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We introduce a family of logics and associated programming languages for repre-
senting and reasoning about time. The family is conceptually simple while allowing

for different models of time. Formulas can be labeled with temporal information us-
ing annotations. In this way we avoid the proliferation of variables and quantifiers as
encountered in first order approaches. Unlike temporal logic, both qualitative and quan-

titative (metric) temporal reasoning about definite and indefinite information with time
points (instants) and time periods (temporal intervals) in different models of time are
supported.

Our temporal annotated logic can be made an instance of annotated constraint logic,
which is also presented in this paper. Given a logic in this framework, there is a sys-
tematic way to make a clausal fragment executable as a constraint logic program. We

show this for the generic case and for the specific case of temporal annotated logic. In
both cases we give an interpreter and a compiler that can be implemented in standard

constraint logic programming languages.
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1. Introduction

Our work [T. Frühwirth (1994), T. Frühwirth (1995)] aims at defining and implementing
a family of temporal logics with the following characteristics:
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- Conceptual simplicity

- Extension of first order logic

- Generalization of standard temporal logic

- Efficient execution of its clausal fragment

Our temporal logic should not deviate too much from the common approaches while
avoiding the pitfalls of ad-hoc solutions and unifying seemingly exclusive but indispens-
able features. It should support

- qualitative and quantitative temporal reasoning

- definite and indefinite temporal information

- time points (instants) and time periods (temporal intervals)

- different models of time (linear, branching or circular, discrete or continuous,
bounded or unbounded).

In this paper we are going to show how these ambitious goals can be tackled by relying
on two concepts: Annotations and constraints. While annotations allow for conceptual
simplicity, constraints enable an efficient implementation. We now present the basic prin-
ciples behind our temporal logic and the associated programming language by relating
it to other approaches.

1.1. Temporal Logics

There are two kinds of logic that have been used to express time-dependency of infor-
mation: Modal logic and first order logic. Modal logic approaches capture naturally the
relative position of formulae with respect to an implicit current time by talking about
past, present and future. For example,

born(john)→ G lives(john).†

where G is a temporal operator that makes the associated formula true for all future,
means that if John is born now, he is alive in the future (from now on).
On the other hand, first order logic (FOL) approaches naturally support absolute po-
sitions of formulae along the time line by making time explicit. Usually, the logic will be
reified, i.e. there are predicates that relate object formulas (that are terms in the logic)
to temporal entities. E.g., ”John was born in 1900” is expressed as

holds(born(john), 1900).

In an ”unreified” logic, formulas have their usual status and the temporal information
is included by adding extra arguments to the predicates and introducing additional pred-
icates. E.g.,

born(john, 1900).

† Like in logic programming, predicate symbols start with lowercase letters.
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FOL approaches suffer, however, from a proliferation of temporal variables and quan-
tifiers. E.g.,

born(john)→ ∀t(later(t, 1900)→ lives(john)).

More on temporal logic and its applications can be found in [J. K. van Benthem (1983),
A. Galton (Ed.) (1987)].

Temporal Annotated Logic. We propose a logic that lies inbetween the two ap-
proaches, while it keeps most of the advantages of both. We make time explicit but avoid
the proliferation of temporal variables and quantifiers of the first order approach. We
start from FOL and add time by ”labeling” formulas with temporal information. The
pieces of temporal information are given by temporal annotations which say at what
time(s) the formula to which they are applied is valid:

born(john) at t→ lives(john) th [t,∞].
born(john) at 1900.

where the annotations have been underlined for clarity. ”th” stands for ”throughout”.
Note that the formulas appearing in this paper are assumed to be universally closed at
the outermost scope.
Temporal annotated logic can be regarded as a modal logic, where the annotations are
seen as parameterized modal operators, e.g. born(john) (at t). Likewise, it can be seen as
reified FOL where annotated formulas correspond to binary relations between predicates
and temporal information, e.g. at(born(john), t).
Conceptually, our approach is simple. The underlying idea of devising a temporal logic
that is conveniently executable is to separate the temporal from the nontemporal aspects.
Annotations account for the special status of time in a natural way (unlike the unreified
approach) and if we drop the annotations, we are left with ordinary FOL.

1.2. Temporal Logic Programming

One of the first temporal logic programming languages was Templog, a ”temporal
Prolog” [M. Abada, Z. Manna (1989)]. Templog implements a fragment of first order
temporal logic (tense logic). Our example written in Templog is

2lives(john) <= born(john).†

Templog is implemented using a special ”temporal SLD-resolution” strategy. This cor-
responds to a ”direct” implementation approach which has the disadvantage that we
have to start coding almost from scratch.

With the advent of constraints in logic programming (CLP)‡ [P. van Hentenryck (1991),

† In logic programs, variable names start with uppercase letters. Also, later read ”:-” as ”←”, ”,” as
conjunction and ”;” as disjunction.
‡ In acronyms ending in ”P”, the letter will stand either for ”program(s)” or for ”programming” as

required by the context.
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T. Frühwirth et al. (1992), J. Jaffar, M. J. Maher (1994)], the implementation of tempo-
ral logic by mapping into constraint languages became possible. The idea is to translate
the temporal logic into FOL by introducing temporal parameters as well as special rela-
tions and functions describing the structure of time.
As argued in [A. M. Frisch, R. B. Scherl (1991)], these special functions and relations
can be regarded as constraints and the associated axioms as constraint theory. The
advantage of this view is that there is a clear separation of the temporal aspects of the
logic from the first order one: For the constraint theory, a special algorithm is used, while
for the FOL part, standard deduction (e.g. SLD-resolution) suffices.
For example, the above Templog clause is expressed as

lives(john,S) :- S>=T, born(john,T).

where S and T stand for time points.
In [C. Brzoska (1993)], a powerful temporal logic (a tense logic extended by parame-
terized temporal operators) is translated into first order constraint logic. The resulting
constraint theory is rather complex as it involves quantified variables and implication,
whose treatment goes beyond standard CLP implementations. For example, to find out
who (also) lives since John was born, one writes:

:- T=<S, current date(S), born(john,T),

for all R ((T=<R,R=<S) implies lives(X,R)).†

Temporal Annotated Constraint Logic Programming (TACLP). The exam-
ple in our language is simply

:- current date(S), born(john) at T, lives(X) th [T,S].

Our temporal language, TACLP, is an instance of a more general framework, that of
annotated constraint logic programs (ACLP). One advantage of ACLP is that they can
be efficiently implemented by translation into existing CLP languages. ACLP is inspired
by generalized annotated logic programs [M. Kifer, V.S. Subrahmanian (1992)].
In previous work [T. Frühwirth (1995), T. Frühwirth (1994)] the expressive power of
TACLP was limited by the fact that only atoms could be annotated. In this paper we sim-
plify this case and we investigate how non-atomic formulas can be executed. We present
an interpreter for TACLP that is simpler than the one proposed in [T. Frühwirth (1994)]
and for the first time show how to compile ACLP and TACLP.
Other Approaches. In TACLP and the above-mentioned languages predicates are
time-dependent (flexible, extensional) and functions as well as variables are time–inde-
pendent (rigid, intensional).
For completeness we mention another line of work in temporal programming languages
with a rather different flavor. In languages like TEMPURA [B. Moszkowski (1986)],
METATEM [M. Fisher, R. Owens (1992)] and TOKIO [S. Kono (1995)] variables are
time-dependent. Execution in these languages tries to generate a model for the temporal
formula at hand by stepping trough a sequence of successive states (valid throughout

† The actual syntax in [C. Brzoska (1993)] is somewhat different.
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temporal intervals). Computation starts from what is known to hold in the initial state
and proceeds in a bottom-up, forward-chaining way. This approach is advantageous for
simulation of time-dependent processes and reactive systems.
In temporal constraint logic programming languages, one proceeds in a goal-driven,
top-down, backward-chaining way along the causal relationships between time-dependent
entities using deduction. There is no need to follow a temporal order or to restrict oneself
to computations within single states. This approach is advantageous for reasoning and
inquiring about time-dependent information.
For a survey of temporal and modal logic programming consider the overview paper of
M. A. Orgun and W. Ma [M. A. Orgun, W. Ma (1994)], for recent trends the proceedings
[M. Fisher, R. Owens (Eds.) (1995)].

