
Why Can’t You Behave? Non-Termination
Analysis of Direct Recursive Rules with

Constraints

Thom Frühwirth

Ulm University, Germany
thom.fruehwirth@uni-ulm.de

Abstract. This paper is concerned with rule-based programs that go
wrong. The unwanted behavior of rule applications is non-termination
or failure of a computation. We propose a static program analysis of the
non-termination problem for recursion in the Constraint Handling Rules
(CHR) language.

CHR is an advanced concurrent declarative language involving constraint
reasoning. It has been closely related to many other rule-based approaches,
so the results are of a more general interest. In such languages, non-
termination is due to infinite applications of recursive rules. Failure is due
to accumulation of contradicting constraints during the computation.

We give theorems with so-called misbehavior conditions for potential
non-termination and failure (as well as definite termination) of linear
direct recursive simplification rules. Logical relationships between the
constraints in a recursive rule play a crucial role in this kind of program
analysis. We think that our approach can be extended to other types of
recursion and to a more general class of rules. Therefore this paper can
serve as a basic reference and a starting point for further research.

1 Introduction

It is well known that termination is undecidable for Turing-complete program-
ming languages. Thus, there is a long tradition in research on program analysis
methods, static and dynamic, to tame the problem by semi-automatic or ap-
proximative approaches.

In this work we are interested in characterizing non-terminating computa-
tions. We do so in the context of the programming language Constraint Handling
Rules (CHR) [4, 5, 7]. As in other rule-based languages, termination is only an
issue if recursion is involved. We are hopeful that our results could be transferred
to other rule-based programming languages as well, since CHR can directly em-
bed many rule-based languages and formalisms (e.g. Chapter 6 in [4]).

We propose conditions for misbehavior, i.e. a static program analysis of a
recursive rule that tells us if a given goal (or a set of goals) may not terminate
or lead to failure (unsatisfiable constraints). The following program serves as
a first overview of the characteristic features of CHR for those not familiar



2

with the language. In CHR, we use a first-order logic syntax. Predicates will be
called constraints. Goals and states are synonyms here, they are conjunctions
of constraints. In this paper, numbers are expressed in successor term notation.
The following example will be further elaborated in this paper.

Example 1. Consider a recursive user-defined constraint double that doubles the
natural number in the first argument and produces the resulting number in the
second argument:

double(X,Y )⇔ X=0 Y =0.
double(X,Y )⇔ X=s(X1) Y =s(s(Y 1)) ∧ double(X1, Y 1).

The first rule (for the base case) says that if X is syntactically equivalent
to 0, then the result Y is also zero. The syntactic equality constraint X=0 is a
guard, a precondition on the applicability of the rule. It serves as a test. The rule
is only applied if this condition holds in the current context, i.e. state. On the
other hand, Y =0 is a constraint that is asserted once the rule is applied. The
recursive rule says that if X is the successor of some number X1, then Y is the
successor of the successor of some number Y 1, and X1 doubled gives Y 1.

To the goal double(X,Y ) no rule is applicable. To the goal double(X,Y ) ∧
X=0 the first rule is applicable, resulting in the state X=0 ∧ Y =0. To the goal
double(X,Y )∧X=0∧Y =s(B), the first rule is also applicable, but the resulting
contradiction Y =s(B) ∧ Y =0 means failure due to these unsatisfiable equality
constraints.

In logical languages like CHR, variables cannot be overwritten, but they can
be without value (unbound). For example, if X is s(A), where A is unbound,
then X will satisfy the guard, and Y will be equated to s(s(B))), where B is
some newly introduced variable, and the CHR constraint double(A,B) will be
added to the state. Since A is unbound, the guard for the recursive goal double
does not (yet) hold. If the variable later becomes (partially) bound in a syntactic
equality, the computation of double may resume.

There is a simple example for a infinite computation with double. The goal
double(X,Y ) ∧ X=s(X1) ∧ X=Y does not terminate. The application of the
recursive rule leads to the state X=s(X1)∧X=Y ∧Y =s(s(Y 1))∧double(X1, Y 1).
Since X=Y , we have that X1=s(Y 1). Thus the computation can proceed with
another recursive rule application and so on ad infinitum. The successors that
are produced for Y in the second argument will also become successors for X
in the first argument, because of X=Y . Thus the guard of the recursive goal
always holds.

