Rule-based Programming
Prof. Dr. Thom Frithwirth, Daniel Gall

Summer Term 2014

Assignment #1

Introducing Constraint Handling Rules (CHR)

Exercise 1. Installation

(1) Download and install SWI-Prolog http://goo.gl/RSj8i| to your computer. It is also
installed in all PC pools.

(2) If you are using Windows, you can then download and install the SWI-Prolog Editor:
http://goo.gl/6delX

(3) Use the SWI-Prolog manual on how to use the CHR library: http://goo.gl/wNvQw

Exercise 2. Hello World

(1) Some basic coding rules:
(a) All code lines must end with a dot.
(b) Constraint names and values must begin with a small letter.
(¢) Variables (unknowns) must begin with capital letters.
(d) Constraint names, variables and values cannot have spaces.
(e) To add comments which are not be executed, use % followed by the comment.
(2) Before using CHR rules, the CHR library must be included by:
:— use_module(library(chr)).
(3) User-defined constraints must be declared with their name and arity (number of argu-
ments), as:
:— chr_constraint name/arity.
(4) Write a “Hello world!” program in CHR:

:— use_module(library(chr)).
:— chr_constraint start/0.
start <=> write(’Hello world!’).

Run the program with the query: start.
(5) Use chr_trace to switch on the tracer and view interactions with the constraint store.
(6) End the tracing using chr_notrace.

Exercise 3 (Walking by Simplification). A walk can be expressed by movements east, west,
south, north. The number of steps required can be simplified by the following rules:

east, west <=> true.
south, north <=> true.

Implement the walking rules in CHR, and test it for queries like: ‘east, south, west, west,
south, south, north, east, east’.

Exercise 4 (Carry Less). A coin exchange machine aims to help people carry less coins. It works
by reducing the number of coins that a person would carry. For example, instead of carrying
four 50-cents, the machine replaces them with one 2-euro coin. Assume that the least acceptable
coin is the 10-cent coin. Model the coins using the constraints euro2, eurol, cent50, cent20,
cent10, and then write a minimal number of CHR rules that would collect the smaller-valued
coins to produce less bigger-valued ones. Test your program with the queries below:

(1) cent10,cent10,cent10,cent10,cent10 — cent50

(2) cent20,cent20,cent10,cent10,cent10,cent10,cent10,cent10 — eurol
(3) eurol,cent50,cent50 — euro?2
(4) eurol,cent20,cent20,cent20,cent20,cent20,cent50 — euro2,cent50


http://goo.gl/RSj8i
http://goo.gl/6deJX
http://goo.gl/wNvQw

Exercise 5 (Ro-Sham-Bo). Rock-paper-scissors or “Ro-Sham-Bo” is a hand game usually played
by two people, where players simultaneously form one of three shapes with an outstretched hand.
The rock beats scissors, the scissors beat paper and the paper beats rock; if both players
throw the same shape, the game is tied (Wikipedia). Write some CHR rules that determine the
winner of a round of this game or detects a draw.

Exercise 6 (Age Calculator by Propogation). Constraints can be used like a database to store
and process information about famous actors. The date of birth of a person can be expressed
using a dob/2 constraint, like dob(tom-cruise, 1962). The current year can be expressed as
today (2014). Write a CHR rule that preserves knowledge already stored, and calculates the
current age of an actor, storing it in an age/2 constraint. (Assume that the exact day and
month do not matter). Your program is correct if it reveals that Tom Cruise is 52 years old!

Exercise 7 (Minimum by Simpagation). Many numbers can be given as a query min(np),
min(nsy), ..., min(ng). Write a single CHR rule that filters these numbers, such that the
remaining one is the least (or minimum) one.

The next exercises are to be submitted by e-mail to: daniel.gallQuni-ulm.de. The deadline is
on 07.05.14 by 12:00. You are allowed to work in a group of two people. Please send only one
e-mail per group, containing the solution and both team member names.

Exercise 8 (Water). Water molecules can be produced from hydrogen and oxygen molecules
if they are heated. With electricity, the water molecules get decomposed into hydrogen and
oxygen molecules. These chemical reactions can be expressed as:

heat + 2Hy + Oy — 2H50
electricity + 2H20 — 2Ho + Oq
Using CHR constraints h2, o2, h2o0, heat, electricity and assuming that one heat or

electricity unit is needed for each reaction, write CHR rules to model these reactions. Test your
program with queries like:

e heat,h2,h2,02 — h20, h20
e heat,h2,h2,02,h2,h2,02 — h2,h2,02,h20,h20

e heat,h2,h2,02,h2,h2,02,heat — h20,h20,h20,h20

e heat,h2,h2,02,h2,h2,02,heat,electricity — h2,h2,02,h20,h20

e eclectricity,electricity,h20,h20,h20,h20 — h2,h2,h2,h2,02,02

Exercise 9 (Better Age Calculator). Modify the age calculator program so that it calculates
the exact age of a person. Dates can be expressed by 3 arguments: the day, the month and the
year. The current date can be given as today(29,4,2014). Moreover, the date of birth of a
person is now represented as a dob/4 constraint to also include the month and day. You will
need to define multiple rules to calculate the exact age, with different guard expressions.