1.3. Overview of the paper

Amurder mystery example will be the frame for our paper.We will start with it (section
2) and end with it (section 6). In the meantime we will acquire the means to solve it
by developing our temporal logic and their implementation. In the end, the murder case
illustrates the diverse features of our temporal annotated logic. We will gradually build up
our temporal logic starting from simple principles and notions (section 3). Our framework
will not make any presuppositions on the ontology of time or denotation of formulas. We
will specify the ontology of our choice by constraining the temporal annotations of the
logic accordingly.
Temporal annotated logic as it is axiomatized is hard to implement. However, we can
make our logic an instance of annotated constraint logic, a generalization of generalized
annotated programs [M. Kifer, V.S. Subrahmanian (1992), S. M. Leach, J. J. Lu (1994)].
Their advantage is that their clausal fragment can be efficiently implemented in standard
constraint logic programming languages. ”Making an instance” means that we have to
move to another axiomatization of our temporal logic in terms of annotation constraints.
In order to keep the paper comprehensible and self-contained we have to introduce
annotated constraint logics next, in section 4. This section does not relate to temporal
reasoning a priori, but it introduces the framework that will allow us to achieve much of
our ambitious goals in temporal logic programming in the subsequent section 5. So this is
also a paper about a powerful class of logics that can be made executable in a straightfor-
ward way. We show how their clausal fragment can be interpreted in standard constraint
logic programming languages and how to compile annotations and the associated special
inference rules away.
In section 5, we make temporal annotated logic an instance of this framework by
providing the appropriate temporal constraint theory for annotations. In this way we are
able to derive and specialize an interpreter and a compiler for temporal annotations from
the one for annotated constraint logic.
At the end of each section we discuss related work.
Remark. The reader should keep in mind that at first section 3 and section 4 seem
not much related. It is only in the next section, 5, that we put together what we have
learned. To ease this process, section 5 shares the structure of sections 3 and 4. We could
have started our paper with section 5, but then it would have been not clear how we
came up with our family of temporal logics and why we can implement it efficiently in
a straightforward way. By the way, a user of our temporal logic does not need to know
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There is a workshop at the Plaza hotel.
(1) In the afternoon session, after the coffee break (3:00 - 3:25pm), there were four more talks, 25
minutes each - time periods.
Dr. Maringer gave the 3rd talk. The last talk was to be given by Prof. Lepov. But there was a
murder.
(2) Prof. Lepov was found dead in his hotel room at 5:35pm - time point.
(3) The doctor said he was dead for one to one and a half hours - duration and indefinite infor-
mation.
There are two suspects, Dr. Kosta and Dr. Maringer. They have alibis - relates time periods.
(4) Dr. Kosta took the last shuttle to the airport possible to reach the 5:10pm plane - time point.
(5) The shuttle from the hotel leaves every half hour between noon and 11pm - recurrent (peri-
odic) data.
(6) It takes at least 50 minutes to get to the airport - duration and indefinite information.
(7) During the 2nd talk Dr. Maringer realized that he had forgotten to copy his 30 slides - relates
time periods.
So he picked up the slides from his hotel room and copied them. It takes 5 minutes to get to the
room, another 5 minutes to get to the copy room from there, and 5 more minutes to get back to
the lecture hall - durations.
A copy takes half a minute - repeated durations.
(8) Who murdered Prof. Lepov ?

Figure 1. The Workshop Murder Mystery.

about its relationship to annotated constraint logic, but can just rely on the didactic
presentation in section 3.

2. The Workshop Murder Mystery

We illustrate the expressiveness and conceptual simplicity of our approach with an
example from [T. Frühwirth (1994)]. It involves reasoning about qualitative and quanti-
tative (metric), complete and partial temporal information involving time periods, their
duration, and time points. We will be able to solve the workshop murder mystery (see
figure 1) at the end of this paper in section 6.

3. Temporal Annotated Logic

Our temporal logic is basically a FOL where formulas can (but must not) be labeled
with temporal information. There will be three kinds of temporal annotations, all involv-
ing (sets of) time points. We then give some useful theorems characterizing the temporal
annotations. At this point our logic does not make any presuppositions on the ontology of
time or denotation of formulas. We can specify the ontology of choice by constraining the
temporal annotations of the logic accordingly. We do so by introducing a partial order
between time points. The temporal order allows for a notion of time periods (temporal
intervals). Using time periods, we show how standard temporal logic can be embedded
in our logic. At the end of the section we discuss related work.

3.1. Temporal Set Annotations

We start from standard FOL consisting of terms built from variables and function
symbols with associated arities (including constants) applied to terms, atoms built from
predicate symbols with associated arities (including propositions) applied to terms, and
formulas built from atoms with the usual logical connectives. The axioms of FOL hold.
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Definition 3.1. (at) Let A,B be first order formulas and t be a time point†. The an-
notated formula A at t means that the formula A is true at time point t. In order to be
able to deal with non-atomic formulas, we require that the at annotation distributes over
all logical connectives

(¬at) ¬(A at t)⇔ (¬A) at t
(∧at) (A ∧B) at t⇔ (A at t ∧B at t)

As needed, annotated formulas may represent events, states, properties, processes,
actions and so on.

Example 3.1. (Mystery) In our workshop murder mystery, we can now express when
Prof. Lepov was found dead and when Dr. Kosta boarded his plane.

found_dead(’Lepov’) at 5:35. % hint (2)

board_plane(’Kosta’) at 5:10. % hint (4)

We use discrete time of hours and minutes. In terms of implementation, we may think
of ”5:35” (5 hours and 35 minutes) as an abbreviation for ”5*60+35”.

Different from the standard first order approach to temporal logic, we will use anno-
tations involving sets to capture quantified temporal variables. The idea is to see that
quantification over a temporal variable intentionally defines a (possibly infinite) set of
time points. The set approach itself is not new, already [D. McDermot (1982)] uses a
similar construction.

(ZF ) We therefore add the Zermelo-Fränkel axioms for set theory to our axioms.

We relate a formula to many time points by introducing two new temporal annotations,
th(roughout) and in.

Definition 3.2. (th) Let I be a set of time points. If a formula A holds throughout,
i.e. at every time point in a set I, then we write A th I. The first order definition of th
annotated formulas is:

(th) A th I ⇔ ∀t (t ∈ I → A at t)

Example 3.2. (Mystery, contd.) The suspects have an alibi if they were on the
shuttle, copying or giving a talk. Dr. Maringer was copying during the second talk.

alibi(X) th I :- on_shuttle(X) th I ; copying(X) th I ; talk(_,X,_) th I.

copying(’Maringer’) th I :- talk(2,Speaker,Title) th I. % hint (7)

† Note that we can use variables for sets of time points.

† We may think of a time point as denoting an indivisible, durationless instant or moment of time.
† The symbol ” ” stands for a ”anonymous” variable in CLP, one that is not referenced anywhere and

can be ignored.
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Definition 3.3. (in) If a formula A holds at some time point(s) - but we do not know
exactly when - in a set I we write A in I. This temporal annotation accounts for indefi-
nite temporal information.

(in) A in I ⇔ ∃t (t ∈ I ∧A at t)

Example 3.3. (Mystery, contd.) Somebody is not the murderer if he has an alibi
throughout the time the murder could have happened.

not_murder(X,Y) :- murdered(Y) in I, alibi(X) th I. % Whodunnit? (8)

We may have slightly stronger definitions for temporal annotations that require sets to
be nonempty or not to be singletons. We will later see that these variations characterize
the relationship between time points and time periods.

3.2. Theorems about Temporal Annotations

The following theorems are helpful for familiarizing oneself with our temporal anno-
tated logic. Many of these theorems can be found as axioms of temporal logics suggested
in the literature (see related work). Moreover, we will use some of the theorems later in
section 5 to derive a constraint theory and an interpreter for our temporal annotated
logic.
Let t be a time point, I and J be sets of time points, A and B be formulas.
Atoms. These basic theorems appeared first in [T. Frühwirth (1995)]. If empty sets
are allowed, we can express the basic propositions true and false:

({}th) A th {} ⇔ true
({}in) A in {} ⇔ false.

If sets containing a single time point are allowed, the three temporal annotations co-
incide:

(1th) A at t⇔ A th {t}
(1in) A at t⇔ A in {t}

If A holds throughout a set, it also holds throughout all subsets of the set. Analogously,
if A holds at some time in a set, it also holds at some time in all supersets:

(⊆ th) A th I ⇔ ∀J (J ⊆ I → A th J)
(⊆ in) A in I ⇔ ∀J (J ⊇ I → A in J)

Negation. The annotations in and th are dual with regard to classical negation:

(¬th) (¬A th I)⇔ ¬(A in I)
(¬in) (¬A in I)⇔ ¬(A th I)

The proofs that these logical equalities follow from the first order definitions of the
temporal annotations are straightforward and analogous to those in [A. Galton (1990)]
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(also see subsection 3.5 on related work).

