model,” Simulation Gaming, vol. 33, no. 4, pp. 441-467,
2002.

5. K. E. Ricci, E. Salas, and J. A. Cannon-Bowers, “Do Computer-Based Games
Facilitate Knowledge Acquisition and Retention?,” Military Psychology, vol. 8,
no. 4, pp. 295-307, 1996.

6. N. Sharaf, S. Abdennadher, and T. W. Frithwirth, “Chranimation: An animation
tool for constraint handling rules,” in Logic-Based Program Synthesis and Transfor-
mation - 24th International Symposium, LOPSTR 2014. (M. Proietti and H. Seki,
eds.), vol. 8981 of Lecture Notes in Computer Science, pp. 92-110, Springer, 2014.

7. T. Frithwirth, “Theory and practice of constraint handling rules, special issue on
constraint logic programming,” Journal of Logic Programming, vol. 37, pp. 95—-138,
October 1998.

8. T. Frithwirth, Constraint Handling Rules. Cambridge University Press, aug 2009.
9. H. Betz, F. Raiser, and T. W. Frithwirth, “A complete and terminating execution
model for constraint handling rules,” TPLP, vol. 10, no. 4-6, pp. 597-610, 2010.
10. T. W. Frithwirth, “Constraint handling rules - what else?,” in Rule Technolo-
gies: Foundations, Tools, and Applications - 9th International Symposium, Rule ML
2015, Berlin, Germany, August 2-5, 2015, Proceedings (N. Bassiliades, G. Gottlob,
F. Sadri, A. Paschke, and D. Roman, eds.), vol. 9202 of Lecture Notes in Computer

Science, pp. 13-34, Springer, 2015.

11. S. Abdennadher and N. Sharaf, “Visualization of CHR through source-to-source
transformation,” in Technical Communications of the 28th International Confer-
ence on Logic Programming, ICLP 2012, September 4-8, 2012, Budapest, Hungary
(A. Dovier and V. S. Costa, eds.), vol. 17 of LIPIcs, pp. 109-118, 2012.

http://www.iboard.co.uk/iwb/Simple-Addition-Stories-721

	A Rule Based Approach to teach Mathematics using Animation
	Introduction
	Constraint Handling Rules
	Annotation Rules for Animating CHR Programs
	Teacher Module
	Defining Animations
	Translation to CHR Programs

	Student Module
	Another Quiz

	Conclusion & Future Work