Your corrected program reveals that Tom Cruise is actually only 51 years old!

Hint: Test your program with more examples to make sure that you cover all possible cases.


mailto:daniel.gall@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frithwirth, Daniel Gall

Summer Term 2014

Assignment #2

Refer to the SWI-Prolog reference manual http: //www. swi-prolog. org/pldoc/refman/ for
documentation on the usage of the built-in predicates and the CHR library.

Exercise 1 (Online CHR). Add the following two lines to any CHR program to make it
more interactive. It allows to add more constraints incrementally and then shows the resultant
constraint store. To invoke this interactive run, add more at the end of your initial query. Then
type a semi-colon ; to provide more input.

:— chr_constraint more/0.
more <=> true ; (read(Constraint), call(Constraint), more).

Test this with any of the examples from assignment #1.

In the next exercises we are going to implement a (file-)writer for CHR rules. The tool will be
used in the next assignments when we transform programs of other rule-based formalisms to
CHR.

Exercise 2 (CHR-Writer). A generalized CHR simpagation rule which is given as follows:
Headl \ Head2 <=> Guard | Body.

can be represented using a chrl/4 constraint in the form:
chrl (Headl, Head2, Guard, Body)

where Headl, Head2, Guard, Body are lists of CHR and built-in constraints. If they do not
exist (i.e. for propagation or simplification rules, or guard-less rules), then they are given as [J.
Implement a CHR program that once triggered with a console/0 constraint, writes to the
console a well-formatted CHR rule equivalent to that encoded in chrl constraint by changing
the lists to goals.

Test your program with (but not limited to) queries such as:

chrl([], [a,b], [1, [c]) represents: a,b <=> true | c.

chrl([a,bl, [1,[], [c]) represents: a,b ==> true | c.

chrl([al, [b],[],[c]) represents:a \ b <=> true | c.

chrl([a(X)], [b(Y,Z)], [X<Y], [c(Z)]) represents: a(X) \ b(Y,Z) <=> X<Y | c(2).

Hints:

e For each chrl/4 constraint, the lists must be transformed to goals. Write helper rules
for the constraint 1ist2goal(L,G) which transfers a list of atoms (e.g. [a,b,c]) to a
goal a,b,c. Concatenation of two goals can be achieved by (G1,G2).

e Save the goals in a chr/4 constraint. Each of those constraints is then transformed to
the output of the corresponding CHR rule.

e Use numbervars to pretty print a term by unifying variables (_123,_456,...) to more
readable variable names (A4, B, ...).

Exercise 3 (CHR-File-Writer). Modify the program of the previous exercise; such that instead
of displaying on the console, the output CHR rule is written to a file once triggered by a file/1
constraint. Hint: Use built-in open/3, write/2 and close/1 to write to file streams. A file
stream must be closed after writing to. You may find it useful to have rules for the constraints:
file(new), file(append), file(close).


http://www.swi-prolog.org/pldoc/refman/

Exercise 4 (File-Reader). Implement a program that reads a text file when triggered with a
file(read) constraint. It should transform each line into a 1ine/1 constraint. Hint: Use read/2
to read a term from a stream.

Next exercises are to be submitted by e-mail to: daniel.gall@uni-ulm.de by 14.05.14 by 10:00.

Exercise 5 (Hobo Cigarettes). A certain hobo can make one cigarette out of four cigarette
butts (the butt is what is left after smoking a cigarette). If he finds some cigarettes and some
cigarette butts, how many cigarettes can he smoke in total?

The input is any number of constraints of this form: cigarette/0, butt/0, and pack/1. Each
cigarette represents one cigarette, and each butt represents one cigarette butt. The constraint
pack(N) represents a pack containing N cigarettes. The output is one constraint of the form
smoked (T), where T is the total number of cigarettes the hobo has smoked. There can be no
cigarettes left (the hobo smokes every cigarette he finds or makes), but there can be (will be)
cigarette butts left (always less than four). Examples:

7- pack(4). 7- pack(25). 7- butt, pack(3).
butt butt butt
smoked (5) smoked (33) smoked (4)

Exercise 6 (Exchange Sort). An array can be represented as a multiset of pairs of the form
a(Index,Value). Implement the exchange sort algorithm that sorts the array of numbers by
exchanging values at positions that are in the wrong order. Test it with an appropriate query.

Exercise 7 (Hamming’s problem). Consider the classical Hamming’s problem, which is to
compute an ordered ascending chain of all numbers whose only prime factors are 2,3, or 5. The
chain starts with the numbers:

1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25, ...
Implement the problem in your favourite programming language. Within your submission-group,
prepare 2-3 presentations slides to present the idea of your solution. You will present your
solution to the entire class for discussion on 15.05.14.


mailto:daniel.gall@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frithwirth, Daniel Gall

Summer Term 2014

Assignment, #3

Term Rewriting Systems (TRS)

Exercise 1 (Flattening). Define eq to be a binary CHR constraint in infix notation denoting
equality, using op/3. Write a CHR rule that implements the flattening function that transforms
an atomic equality constraint X eq T, where X is a variable and T is a term, into a conjunction

of equations as follows, where X1,..., X, are new variables.:
X eqT if T is a variable
flatten(X eq T) := .
(X eq T) { X eq f(X1,.., X0) A (N [Xi eq D)) T = f(Th,...,T,)
Hint: You can change terms to list of functor and arguments by: £ (X1, ...,XN)=..[f,X1,...,XN]

Implement a second version of the flattening rule, implemented by having a flatten/2 which
flattens a term passed as the first argument into a list (as the second argument).