Conjunction and Disjunction. The th annotation distributes over conjunction and
the in annotation over disjunction:

(∧th) (A ∧B) th I ⇔ (A th I ∧B th I)
(∨in) (A ∨B) in I ⇔ (A in I ∨B in I)

The in annotation does not distribute over conjunction, the th annotation does not
distribute over disjunction:

(∧in) (A ∧B) in I ⇒ (A in I ∧B in I)
(∨th) (A ∨B) th I ⇐ (A th I ∨B th I)

Annotations for the same formula can be merged sometimes:

(∪in) A in I ∪ J ⇔ (A in I ∨A in J)
(∪th) A th I ∪ J ⇔ (A th I ∧A th J)

The symmetric cases involving ∩ are only implications that are too weak to be inter-
esting. The proofs of these theorems can be found in the appendix.

Example 3.4. (th) The properties of the th annotation are illustrated:

monarchy th I ← king(Name) th I.

means that there is a monarchy when there is a king.

conflict th I ← king(Name1 ) th I ∧ king(Name2 ) th I ∧Name1 6= Name2.

means that there is a conflict while there are two kings. Given the two annotated atoms

king(hubert) th {1717, ..., 1789}.
king(kurt) th {1787, ..., 1812}.

we can derive that

monarchy th {1717, ..., 1812}. by theorem (∪th)
conflict th {1787, 1788, 1789}. by theorem (⊆ th)

3.3. Temporal Order and Time Periods

We now consider an instance of temporal annotated logic which is more structured
(time points can be ordered).With the order, time periods can be introduced as restricted
sets of time points.
Let the time points be partially ordered by a relation ” ≤ ”, i.e. r ≤ t means that r
is earlier than or the same as t. Let lb (ub) be the lower bound (upper bound) of the
temporal time line or −∞ (∞) in case of an unbounded temporal model. We require that
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every temporal variable, say t, is constrained to be within these bounds, lb ≤ t ≤ ub. Let
0 (zero) denote the current time.
Depending on the order chosen, time may be linear (one future) or branching (many
possible futures), or circular (infinitely branching), discrete or continuous (dense), bounded
or unbounded on either end (finitely or infinitely stretching into past or future).

Time periods† are stretches of time that have a duration. We can model time periods
by the set of all time points that fall into the time period. Clearly, these sets are convex,
i.e. for any two time points in the set, all the time points inbetween are also in the set.
In practice, convex sets are often represented by intervals, since intervals provide a
compact, finite representation of these possibly infinite sets. We write the interval [r, s]
for the convex nonempty set {t | r ≤ t ≤ s} if r ≤ s. Intervals may be closed or open
on either side. In an unbounded time model, −∞ (∞) must not occur as right (left)
end-point of a nonempty interval. The empty interval is represented by [ub, lb].

Example 3.5. (Mystery, contd.) We can write down the time table of the workshop
according to hint (1).

coffee_break th [3:00,3:25]. % hint (1)

talk(1,’Hunon’,’Algebraic Semantics...’) th [3:25,3:50].

...

As intervals represent sets, we can adopt from set theory relations (like equality and
inclusion) and operations (like union and intersection) on intervals. These relations and
operations can be efficiently implemented by comparison of and computation on the end-
points of the intervals. However, intervals are not closed under union and complement.
For dealing with time periods, the complement is not needed and for union it suffices
if it is only defined when the result is an interval (i.e. another time period). Note that
non-convex sets appearing in temporal annotations can be split into convex subsets using
the theorems (∪in) and (∪th).

Example 3.6. (Indefiniteness) Often, time periods are defined by their end-points:

lives th [T1, T2]← born at T1, died at T2.

We can deal with indefiniteness about birth and death in the following way:

lives th [T1, T2)← born in [T0, T1] ∧ died in [T2, T3].
lives in I ← born in I ∨ died in I.

Together with

born at 1959.
died in [1996, 2100].

† We use (time) period instead of (temporal) interval throughout, to avoid confusion with purely
mathematical notion of interval.
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Table 1. Temporal operators - in modal, annotated and first order logic
sometime in the past: P A ⇔ A in [−∞, 0) ⇔ ∃r (r < 0) ∧A at r)
always in the past: H A ⇔ A th [−∞,0) ⇔ ∀r (r < 0→ A at r)
sometime in the future: F A ⇔ A in (0,∞] ⇔ ∃r (0 < r ∧A at r)
always in the future: G A ⇔ A th (0,∞] ⇔ ∀r (0 < r → A at r)
previous: •A ⇔ A at − 1 ⇔ A at − 1
next: ◦A ⇔ A at + 1 ⇔ A at + 1
”1” is the time interval of unit length.

we can derive definite and indefinite information

lives th [1959, 1996). by theorem (1in) for born
lives in [1996, 2100]. by theorems (1in) for born and (∨in)

3.4. Relationship to Temporal Logic

In our temporal annotated logic with order we can embed the standard temporal logic
resulting from introducing two new connectives, ”since” (S) and ”until” (U), to FOL.
Time is strictly linear.

Definition 3.4. (Since, Until) The definition of S and U in FOL is:

since : A S B ⇔ ∃r (r < 0 ∧A at r ∧ ∀s (r < s < 0→ B at s))
until : A U B ⇔ ∃r (0 < r ∧A at r ∧ ∀s (0 < s < r → B at s))

where A and B are formulas and r, s and t are variables denoting time points.

The common temporal operators of tense logic can be defined in terms of the basic
connectives S and U (table 1). When we embed tense logic in our temporal annotated
logic (see also [T. Frühwirth (1995)]), we avoid the limited expressiveness of the modal
approach (e.g. hard to talk about absolute time) and the proliferation of temporal vari-
ables, explicit quantification and complex constraints of the FOL approach. From table
1 it is also obvious that temporal annotated logic is really ”between” the modal logic
and FOL approach. Of course, S and U can also be defined in temporal annotated logic:

since: A S B ⇔ ∃r (A in [r, 0) ∧B th (r, 0) )
until: A U B ⇔ ∃r (A in (0, r] ∧ B th (0, r) )

Note, however, that some nested temporal operators cannot be translated into temporal
annotated logic without nesting annotations themselves and that we do not deal with
nested annotations in this paper.

3.5. Related Work

In the literature, typically only nonempty intervals are considered as time periods.
Moreover, in dense, linear time approaches, there are usually no singleton intervals. This
implies that that each time period always has a proper sub-period.We call such restricted
time periods ”proper”. For proper time periods the theorems (1) and ({}) are dropped
and (⊆) applies to proper infinite subsets only.
Allen only considers time periods and no time points [J. F. Allen (1984)]. His axioms
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imply dense, linear time and proper time periods. His predicate holds(P, I) (where P is
a formula denoting a property) is equivalent to the annotated formula P th I. Hence all
his axioms and theorems about holds correspond to theorems of our temporal annotated
logic. As advocated in [A. Galton (1990)], and different from [J. F. Allen (1984)], we use
classical negation.We have no correspondence to Allens occur predicate for events (which
has been shown to prevent certain intuitive conclusions in [A. Galton (Ed.) (1987)]).
Allens predicate occurring(P, I) (where P is a formula denoting a process) corresponds
to the annotated formula P in I.
Our temporal annotations also correspond to some of the predicates proposed in
[A. Galton (1990)], which is a critical examination of Allens work. Galton provides for
both time points and proper time periods. In particular, the predicate holds-in(A,I) can
be mapped into A in I, holds-on(A,I) into A th I, and holds-at(A,t) into A at t, where
A is restricted to be an atomic formula.

4. Annotated Constraint Logic

We introduce the general framework of annotated constraint logic. Our logic is basically
standard FOL extended with constraints and annotations. There is a minimal constraint
theory that axiomatizes lattice operations for annotations. For annotated formulas, spe-
cial inference rules apply. Our definitions remove most of the restrictions on annota-
tions in generalized annotated programs (GAP) [M. Kifer, V.S. Subrahmanian (1992)]
and in annotated logic programs [S. M. Leach, J. J. Lu (1994)]. The flavor is also dif-
ferent: While in GAP annotations are truth values, we consider annotations as modal
operators.
We show how a clausal fragment of our logic can be executed. The inference rules
of annotated constraint logic are implemented by a generic interpreter that runs in
any CLP language that can deal with the lattice constraints. Unlike the approach of
[S. M. Leach, J. J. Lu (1994)], this results in a sound declarative implementation. Then
we show how to compile annotated programs into standard CLP. Our compilation is
computationally more feasible than the so-called ”reductants” approach of M. Kifer and
V.S. Subrahmanian. Related work is discussed in more detail at the end of this section.

4.1. Logics with Constraints and Annotations

Definition 4.1. A first order constraint logic is a FOL with a distinguished class of
predicates called relational constraints and a distinguished class of interpreted functions
called functional constraints. A constraint theory is the set of all sentences involving only
relational and functional constraints. Equality (=) as well as true and false are relational
constraints.

Next we add annotations to the constraint logic.

