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Abstract
The work in the paper presents an animation extension (CHRvis) to Constraint Handling Rules (CHR).
Visualizations have always helped programmers understand data and debug programs. A picture is worth
a thousand words. It can help identify where a problem is or show how something works. It can even
illustrate a relation that was not clear otherwise. CHRvis aims at embedding animation and visualization
features into CHR programs. It thus enables users, while executing programs, to have such executions
animated. The paper aims at providing the operational semantics for CHRvis. The correctness of CHRvis

programs is also discussed.
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1 Introduction

Animation tools are considered as a basic construct of programming languages. They are used to
visualize the execution of a program. They provide users with a simple and intuitive method to debug
and trace programs. This paper presents an extension to Constraint Handling Rules (CHR). The
extension adds new visual features to CHR. It enables users to animate executions of CHR programs.

CHR [8, 7] has evolved over the years into a general purpose language. Originally, it was
proposed for writing constraint solvers. Due to its declarativity, it has, however, been used with
different algorithms such as sorting algorithms, graph algorithms, ... etc. CHR lacked tracing and
debugging tools. Users were only able to use the textual trace facility of SWI-Prolog as shown in
Figure 1 which is hard to follow especially with big programs.

Two types of visual facilities are important for a CHR programmer/beginner. Firstly, the program-
mer would like to get a visual trace showing which CHR rule gets applied at every step and its effect.

(a) Using the normal trace option (b) Using the chr_trace option

Figure 1 Current Tracing Facilities in SWI-Prolog.
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Secondly, since CHR has developed into a general purpose language, it has been used with different
types of algorithms such as sorting and graph algorithms. It is thus important to have a visual facility
to animate the execution of the algorithms rather than just seeing the rules being executed. CHR
lacked such a tool. The tool should be able to adapt with the execution nature of CHR programs
where constraints are added and removed continuously from the constraint store.

Several approaches have been devised for visualizing CHR programs and their executions. In
[1], a tool called VisualCHR was proposed. VisualCHR allows its users to visually debug constraint
solving. The compiler of JCHR [12] (on which VisualCHR is based) was modified. The visualization
feature was thus not available for Prolog versions, the more prominent implementation of CHR. [2]
introduced a tool for visualizing the execution of CHR programs. It was able to show at every step
the constraint store and the effect of applying each CHR rule in a step-by-step manner. The tool was
based on the SWI-Prolog implementation of CHR. Source-to-source transformation was used in order
to eliminate the need of doing any changes to the compiler. The tool could thus be deployed directly
by any user.

Despite of the availability of such visualization tools, CHR was still missing a system for animating
algorithms. The available tools were able to show at each point in time the executed rule and the status
of the constraint store [2, ?]. However, the algorithm implemented had no effect on the produced
visualization. Existing algorithm animation tools could not be adopted with CHR. For example, one
of the available tools is XTANGO [15] which is a general purpose animating system. However, the
algorithm should be implemented in C or another language such that it produces a trace file to be
read by a C program driver making it difficult to use with CHR. Due to the wide range of algorithms
implemented through CHR, an algorithm-based animation was needed. Such animation should show
at each step in time the changes to the data structure affected by the algorithm.

The paper presents a different direction for animating CHR programs. It allows users to animate
any kind of algorithm implemented in CHR. This direction thus augments CHR with an animation
extension. As a result, it allows a CHR programmer to trace the program from an algorithmic point of
view independent of the details of the execution of its rules. The formal analysis of the new extension
is presented in the paper. The paper thus presents a new operational semantics of CHR that embeds
visualization into its execution. The formalism is able to capture not only the behavior of the CHR
rules, it is also able to represent the graphical objects associated with the animation. It is used to
prove the correctness of the programs extended with animation features. To eliminate the need of
users learning the new syntax for using the extension, a transformation approach is also provided.

The paper is organized as follows: Section 2 introduces CHR. Section 3 introduces the new
extension. Finally, in Section 3.2 the formalization is given by introducing ωvis, a new operational
semantics for CHR that accounts for annotation rules. Conclusions and directions for future work are
presented at the end of the paper.

2 Constraint Handling Rules

CHR was initially developed for writing constraint solvers [8, 7, 9]. The rules of a CHR program
keeps on rewriting the constraints in the constraint store until a fixed point is reached. At that point
no CHR rules could be applied. The constraint store is initialized by the constraints in the query
of ths user. CHR has implementations in different languages such as Java, C and Haskell. The
most prominent implementation is the Prolog one. A CHR program has two types of constraints:
user-defined/CHR constraints and built-in constraint. CHR constraints are defined by the user at the
beginning of a program. Built-in constraints, on the other hand, are handled by the constraint theory
(CT ) of the host language. A CHR program consists of a set of “simpagation rules". A simpagation
rule has the following format:
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optional_rule_name @ Hk \ Hr ⇔ G | B.

Hk and Hr represent the head of the rule. The body of the rule is B. The guard G represents a
precondition for applying the rule. A rule is only applied if the constraint store contains constraints
that match the head of the rule and if the guard is satisfied. As seen from the previous rule, the head
has two parts: Hk and Hr. The head of a rule could only contain CHR constraints. The guard should
consist of built-in constraints. The body, on the other hand, can contain CHR and built-in constraints.
On applying the rule, the constraints in Hk are kept in the constraint store. The constraints in Hr are
removed from the constraint store. The body constraints are added to the constraint store.

There are two special kinds of CHR rules: propagation rules and simplification rules. A propaga-
tion rule has an empty Hr. A propagation rule does not remove any constraint from the constraint
store. It has the following format:

optional_rule_name @ Hk ⇒ G | B.

A simplification rule on the other hand has an empty Hk. A simplification rule removes all the head
constraints from the constraint store. A simplification rule has the following format:

optional_rule_name @ Hr ⇔ G | B.

The following program aims at sorting numbers in an array/list. Each number is represented by
the constraint cell(I,V). I represents the index and V represents the value of the element. The
program contains one rule: sort_rule. It is applied whenever the constraint store contains two cell
constraints representing two unsorted elements. The guard makes sure that the two elements are not
sorted with respect to each other. The element at index I1 has a value (V1) that is greater than the
value (V2) of the element at index I2. I1 is less than I2. Thus, V1 precedes V2 in the array despite
of the fact that it is greater than it. Since sort_rule is a simplification rule, the two constraints
representing the unsorted elements are removed from the constraint store. Two cell constraints
are added through the body of the rule to represent the performed swap to sort the two elements.
Successive applications of the rule makes sure that any two elements that are not sorted with respect
to each other are swapped. The fixed point is reached whenever sort_rule is no longer applicable.
At this point, the array is sorted. The program is shown below:

:-chr_constraint cell/2.
sort_rule @ cell(In1,V1), cell(In2,V2) <=> In1<In2,V1>V2 |

cell(In2,V1), cell(In1,V2).