Exercise 2 (Translate TRS to CHR). It is required to translate TRS rules into CHR simpli-
fication rules. A CHR constraint translate/2 has the type trs as the first argument and the
second containing a TRS rule of the form:
S-->T
Write a rule that transforms the encoded TRS rule to a CHR simplification rule (with X as a
new variable):
flatten(X eq S) <=> flatten(X eq 7T)

The output CHR rule can be encoded in a chrl/4 constraint as in assignment #2, thus as:
chrl([], [flatten(X eq S)1,[1, [flatten(X eq 7)1)

The translator rule invokes the CHR-writer of assignment#3 to output the CHR simplification
rules to the console or file. Hint: You will need to define the binary operator (-->). Test your
translator with appropriate examples.

Enhance your program with an additional constraint capable of reading an input text file con-
taining TRS rules and producing a translated CHR program written in an output text file.

Exercise 3 (Translate to CHR). Two rewrite rules that define the addition of natural numbers
in successor notation, are:

0+Y ——> Y.

s(X) + Y —=> s(X+Y).
Translate the rules into CHR, using by applying the flattening function manually. Then use your
translator to show its output result. Include in your program 6 appropriate test examples to
show the correctness of your work; these examples can be present as comments.



Exercise 4 (Propositional Logic). Given the following TRS for conjunction in propositional
logic, where X, Y and Z are propositional variables and the function and (X,Y) stands for X A Y:

and(0,Y) -—> 0.

and(X,0) --—> 0.

and(1,Y) -—> Y.

and(X,1) -—> X.

and(X,X) -—> X.
Write down similar TRS rules for negation, neg, and disjunction, or, in propositional logic.
Run the translator and produce the equivalent CHR rules for conjunction, disjunction and
negation. Include in your program 6 appropriate test examples to show the correctness of your
work; these examples can be present as comments.

Exercise 5 (Run Translated TRS Program). To run a TRS program in CHR, the query must
be flattened first. Write a rule for the constraint evaluate(Query) which flattens the Query
then triggers the TRS evaluation. Test the correctness of the TRS programs by evaluating some
test queries.
Sample run for the evaluation of the number addition translated program:

7- evaluate(X eq s(s(s(0)))+s(0)).

X = s(s(s(s(0))))

Exercise 6 (Functional Dependency). Augment your program with a functional dependency
simpagation rule that implements structure sharing to ensure completeness. This CHR rule
must be come first within the program.

fd @ X eq T \ Y eq T <=> X=V.

The £d rule removes equations, thus some rules may not be applicable anymore. For example,
for the TRS rule:

and(X,X) -—> X
which translates in the CHR rule:
T eq and(T1,T2), Tl eq X, T2 eq X <=> T eq X.
The rule expects two copies of the equations T1 eq X and T2 eq Y. Thus variants of the existing
CHR rules must be created, where head constraints have been unified such that the rules apply
after the £d rule has fired. For the previous example, this results in the additional rule:
T eq and(T1,T1), Tl eq X <=> T eq X.

Manually write down all other additionally required rules for the other conjunction and disjunc-
tion rules.

Next exercise is to be submitted by e-mail to: daniel.gall@uni-ulm.de by 21.05.14 by 10:00.

Exercise 7 (Structure Sharing, Bonus). Write a CHR program which produces automatically
the extra rules generated by structure sharing of exercise 6 for any TRS rule during translation.

Exercise 8 (Shortest Paths). The following program takes a directed graph, where the edges
are represented as e/2 constraints (e (A,B) means that there is a (directed) edge from A to B),
and computes the reachability relation p/2 (where p(A,B) means that there is some path from
A to B).

e(X,Y) ==> p(X,Y).

p&X,Y) \ pX,Y) <=> true.

eX,Y), p(Y,2) ==> p(X,Z).
Modify the above program such that it computes the distance relation d/3, where d(A,B,N)
means that the shortest path to go from A to B uses N edges. (Try for queries like e(a,b),
e(a,c), e(b,c), e(b,d), e(d,f))


mailto:daniel.gall@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frithwirth, Daniel Gall

Summer Term 2014

Assignment, #4

Functional Programming (FP)

Exercise 1 (Translating FP to CHR). It is required to translate FP rewrite rules into CHR
simplification rules. A CHR constraint translate/2 has the type fp as the first argument and
the second containing an FP rule of the form:
S-->(G) | T

Write a CHR rule which translates it to a CHR simplification rule:

X eq § <=> G | flatten(X eq 1)
where X is a new variable. The rule should write the output CHR simplification rules to the
console, by translating the FP rule to a chrl/4 constraint and triggering the writer from assi-
gnment #2. Test your translator with appropriate examples. Hint: You will need to define the

binary operator (-->) . Also consider that some FP rules can be written without a guard, i.e.
as S ——>T.