Definition 4.2. There is a distinguished class of terms called annotations. The class of
annotations forms an upper semilattice (every nonempty finite subset has a least upper
bound). The partial ordering ⊑ is a relational constraint. The least upper bound operator
⊔ is a functional constraint.



Temporal Annotated Constraint Logic Programming 13

The semilattice needs not be complete. If it exists, the maximal (resp. minimal) element
of the lattice is denoted by top, ⊤, (resp. bottom, ⊥).

Definition 4.3. An (first order) annotated constraint logic is a first order constraint
logic where formulas can be labeled with an annotation. We write the annotation imme-
diately after the formula it labels.

Unlike [M. Kifer, V.S. Subrahmanian (1992)] and [S. M. Leach, J. J. Lu (1994)], any
formula can be annotated. Moreover we do not require the functions that occur in anno-
tations to be total continuous or ”effectively computable”.

Annotated constraint logic includes a minimal constraint theory for the lattice opera-
tions on annotations and a minimal set of inference rules for annotated formulas.

4.1.1. Constraint Theory

The lattice operations ⊑ and ⊔ can be axiomatized by a constraint theory.

Definition 4.4. (Lattice Order)

(⊑Reflexivity) α ⊑ α
(⊑Anti-Symmetry) α ⊑ β ∧ β ⊑ α↔ α = β
(⊑Transitivity) α ⊑ β ∧ β ⊑ γ → α ⊑ γ

If they exist,

(⊑Bottom) ⊥ ⊑ α
(⊑Top) α ⊑ ⊤

where α, β, γ are annotations.

Definition 4.5. (Least Upper Bound) The definition of the least upper bound ⊔ is
in terms of ⊑:

(⊔Def) α ⊑ (α ⊔ β) ∧ β ⊑ (α ⊔ β) ∧ ∀γ(α ⊑ γ ∧ β ⊑ γ → (α ⊔ β) ⊑ γ)

The definition of ⊔ is not really constructive. It helps to keep these theorems in mind:

(⊔Idempotency) α ⊔ α = α
(⊔Commutativity) α ⊔ β = β ⊔ α
(⊔Associativity) α ⊔ (β ⊔ γ) = (α ⊔ β) ⊔ γ

If they exist,

(⊔Bottom) ⊥ ⊔ α = α
(⊔Top) ⊤ ⊔ α = ⊤

Example 4.1. (Certainty) The lattice may be taken from real closed fields, with the
set of the real numbers between 0 and 1 with the usual ordering ≤, and where the upper
bound operator is the maximum function, maximal element 1, minimal element 0. The
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functional constraints are max and min as well as + and −, and relational constraints
are =,≤ and <. Infix notation may be used for relational constraints (e.g. X ≤ Y ) and
functional constraints (e.g. −X + Y ). We will use this lattice to model certainty.

4.1.2. Inference Rules

In addition to Modus Ponens

(Modus Ponens)
B , (B → A)

A

that applies to formulas A and B be they annotated or not, we add two finitary inference
rules to our constraint logic which utilize the lattice structure of the annotations:

(⊑)
A α , β ⊑ α

A β
(⊔)

A α , A β

A (α ⊔ β)

The (⊑) rule says that if a formula holds with some annotation, then it also holds with
all annotations that are smaller according to the lattice. The (⊔) rule says that if a formula
holds with some annotation and the same formula holds with another annotation, then
the formula also holds with the least upper bound of the annotations. This upward closure
of annotations means that there is usually a single annotation that exactly represents all

the annotations for which a formula holds†.

Example 4.2. (Certainty, contd.) Consider formulas with numeric annotations rep-
resenting degrees of certainty

rain : 0.9↔ grass wet : 0.8.
rain : V ↔ clouds : V.
grass wet : 1.0.
clouds : 0.5.

allow us to derive that it is likely to rain

rain :max(0.9, 0.5).

Variant 1. We can strengthen the (⊔) inference rule to an equivalence because of the
(⊑) inference rule.

Proof. Obvious, since applying rule (⊑) to the conclusion A (α ⊔ β) of rule (⊔) allows
us to derive the premises. 2

Variant 2. The two inference rules for annotations can be merged into one inference
rule:

(⊑ ⊔)
A α , A β , γ ⊑ α ⊔ β

A γ

† Problems may arise if we take the closure of an infinite number of annotations - this issue is discussed
at length in [M. Kifer, V.S. Subrahmanian (1992)].
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Proof. This rule is a special case of the two inference rules produced by applying (⊑)
to the conclusion of (⊔). On the other hand rule (⊑ ⊔) is as least as general, since taking
α = β results in rule (⊑) and taking γ = α ⊔ β results in rule (⊔). 2

Variant 3. The three inference rules can be even merged into a single inference rule
for annotated formulas provided a minimal element ⊥ exists in the lattice and A⊥ is
always true:

(A−Resolution)
A α , B , (B → A β), γ ⊑ (α ⊔ β)

A γ

For formulas without annotations, we have to keep the (Modus Ponens). We will use this
inference rule for implementation.

Proof. This rule is on one hand obtained by applying rule (⊑ ⊔) to the conclusion of
(Modus Ponens), and on the other hand taking α = ⊥ and β = γ results in (Modus
Ponens) and taking B = Aβ results in the inference rule (⊑ ⊔). 2

4.1.3. Axioms

The axioms that define the interplay of the logical connectives and the annotations
come with the specific instance of the framework.

Example 4.3. (Certainty, contd.) We may have the following law:

(A ∧B) min(α, β)⇔ A α ∧B β.

4.2. Interpreter

Our generic interpreter implements the annotation inference rules for a clausal frag-
ment of annotated constraint logic in any CLP language that can deal with the lattice
constraints at hand.

Definition 4.6. (ACLP) An ACLP is a finite set of ACLP clauses. An ACLP clause
is one of:

A← C1 ∧ . . . ∧ Cn ∧B1 ∧ . . . ∧Bm (n,m ≥ 0)
A α← C1 ∧ . . . ∧ Cn ∧B1 ∧ . . . ∧Bm (n,m ≥ 0)

where A is an atom (not a constraint), the Cj’s are the relational constraints, the Bi’s are
arbitrary formulas built from the connectives ¬, ∧ and ∨. α is an annotation. If the head
A is annotated, the clause is called annotated. Any Bi or any subformulas of it may be
annotated or not. If a formula is annotated, its subformulas may not be annotated since
we dissallow nested annotations. The conclusion of the implication is called the head of
the clause and the premise the body of the clause. If n = m = 0, then the body is empty
which is the same as being ”true”.

The important restriction of ACLP clauses is that their heads have to be atoms. Even
though arbitrary formulas may appear in the body, negation and disjunction are usually
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not complete in implementations. Together with the head restriction this enables efficient
execution at the expense of expressiveness and completeness.
Logic programming languages are well suited for writing interpreters as they can treat
programs as data [L. Sterling, E. Shapiro (1994)]. The object program is reified, i.e. the
predicates are represented by functions in the interpreter. The clauses of the standard
interpreter are part of the Prolog folklore. They handle relational constraints, negation,
conjunction and disjunction.
The unary predicate prove(A) is true if and only if the formula A is true at the object
level. ACLP clauses of the object program, say A← B, where B is a formula, are repre-
sented at the meta level as the binary predicate clause(A,B).

prove(A)← constraint(A) ∧A.
prove(¬A)← ¬prove(A).
prove(A ∧B)← prove(A)∧ prove(B).
prove(A ∨B)← prove(A)∨ prove(B).

Note that the formulas A and B may be constraints, or be annotated or not. Further
note that according to the interpreter clause, ¬A is proven if A cannot be proven. This
kind of negation usually used in CLP languages is termed negation as failure. It is only
sound if no variable of the formula A is further constrained during the execution inside
the negation. Furthermore, the disjunction used in CLP means to prove either A or B at
a time. These limitations will show up again when implementing TACLP as an instance
of this interpreter.

4.2.1. Inference Rules

The most important clause of the standard interpreter implements (Modus Ponens)
for non-annotated clauses:

(Modus Ponens) prove(A)← non annotated(A) ∧ clause(A,B) ∧ prove(B).

We next make sure that A⊥ is always true:

(Bottom) prove(A ⊥).

The annotation inference rule (A-Resolution) can be put into clausal form easily.

prove(A γ)← γ ⊑ (α ⊔ β) ∧ clause(A α,B) ∧ prove(B) ∧ prove(A β).

The recursive call prove(A β) may produce an annotation β equal to α and thus cause
nontermination. We can avoid this by making sure that β is never the same as α. More-
over, if it is greater, we could have produced β in the first place instead of the smaller
α. In this way, many nonterminating and redundant computations are avoided.