2.1 Refined Operational Semantics ωr

In the theoretical semantics of CHR (ωt), a state is represented by the tuple 〈G,S,B,T 〉Vn [8, 3]. G
represents the goal store. It initially contains the query of the user. S is the CHR constraint store
containing the currently available CHR constraints. B, on the other hand, is the built-in store with the
built-ins handled by the host language (Prolog in this case). The propagation history, T , holds the
names of the applied CHR rules along with the identifiers of the CHR constraints that activated the
rules. T is used to eliminate the trivial nontermination problem. Each CHR constraint is associated
with an identifier. n represents the next available identifier. V represents the set of global variables.
Such variables are the ones that exist in the initial query of the user. V does not change during
execution, it is thus omitted throughout the rest of the paper. A variable v /∈V is called a local variable
[11].

I Definition 1. The function chr is defined such that chr(c#n) = c. It is extended into sequences
and sets of CHR constraints. Likewise, the function id is defined such that id(c#n) = n. It is also
extended into sequences and sets of CHR constraints.

ICLP 2018



5:4 CHRvis: Syntax and Semantics

The refined operational semantics [6, 8] is adapted in most implementations of CHR. It removes
some of the sources of the non-determinism that exists in the theoretical operational semantics (wt ). In
wt the order in which constraints are processed and the order of rule application is non-deterministic.
However, in wr, rules are executed in a top-down manner. Thus, in the case where there are two
matching rules, wr ensures that the rule that appears on top is executed. Each atomic head constraint
is associated with a number (occurrence). Numbering starts from 1. It follows a top-down approach as
well. For example, the previously shown program to find the minimum value is numbered as follows:

remove_dup @ min(X)_2 \ min(X)_1 <=> true.
remove_min @ min(X)_4 \ min(Y)_3 <=> X<Y | true.

I Definition 2. The active/occurrenced constraint c#i : j refers to a numbered constraint that should
only match with occurrence j of the constraint c inside the program. i is the identifier of the constraint
[6].

A state in wr is the tuple < A,S,B,T >n. Unlike wt , the goal A is a stack instead of a multi-
set. S,B,T and n have the same interpretation as an wt state. In the refined operational semantics,
constraints are executed similar to procedure calls. Each constraint added to the store is activated. An
active constraint searches for an applicable rule. The rule search is done in a top-down approach. If a
rule matches, the newly added constraints (from the body of the applied rule) could in turn fire new
rules. Once all rules are fired, execution resumes from the same point. Constraints in the constraint
store are reconsidered/woken if a newly added built-in constraint could affect them (according to the
wakeup policy). An active constraint thus tries to match with all the rules in the program. Table 1
shows the transitions of wr. The explanation of the transitions is given in the Appendix.

1. Solve+wakeup : 〈[c|A] ,S0∪S1,B,T 〉n 7→solve+wake 〈S1 +A,S0∪S1,B′,T 〉n
given that c is a built-in constraint and CT |= ∀((c∧B↔ B′))
and wakeup(S0∪S1,c,B) = S1

2. Activate 〈[c|A] ,S,B,T 〉n 7→activate 〈[c#n : 1|A] ,c#n∪S,B,T 〉n+1 given that c is a CHR constraint.
3. Reactivate 〈[c#i|A] ,S,B,T 〉n 7→reactivate 〈[c#i : 1|A] ,S,B,T 〉n given that c is a CHR constraint.
4. Apply 〈[c#i : j|A] ,H1∪H2∪S,B,T 〉n 7→apply r

〈C+H +A,H1∪S, chr (H1) = (H ′1)∧ chr (H2) = (H ′2)∧g∧B ,T ∪{(r, id (H1)+ id (H2))}〉n
given that the jth occurrence of c is part of the head of the re-named apart rule with variables x′:
r @ H ′1 \ H ′2 ⇔ g |C.

where CT |= ∃(B)∧∀(B =⇒ ∃x′
((

chr (H1) = (H ′1)∧ chr (H2) = (H ′2)∧g
))

and (r, id (H1)+ id (H2)) /∈ T .
If c occurs in H ′1 then H = [c#i : j] otherwise H = [].
5. Drop 〈[c#i : j|A] ,S,B,T 〉n 7→drop 〈A,S,B,T 〉n
given that c#i : j is an occurrenced active constraint and c has no occurrence j in the program.
That could thus imply that all existing occurrences were tried before.
6. Default 〈[c#i : j|A] ,S,B,T 〉n 7→de f ault 〈[c#i : j+1|A] ,S,B,T 〉n
in case there is no other applicable transition.
Table 1 Transitions of ωr

Solve+Wake: This transition introduces a built-in constraint c to the built-in store. In addition,
all constraints that could be affected by c (S1) are woken up by adding them on top of the stack.
These constraints are thus re-activated. A constraint where all its terms have become ground will
not be thus woken up by the implemented wake-up policy since it is never affected by a new
built-in constraint. vars(S0)⊆ f ixed (B) where f ixed (B) represents the variables fixed by B.
Activate: This transition introduces a CHR constraint into the constraint store and activates it.
The introduced constraint has the occurrence value 1 as a start.
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Reactivate: The reactivate transition considers a constraint that was already added to the store
before. It became re-activated and was added to the stack. The transition activates the constraint
by associating it with an occurrence value starting with 1.
Apply: This transition applies a CHR rule r if an active constraint matched a constraint in the
head of r with the same occurrence number. If the matched constraint is part of the constraints to
be removed, it is also removed from the stack. Otherwise, it is kept in the constraint store and the
stack.
Drop: This transition removes the active constraint c#i : j from the stack when there no more
occurrences to check. This occurs when the occurrence number of the active constraint does not
appear in the program. In other words, the existing ones were tried.
Default: This transition proceeds to the next occurrence of the constraint if the currently active
one could not be matched with the associated rule. This transition ensures that all occurrences are
tried.

3 CHRvis: An Animation Extension for CHR

The proposed extension aims at embedding visualization and animation features into CHR programs.
The basic idea is that some constraints, the interesting ones, are annotated by visual objects. Thus on
adding/removing such constraints to/from the constraint store, the corresponding graphical object is
added/removed to/from the graphical store. These constraints are thus treated as interesting events.
Interesting constraints are those constraints that directly represent/affect the basic data structure used
along the program. Visualizing such constraints thus leads to a visualization of the execution of the
corresponding program. In addition, changes in the constraint store affects the data structure and its
visualization. This results in an animation of the execution. For example, in a program to encode the
“Sudoku” game, the interesting constraints would be those representing the different cells in the board
and their values [14, 13].

The approach aims at introducing a generic animation platform independent of the implemented
algorithm. This is achieved through two features. First, annotation rules are used. The idea of
using interesting events for animating programs was introduced before in Balsa [5] and Zeus [4].
Both systems use the notion of interesting events. However, users need to know many details to be
able to use them. CHRvis eliminated the need for the user to know any details about the animation.
The second feature is outsourcing the animation into an existing visual tool. For proof of concept,
Jawaa [10], was used. Jawaa provides its users with a wide range of basic structures such as circle,
rectangle, line, textual node , ... etc. Users can also apply actions on Jawaa objects such as movement,
changing a color , ... etc. In order to define interesting events and their annotations, users are able to
write their own CHRvis programs with the syntax discussed later in this section. However, users are
also provided with an interface (as shown in Figure 2) that allows them to specify every interesting
event/constraint. In that case, the programs are automatically generated. They are then able to choose
the visual object/action (from the list of Jawaa objects/actions) to link the constraint to. Once they
make a choice, the panel is populated with the corresponding parameters. Parameters represent the
visual properties of the object such as: color, x-coordinate, ... etc. Users have to specify a value for
each parameter. A value could be one of/combinations of:

1. a constant value e.g. 100, blue, ... etc.
2. the function valueOf/1. valueOf(X) outputs the value of the argument X such that X is one of

the arguments of the interesting constraint.
3. the function prologValue/1. prologValue(Exp) outputs the value of the argument “X” computed

through the mathematical expression Exp.
4. The keyword random that generates a random number.