Enhance your program with an additional constraint capable of reading an input text file con-
taining FP rules and producing a translated CHR program written in an output text file.

Exercise 2 (Executing FP in CHR). The CHR program produced by the translator imple-
mented above, requires additional rules for treating data and mapping auxiliary functions to
built-in constraints. It should be able to evaluate built-in contraints and bind ground values to
variables. Using the built-in SWI predicates: arithmetic_expression_value/2, number/1,
var/1, ground/1, write the appropriate CHR rules that are needed for the execution of any
translated FP program.

Then, modify your translator such that it augments the additional rules to the translated FP
rules written in the beginning of the output file. It should also add the required CHR header
lines such that the output code is executable.

Exercise 3 (Fibonacci Numbers). The sequence of Fibonacci numbers is defined as follows:
Fp=0,F =1
F,=F, 1+ F,_o,forn>2
Write the FP rules that calculate the Fibonacci of a number. Translate the rules into CHR
manually. Then use your translator using the input FP rules to show its output CHR program.

Try your modified translator to produce the CHR code for the translation of the Fibonacci code.
Then try to run the Fibonacci code and test is for obtaining several of the Fibonacci numbers.

Next exercises are to be submitted by e-mail to: daniel.gall@uni-ulm.de by 28.05.14 by 10:00.

Exercise 4 (Factorial). The factorial of a non-negative integer n is the product of all positive
integers less than or equal to n. Write the FP rules for the factorial problem. Produce the
equivalent CHR code by the translator, and run it with appropriate test queries.

Exercise 5 (Translating CHR to FP). Go back through the first examples presented in earlier
lecture slides. Which of these CHR examples can be expressed in Functional Programming? Also
present their equivalent code in Functional Programming. Which examples cannot be expressed,
and why?


mailto:daniel.gall@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frithwirth, Daniel Gall

Summer Term 2014

Assignment, #5

Functional Programming: Higher Order Functions

Higher order functions are functions which take at least one function as input. For example, the
function

twice(F,A) -—> F(F(A)).
applies the function F to argument A twice.
In this lab session, we want to integrate such functions to our functional programming language.
Since F(A1,...,An) is not a valid Prolog term, we require for the syntax of our functional
language that such applications are expressed by a term apply(F, [Al,...,An]) denoting that
function F is applied to the arguments Al to An.

Exercise 1 (Apply). Write a CHR rule which handles the function application. I.e. write a rule
which rewrites a term apply (F, [Al,...,An]) to F(AL,...,An) if F is ground.

Usually, functional programming languages provide some default functions including some hig-
her order functions. In the following, we want to implement some well-known higher order
functions using our functional language and analyze the results of our translator.

Exercise 2 (Map). Write a function map (F,L) which applies the function F to each element in
the list L (returning a list). Test your implementation with some examples. Which examples do
not work out of the box?

Exercise 3 (Fold). Make yourself familiar with the concept of the foldr(F,E,L) function and
implement it in our functional language. Test your implementation with some examples (e.g.:
Write test calls of foldr to calculate the sum and the product of a list of numbers).

Next exercises are to be submitted by e-mail to: daniel.gall@uni-ulm.de by 04.06.14 by 10:00.

Exercise 4 (Faculty). Redefine your faculty function from assignment #4 using foldr.

Hint: Write a function make_list(N) which produces a list containing all numbers from 1 to
N (without respecting order). Make sure you use guards to check that N is a number! Then use
the product example from exercise 3 on this list.


mailto:daniel.gall@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frithwirth, Daniel Gall

Summer Term 2014

Assignment #6

GAMMA

Exercise 1 (Translating GAMMA to CHR). It is required to translate each GAMMA pair
into a CHR simplification rule. Implement a rule for the CHR constraint translate/2 that
transforms a GAMMA pair:

(¢/n, f/n)

into a CHR simplification rule:
d(x1),...,d(zy) <=> c(x1,...,25) | f(z1,...,20)
where d/1 is a CHR constraint that wraps the data elements, and c/1 is a built-in constraint

that checks for a certain condition. The function f is manually defined by a simplification rule
of the form:

f(xla s a-rn) <=> G | D7 d(y1)7 s ad(ym)
where G is a guard and D are the auxiliary built-ins. The built-in constraint c/n is a Prolog
test predicate, that can be manually defined explicitly per problem. Assume that the definitions
for £/n and ¢/n will be done separately.

Exercise 2 (GAMMA Lecture Examples). Test your translator with the following GAMMA
examples from the lecture slides:

min = (</2, first/2)

gcd = (gcd_check/2, gcd_sub/2)

prime = (div/2, first/2)
For each example, define the CHR rule for the function £/2 and the Prolog predicate for c/2,
also give the translated CHR rule. Test the produced CHR codes with appropriate queries.

Exercise 3 (Translating CHR to GAMMA - Mergers and Acquisitions). A large company
will buy any smaller company. A CHR constraint company (Name,Value) can be defined where
Value is the market value of the company. A rule that describes the merge-acquisition cycle
that is observed in the real world is given as:
company (Namel, Valuel), company(Name2, Value2)

<=> Valuel > Value2 | company(Namel:Name2,Valuel+Value2).
Translate the Company Mergers CHR, program into GAMMA, stating the CHR rule for the
function f and the Prolog predicate for c. Run the translator on the GAMMA pair, and show
that the output CHR rules are semantically equivalent to the initial CHR program.