(A-Resolution)
prove(A γ)← γ ⊑ (α ⊔ β) ∧ clause(A α,B) ∧ prove(B) ∧ ¬(α ⊑ β) ∧ prove(A β).
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For more complex improvements see also the interpreter in [T. Frühwirth (1994)] which
does not rely on the existence of a minimal annotation ⊥.
Instances of ACLP can further specialize the interpreter clauses that explicitly deal
with annotations. This is important especially for clause (A-Resolution), because the
recursion can be regarded as a potential efficiency ”bottleneck” of the implementation.

Example 4.4. (Certainty, contd.) The interpreter clause (A-Resolution) special-
ized for certainty is

prove(A : γ)← γ ≤ max(α, β)∧ clause(A : α,B) ∧ prove(B)∧¬(α ≤ β)∧ prove(A : β).

The recursion can even be simplified away, since the maximum of two number is on of
the two numbers and since max(α, β) always results in α if ¬(α ≤ β):

prove(A : γ)← γ ≤ α ∧ clause(A : α,B) ∧ prove(B).

Without recursion, there is no need for the interpreter clause (Bottom) either.

4.2.2. Axioms

Finally we add additional interpreter clauses for the additional axioms of the annotated
logic at hand. This is straightforward if the axioms and theorems are ACLP clauses.

Example 4.5. (Certainty, contd.) We would add:

prove((A ∧B) min(α, β))← prove(A α) ∧ prove(B β).

We will see specialization and additional clauses when implementing TACLP.

4.3. Compiler

We can implement ACLP by translation into CLP. We define a compilation function
comp that translates an annotated formula into its CLP form.
The essential change is that annotated atoms are ”unreified”

comp(p(t1, . . . , tn) α) −→ p(t1, . . . , tn, α)

while non-annotated atoms remain unchanged

comp(p(t1, . . . , tn)) −→ p(t1, . . . , tn)

We can basically can read off the other rules of the translation function comp either
from the interpreter by looking at its clauses or directly from the axioms of the instance
of annotated constraint logic at hand.
The standard clauses of the interpreter result in translation rules that push comp in-
wards.

comp(A) −→ A if A is a constraint
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comp(¬A) −→ ¬comp(A)
comp(A ∧ B) −→ comp(A)∧ comp(B)
comp(A ∨ B) −→ comp(A)∨ comp(B)

4.3.1. Inference Rules

For each annotated predicate symbol p with arity n in the program we add the clause
(with empty body) resulting from

(Bottom) comp(p(X1, ...Xn) ⊥)

where the Xi are distinct variables.
Either the interpreter clauses containing clause or the special inference rules themselves
tell us how to translate the program clauses as a whole:

(Modus Ponens) comp(A)← comp(B)

for each clause A← B where A is not annotated.

(A-Resolution) comp(A γ)← γ ⊑ (α ⊔ β) ∧ comp(B) ∧ ¬(α ⊑ β) ∧ comp(A β)

for each clause Aα← B.
Summarizing, the translation proceeds clause-wise. What comp does is reifying anno-
tated atoms, adding the Bottom clause for each annotated predicate, and adding special
constraints to clauses for annotated predicates. Formulas without annotations are left un-
changed. Note that the translation from ACLP to CLP can at most double the number
of clauses.

Example 4.6. (Certainty, contd.) Taking the optimization of the interpreter into
account, the result of compilation into CLP is:

rain(R)← R ≤ 0.9 ∧ grass wet(0.8).
rain(R)← R ≤ V ∧ clouds(V ).
grass wet(G)← G ≤ 1.0.
clouds(C)← C ≤ 0.5.

4.3.2. Axioms

In a similar way, the translation rules for additional axioms and theorems are produced
either directly or from the interpreter.

Example 4.7. (Certainty, contd.) We would obtain

comp((A ∧B) min(α, β)) −→ comp(A α) ∧ comp(B β).
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4.4. Related Work

In [M. Kifer, V.S. Subrahmanian (1992)], additional clauses are derived from existing
clauses, the so-called ”reductants”, to implement the GAP language. While reductants
achieve the same as our closure clause, they result in a combinatorial explosion of the
number of clauses in the program. Kifer and Subrahmanian write ”The need to use
reductants ... is another major obstacle [for implementation]. ... one my generate an
infinite number of them out of a finite set of program clauses”.
Recently, ”ca-resolution” for annotated logic programs was proposed and implemented
in C [S. M. Leach, J. J. Lu (1994)]. The idea is to compute dynamically and incremen-
tally the reduction (resulting in the reductants in [M. Kifer, V.S. Subrahmanian (1992)])
by collecting partial answers. Operationally this is similar to our approach which relies
on recursion to collect the partial answers [J. J. Lu, T. Frühwirth (1994)]. However, in
[S. M. Leach, J. J. Lu (1994)] the class of programs considered is smaller and the inter-
mediate stages of a reduction are not sound with respect to the standard CLP semantics.

5. Temporal Annotated Constraint Logic Programming

In this section we make temporal annotated logic (section 3) an instance of annotated
constraint logic (section 4). Through this embedding, a clausal fragment of our temporal
logic can be executed efficiently in a standard CLP language. The results of this chapter
are summarized in tables 2 and 3.

5.1. Constraint Theory: Temporal Set Annotations

The embedding requires that the temporal annotation theorems (subsection 3.2) have
to be consequences of the inference rules for annotated constraint logic (subsection 4.1.2)
using an appropriate specialization of the constraint theory for the lattice operations
(subsection 4.1.2). In other words, we want to reflect our theorems into axioms of the
constraint theory (justified by the annotation inference rules), where reasoning is just
performed on annotations and ergo easier.
The temporal set constraint theory includes the standard lattice axioms of the generic
constraint theory (subsection 4.1.1) and the set theory axioms (ZF ) of temporal an-
notated logic (subsection 3.1). The constraint theory for temporal set annotations is
specialized by further axioms that we will derive now.
Lattice Order. From the annotation inference rule (⊑) (subsection 4.1.2) we imme-
diately obtain:

β ⊑ α ⇒ (A α ⇒ A β)

To push temporal theorems of the form (A α ⇒ A β) into the constraint ⊑ we will
try to use (A α ⇒ A β) as a ”definition” for ⊑.
The theorems ({}), (1) and (⊆) (subsection 3.2) induce an equivalence class and the
partial order for temporal annotations. The result is the following axiomatization:
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(th⊥) th {} = ⊥
(in⊤) in {} = ⊤
(atth) at t = th {t}
(atin) at t = in {t}
(th ⊑) th I ⊑ th J ⇔ I ⊆ J
(in ⊑) in I ⊑ in J ⇔ J ⊆ I

Note that at annotations are incomparable. It is instructive to arrange the axioms in
the following chain (assuming I ⊇ J ⊇ {t}):

⊥ = th {} ⊑ in I ⊑ in J ⊑ in {t} = at t = th {t} ⊑ th J ⊑ th I ⊑ in {} = ⊤

Least upper bound. A useful theorem about ⊔ can be derived using its general def-
inition (⊔Def) (subsection 4.1.1) and the above axioms (see also the temporal theorem
(∪th))

(th⊔) th I ⊔ th J = th (I ∪ J)

The dual theorem in I ⊔ in J = in (I ∩ J) can also be derived in this way. However,
it contradicts the first order definition of the in annotation in temporal annotated logic
when used in the inference rule (⊔).

Example 5.1. (LUB in) According to the lattice

in {1, 2} ⊔ in {2, 3} = in {1, 2} ∩ {2, 3} = in {2} = at 2

But

A in {1, 2} ∧ A in {2, 3} ⇒ A at 2

does not hold in temporal annotated logic, since A at 1 and A at 3 may hold. In other
words, the least upper bound produced by the temporal annotation lattice is too large.

We can fix this problem by introducing additional annotations into the lattice. It
suffices to allow for unevaluated least upper bound expressions.

Example 5.2. (LUB in, contd.) The right least upper bound of in {1, 2} and in {2, 3}
is just the annotation in {1, 2} ⊔ in {2, 3}. This lattice element is smaller than in {2},
because both in {1, 2} and in {2, 3} are smaller than in {2}. in {1, 3}, in {1} and in {3}
are not comparable with in {1, 2} ⊔ in {2, 3}.

In practice, there is no need to compute the least upper bound of two in annotations,
since it does not allow for more conclusions than with the original annotations. Therefore
we can always replace A in I ⊔ in J by the equivalent A in I ∧A in J (by variant 1 of
the inference rule (⊔) in subsection 4.1.2).
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5.2. Constraint Theory: Temporal Order and Time Periods

Now we consider a more common and richer temporal constraint theory that also
reflects the structure of time: We further specialize the constraint theory to time periods
and make use of the partial order that comes with them.
Let t, s1, s2, r1, r2 be time points within the bounds lb and ub, and [s1, s2] and [r1, r2]
be time periods. First of all, the constraint theory includes the axioms defining the or-
der on time points, ≤. The lattice constraint theory for temporal annotations is further
specialized.