ICLP 2018
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Figure 2 Annotating the cell/2 constraint
3.1 Extended Programs
This section introduces the syntax of the CHR programs that are able to produce animations on
execution. In addition to the basic constructs of a CHR program, the extended version needs to specify
the graphical objects to be used throughout the programs. In addition, the interesting constraints and
their associations with graphical objects should be described.

3.1.1 Syntax of CHRvis

The annotation rules that associate CHR constraint(s) with visual objects have the following format:
g opt_rule_name @ Hvis ⇒ Condition | graphical_ob j_name(par1, par2, . . . , parn) .

Hvis contains either one interesting constraint or a group of interesting constraints that are associated
with a graphical object. Similar to normal CHR rules, graphical annotation rules could have a pre-
condition that has to be satisfied for the rule to be applied. The literal g is added at the beginning of
the rule to differentiate between CHR rules and annotation rules. A CHRvis program thus has two
types of rules. There are the normal CHR rules and the annotation rules responsible for associating
CHR constraint(s) with graphical object(s). Moreover, there are meta-annotation rules that associate
CHR rules with graphical object(s). In this case, instead of associating CHR constraint(s) with visual
object(s), the association is for a CHR rule. In other words, once such rule is executed the associated
visual objects are produced. The association is thus done with the execution of the rule rather than the
generation of a new CHR constraint. The rule annotation is done through associating a rule with an
auxiliary constraint. The auxiliary constraint has a normal constraint annotation rule with the required
visual object. Such meta-annotation rule has the following format:

g opt_rule_name @ chr_rule_name ⇒ condition | aux_constraint (par1aux , . . . , parmaux) .

g aux_constraint (par1aux , . . . , parmaux) ⇒ graphical_ob j_name(par1, par2, . . . , parn) .

The CHRvis has to determine whether head constraints affect the visualization. If this is the case,
the removed gead constraints would result in removing the associated objects. In this case, head
constraints should be comminicated to the tracer, Thus, a rule for comm_head/1 has to be added to
the CHRvis program.
The rule (comm_head(T) ==> T=true.) means that head constraints are to be communicated to
the tracer.
On the other hand, the rule (comm_head(T) ==> T=false.) means that the removed head con-
straints should not affect the visualization.

The program provided in Section 2 aims at sorting a list of numbers. In order to animate the execution,
the elements of the list should be visualized. Changes of the elements lead to a change in the
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visualization and thus animating the algorithm. The interesting constraint in this case is the cell
constraint. As shown in Figure 2, it was associated with a rectangular node whose height is a factor
of the value of the element. The x-coordinate is a factor of the index. That way, the location and size
of a node represent an element of the array. The new CHRvis program is:

:-chr_constraint cell/2.
:-chr_constraint comm_head/1.
comm_head(T) ==> T=true.
sort_rule @ cell(In1,V1), cell(In2,V2) <=> In1<In2,V1>V2 |

cell(In2,V1), cell(In1,V2).
g ann_rule_cell @ cell(Index,Value) ==> node(valueOf(Value),

valueOf(Index)*12+2,
50,10,valueOf(Value)*5 ,1,valueOf(Value),
black, green, black, RECT).

Figure 3 shows the result of running the query cell(0,7),cell(1,6),cell(2,4). As shown
from the taken steps, each number added to the list and thus to the constraint store adds a corres-
ponding rectangular node. Once cell(0,7) and cell(1,6) are added to the constraint store, the
rule sort_rule is applicable. Thus, the two constraints are removed from the store. The rule
adds cell(1,7) and cell(0,6) to the constraint store. 1 Afterwards, cell(2,4) is added to

(a) adding cell(0,7),
cell(1,6) to the store

(b) removing cell(0,7),
cell(1,6) from the store

(c)
adding
cell(1,7),
cell(0,6)
to the
store

(d)
adding
cell(2,4)
to the
store

(e) re-
moving
cell(0,6)
and
cell(2,4)
to the
store

(f)
adding
cell(2,6)

(g) re-
moving
cell(1,7),cell(2,6)

(h)
adding
cell(2,7),cell(1,6)
and
cell(0,4)

Figure 3 Sorting an array of numbers.

the store. At this point cell(0,6) and cell(2,4) activate sort_rule and are removed from
the constraint store. The rule first adds cell(2,6) to the store. At this point cell(1,7) and
cell(2,6) activate sort_rule again. Thus they are both removed from the store. The constraints
cell(2,7), cell(1,6) are added. Afterwards, the last constraint cell(0,4) is added to the store.

1 More examples are available through met.guc.edu.eg/chrvis/index.aspx

ICLP 2018
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As seen from Figure 3, using annotations for constraints has helped animate the execution of the
sorting algorithm. However, in some of the steps, it might not have been clear which two numbers are
being swapped. In that case it would be useful to use an annotation for the rule sort_rule instead of
only annotating the constraint cell. The resulting program looks as follows:

:-chr_constraint cell/2.
:-chr_constraint comm_head/1.

comm_head(T) ==> T=false.
sort_rule @ cell(In1,V1), cell(In2,V2) <=> In1<In2,V1>V2 |

cell(In2,V1), cell(In1,V2), swap(In1,V1,In2,V2).
g ann_rule_cell @ cell(Index,Value) ==> node(nodevalueOf(Value),

valueOf(Index)*12+2,50,10,
valueOf(Value)*5 , 1, valueOf(Value), black,
green, black, RECT).

g swap(In1,V1,In2,V2) ==> changeParam(nodevalueOf(V1),bkgrd,pink)
g swap(In1,V1,In2,V2) ==> changeParam(nodevalueOf(V2),bkgrd,pink)
g swap(In1,V1,In2,V2) ==> moveRelative(nodevalueOf(V1),

(valueOf(I2)-valueOf(I1))*12,0)
g swap(In1,V1,In2,V2) ==> moveRelative(nodevalueOf(V2),

(valueOf(I2)-valueOf(I1))*(-12),0)
g swap(In1,V1,In2,V2) ==> changeParam(nodevalueOf(V1),bkgrd,green)
g swap(In1,V1,In2,V2) ==> changeParam(nodevalueOf(V2),bkgrd,green)

g sort_rule ==> swap(In1,V1,In2,V2).

The annotations make sure that once two numbers are swapped, they are first marked with a different
color (pink in this case). The two rectangular bars are then moved. The bar on the left is moved to the
right. The bar on the right is moved to the left (negative displacement). The space between the start
of one node and the start of the next node is 12 pixels. Thus the displacement is calculated as the
difference between the two indeces multiplied by 12. After the swap is done, the two bars are colored
back into green. The result of executing the query: cell(0,7),cell(1,6),cell(2,4) is shown
in Figure 4.