The goal double(X,Y ) ∧ X=s(X1) ∧ X≥Y does not terminate either. Our
main theorem will allow to detect this non-termination because a misbehav-
ior condition holds. Basically, the guard and the body of the recursive rule,
X=s(X1) ∧ Y =s(s(Y 1)), together with the added constraint X≥Y implies the
guard of the recursive goal X1=s(X1′). Another theorem will tell us that the
more stricter constraint X=Y will therefore inherit the misbehavior.



3

Related Work. Non-termination analysis has been considered for term rewrit-
ing systems [11, 3], logic programming languages [14, 10, 12, 6], and imperative
languages [8, 2, 13, 9].

The works on (constraint) logic programming are based on finding loops in
abstracted partial derivation trees. In our restricted case of linear direct recursion
it is sufficient to consider the recursive rule and no abstraction is necessary.
However, there is also a difference to our approach: mode information about the
arguments is essential in analysing logic programs. A similar type of information
is also needed for non-termination of constraint logic programs [12]. It gives
raise to so-called filters for abstracting states of the computation. In CHR, this
information is already implicitly encoded in the distinction between guard and
body built-in constraints.

In [6] a simple program transformation for recursive rules in CHR was intro-
duced that produces one or more adversary rules. When the rules are executed
together, a non-terminating computation may arise. It was shown that any non-
terminating computation of the original rule contains this witness computation.
Based on the adversary rules, a preliminary condition for non-termination was
proposed. This condition only refers to the witness computation that starts from
a particular state, it can be considered as one particular special case of the mis-
behavior conditions we give here.

Overview of the paper. In the next section we define syntax and operational
semantics for CHR simplification rules. Section 3 gives a first basic theorem for
non-termination or failure of a specific (the most general) goal for a given linear
direct recursive rule. Section 4 gives our main condition for misbehavior of a
recursive rule in a generalised theorem. Another theorem shows that any goal
that contains a misbehaved goal will also be misbehaved. We end the paper with
conclusions and directions for future work.

2 Preliminaries

In this section we give a restricted overview of syntax and semantics for Con-
straint Handling Rules (CHR) [4], cut down to what is essential for this paper
(namely simplification rules). We assume basic familiarity with first-order predi-
cate logic and state transition systems. Readers familiar with CHR can skip this
section. CHR is a committed-choice language, i.e. there is no backtracking in
the rule applications. CHR is a concurrent language, i.e. we may apply rules in
parallel.

2.1 Abstract Syntax of CHR

Constraints are distinguished predicates of first-order predicate logic. We dis-
tinguish between two different kinds of constraints: built-in (or: pre-defined)
constraints which are handled by a given constraint solver, and user-defined (or:
CHR) constraints which are defined by the rules in a CHR program. A CHR
program is a finite set of rules. There are two basic kinds of rules in CHR:



4

Simplification rule: r : H ⇔ C B,
Propagation rule: r : H ⇒ C B,

where r: is an optional, unique identifier of a rule, the head H is a non-empty
conjunction of user-defined constraints, the guard C is a conjunction of built-in
constraints, and the body B is a goal. A goal is a conjunction of built-in and
CHR constraints. An empty guard expression true can be omitted from a rule.

In this paper, we are only concerned with a simple class of simplification
rules, so propagation rules will be ignored from now on.

2.2 Abstract Operational Semantics of CHR

Computations in CHR are sequences of rule applications. The operational se-
mantics of CHR is given by the state transition system. (Concurrency is not
made explicit in the semantics given, since it is independent of the results of
this paper.) States are goals. Let CT be a constraint theory for the built-in con-
straints, including the trivial true and false as well as syntactical equality = over
finite terms. For a goal G, the notation Gbi denotes the built-in constraints of
G and Gud denotes the user-defined constraints of G.