Lattice Order.

(th⊥) th [ub, lb] = ⊥
(in⊤) in [ub, lb] = ⊤
(atth) at t = th [t, t]
(atin) at t = in [t, t]
(th ⊑) th [s1, s2] ⊑ th [r1, r2] ⇔ r1 ≤ s1 ∧ s2 ≤ r2
(in ⊑) in [r1, r2] ⊑ in [s1, s2] ⇔ r1 ≤ s1 ∧ s2 ≤ r2

An interesting consequence is

(ti ⊑) in [s1, s2] ⊑ th [r1, r2] ⇔ s1 ≤ r2 ∧ r1 ≤ s2

i.e. A formula annotated by in holds in any time period that overlaps with a time period
where the formula holds throughout.
Least Upper Bound. In practice, we only need to consider the least upper bound
for time periods that produce another different single time period. Therefore we can
restrict ourselves to th annotations with overlapping time periods that do not include
one another. This is the only case where ”new” information (a bigger time period) is
produced.Without loss of generality thanks to commutativity, we can also require that
the the time period [s1, s2] is the one that starts before the time period [r1, r2], i.e. that
s1 ≤ r1 ∧ r1 ≤ s2 ∧ s2 ≤ r2. We are left with a useful theorem:

(th⊔) th [s1, s2] ⊔ th [r1, r2] = th [s1, r2] ⇔ s1 ≤ r1 ∧ r1 ≤ s2 ∧ s2 ≤ r2

Example 5.3. (LUB) The annotation th [1, 3] ⊔ th [2, 5] is the same as th [1, 5] and
greater than th [2, 3], while in [1, 3] ⊔ in [2, 5] is smaller than in [2, 3] but also greater
than in [1, 5].

This constraint theory for time periods in temporal annotated logic improves on the
more complex one to be found in [T. Frühwirth (1995)]. Table 2 gives an overview of
the generic and specific lattice constraint theories we have developed and the associated
theorems of temporal annotated logic.

Complexity. Note that all the lattice constraints on time periods can be reduced to
conjunctions of order constraints between time points. Such constraints can be solved
in O(n3) time complexity, where n is the number of time point variables, by applying a
path consistency algorithm [I. Meiri (1991)].
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Actually, the complexity result applies to a larger interesting class of constraints, those
involving distance of time points or duration of intervals. We can admit constraints that
reduce to the normal form

s1 + d ≤ s2 or s1 ≤ s2 + d

where d is a temporal constant. This means that in the annotations we can use expressions
with duration, e.g. at t+ d and th [t, t + d]. Such constraints naturally appear in many
temporal reasoning applications, e.g. scheduling.

Example 5.4. (Mystery, contd.) With durations we are able to compute in what
time period Prof. Lepov was murdered and when Dr. Kosta was on the shuttle.

murdered(X) in [T1-1:30,T2-1:00] :- % hint (3)

found_dead(X) in [T1,T2].

% Dr. Kosta’s Alibi

shuttle at 0:00. % hint (5)

shuttle at T+30 :-

(in [0:00,11:00]) =< (at T), shuttle at T.

on_shuttle(X) th [T1,T2] :- % hint (6)

T2 = T1+50, shuttle at T1, board_plane(X) in [T2,T2+50].

Note that the causal relationships expressed through head and body of the clauses can
reason into the past (clause for hint (3)), into the future (hint (5)) or both (hint (6)),
as is convenient.

5.3. TACLP Interpreter

In the programming language, we implement the case of single time periods. This does
not result in a loss of generality except for in annotations that appear in the head of
clause as the consideration below shows. To keep the presentation simple we assume also
that at annotations are rewritten into the equivalent th annotations using (atth).

Remember that formulas labeled by annotations with non-convex sets can be rewritten
by thereoms (∪th) and (∪in) involving only convex sets (i.e. time periods). Conjunctions
coming from rewritten th annotations now appearing in the head of a clause can be
rewritten into clauses whose head have one of the conjuncts each. With disjunctions from
in annotations this is not possible and so the ACLP clausal form would be violated.
The computational disadvantage of this approach is that some unnecessary choices
(between the rewritten clauses) and repeated work (through the conjunctions in the
bodies) may be introduced. However, in many applications, the number of conjuncts
is rather small. The advantage is that the constraint theory is the simple one from
subsection 5.2: Only for overlapping th annotations, the least upper bound has to be
computed.
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Table 2. The annotation lattice constraint theories at a glance

Annotated Constraint Logic, Sections 4 and 4.1.1

(⊑Reflexivity) α ⊑ α
(⊑Anti-Symmetry) α ⊑ β ∧ β ⊑ α↔ α = β
(⊑Transitivity) α ⊑ β ∧ β ⊑ γ → α ⊑ γ
(⊑Bottom) ⊥ ⊑ α
(⊑Top) α ⊑ ⊤

(⊔Def) α ⊑ (α ⊔ β) ∧ β ⊑ (α ⊔ β) ∧ ∀γ(α ⊑ γ ∧ β ⊑ γ → (α ⊔ β) ⊑ γ)

(⊔Idempotency) α ⊔ α = α
(⊔Commutativity) α ⊔ β = β ⊔ α
(⊔Associativity) α ⊔ (β ⊔ γ) = (α ⊔ β) ⊔ γ
(⊔Bottom) ⊥ ⊔ α = α
(⊔Top) ⊤ ⊔ α = ⊤

Relevant Temporal Annotation Theorems 3.2

({}th) A th {} ⇔ true
({}in) A in {} ⇔ false
(1th) A at t⇔ A th {t}
(1in) A at t⇔ A in {t}
(⊆ th) A th I ⇔ ∀J (J ⊆ I → A th J)
(⊆ in) A in I ⇔ ∀J (J ⊇ I → A in J)

(∪th) A th I ∪ J ⇔ (A th I ∧A th J)

Definition by Inference Rules of Annotated Constraint Logic 4.1.2

(⊑) β ⊑ α ⇒ (A α ⇒ A β)

(⊔) γ = β ⊔ α ⇒ (A α ∧A β ⇔ A γ)

Temporal Set Annotations 5.1

(ZF ) Zermelo-Fränkel axioms for set theory

(th⊥) th {} = ⊥
(in⊤) in {} = ⊤
(atth) at t = th {t}
(atin) at t = in {t}
(th ⊑) th I ⊑ th J ⇔ I ⊆ J
(in ⊑) in I ⊑ in J ⇔ J ⊆ I

(th⊔) th I ⊔ th J = th (I ∪ J)

Time Period Annotations 5.2

(≤) Axioms defining the order on time points

(th⊥) th [ub, lb] = ⊥
(in⊤) in [ub, lb] = ⊤
(atth) at t = th [t, t]
(atin) at t = in [t, t]
(th ⊑) th [s1, s2] ⊑ th [r1, r2] ⇔ r1 ≤ s1 ∧ s2 ≤ r2
(in ⊑) in [r1, r2] ⊑ in [s1, s2] ⇔ r1 ≤ s1 ∧ s2 ≤ r2

(th⊔) th [s1, s2] ⊔ th [r1, r2] = th [s1, r2] ⇔ s1 ≤ r1 ∧ r1 ≤ s2 ∧ s2 ≤ r2
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The generic interpreter for ACLP can be specialized to TACLP in a straightforward
way. The standard interpreter clauses (including (Modus Ponens) are the same as in the
generic case.

5.3.1. Inference Rules

The interpreter clause (Bottom) for annotated constraint logic is specialized to one for
temporal annotated logic

prove(A th [ub, lb])).

The interpreter clause (A-Resolution) can be specialized into three instances reflecting
the temporal annotation lattice constraint theory. For th annotations we obtain

prove(A th [t1, t2])←
th [t1, t2] ⊑ (th [s1, s2] ⊔ th [r1, r2]) ∧ clause(A th [s1, s2],B) ∧
prove(B) ∧ ¬(th [s1, s2] ⊑ th [r1, r2]) ∧ prove(A th [r1, r2])).

which can be rewritten using (th⊔) and (th ⊑) from the temporal constraint theory. The
negation ¬(th [s1, s2] ⊑ th [r1, r2]) becomes redundant then. However, if we just want
to use (th⊔) alone, the (Bottom) interpreter clause is no longer applicable to terminate
the recursion via prove(A th [r1, r2])). We therefore introduce an explicit disjunction that
allows the time period [r1, r2] to coincide with [s1, s2].

(th ⊑) prove(A th [t1, t2])←
(s1 ≤ t1 ∧ t2 ≤ r2) ∧ (s1 ≤ r1 ∧ r1 ≤ s2 ∧ s2 ≤ r2) ∧ clause(A th [s1, s2],B) ∧
prove(B) ∧ (r1 = s1 ∧ r2 = s2 ∨ prove(A th [r1, r2]))).