3.2 Animation Formalization
The rest of the section offers a formalization of the animation to be able to run CHRvis programs and
reason about their correctness. The basic idea is introducing a new “graphical" store. CHRvis adds,
besides the classical constraint store of CHR, a new store called the graphical store. As implied by the
name, the graphical store contains graphical/visual objects. Such objects are the visual mappings of
the interesting constraints. Over the course of the program execution, and as a result of applying the
different rules, the constraint store and the graphical store would change. As introduced before, the
change of the visual objects leads to an animation of the program. The rest of the section introduces
some needed definitions. It then proceeds to show the transitions of the new operational semantics.

I Definition 3. In CHRvis, a state is represented by a tuple 〈G,S,Gr,B,T,H_ann〉n. G, S, B, T , and
n have the same meanings as in a normal CHR state (goal store, CHR constraint store, built-in store,
propagation history and the next available identification number) introduced in Section 2.1. Gr is
a store of graphical objects. H_ann is the history of the applications of the visual annotation rules.
Each element in H_ann has the following format: 〈rule_name,Head_ids,Ob ject_ids〉 where
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(a) after adding cell(0,7),
cell(1,6) to the store, they
are marked to be swapped

(b) swapping 7 and 6 (c) 7 and 6 are swapped (d)
cell(2,4)
is added

(e) 6
and
4 are
marked
to be
swapped

(f)
swap-
ping 4
and 6

(g) 7
and
6 are
marked
to be
swapped

(h)
swap-
ping 7
and 6

(i) final
sorted
list

Figure 4 Sorting an array of numbers through a rule annotation.
rule_name represents the name of the fired annotation rule.
Head_ids contain the ids of the head constraints that fired the annotation rule.
Ob ject_ids are the ids of the graphical objects added to the graphical store through firing
rule_name using Head_ids.

I Definition 4. For a sequence Sq = (c1#id1, . . . ,cn#idn), the function get_constraints(Sq) =
(c1 . . . ,cn).

I Definition 5. Two sequences A and B are equivalent: A .
= B if

1. For every X , if X exists N times in A such that N > 0, then X exists N times in B.
2. For every Y , if Y exists N times in B such that N > 0, then Y exists N times in A.

I Definition 6.

The function out put_graphical_ob ject(c(Arg0, . . . ,Argn),{Arg′0, . . . ,Arg′n},
out put(Ob ject,OArg0, . . . ,OArgk)) = graphical_ob ject(Actual0, . . . ,Actualk) such that:

graphical_ob ject = Ob ject.
Each parameter Actualn = get_actual (OArgn) such that

if OArgn is a constant value then get_actual (OArgn) = OArgn.
if OArgn = valueO f (Argm) then get_actual (OArgn) = (Arg′n).
if OArgn = prologValue(Expr) then get_actual (OArgn) = X where Expr is evaluated in
SWI-Prolog and binds the variable X to a value.
if OArgn = random , then get_actual (OArgn) is a randomly computed number.

ICLP 2018
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I Definition 7.

The function
generate_new_ann_history(Graph_ob j,Ob j_id,rule_name,Head_id,H_ann) = H ′_ann such
that: in the case where 〈rule_name,Head_id,Ob jects_ids〉 ∈ H_ann,
H ′_ann = H_ann−〈rule_name,Head_id,Ob jects_ids〉 ∪〈rule_name,Head_id,Ob jects_ids
∪{Ob j_id}〉,

I Definition 8.

The function remove_gr_ob j (G_store,Rem_head_id,H_ann) = G′_store such that: in the case
where there is some Tuple T : 〈rule_name,Head_ids,Ob jects_ids〉 such that
T ∈ H_ann∧Rem_head_id ⊆ Head_ids.
In this case, G′_store = G_store−∪i (Ob ji where Ob ji ∈ Ob jects_ids).

I Definition 9.

The function contains(H_ann,〈rule,Headids〉) is:

true in the case where H_ann contains a tuple of the form 〈rule,Headids,Ob jects〉.
f alse in the case where H_ann does not contain a tuple of the form 〈rule,Headids,Ob jects〉.

1. Solve+wakeup :
〈[c|A] ,S0∪S1,Gr,B,T,H_ann〉n 7→solve+wake 〈S1 +A,S0∪S1,Gr,B′,T,H_ann〉n
given that c is a built-in constraint and CT |= ∀((c∧B↔ B′))
and wakeup(S0∪S1,c,B) = S1

2. Activate:
〈[c|A] ,S,Gr,B,T,H_ann〉n 7→activate 〈[c#n : 1|A] ,{c#n}∪S,Gr,B,T,H_ann〉n+1

given that c is a CHR constraint.
3. Reactivate:
〈[c#i|A] ,S,Gr,B,T,H_ann〉n 7→reactivate 〈[c#i : 1|A] ,S,Gr,B,T,H_ann〉n
given that c is a CHR constraint.
4. Draw:
〈[〈Ob j#〈r, id (H)〉|A] ,S,Gr,B,T,H_ann〉n 7→draw

〈A,S,Gr∪{Ob j#n},B,T,H_ann′〉n+1

given that Ob j is a graphical object: graphical_ob ject (Actual0, . . . ,Actualk).
and H_ann′ = generate_new_ann_history(Ob j,n,r, id (H) ,H_ann)
The actual parameters of graphical_ob ject are used to visually render the object.
5. Update Store :
〈[〈Ob j#〈r, id (H)〉|A] ,S,Gr,B,T,H_ann〉n 7→updatestore 〈A,S,Gr′,B,T,H_ann〉n
given that Ob j is a graphical action: graphical_action(Actual0, . . . ,Actualk).
Gr′ = update_graphical_store(Gr,graphical_action(Actual0, . . . ,Actualk))
The function update_graphical_store uses the actual parameters of graphical_action to update
the attributes of the graphical objects available in the graphical store tht are affected by the action.
6. Apply_Annotation:
〈[c#i : j|A] ,H ∪S,Gr,B,T,H_ann〉n 7→apply_annotation

〈[Ob j#〈r, id (H)〉,c#i : j|A] ,H ∪S,Gr,B, T,H_ann∪{〈r, id (H) ,{}〉}〉n
where there is: a renamed, constraint annotation rule with variables y′ of the form:
g r @ H ′ ==>Condition | Ob j′

where c is part of H ′ and
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(CT ) |= ∃(B)∧∀(B =⇒ ∃y′(chr(H) = (H ′)∧Condition∧ out put_graphical_ob ject(H ′,y′,Ob j′) = Ob j))
and ¬(contains(H_ann,(r, id(H))))2

7. Apply :
〈[c#i : j|A] ,Hk ∪Hr ∪S,Gr,B,T,H_ann〉n 7→apply

〈C+H +A,Hk ∪S,Gr, chr (Hk) = (H ′k)∧ chr (Hr) = (H ′r)∧G∧B
T ∪{〈r, id (Hk)+ id (Hr)〉},H_ann〉n where:
• there is no applicable constraint annotation rule for c (or part of it).