Exercise 4 (Translating CHR to GAMMA - Walk). Assume we describe a walk (a sequence
of steps) by giving directions, east, west, south, north. A description of a walk is just a
sequence of these CHR constraints. With simplification rules, we can model the fact that certain
steps (like east, west) cancel each other out, and thus we can simplify a given walk to one
with a minimal number of steps that reaches the same position.

east, west <=> true.

south, north <=> true.
Translate the Walk CHR program into GAMMA, stating the CHR rule for the function f and
the Prolog predicate for c. Run the translator on the GAMMA, and show that the output CHR
rules are equivalent to the initial CHR program. Test the produced CHR codes with appropriate
queries.



Petrt Nets

Exercise 5 (Petri Nets - Barber Shop). A typical scenario at a Barber shop is as follows:
Customers enter a Barber shop and wait till a barber is idle and ready to serve them. Then
the barber cuts the hair of a customer. When the hair cut is done, the customer leaves and the
barber becomes idle once again. This can be represented using the Petri net given below:

customers_waiting

customers_cutting customers_done

idle_barbers

Translate the Barber shop Petri net into CHR by adding the constraints customers_waiting/0,
idle_barbers/0, customers_cutting/0, and customers_done/0 for each of the places. Add
an observer/0 constraint to print the interesting states of the problem. A typical test query
would be ?-observer,customers_waiting,customers_waiting,idle_barbers.

Exercise 6 (Colored Petri Nets - Elevator). An elevator operates between 4 levels, a petri-net
is designed such that a level token represents the level of the elevator and the direction tokens
represent the required movements of the elevator. The elevator can go upwards, increasing its
level only if it is not on the maximum floor. Similarly the elevator can go down, decreasing its
level only if it is not on the ground floor. The system can be represented using the following
colored Petri net:

going_up

X<3
Y=up

level direction

{0,1,2,3} up,down}

X>0
Y=down

going_down

Translate the elevator Petri net into CHR by adding the constraints level/1, direction/1
and the equivalent transition rules. Add an observer/0 constraint to print the interesting states
of the problem. A typical test query would be

7- observer, level(0), direction(up),direction(up),direction(up),direction(down).



Next exercise is to be submitted by e-mail to: daniel.gallQuni-ulm.de by 11.06.14 at 10:00.

Exercise 7 (Translating CHR to GAMMA - More examples). For each of the following pro-
blems, write down the CHR rules to solve them. Then translate the CHR, program into GAMMA,
stating the CHR rule for the function f and the Prolog predicate for c. Run the translator on the
GAMMA pair, and show that the output CHR rules are semantically equivalent to the initial
CHR program. Test the produced CHR codes with appropriate queries.

(1)

Exclusive OR - A multi-set of xor constraints denoting the output can be used to
compute the output as a single remaining xor constraint where truth values true and
false are represented by the numbers 1 and 0 respectively.

Exchange Sort - Sort an array by exchanging values at positions that are in the wrong
order, given an unsorted array as a sequence of constraints of the form a(Index,Value).

Destructive Assignment - In a declarative programming language, bound variables
cannot be updated or overwritten. However, in CHR it is possible to simulate the de-
structive (multiple) assignment of procedural and imperative programming languages
by using recursion in CHR. The original constraint with the old value is removed and
a constraint of the same type with the new value is added. For example, we can store
variable name-value pairs in the CHR constraint cel1/2 and use the CHR constraint
assign/2 to assign to a variable a new value.

Merge sort - To represent a directed edge (arc) from node A to node B, we use a
binary CHR constraint written in infix notation, A -> B. We use a chain of such arcs
to represent a sequence of values that are stored in the nodes, e.g. the sequence 0,2,5
is encoded as 0 -> 2, 2 -> 5. A one-rule CHR program performs an ordered merge
of two chains by zipping them together, provided they start with the same (smallest)
node.


mailto:daniel.gall@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frithwirth, Daniel Gall

Summer Term 2014

Assignment, #7

Production Rule Systems - OPS5

An OPS5 production rule:
(p N LHS --> RHS)
translates to the CHR generalized simpagation rule:
N @ LHS1 \ LHS2 <=> LHS3 | RHS’
where
LHS: if-clause
RHS: then-clause
LHS1: patterns of LHS for facts not modified in RHS
LHS2: patterns of LHS for facts modified in RHS

LHS3: conditions of LHS
RHS’: RHS without removal (for LHS2 facts).

Exercise 1 (Fibonacci). The OPS5 rule for the iterative Fibonacci sequence generation is given
as:
(p next-fib (limit "is <limit>)
{(fibonacci ~“index {<i> <= <1limit>}
“this-value <vi>
~last-value <v2>) <fib>}
-=> (modify <fib> “index (compute <i> + 1)
“this-value (compute <v1> + <v2>)
“last-value <v1>)
(write (crlf) fib <i> is <v1>)
)
Translate the OPS5 program to CHR by hand. Check your result with the Online CHR Trans-
lator (http://pmx.informatik.uni-ulm.de/chr/translator/).