For the in annotations, the recursive call in the interpreter clause can be simplified
away, since there is no need to compute the least upper bound for in annotations at all.

(in ⊑) prove(A in [t1, t2])← (t1 ≤ s1 ∧ s2 ≤ t2) ∧ clause(A in [s1, s2],B) ∧ prove(B).
(ti ⊑) prove(A in [t1, t2])← (t1 ≤ s2 ∧ s1 ≤ t2) ∧ clause(A th [s1, s2],B) ∧ prove(B).

5.3.2. Axioms

The theorems of our temporal annotated logic about non-atomic annotated formulas
(subsection 3.2) have to be axioms for temporal annotated constraint logic and thus
introduce additional interpreter clauses. We try to reduce every non-atomic or negative
annotated formula to an equivalent formula where only atoms are annotated, since only
those can be resolved with a TACLP clause (whose head is restricted to be an atom).
Negation. The interpreter clauses for annotated negation are:

prove((¬A) th I)← ¬prove(A in I).
prove((¬A) in I)← ¬prove(A th I).

Disjunction and Conjunction. The interpreter clauses derived from the theorems
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(∧th) and (∨in) in subsection 3.2 are obvious, too.

prove((A ∧B) th I)← prove(A th I) ∧ prove(B th I)
prove((A ∨B) in I)← prove(A in I) ∨ prove(B in I)

The theorem (∧in) does not give us an equivalence that could be used to define an
interpreter clause, intuitively on the right hand side the information thatA andB happen
at the same time is lost. Since there is no such equivalence this also means that we cannot
express that two predicates hold at the same unknown time in the first place, because
this would result in a non-atomic clause head, i.e. A∧B in I. Because of this limitation,
it suffices to implement A∧B in I according to its first order definition (in) (subsection
3.1) where at is replaced by th.

Theorem 5.1. (∧inth) The corresponding theorem is

(∧inth) (A ∧B) in I ⇔ ∃J (in I ⊑ th J ∧A th J ∧B th J).

The proof can be found in the appendix. The interpreter clause thus is

prove((A∧B) in [t1, t2])← (t1 ≤ s2∧s1 ≤ t2)∧prove(A th [s1, s2])∧prove(B th [s1, s2])

Similarly, the theorem (∨th) is not an equivalence. We cannot express that either A or
B holds throughout some time period, since (A∨B th I) cannot be rewritten and is not
allowed in the head of a TACLP clause. Because of this limitation, given (A∨B th I), at
each time point in I, at least one of A or B definitely has to hold. In this case, theorem
(∨th) is sufficient.

prove((A ∨B) th I)← prove(A th I) ∨ prove(B th I)

Indefiniteness. In the treatment of non-atomic annotated formulas we are confronted
with the limitations of reasoning with indefinite information in logic programming. This
indefiniteness occurs either as annotated disjunctive formula or as in annotated formula.
Of these formulas, only in annotated atoms can be the head of a TACLP clause. Still,
this means that unlike in CLP languages, a limited kind of disjunction (all disjuncts
involve the same predicate) is available in TACLP clause heads. We call predicates that
appear with an in annotation in the head of a clause indefinite predicates.
Negation and disjunction can appear in the body of a clause, but as implemented in
CLP languages they are in general too weak to handle indefinite information, even if the
information is expressed as in annotated formula. The following examples illustrate this
limitation.

Example 5.5. (Indefiniteness, contd.) Given the clause

born in [1964,1965].

the query :-prove(born at 1965) fails and the query :-prove((not born) at 1965))
succeeds even though we cannot tell if born at 1965 holds or not.
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The problem is that by negation as failure we succeed with a query if we cannot
prove the negated query. A practical solution to the problem is to simply dissallow that
indefinite predicates appear inside negated formulas.

Example 5.6. (Indefiniteness, contd.) The limitation of disjunctive queries about
indefinite predicates shows up in the query

:- prove((born at 1964 ; born at 1965)).

fails, since neither disjunct holds on its own, even though the disjunction does hold.
The logically equivalent query :- prove(born in [1964,1965]) correctly succeeds. In
practice, it will be unlikely that the first form of the query is used instead of the more
compact and natural second one.

5.4. TACLP Compiler

We define a compilation function comp that translates a TACLP clause into its CLP
form. The compilation of predicates and non-annotated formulas is the same as in the
generic case.

5.4.1. Inference Rules

For each predicate symbol p with arity n in the program we add a clause

comp(p(X1, ...Xn) th [ub, lb])

where Xi are distinct variables.
The compiler for the inference rules can be obtained from the TACLP interpreter
clauses in the same way as in the generic case for ACLP clauses.

(th ⊑) comp(A th [t1, t2])←
(s1 ≤ t1 ∧ t2 ≤ r2) ∧ (s1 ≤ r1 ∧ r1 ≤ s2 ∧ s2 ≤ r2) ∧
comp(B) ∧ (r1 = s1 ∧ r2 = s2 ∨ comp(A th [r1, r2])))

for each clause of the form (A th [s1, s2]← B).

(in ⊑) comp(A in [t1, t2])← (t1 ≤ s1 ∧ s2 ≤ t2) ∧ comp(B)

for each clause of the form (A in [s1, s2]← B).

(ti ⊑) comp(A in [t1, t2])← (t1 ≤ s2 ∧ s1 ≤ t2) ∧ comp(B)

for each clause of the form (A th [s1, s2]← B).
Program clauses whose head is not annotated are translated as in the generic case.
In the worst case (only th annotated predicates defined by a single clause each), for
each TACLP clause three CLP clauses are produced by the compilation.
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5.4.2. Axioms

The compilation rules for the axioms can be obtained from the interpreter clauses by
replacing prove with comp and ← with −→ (see table 3).

5.5. Related Work

An efficient optimized interpreter for TACLP where only atomic formulas can be an-
notated has been implemented in the constraint logic programming platform ECLiPSe
[M. Meier, J. Schimpf et al. (1994)] and is described in [T. Frühwirth (1994)].
In [M. Kifer, V.S. Subrahmanian (1992)], Templog and an interval based temporal
logic are translated into GAP. The annotations used correspond to our th annotations.
It is also shown that the temporal logic of Shoham can be encoded in GAP.
In [C. Brzoska (1993)], a powerful temporal logic named MTL (tense logic extended
by parameterized temporal operators) is translated into first order constraint logic. The
resulting constraint theory is rather complex as it involves quantified variables and impli-
cation, whose treatment goes beyond standard CLP implementations. In Brzoskas pro-
gramming language, which subsumes Templog, temporal operators can be nested, but
indefiniteness in the heads of clauses is dissallowed [C. Brzoska (1993)]. In our implemen-
tation, we can allow indefiniteness even in the head of a clause - but it cannot be queried
negatively. The main conceptual difference to our approach is that Brzoska implements
this FOL itself, while we derive a constraint-based implementation of annotations from
the FOL definitions.

6. The Workshop Murder Mystery Solved

We can now express the complete murder mystery as TACLP (fig. 2). The program
should be self-explanatory. The idea is that the murderer is a person who is involved in
the case and does not have an alibi during the time Prof. Lepov was murdered.
The query :- prove(murder(X,Y)) yields two answers X = ’Lepov’, Y = ’Lepov’
and X = ’Maringer’, Y = ’Lepov’. The first one means that Prof. Lepov could have
committed suicide. This unexpected solution is found because Prof. Lepov does not have
an alibi for the time of his death. Dr. Maringer could be the murderer, because his alibi
does not hold. Analysis of the failure of alibi(’Maringer’) th I reveals that Maringer
gave a wrong alibi, because the copying would have taken 30 minutes, so it cannot have
happened during a talk of 25 minutes. Dr. Kostas alibi holds.

7. Conclusions

We have defined a temporal annotated logic allowing for various models of time and
various temporal operators for both time points (instants) and time periods (temporal
intervals). Temporal annotated formulas avoid the proliferation of temporal variables
and quantifiers of the first order approach while making temporal information explicit. In
TACLP, we can reason about qualitative and quantitative (metric), definite and indefinite
information about the absolute and relative location of literals annotatedwith time points
and time periods along the time line.
We have introduced the general framework of annotated constraint logic. Given a logic
in this framework, there is a systematic way to make a clausal fragment executable as a
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Table 3. The ACLP and TACLP implementations at a glance

Annotated Constraint Logic - Inference Rules Sections 4 and 4.1.2

(Modus Ponens)
B , (B→A)

A
(Bottom) A ⊥

(A-Resolution)
A α , B , (B→A β), γ⊑(α⊔β)

A γ

Interpreter 4.2

Standard prove(A)← constraint(A) ∧A.
prove(¬A) ← ¬prove(A).
prove(A ∧B)← prove(A) ∧ prove(B).
prove(A ∨B)← prove(A) ∨ prove(B).