In the transition system, all single upper-case letters are meta-variables that
stand for goals. Let the variables in a disjoint variant of a rule be denoted by x̄.
A disjoint (or: fresh) variant of an expression is obtained by uniformly replacing
its variables by different, new (fresh) variables. A variable renaming is a bijective
function over variables.

Simplify State Transition of CHR

If (r : H ⇔ C B) is a disjoint variant of a rule in the program
and CT |= ∃(Gbi) ∧ ∀(Gbi → ∃x̄(H=HS ∧ C))
then (HS ∧G) 7→r (B ∧G ∧H=HS ∧ C)

Starting with a given initial state, CHR rules are applied exhaustively, until
a fixed-point is reached. A simplification rule H ⇔ C B that is applied removes
the user-defined constraints matching H and replaces them by B provided the
guard C holds. Note that built-in constraints in a computation are accumu-
lated, i.e. they are added but never removed, while user-defined constraints can
be added as well as removed. The built-in constraints allow execution in the
abstract without the need to know values for variables, just their relationships
are expressed as constraints.

A rule is applicable, if its head constraints are matched by constraints in the
current goal one-by-one and if, under this matching, the guard of the rule is
logically implied by the built-in constraints in the goal, provided they are sat-
isfiable. Any one of the applicable rules can be applied in a transition, and the
application cannot be undone, it is committed-choice. An expression of the form
CT |= ∃(Gbi)∧∀(Gbi → ∃x̄(H=HS∧C)) is called applicability condition. We may
drop CT |= for convenience later on. We use H=HS by abuse of notation, since
the arguments of this syntactic equality are conjunctions of user-defined con-
straints. This expression means to pairwise equate the user-defined constraints



5

on the left and right hand side and then to pairwise equate their arguments,
which are terms.

In a transition (or: computation step) S 7→r T , S is called source state and T
is called target state. When it is clear from the context, we will drop the reference
to the rule r. A computation of a goal G in a program P is a connected sequence
Si 7→ Si+1 beginning with the initial state S0 that is G and ending in a final state
or the sequence is non-terminating (or: diverging). The notation 7→∗ denotes the
reflexive and transitive closure of 7→.

A goal (state) is satisfiable (consistent) if its built-in constraints are satis-
fiable. A state with unsatisfiable (inconsistent) built-in constraints is called a
failed state. A computation of a goal is failed if it ends in a failed state. If a
computation of a goal is failed (non-terminaing), we may also say that the goal
is failed (non-terminating).

Two states S1 = (S1bi∧S1ud) and S2 = (S2bi∧S2ud) are equivalent as defined
in [1], written S1 ≡ S2, if and only if

CT |= ∀(S1bi → ∃ȳ((S1ud = S2ud) ∧ S2bi)) ∧ ∀(S2bi → ∃x̄((S1ud = S2ud) ∧ S1bi))

with x̄ those variables that only occur in S1 and ȳ those variables that only
occur in S2. A goal (or state) S is (strictly) contained (or: included) in a goal T
(or: less specific than T ) if and only if there exists a (non-empty) goal G such
that (S ∧G) ≡ T .

Note that this notion of state equivalence is stricter than logical equiva-
lence since it it considers multiple occurrences of user-defined constraints to be
different as in a multiset. For this reason, state equivalence is defined by two
symmetric implications and syntactically equates the two states.

3 A Basic Misbehavior Condition for Non-Termination

In this paper we are concerned with linear direct recursion, expressed by simpli-
fication rules of the form

r : H ⇔ C Bbi ∧Bud,

where H and Bud are atomic user-defined constraints for the same predicate
symbol and where C and Bbi are built-in constraints.

To introduce our appropach, we will start with a theorem about a condition
for non-termination that only applies to a specific initial goal. It is not just any
goal, however. It is of the form H ∧ C, i.e. it consists of the head and guard of
the given recursive rule. Such a goal is the most general state to which the rule is
applicable. This is easy to see, since removing H or replacing C by more general,
weaker built-in constraints would invalidate the rule application condition of the
operational semantics of CHR.