CHR Rules with Negation as Absence

Exercise 2 (CHR with Negation). An extension of CHR deals with rules which fire if a certain
condition is negated or when a constraint does not exist in the store (i.e. negation as absence).
These rules can be expressed as:

N @ Hk \ Hr <=> G | B : (NegB, NegC).
Using an auxiliary check/1 constraint, it translates to the following CHR rules:

N1 @ Hk, Hr ==> G | check(Hk,Hr).

N2 @ NegC \ check(Hk,Hr) <=> NegB | true.

N3 @ Hk \ Hr, check(Hk,Hr) <=> G | B.
Write a rule for a translate/2 constraint that takes a list containing a negated CHR rule and
transforms it to an equivalent CHR program.

Exercise 3 (Negated Examples). The minimum program can be written with negation as
follows:

num(X) ==> min(X) : (Y<X,num(Y)).
Translate the rule to an equivalent CHR one and check with appropriate examples.

Write negated CHR rules for the transitive closure and marital status examples covered in the
lecture. Translate them to normal CHR, and test with appropriate examples.


http://pmx.informatik.uni-ulm.de/chr/translator/

Exercise 4 (Special Case of CHR with Negation). Negated CHR propagation rules whose body
consists of only CHR constraints can be considered as a special case. For their transformation,
it is not necessary to use the auxiliary check constraint.
These rules are of the form:

N @ Hk ==> G | Bc : (NegB, NegC).
This translates to the following pair of CHR rules:

Nn @ NegC \ Bc <=> NegB | true.

Np @ Hk ==> G | B.
Write a rule for a translate/2 constraint that takes a list containing a negated CHR rule and
transforms it to an equivalent CHR program.

Exercise 5 (Special Negated Examples). Rewrite the three programs of exercise 3 into the
special case form and produce their transformed CHR programs. Test the resultant programs
with appropriate examples.



Rule-based Programming
Prof. Dr. Thom Frithwirth, Daniel Gall

Summer Term 2014

Assignment, #8

Incremental Conflict Resolution in CHR

Exercise 1 (Step 1: Translation). The definition for CHR rules is extended to generalized CHR
simpagation rules (with a property P) which is given as follows:

Hk \ Hr <=> Guard | Body : P.
Hence the extended rule can be represented using a chrl/5 constraint, where Hk, Hr, Guard,
Body are lists:

chrl(Hk, Hr, Guard, Body, P)
In the lecture, a translation scheme was discussed which translates the rule into two other conflict
resolution rules by introducing a conflictset/1 constraint to gather rule bodies and then exe-
cute the chosen rule from the conflict set. Rule bodies can be represented as rule (P,Hk,Hr,Body).
Write a rule for a translate/2 constraint that performs this transformation. Test with the ex-
amples from the lecture.

Exercise 2 (Step 2: Additional Conflict Resolution Rules). Which rules must be added to the
output program for the conflict resolution?

Bonus: Modify your translator such that it adds the rules for the conflict resolution automati-
cally to the output file.

Exercise 3 (Step 3: Additional Choice Rules). For the rule choice, the choose/3 constraint
selects a particular rule from the conflict set of rules depending on the property P stated in the
initial translated CHR rule.

(1
(2
(
(

) P =bfs: selects a rule from the set to ensure the breadth first traversal of rules

) P = random: randomly selects a rule from the conflict set

) P = N,number(N): selects the rule with the highest priority (P)

) neg(C, G): negation as absence; the rule is applied if there are no CHR constraints C for
which the guard G holds

Add three rules for cases 1 to 3 to the output file, simplifying the choose/3 constraint such that
the first argument contains the list of rule terms (whose first term specifies the choice criterion),
the second argument is bound to the selected rule, and the third argument is bound to the
remaining list. (Please note that case 4 will be covered next week).

3
4

Exercise 4 (Ezample: Dijkstra). Dijkstra’s shortest path algorithm can be expressed by giving
priority to the application of the CHR rules. A lower weight is given to shorter paths, while
constructing a longer path has more weight and hence its rule would have lower priority. This
can be encoded using the following rules:

d2 @ dist(X,N) \ dist(X,M) <=> N<M | true : 1.

dn @ dist(X,N), edge(X,Y,M) ==> P is N+2 | Z is N+M, dist(Y,Z) : P.
A typical test query would be:

?7- edge(a,b,10) ,edge(a,c,2),edge(b,c,1),

edge(b,a,10) ,edge(c,a,2),edge(c,b,1),dist(a,0),fire.

Perform step 1, by encoding the rules into chrl/5 constraints. Then run the translator from
step 1 to obtain the output CHR rules, augment them to the rules from steps 2 and 3. Test
your code with appropriate queries and show the results.



Next exercise is to be submitted by e-mail to: daniel.gallQuni-ulm.de by 02.07.14 at 10:00.