(Modus Ponens) prove(A)← non annotated(A) ∧ clause(A,B) ∧ prove(B).
(Bottom) prove(A ⊥).
(A-Resolution) prove(A γ)← γ ⊑ (α ⊔ β) ∧ clause(A α,B) ∧ prove(B) ∧ ¬(α ⊑ β) ∧ prove(A β).

Compiler 4.3

Predicates comp(p(t1, . . . , tn) α) −→ p(t1, . . . , tn, α)
comp(p(t1, . . . , tn)) −→ p(t1, . . . , tn)

Standard comp(A) −→ A if A is a constraint
comp(¬A) −→ ¬comp(A)
comp(A ∧B) −→ comp(A) ∧ comp(B)
comp(A ∨B) −→ comp(A) ∨ comp(B)

(Modus Ponens) comp(A)← comp(B) for each clause (A← B)
(Bottom) comp(p(X1, ...Xn) ⊥) for each annotated predicate p with arity n
(A-Resolution) comp(A γ)← γ ⊑ (α ⊔ β) ∧ comp(B) ∧ ¬(α ⊑ β) ∧ comp(A β) f.e.cl. (A α← B)

Temporal Annotated Logic 5

TACLP Interpreter 5.3

(Bottom) prove(A th [ub, lb])).
(A-Resolution) prove(A th [t1, t2])← (s1 ≤ t1 ∧ t2 ≤ r2) ∧ (s1 ≤ r1 ∧ r1 ≤ s2 ∧ s2 ≤ r2)∧
(th ⊑) clause(A th [s1, s2], B) ∧ prove(B) ∧ (r1 = s1 ∧ r2 = s2 ∨ prove(A th [r1, r2]))).
(in ⊑) prove(A in [t1, t2])← (t1 ≤ s1 ∧ s2 ≤ t2) ∧ clause(A in [s1, s2], B) ∧ prove(B).
(ti ⊑) prove(A in [t1, t2])← (t1 ≤ s2 ∧ s1 ≤ t2) ∧ clause(A th [s1, s2], B) ∧ prove(B).
Negation prove((¬A) th I) ← ¬prove(A in I).

prove((¬A) in I)← ¬prove(A th I).
Conjunction prove((A ∧B) th I)← prove(A th I) ∧ prove(B th I)

prove((A ∧B) in [t1, t2])← t1 ≤ s2 ∧ s1 ≤ t2 ∧ p(A th [s1, s2]) ∧ p(B th [s1, s2])
Disjunction prove((A ∨B) in I) ← prove(A in I) ∨ prove(B in I)

prove((A ∨B) th I)← prove(A th I) ∨ prove(B th I)

TACLP Compiler 5.4

(Bottom) comp(p(X1, ...Xn) th [ub, lb])
(A-Resolution) comp(A th [t1, t2])← (s1 ≤ t1 ∧ t2 ≤ r2) ∧ (s1 ≤ r1 ∧ r1 ≤ s2 ∧ s2 ≤ r2)∧
(th ⊑) comp(B) ∧ (r1 = s1 ∧ r2 = s2 ∨ comp(A th [r1, r2]))) f.e.cl. (A th [s1, s2]← B)
(in ⊑) comp(A in [t1, t2])← (t1 ≤ s1 ∧ s2 ≤ t2) ∧ comp(B) f.e.cl. (A in [s1, s2]← B)
(ti ⊑) comp(A in [t1, t2])← (t1 ≤ s2 ∧ s1 ≤ t2) ∧ comp(B) f.e.cl. (A th [s1, s2]← B)
Negation comp(¬A) th I) −→ ¬comp((A in I))

comp(¬A) in I) −→ ¬comp((A th I))
Conjunction comp((A ∧B) th I) −→ comp(A th I) ∧ comp(B th I)

comp((A ∧B) in [t1, t2]) −→ t1 ≤ s1 ∧ s2 ≤ t2 ∧ c(A th [s2, s1]) ∧ c(B th [s2, s1])
Disjunction comp((A ∨B) in I) −→ comp(A in I) ∨ comp(B in I)

comp((A ∨B) th I) −→ comp(A th I) ∨ comp(B th I)
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% The Workshop Program
%... % (1) time periods
coffee_break th [3:00,3:25].
talk(1,’Hunon’,’Algebraic Semantics...’) th [3:25,3:50].
talk(2,’...’,’...’) th [3:50,4:15].
talk(3,’Maringer’,’...’) th [4:15,4:40].
talk(4,’Lepov’,’P = NP’) th [4:40,5:05].
%...

% The Murder of Prof. Lepov

found_dead(’Lepov’) at 5:35. % (2) time point

murdered(X) in [T1-1:30,T2-1:00] :- % (3) indefiniteness
found_dead(X) in [T1,T2].

% Dr. Kosta’s Alibi

board_plane(’Kosta’) at 5:10. % (4) time point

shuttle at 0:00. % (5) recurrence
shuttle at T+30 :-

(in [0:00,11:00]) =< (at T), shuttle at T.

on_shuttle(X) th [T1,T2] :- % (6) indefiniteness
T2 = T1+50, shuttle at T1, board_plane(X) in [T2,T2+50].

% Dr. Maringer’s Alibi

copying(’Maringer’) th I :- % (7) durations
I = [T1,T1+5+5+15+5], talk(2,_,_) th I.

% Whodunnit ?

murder(X,Y) :- % (8) time periods
murdered(Y) in I, involved(X), not (alibi(X) th I).

involved(’Kosta’). involved(’Lepov’). involved(’Maringer’).

alibi(X) th I :-
(on_shuttle(X) ; copying(X) ; talk(_,X,_)) th I.

Figure 2. The Workshop Murder Mystery as TACLP Program.
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constraint logic program. We have shown this for the generic case and for the specific case
of temporal annotated logic. In both cases we have given an interpreter and a compiler
that can be implemented in constraint logic programming languages.
The clausal fragment allows for arbitrary formulas in the body of a clause. We can
allow indefiniteness even in the head of a clause in the form of an in annotated atom.
However, such indefinite predicates should not appear in negated body formulas, since
negation as failure cannot cope well with indefiniteness. With TACLP clauses, we cannot
express other types of indefinitess, namely that either A or B holds at a time point or
throughout a time period (”Either John or Richard were born in 1964”) and that A and
B hold at the same, unknown time point(s) (”John is born in the same year as Suzy”).
We have not yet developed a constraint theory for nested annotations, i.e. expressions
like rain th [3pm, 5pm] in [12.Dec, 19.Dec] (”it rained from 3 to 5 pm sometime in the
week from December 12 to December 19”). We think it will be straightforward to define
instances of temporal annotated logic that explicitly supports a limited kind of nesting
or notions such as time granularity and recurrency. We would like to experiment with
realistic applications. All this is left for future work.
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A. Proofs of Theorems about Temporal Annotations

The proofs for the theorems in sections 3.2 and 5.3.2.

Proof. [∨in]
(A ∨B) in I ⇔
∃t (t ∈ I ∧ (A ∨B) at t) ⇔
∃t (t ∈ I ∧ (A at t ∨B at t)) ⇔
∃t ((t ∈ I ∧A at t) ∨ (t ∈ I ∧B at t)) ⇔
((A in I) ∨ (B in I))
The proof is analogous for the th annotation. 2

Proof. [∨th]
(A ∨B) th I ⇔
∀t (t ∈ I → (A ∨B) at t) ⇔
∀t (t ∈ I → (A at t ∨B at t)) ⇔
∀t ((t ∈ I → A at t) ∨ (t ∈ I → B at t)) ⇐
∀t (t ∈ I → A at t) ∨ ∀t (t ∈ I → B at t) ⇔
(A th I ∨B th I)
The proof is analogous for the in annotation. 2

Proof. [∪th]
A th I ∪ J ⇔
∀t (t ∈ I ∪ J → A at t) ⇔
∀t ((t ∈ I ∨ t ∈ J)→ A at t) ⇔
∀t ((t ∈ I → A at t) ∧ (t ∈ J → A at t)) ⇔
∀t (t ∈ I → A at t) ∧ ∀t (t ∈ J → A at t) ⇔
(A th I ∧A th J)
The proof is analogous for the in annotation. 2

Proof. [∧inth]
(A ∧B) in I ⇔
∃t (t ∈ I ∧ (A ∧B) at t) ⇔
∃t (t ∈ I ∧ A at t ∧B at t) ⇔
∃t (in I ⊑ at t ∧A at t ∧B at t) ⇔
∃J (in I ⊑ th J ∧A th J ∧B th J) 2