(i.e. every applicable rule has already been applied).
In other words, for renamed-apart every annotation rule with variables y′:
g r @ H ′ ==> Cond | Ob j′ where,
c is part of H ′ ∧(CT ) |= ∃(B)∧∀(B =⇒ ∃y′(chr (H) = (H ′)∧Condition))
, it is already the case that: (contains(H_ann,(r, id (H)))) = true
• There is a renamed rule in Pvis with the form r @ H ′k \ H ′r⇔ G |C.

with variables x′ and the jth occurrence of c is part of the head of the renamed rule,
where CT |= ∃(B)∧∀(B =⇒ ∃x′

(
(chr (Hk) = (H ′k)∧ chr (Hr) = (H ′r)∧G)

)
and 〈r, id (Hk)+ id (Hr)〉 /∈ T .
If c occurs in H ′k then H = [c#i : j] otherwise H = [].
If the program communicates the head constraints (i.e. contains
comm_head(T) ==> T=true) then Gr′ = remove_gr_ob j (G, id (Hr) ,H_ann)
8. Drop:
〈[c#i : j|A] ,S,Gr,B,T,H_ann〉n 7→drop 〈A,S,Gr,B,T,H_ann〉n
given that c#i : j is an occurrenced active constraint
and c has no occurrence j in the program
and that there is no applicable constraint annotation rule for the constraint c.
That could thus imply that all existing ones were tried before.
8. Default:
〈[c#i : j|A] ,S,Gr,B,T,H_ann〉n 7→de f ault 〈[c#i : j+1|A] ,S,Gr,B,T,H_ann〉n
in case there is no other applicable transition.

Table 2 Transitions of ωvis

Table 2 shows the basic transitions of ωvis. To make the transitions easier to follow, table 2
shows the transitions needed to run CHR programs with constraint annotation rules. Annotations
of CHR rules are thus discarded from the set of transitions. ωvis allows for running programs that
contain constraint annotations. The three transitions apply_annotation, draw and updatestore are
responsible for dealing with the graphical store and its constituents. The transition, apply_annotation,
applies a constraint annotation rule. The rest of the transitions, such as solve, introduce and apply,
have the same behavior as in ωr. These transitions do not affect the graphical store or the application
history of the annotation rules. The transitions affecting the graphical store are:

1. Draw: The new transition draw adds a graphical object (Ob j) to the graphical store. Since
multiple copies of a graphical object are allowed, each object is associated with a unique identifier.

2. Update Store: This transition applies a graphical action to the objects in the graphical store. This
could thus change some of the aspects of the drawn graphical object(s).

3. Apply_Annotation: The Apply_Annotation transition applies a constraint annotation rule
(ann_rule). An annotation rule is applicable if the CHR constraint store contains matching

2 For simplicity, the annotation rule is considered to contain one graphical output object. In general, the rule could
associate constraint(s) with multiple objects.
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constraints. The condition of the rule has to be implied by the built in store under the matching.
The built in constraint store B is also first checked for satisfiability. For the rule to be applied,
it should not have appeared in the history of applied annotation rules with the same constraints
i.e. it should be the first time the constraint(s) fire this annotation rule. Executing the rule adds
to the goal the graphical object in the body of the executed annotation rule. The history of
annotation rules is updated accordingly with the name of the rule in addition to the id(s) of the
CHR constraint(s) in the head. In fact, this transition has a higher precedence than the transition
apply. Thus in the case where an annotation rule and a CHR rule are applicable, the annotation
rule is triggered first. The precedence makes sure that graphical objects are added in the intended
order to ensure producing correct animations.

IDefinition 10 (Built-In Store Equivalence). Two built-in constraint stores B1 and B2 are considered
equivalent iff:
(CT ) |= ∀(∃y1(B1)↔∃y2(B2)) where y1 and y2 are the local variables inside B1 and B2 respectively.
The equivalence thus basically ensures that there are no contradictions in the substitutions since local
variables are renamed apart in every CHR program. The equivalence check thus ensures the logical
equivalence rather than the syntactical equivalence.

I Definition 11. A CHRvis state Stvis = 〈Gvis,Svis,Grvis,Bvis,Tvis,TvisAnn〉nvis is equivalent to a CHR
state St = 〈G,S,B,T 〉n if and only if

1. get_constraints(Gvis)
.
= get_constraints(G) according to Definition 5.

2. get_constraints(Stvis)
.
= get_constraints(S) =C according to Definition 5.

3. Bvis and B are equivalent according to Definition 10.
4. Tvis = T
5. nvis ≥ n

The idea is that a CHRvis state basically has an extra graphical store. The correspondence check
is effectively done through the CHR constraints since they are the most distinguishing constituents of
a state. Thus, the constraint store and the stack should contain the same constraints. The propagation
history should be also the same indicating that the same CHR rules have been applied. nvis could,
however, have a value higher than n. This is due to the fact that graphical objects have identifiers.
The definition of state equivalence described here follows the properties introduced in [11]. However,
it is stricter.

ITheorem 1 (Soundness). Given a CHR program P (running under ωr) along with its user defined
annotations and its corresponding PCHRvis program (running under ωvis), for the same query Q, every
derived state Schrvis : Q 7→∗ωvis

Schrvis has en equivalent state Schr: Q 7→∗ωr Schr

Proof.
Base Case:
For the initial query the two states Q, Schrvis = 〈Q,{},{}〉 and Schr = 〈Q,{}〉 are equivalent according
to Definition 11.
Induction Hypothesis: Suppose that there are two equivalent derived states
Schrvis = 〈A,S,Gr,B,T,H_ann〉m and Schr = 〈A,S,B,T 〉n such that Q 7→i

ωvis
Schrvis and Q 7→ j

ωr Schr.
Induction Step:
The proof shows that any transition applicable to Schrvis under ωvis produces a state S′chr such that
under ωr applying a transition to Schr (which is equivalent to Schrvis) produces a state S′chr that is
equivalent to Schr.
The different cases are enumerated below:
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1. Applying solve+wakeup to Schrvis :
Under ωvis, solve+wakeup is applicable in the case where the stack has the form [c|A] such that c
is a built-in constraint and CT |= ∀((c∧B↔ B′))
and wakeup(S0∪S1,c,B) = S1 such that
Schrvis 7→solve+wake S′chrvis

: 〈S1+A,S0∪S1,Gr,B′,T,H_ann〉m. Since Schrvis and Schr are equivalent,
Schr has an equivalent stack and built-in store according to Definition 11. Thus the corresponding
transition solve+wakeup is applicable to Schr under ωr producing a state S′chr such that: S′chr =

〈S1 +A,S0∪S1,B′,T 〉n. According to Definition 11, the two states S′chrvis
and S′chr are equivalent.

2. Applying Activate:
Such a transition is applicable to Schrvis under ωvis in the case where the top of the stack of Schrvis

contains a CHR constraint c. In this case:
Schrvis : 〈[c|A] ,S,Gr,B,T,H_ann〉m 7→activate S′chrvis

: 〈[c#m : 1|A] ,{c#m}∪S,Gr,B,T,H_ann〉m+1

given that c is a CHR constraint.
The equivalent state Schr has the same stack triggering the transition Activate under ωr producing
a state S′chr : 〈[c#n : 1|A] ,{c#n}∪S,Gr,B,T,H_ann〉n+1 which is also equivalent to S′chrvis

3. Applying Reactivate:
In this case, Schrvis 7→reactivate S′chrvis

〈[c#i : 1|A] ,S,Gr,B,T,H_ann〉m
such that Schrvis = 〈[c#i|A] ,S,Gr,B,T,H_ann〉m and c is a CHR constraint.
The equivalent state Schr has an equivalent stack triggering the transition reactivate under ωr. The
transition application produces S′chr : 〈[c#i : 1|A] ,S,B,T 〉n which is also equivalent to S′chrvis

.
4. According to Definition 11 and since Schrvis is equivalent to Schr, they both have the same stack.