Exercise 5 (Ezample: Random Dice). A dice is thrown and the result can be a 1, 2, 3, 4, 5 or
6. The result is required to be random, thus the random execution of the rules can be encoded
using the following set of CHR rules:

dice <=> write(1) : random.

dice <=> write(2) : random.

dice <=> write(3) : random.

dice <=> write(4) : random.

dice <=> write(5) : random.

dice <=> write(6) : random.
A typical test query and its results would be:

?- dice,fire.
5

?- dice,fire.
2
Perform step 1, by encoding the rules into chrl/5 constraints. Then run the translator from
step 1 to obtain the 12 output CHR rules. Create a new file, add the output 12 rules in addition
to the rules from steps 2 and 3. Test your code with appropriate queries, and show the multiple
random results.

Exercise 6 (Example: Multiple Count-ups). The following CHR program which when given a
count/1 constraint, can either display it on the console or calculate the next count. It is required
to perform a breadth-first-traversal of the rules. The CHR, code is given as following:

count (X) ==> write(X) : bfs.

count(X) <=> Y is X+1, count(Y) : bfs.
A typical test query and its results would be (but with the output numbers on separate lines):

?- count (0),count(100) ,fire.

0 100 1 101 2 102 3 103 4 104 5 105 6 106 ...

Perform step 1, by encoding the rules into chrl/5 constraints. Then run the translator from
step 1 to obtain the output CHR rules, augment them to the rules from steps 2 and 3. Test
your code with appropriate queries, and show the multiple random results.


mailto:daniel.gall@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frithwirth, Daniel Gall

Summer Term 2014

Assignment, #9

Negation as Absence

Exercise 1 (Case 4 of Step 3: Negation Choice Rule). As a continuation of Exercise#3 in
Assignment#8, it remains to handle negation as absence. In CHR, a rule which checks for the
absence of particular constraints is expressed as follows:

Headsl \ Heads2 <=> Guard | Body : neg(NH,NG).

Write a rule for the 4th case such that the choose/3 constraint when given an input list where
the rule has P = neg(NH,NG) then: if the constraints NH are present and NG holds, then it should
remove the rule with this negation and continue resolving the conflict, otherwise the rule with
negation is chosen as the rule to apply. Hence, the translation itself should be changed. Add a
rule to perform this modified translation.

Exercise 2 (Ezxample: Martial Status). A person is single or married, where single is to be the
default. This can be expressed by a negated CHR rule as follows:

person(X) ==> single(X) : neg(married(X),true).
A typical test query and its results would be:

7- married(a), person(b).
married(a) person(b) single(b)

Encode the rule into an equivalent chr/5 constraint, translate it then test the resultant program.

Exercise 3 (Example: Minimum as Negation). The minimum number amongst a multi-set of
numbers can be expressed using the rule:
num(X) ==> min(X) : neg(num(Y), Y<X).
A typical test query and its results would be:
?7- num(2), num(1), num(10).
num (10) num (1) num(2) min(1)
Encode the rule into an equivalent chr/5 constraint, translate it then test the resultant program.

Exercise 4 (Example: Graphs Closure). When finding the transitive closure of a graph, then
a negated CHR program can be given as:

e(X,Y) ==> p(X,Y) : neg(p(X,Y),true).

e(X,V), p(¥,Z2) ==> p(X,Z2) : neg(p(X,Z),true).
A typical test query and its results would be:

?- e(a,b), e(b,c), e(c,d).

e(c,d) e(b,c) e(a,b) p(a,d) p,d) pla,c) plc,d) plb,c) pla,b)
Encode the rule into an equivalent chr/5 constraint, translate it then test the resultant program.



Priority Learning

In the following exercises, we want to simulate an intelligent agent who plays the game rock,
paper, scissors. The player is confronted with several opponents with different strategies and
preferences. For instance, one player might prefer to play rock in every move. Our player should
learn the preferences of an opponent from his decisions. Therefore, we use techniques from
computational cognitive modeling to implement a priority learning in our conflict resolution
process.

Exercise 5 (Basic Model). We model the three possible moves as three conflicting CHR rules:
play <=> me(M), select_opp(0), opp(0).

where M is one of rock, paper or scissors. The constraint me represents the move of the player
and the constraint opp the move of the opponent. select_opp/1 is a Prolog predicate which
chooses one of the three possible moves for the opponent according to a certain strategy. Note
that in this model, the strategy of the opponent does not depend on the rule priority (but is
decided from outside.

Write the basic program and three select_opp predicates:

(1) Only rock is chosen by the opponent.
(2) The opponent chooses randomly between rock and paper.
(3) The opponent chooses randomly between all three possible moves.

Exercise 6 (Recognizing Successes and Failures). The intelligent agent is able to detect a
success and a failure. Write CHR rules which recognize win and defeat situations (e.g. if the
opponent chose rock and we chose scissors, we lost the round). Count the successes and failures
of a move M in correspondent success and failure constraints.

In computational cognitive modeling, production rules often have an associated wutility value
which expresses how successful a rule was in the past. This utility value can be compared with
the priorities we introduced in assignment #8. However, the priorities we have used before were
only dependent on local values or were completely static.

We translate the concept of utility values to CHR-P: The current utility value of a production
rule is assumed to be stored in a constraint u(R,P), where R is an identifier of the rule (in our
case the move) and P is the utility value (i.e. priority). We extend our basic rules from above
as follows:

u(rock,P) \ play <=> me(rock), select_opp(0), opp(0) : P.