The theorem below already reflects the structure of the upcoming main the-
orem. Certain goals for a given recursive rule are non-terminating or failing if a
certain implication between the built-in constraints of the guard and body of the



6

rule holds. Our theorems provide an analysis that does not distinguish between
non-termination and (termination by) failure of goal. This is justifiable, since in
both cases the computation goes wrong. We therefore refer to the conditions in
the theorems as misbehavior conditions.

The misbehavior condition we give is typically decidable (depending on the
decidability of the underlying theory for the built-in constraints, of course). Since
termination (the halting problem) is undecidable for Turing-complete program-
ming languages, we cannot expect a sufficient and necessary condition in general.
A sufficient condition suffices. Interestingly, for the most general goal H ∧ C of
a rule, we can give a condition that clearly separates termination from non-
termination, but is agnostic to failure. This is what the first theorem is about
(and it sets the stage for a more general theorem).

Theorem 1. Given a recursive rule

r : H ⇔ C Bbi ∧Bud,

and its disjoint variant with variables x̄

r : H ′ ⇔ C ′ B′bi ∧B′ud,

then the basic misbehavior condition

CT |= ∃(C ∧Bbi) ∧

∀((C ∧Bbi)→ ∃x̄(Bud=H ′ ∧ C ′)).

implies non-termination or failure of the goal

H ∧ C

through rule r.

If the basic misbehavior condition does not hold, then the computation of
the goal

H ∧ C

through rule r terminates.

Proof. The proof can be found in the appendix of the full version of this paper
that is available online via the authors homepage. It is based on the proof of a
more general theorem that will be stated in the next section. ut

Note that while non-termination requires the basic condition to hold, failure
of the goal may occur whether the condition holds or not. So the condition is
necessary for non-termination of the goal H ∧C, but does not make a statement
about failure. Thus the condition is not sufficient for non-termination, but it is
sufficient for misbehavior (non-termination or failure). Still it is remarkable that
we can give a converse of this misbehavior condition. This will not be the case
any more for the general theorem.

We now look at some examples to see applications of this first theorem.



7

Example 2. Here is a simple recursive rule that goes through the successors that
define a natural number:

number(X )⇔ X=s(Y ) number(Y ).

Note that there are no built-in constraints in the body of the rule.
The basic misbehavior condition amounts to

CT |= ∃XY (X=s(Y )) ∧

∀XY ((X=s(Y ))→ ∃X ′Y ′(number(Y )=number(X ′) ∧X ′=s(Y ′))).

The first, existential part of the condition holds, while the implication in the
second part does not. It is not the case that for all Y , Y is equivalent to some
X ′ that in turn is equivalent to s(Y ′). For example, Y may be 0. Thus the
goal number(X) ∧ X=s(Y ) will terminate. Actually it will lead to the state
X=s(Y ) ∧ number(Y ).

Now consider a variant of the above rule that enforces the constraint that a
variable must be a successor term:

number(X )⇔ X=s(Y ) ∧ number(Y ).

Note that there are no built-in constraints in the guard of the rule, so the guard
has been dropped. The basic misbehavior condition amounts to

CT |= ∃XY (X=s(Y )) ∧

∀XY ((X=s(Y ))→ ∃X ′Y ′(number(Y )=number(X ′))).

This condition holds, there fore the goal number(X)∧X=s(Y ) will not terminate
or lead to failure. Actually, it will not terminate, producing a longer and longer
nested term of successsors.

Next consider a variant of the first rule where the position of the variables
X and Y is interchanged in the guard constraint:

number(X )⇔ Y =s(X) number(Y ).

The basic misbehavior condition amounts to

CT |= ∃XY (Y =s(X)) ∧

∀XY ((Y =s(X))→ ∃X ′Y ′(number(Y )=number(X ′) ∧ Y ′=s(X ′))).

The condition holds, since for all Y that are equivalent to X ′, there exists a
Y ′ such that Y ′=s(X ′). And indeed, the goal number(X) ∧ Y =s(X) will not
terminate.