The transition Draw is only applicable if the top of the stack contains a graphical object. Since
the stack of Schr never contains graphical objects and since it is equivalent to Schrvis , the stack of
Schrvis at this point does not contain graphical objects as well. Thus, in this case, the transition
draw would not be applicable to Schrvis under ωvis.

5. Similarly, according to Definition 11 and since Schrvis is equivalent to Schr, the stack of Schrvis at
this point does not contain graphical actions since both states should have the same stack. The
transition update store is only applicable if the top of the stack contains a graphical action. Thus,
similarly, at this point, the transition update store could not be applied to Schrvis under ωvis.

6. Apply Annotation Rule Transition
The transition Apply Annotation is triggered when the stack has on top a constraint associated
with an annotation rule. The constraint store should contain constraints matching the head of
the annotation rule such that this rule was not fired with those constraint(s) before and the pre-
condition of the annotation rule is satisfied. Thus, the rule could be associated with more than
one constraint including the one on top of the stack. The constraint store should however, contain
matching constraints for the rest of the constraints in the head of the annotation rule.

Schrvis 7→apply_annotation S′chrvis
: 〈[Ob j#〈r, id (H)〉|A] ,H ∪S,Gr,B,T,H_ann∪{〈r, id (H) ,{ }〉}〉m

such that ¬contains(H_ann,〈r, id (H)〉). The renamed annotation rule with variables x′ is :
g r @ H ′ ==>Condition | Ob j′

(CT ) |= ∃(B)∧∀(B =⇒ ∃x′((chr (H) =

H ′∧Cond∧out put_graphical_ob ject (H ′,x′,Ob j′) = Ob j)))
Either the transition draw or update store is applicable to S′chrvis

. The output is S′′chrvis
: 〈A,S,Gr′,

T,H ′_ann〉m′ . In case, Ob j is a graphical object, then
H ′_ann = generate_new_ann_history(Ob j,m,r, id(H),H_ann∪{〈r, id (H) ,{}〉})∧
Gr′ = Gr∪{Ob j#m}∧m′ = m+1. In case, Ob j is a graphical action, then
Gr′ = update_graphical_store(Gr,Ob j)∧Gr′ = Gr∧m′ = m. Any transition applicable to
S′′chrvis

at this stage is covered through the rest of the cases. Thus the application of the transition
apply_annotation is considered as not to affect the equivalence of the output state with Schr.
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7. The Apply transition:
In the case where a CHR rule is applicable to Schrvis , the transition Apply is triggered under
ωvis. A CHR rule r is applicable when there is a renamed version of the rule r with variables
x′: (r @ H ′k \ H ′r ⇔ g | C.) where 〈r, id (Hk)+ id (Hr)〉 /∈ T and CT |= ∃(B)∧∀(B =⇒ ∃x′(
chr (Hk) = (H ′k)∧ chr (Hr) = (H ′r)∧g)). In this case, Schrvis has the form: 〈[c#i : j|G],Hk ∪Hr ∪
S,Gr,B,T,H_ann〉m. The output state S′chrvis

has the form
〈C+H+G,Hk∪S,Gr,B∧chr (Hk)= (H ′k)∧chr (Hr)= (H ′r)∧g, T ∪{〈r, id (Hk)+id (Hr)〉},H_ann〉m.
Due to the fact that Schr is equivalent to Schrvis , it has the following form: 〈[c#i : j|G],Hk ∪Hr ∪
S,B,T 〉n. For the same program, the CHR rule r is applicable producing S′chr:
〈C++H ++G,Hk ∪S,chr (Hk) = (H ′k)∧ chr (Hr) = (H ′r)∧g∧B, T ∪{〈r, id (Hk)+ id (Hr)〉n}

H =

{
[c#i : j] if c occurs in H ′k
[ ] otherwise

We assume, without loss of generality, that the same renaming variables are used in both cases.
Due to the fact that the same CHR rule is applied for both states, the new built-in stores are
equivalent according to Definition 10. This is due to the fact that since the original states have
equivalent constraint stores, we assume without loss of generality that the matchings in both cases
are the same since the same rule was applied. Thus, the rule in the two programs Pchr and Pchrvis

are renamed similarly. Since no annotation rule could be applied to a non-occurrenced constraint
and according to Definition 11, the two states are equivalent.

8. Applying Drop
In the case where Schrvis = 〈[c#i : j|A] ,S,Gr,B,T,H_ann〉m such that c has no occurrence j in the
program and case 5 is not applicable, the transition Drop is triggered. Drop produces the state
S′chrvis

= 〈A,S,Gr,B,T,H_ann〉m
Since Schr is equivalent to Schrvis , they both have the same stack [c#i : j|A]. Thus under ωvis, the
same transition drop is triggered producing S′chr : 〈A,S,B,T 〉n. According to Definition 11, S′chrvis
and S′chr are equivalent as well.

9. Applying Default
In the case where none of the above cases hold, the transition Default transforms Schrvis to
S′chrvis

: 〈[c#i : j+1|A] ,S,Gr,B,T,H_ann〉m. Similarly the equivalent state Schr triggers the same
transition Default in this case. The output state S′chr : [c#i : j+1|A] ,S,B, T 〉n is still equivalent to
S′chrvis

Thus in all cases an equivalent state is produced under ωr J

I Theorem 2 (Completeness). Given a CHR program P (running under ωr) along with its user
defined annotations and its corresponding PCHRvis (running under ωvis) program, for the same query
Q, every derived state Schr: Q 7→∗ωr Schr has an equivalent state Schrvis : Q 7→∗ωvis

Schrvis .

For space limitations, the proof is given in B.

4 Conclusions

In conclusion, the paper presented a formalization for embedding animation features into CHR
programs. The new extension, CHRvis is able to allow for dynamic associations of constraints and
rules with visual objects. The annotation rules are thus activated on the execution of the program to
produce algorithm animations. Although the idea of using interesting events was introduced in earlier
work, it was (to the best knowledge of the authors) never formalized before. In fact, no operational
semantics for animation was proposed before. The paper offered operational semantics for CHRvis. It
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thus provides a foundation for formalizing the animation process in general and for CHR programs in
particular. In the future, with the availability of formal foundations through ωvis, the possibility of
using CHRvis as the base of a pure a visual representation for CHR should be investigated. A group
of students in the German University in Cairo were exposed to the classic textual tracer and the new
visual racing facility in a focus group. Most of the students stated that for them it was hard to use
the textual trace to understand how a program works. They preferred to see the visual tracer which
according to a conducted survey helped them understand what the presented CHR programs do.
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A CHRvis to CHRr Transformation Approach

The aim of the transformation is to eliminate the need of doing any compiler modifications in order
to animate CHR programs. A CHRvis program Pvis is thus transformed to a corresponding CHRr

program P with the same behavior. P is thus able to produce the same states in terms of CHR
constraints and visual objects as well. A similar transformation was introduced in [13].