Additionally, since the rule with the highest utility value fires, we sort the utilities in the choose
rule from assignment #8 in descending order.

Exercise 7 (Utility Adaptation). The utility value of a rule depends on its success. A popular
formula to adapt the utility of a rule r is the following:

U=20-P-C

where P represents the success probability of a rule (i.e. P = #Succiizchiﬁzdwes) and C the

costs of a rule. We assume the costs of a rule application to be 1. Extend your program such
that it updates the utilities when a success or failure is recognized.

Exercise 8 (Let’s play!). Write a Prolog predicate start which initializes all utilities, successes
and failures to 0 and starts 10 rounds of the game (by adding 10 play constraints). Test your
model for the different types of opponents.



Rule-based Programming
Prof. Dr. Thom Frithwirth, Daniel Gall

Summer Term 2014
Assignment #10

Ensuring Set-based Semantics

Exercise 1 (Rule Variants). Given any CHR simplification rule (ignoring priorities):

H, H1, H2 <=> G | B[,H1,H2].
it is possible to generate new rule variants by systematically unifying head constraints in all
possible ways:

H, H1 <=> H1 = H2, G | B[,H1].
The same unify and merge technique can be applied to simpagation and propagation rules; if
any of the heads merged was originally to be kept, then it remains kept in the variant rule even
if it was unified with a head that would be removed.

Write a rule that transforms a CHR rule written as chrl/4 constraints into all possible variants,
by trying to unify and merge all head constraints. Hint: Use disjunction in the CHR rule body
to enforce possible rule firings to obtain the various unify possibilities. You might find it useful
to encapsulate rule head constraints into head/2 constraints, where the first argument is the
actual head and the second is 1 for kept and 0 for removed constraints. A typical test query
would include a rule: chrl([p(a,X), p(Y,b)],[p(Z, W], [, [pX,Z2)]1). Test your code with
similar such appropriate queries, and show the multiple results.

Logical Algorithms (LA)

An LA rule of the form
rQ[p:]A—-C
can be translated to a CHR rule (with priorities)
r@Q@ A=Ay | C [:p].
where Ap: atoms in A, As: built-ins in A. In LA, a set-based semantics is assumed. Thus,

additional CHR rules to ensure set-based semantics might be needed.
Additionally, for each LA predicate A the following rules are added to the program:

A\ A& true.
del(A) \ del(A) < true.
del(A) \ A < true.

Exercise 2 (Minimum). The following LA program calculates the minimum:
min(X),min(Y), X <Y — del(min(Y))

Translate the program to CHR. Generate the additional rules to ensure set-based semantics.
Are the additional rules needed? Test your program for reasonable examples. What happens, if
the predicate X <Y is replaced by X < Y7

Exercise 3 (Primes). Write an LA program for the prime sieve (similar to the CHR program
presented in the lecture). Translate the LA program to CHR and compare the resulting program
to the program presented in the lecture. Test your program for queries like:

prime(2) ,prime(3) ,prime(4) ,prime(5) ,prime(6) ,prime(7).



Next exercises are to be submitted by e-mail to: daniel.gall@uni-ulm.de by 09.07.14 at 10:00.

Exercise 4 (Examples for the set-based semantics). For the following list of CHR programs,
encode the rule into an equivalent chrl/4 constraint, then produce all possible rule variants for
the set-based semantics. Examine the produced rules and justify if they are necessary, redun-
dant, non-terminating or incorrect.

(1) minimum @ min(Y) \ min(X)<=> Y=<X | true.
(2) ged @ gcd(N) \ gcd(M) <=> (O<N,N=<M) | X is M-N, gcd(X).

(3) xorl @ xor(X), xor(X) <=> xor(0).
xor2 @ xor(0), xor(l) <=> true.

(4) primes @ prime(A) \ prime(B) <=> B mod A=:=0 | true.
(5) transitive_closure @ p(A,B), p(B,C) ==> true | p(A,C).
(6) summing @ accu(X), accu(Y) <=> Z is X+Y, accu(Z).

(7) sort @ X <<< A \ X <<< B <=> A<B | A <<< B.
merge @ merge(N,A), merge(N,B) <=> A<B | M is N+1, merge(M,A), A <<< B.

(8) antisymmetry @ leq(X,Y), leq(Y,X) <=> X =Y.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

(9) le @ X le Y, X::A:_, Y::_:D ==> Y::A:D, X::A:D.
eq @ X eqV, X::A:B, Y::C:D ==> Y::A:B, X::C:D.
ne © X ne Y, X::A:A, Y::A:A <=> fail

b

(10) mult_z @ mult(X,Y,Z), X::A:B, Y::C:D ==>
M1 is AxC, M2 is AxD, M3 is B*C, M4 is Bx*D,
Z::min(min(M1,M2) ,min(M3,M4)) :max (max (M1,M2) ,max(M3,M4)) .

Exercise 5 (LA Examples). Write an LA program for the gcd and the summing rules from
exercise 4 (examples 2 and 6). Translate the program back to CHR.


mailto:daniel.gall@uni-ulm.de