As a first step, the transformation adds for every constraint constraint/n a rule of the form:
comm_cons_constraint @ constraint (X1,X2, ...,Xn) ⇒ check (status, f alse) |

communicate_constraint (constraint (X1,X2, ...,Xn)) .

The extra rule ensures that every time a constraint is added to the store, the tracer (external
module) is notified. If constraint was annotated as an interesting constraint, its corresponding
annotation rule is activated producing the corresponding visual object(s). The new rules communicate
any constraint added to the constraint store.

The user can also choose to communicate to the tracer the head constraints since they could affect
the animation. A removed head constraint could affect the visualization in case it is an interesting
constraint. In this case, if the user chose to communicate head constraints, the associated visual
object, produced before, should be removed from the visual trace.3.

As a second step, the transformer adds for every compound constraint-annotation of the form:
cons1, . . . ,consn ==> annotation_constraintcons1,...,consn (Arg1, . . . ,Argm), a new rule of the form:

compoundcons1,...,consn @ cons1

(
Argcons11

, . . . ,Argcons11x

)
, . . . ,consn

(
Argconsn1

, . . . ,Argconsnny

)
⇒ check (status, f alse) | annotation_constraintcons1,...,consn (Arg1, . . . ,Argm).

By default, a propagation rule is produced to keep cons1, . . . ,consn in the constraint store. How-
ever, the transformer could be instructed to produce a simplification rule instead. The annotation
is triggered whenever cons1, . . . ,consn exist in the constraint store. Whenever this is the case, the
rule compoundcons1,...,consn is triggered producing the annotation constraint. Since the annotation
constraint is a normal CHR constraint, it is automatically communicated to the tracer using the
previous step.

As a third step, the CHR rules annotated by the user as interesting rules should be transformed.
The idea is that the CHR constraints produced by such rules should be ignored. In other words, even
if the rule produces an interesting CHR constraint, it should not trigger the corresponding constraint
annotation. Instead, the rule annotation is triggered.

Hence, to avoid having problems with this case, a generic status is used throughout the transformed
program PTrans. Any rule annotated by the user as an interesting rule changes the status to
true at execution. However, the rules added in the previous two steps check that the status is
set to f alse. In other words, if the interesting rule is triggered, no constraint is communicated
to the tracer since the guard of the corresponding communicate_constraint rule fails. Any rule
rulei@HK \ HR ⇔ G | B with the corresponding annotation rulei ==> annotation_constraintrulei

is transformed to: rulei@HK \ HR ⇔ G | set (status, true) , B, annotation_constraintrulei ,

set (status, f alse) . In addition, the transformer adds the following rule to PTrans:
comm_consannotation_constraintrulei

@ annotation_constraintrulei ⇔
communicate_constraint

(
annotation_constraintrulei

)
.

The new rule thus ensures that the events associated with the rule annotation are considered and that
all annotations associated with the constraints in the body of the rule are ignored.

The aim of the transformation process is to produce a CHRr program (Ptrans) that is able to

3 The tracer is able to handle the problem of having multiple Jawaa objects with the same name by removing the old
object having the same name before adding the new one. This is possible even if the removed head constraint was
not communicated.
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perform the same behavior of the corresponding CHRvis program (Pvis) which basically contains the
original CHR program P along with the constraint(s) and rule annotations. This section shows that the
transformed program, using the steps shown previously, is a correct one. In other words, for the same
query Q, Ptrans produces an equivalent state to the one produced by P. As seen from the previous
section ωvis was proven to be sound and complete. This implies that any state reachable by ωr is also
reachable by ωvis. In addition, any state reachable by ωvis is also reachable by ωr. The focus of this
section is the initial CHR program provided by the user. The aim is to make sure that Ptrans produces
the same CHR constraints that P produces to make sure that the transformation did not change the
behavior that was initially intended by the programmer. The focus is thus to compare how P and
Ptrans perform over ωr.

B Completeness Proof

Proof.
Base Case: For a given query Q, the initial state in ωr is Schr = 〈Q,{},{},{}〉1. The initial state in
ωvis is Schrvis = 〈Q,{},{},{},{},{}〉1. 4 According to Definition 11 Schr and Schrvis are equivalent.

Induction Hypothesis: Suppose that there are two equivalent derived states Schr = 〈A,S,B,T 〉n
and Schrvis = 〈A,S,Gr,B,T,H_ann〉m such that Q 7→i

ωr Schr and Q 7→ j
ωvis Schrvis .

Induction Step: According to the induction hypothesis, Schr and Schrvis are equivalent. The rest
of the proof shows that any transition applicable to Schr in ωr produces a state that has an equivalent
state produced by applying a transition to Schrvis in ωvis. Thus, no matter how many times the step is
repeated, the output states are equivalent.

Applying solve+wakeup:
In this case, Schr 7→ S′chr such that:
Schr : 〈[c|A] ,S0∪S1,B,T 〉n 7→solve+wake 〈S1 +A,S0∪S1,B′,T 〉n
Transition solve+wakeup is applicable if:

1. c is a built-in constraint
2. CT |= ∀((c∧B↔ B′))
3. wakeup(S0∪S1,c,B) = S1

Schrvis(〈Stack,Schrvis ,Gr,Bvis,Tvis,Tann〉m) is equivalent to Schr(〈[c|A] ,S0 ∪ S1,B,T 〉n). Thus ac-
cording to Definition 11, Stack = [c|A] ∧ Schrvis = S0 ∪ S1 ∧ Bvis = B ∧ Tvis = T ∧m ≥ n.
Thus accordingly, the transition solve+wakeup is applicable to Schrvis under ωvis producing
S′chrvis

:〈S1+A,S0∪S1,Gr,B∧c,T,H_ann〉m. According to Definition 11, S′vis is equivalent to S′chr

Applying Activate:
In this case, Schr = 〈[c|A] ,S,B,T 〉n where c is a CHR constraint. Thus Schr 7→activate S′chr :
〈[c#n : 1|A] ,c#n∪S,B,T 〉n+1.
Since Schrvis(〈Stack,Schrvis ,Gr,Bvis,Tvis,Tann〉m) is equivalent to Schr(〈[c|A] ,S0∪S1,B,T 〉n). Thus
according to Definition 11: Stack = [c|A] ∧ Schrvis = S ∧ Bvis = B ∧ Tvis = T ∧ m≥ n
Accordingly, Schrvis 7→activate S′chrvis

: 〈[c#m : 1|A] ,{c#m}∪S,Gr,B,T,Tann〉m+1 which is equival-
ent to S′chr. (Since m≥ n, then m+1≥ n+1).

4 Throughout the different proofs, identifiers are omitted for brevity
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Applying Reactivate:
The transition reactivate is applicable if the stack has on top of it an element of the form c#i
where c is a CHR constraint. In this case Schr = 〈[c#i|A] ,S,B,T 〉n. Accordingly, Schr 7→reactivate

S′chr : 〈[c#i : 1|A] ,S,B,T 〉n. Since Schrvis and Schr are equivalent, then Schrvis has the same stack.
Schrvis = 〈[c#i|A] ,S,Gr,B,T,Tann〉m triggers the transition reactivate producing S′chrvis

: 〈[c#i :
1|A],S,Gr,B,T,Tann〉m which is also equivalent to S′chr. Since c is not associated with an oc-
currence yet, no annotation rule is applicable at this point.

Applying the transition Apply
The transition Apply is triggered under ωr in the case where Schr = 〈[c#i : j|A] ,H1∪H2∪S,B,T 〉n
such that the jth occurrence of c is part of the head of the re-named apart rule with variables x′:
r @ H ′1 \ H ′2 ⇔ g |C.

such that:
CT |= ∃(B)∧∀(B =⇒ ∃x′(chr (H1) = (H ′1)∧chr (H2) = (H ′2)∧g))) and 〈r, id (H1)+ id (H2)〉 /∈
T .
Thus in such a case Schr 7→apply r S′chr : 〈C+H+A,H1∪S, chr (H1) = (H ′1)∧chr (H2) = (H ′2)∧g∧
B,T ∪{〈r, id (H1)+ id (H2)〉}〉n

H =

{
[c#i : j] if c occurs in H ′1
[ ] otherwise

Due to the fact that Schr and Schrvis are equivalent, in the case where Schr triggers the transition
Apply under ωr, the same rule is also applicable under ωvis to Schrvis . However for Schrvis , one of
two possibilities could happen:

1. There is no applicable constraint annotation rule:
This could be due to the fact that any applicable annotation rule was already executed or
that there are no applicable annotation rules at this point. In this case, the transition apply is
triggered right away under ωvis producing a state
(S′chrvis

: 〈C+H +A,H1∪S,Gr,chr (H1) = H ′1∧ chr (H2) = H ′2∧g∧B,
T ∪{〈r, id (H1)+ id (H2)〉,H_ann}〉m) equivalent to (S′chr). The original states are equivalent
and the same rule is applied in both cases. We can assume that, without loss of generality ,
in the chrvis program, the rule is renamed using the same variables x′ resulting in the same
matching. This is because the same matching should happen to be able to apply the same rule
using the given constraint stores.

2. There is an applicable annotation rule:
In this case an annotation rule (rann) for c is applicable such that:
Schrvis〈[c#i : j|A] ,H1∪H2∪S,Gr,B,T,H_ann〉m 7→apply_annotation

S′chrvis
: 〈[Ob j#〈r, id (H)〉,c#i : j|A] ,H1 ∪H2 ∪ S,Gr,B, T,H_ann∪{〈rann, id (H) ,{ }〉}〉m ac-

cording to the previously mentioned conditions.
At this point either the transition draw or update store is applicable such that:
S′chrvis

7→
draw
/

updatestore
S′′chrvis

: 〈[c#i : j|A] ,H1∪H2∪S,Gr′,B, T,H ′_ann〉m′

In case Ob j is a graphical object, the transition draw is applied such that: Gr′ = Gr ∪
{Ob j#m} ∧ m′ = m+1 ∧ H ′_ann = generate_new_ann_history(Ob j,m,r, id (H) ,

H_ann∪{〈rann, id(H),{ }〉}).
In case, Ob j is a graphical action, the transition update store is applied such that:
Gr′= update_graphical_store(Gr,Ob j) ∧ m′=m ∧ H ′_ann=H_ann∪{〈rann, id (H) ,{ }〉}
Since the two transitions, could only change the graphical stores, annotation history and the
next available identifier, the equivalence of the states is not affected.
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At this point ωvis fires the transition Apply for the same CHR rule that triggered the same
transition under ωr earlier. The produced state S′′′chrvis

has the format:
〈C+H +A,H1∪S,Gr′,chr (H1) = H ′1∧ chr (H2) = H ′2∧B,T ∪{〈r, id (H1)+ id (H2)〉},
H ′_ann〉m′ . Similarly the same matching (local variable renaming x′) has to be applied for the
rule to fire.
Consequently, according to Definition 11, the state S′′′chrvis

is still equivalent to S′chr

Applying the transition drop:
In the case where the top of the stack has an occurrenced active constraint c#i : j such that c has no
occurrence j in the program, the transition drop is applied. Thus, Schr : 〈[c#i : j|A] ,S,B,T 〉n 7→drop

S′chr : 〈A,S,B,T 〉n
Since Schrvis and Schr are equivalent, the stack of both states have to be equivalent.
Thus Schrvis = 〈[c#i : j|A] ,S,Gr,B,T,H_ann〉m. For ωvis one of two possibilities is applicable:

1. No annotation rule is applicable. This could be either because c is not associated with any
visual annotation rules or because all such rules have been already applied. In this case
Schrvis : 〈[c#i : j|A] ,S,Gr,B,T,H_ann〉m 7→drop S′CHRvis

: 〈A,S,Gr,B,T,H_ann〉m which is equi-
valent to S′chr.

2. The second possibility is the existence of an applicable annotation rule: transforming Schrvis to
S′chrvis

: 〈[Ob j#〈r, id (H)〉,c#i : j|A] ,S,Gr,B,T,H ′_ann〉m. At that point either draw or update
store are to be applied transforming S′chrvis

to S′′chrvis
: 〈[c#i : j|A]

,S,Gr′,B,T,H ′′_ann〉m′ . At that point, the transition drop is applicable converting S′′chrvis
to

S′′′chrvis
:

〈A,S,Gr′,B,T,H ′′_ann〉m′ . S′′′chrvis
is equivalent to S′chr

Applying the default transition
If none of the previous cases is applicable, Schr : 〈[c#i : j|A] ,S,B,T 〉n 7→de f ault

S′chr : 〈[c#i : j+1|A] ,S,B,T 〉n.
For the equivalent Schrvis , one of two possible cases could happen:

1. Apply annotation is not applicable:
In that case, the Default transition is directly applied transforming SchrvistoS′chrvis

such that
〈[c#i : j|A] ,S,Gr,B,T,H_ann〉m 7→de f ault 〈[c#i : j+1|A] ,S,Gr,B,T,H_ann〉m.
The produced state (S′chrvis

) is equivalent to S′chr as well.
2. Apply annotation is applicable:

In this case an annotation rule for one of the existing constraints is applicable such that:
Schrvis〈[c#i : j|A] ,S,Gr,B,T,H_ann〉m 7→apply_annotation

S′chrvis
: 〈[Ob j#〈r, id(H)〉,c#i : j|A] ,S,Gr,B, T,H ′_ann〉m according to the previously men-

tioned conditions.
At this point, either the transition draw or the transition update store is applicable such that:
S′chrvis

7→draw S′′chrvis
: 〈[c#i : j|A] ,S,Gr′,B, T,H ′′_ann〉m′

S′′chrvis
is still equivalent to Schr.

At the point where the transition apply_annotation is no longer applicable, the only applicable
transition is Default transforming S′′chrvis

to S′′′chrvis
such that S′′′chrvis

= 〈[c#i : j+1|A] ,S,Gr′,B,
T,H ′′_ann〉m′ . According to Definition 11, S′′′chrvis

is equivalent to S′chr

Thus in all cases an equivalent state is produced under ωvis J

J

ICLP 2018


	Introduction
	Constraint Handling Rules
	Refined Operational Semantics r

	CHRvis: An Animation Extension for CHR
	Extended Programs
	Syntax of CHRvis

	Animation Formalization

	Conclusions
	CHRvis to CHRr Transformation Approach
	Completeness Proof