Example 3. Consider the recursive rule for the constraint double from Example 1
of the introduction section:

double(X ,Y )⇔ X=s(X1) Y =s(s(Y 1)) ∧ double(X1 ,Y1 ).



8

The implication of the basic misbehavior condition is

∀((X=s(X1)∧Y =s(s(Y 1)))→ ∃(double(X1 ,Y1 )=double(X ′,Y ′)∧X ′=s(X1′))).

It does not hold. Actually, the goal double(X ,Y )∧X=s(X1) is terminating and
does not fail. The rule can be applied once.

Example 4. Consider the following rule with empty guard and X>Y in its body

p(X,Y )⇔ X>Y ∧ p(Y,X).

The implication of the misbehavior condition then is

∀XY ((X>Y )→ ∃X ′Y ′(p(Y,X)=p(X ′, Y ′)).

Clearly, the basic misbehavior condition holds. Actually, the goal p(X,Y ) will fail
at the second recursive step, since the recursive call exchanges the two arguments
of p but X>Y and Y >X contradict each other.

Example 5. Let odd and prime be built-in constraints. Consider the following
recursive rule

c(X)⇔ odd(X) c(s(s(X))),

The misbehavior condition amounts to

∃Xodd(X) ∧ ∀X(odd(X)→ ∃X ′(c(s(s(X)))=c(X ′) ∧ odd(X ′))).

Since the successor of the successor of an odd number is always odd, the condition
holds. Indeed, the goal c(X) ∧ odd(X) is non-terminating.

Now consider a variation of the above rule

c(X)⇔ prime(X) c(s(s(X))).

The condition amounts to

∃Xprime(X) ∧ ∀X(prime(X)→ ∃X ′(c(s(s(X)))=c(X ′) ∧ prime(X ′))).

Since the successor of the successor of a prime number may not be prime, the
condition does not hold. Thus the goal c(X) ∧ prime(X) terminates. It does so
after one recursive step. (It will terminate for any given number X in at most
two recursive steps: one of every three sequential even or odd natural numbers
is a multiple of three, and hence not prime.)

4 The Main Misbehavior Condition

We are going to state a generalization of Theorem 1. It is easy to see from
the CHR operational semantics and its applicability condition that any state to
which a given rule is applicable must contain its head and guard. All such states



9

are therefore equivalent to a state of the form H∧G∧Q, where Q is an arbitrary
constraint.

To generalise our initial theorem, we could simply add Q to the premise of the
implication in the basic misbehavior condition. This is, however, not sufficient
to guarantee non-termination or failure. As it turns out, we also have to add an
appropriate variant of Q to the conclusion of the implication. This ensures that
the appropriate variant of Q holds at each recursive step. This will be our main
misbehavior theorem.

We will then show in another theorem that any state that contains H ∧G ∧
Q which misbehaves is also doomed to misbehave. So both theorems together
typically cover an infinite set of states that do not terminate or fail.

4.1 Lemmata

For the proof of the upcoming main theorem, we will need the following lemmata.

Lemma 1. Given goal C consisting of built-in constraints only and a goal H
consisting of user-defined constraints only. Let the pairs (H,C) with variables x
and (H ′, C ′) with variables y be disjoint variants. Then the applicability condi-
tion

CT |= ∀x̄(C → ∃ȳ(H ′=H ∧ C ′))

trivially holds.
The proof follows from the tautologies of first order predicate logic and can

be found in [6].

The following lemma states that built-in constraints are accumulated over
the course of a computation.

Lemma 2. If there is a computation from state G to state G′, then the built-in
constraints of G′ imply those of G.

If G 7→∗ G′ then (Gbi ← G′bi).

Proof. This claim can be shown by comparing the constraints in the source
and target states of a computation step according to the operational semantics
of CHR, (HS ∧ G) 7→ (B ∧ G ∧ H=HS ∧ C). The source state has built-in
constraints Gbi, the target state has built-in constraints Bbi ∧Gbi ∧H=HS ∧C.

Since the implication holds for a single transition 7→, it also holds for an
arbitrary number of transitions 7→∗, since logical implication ← is reflexive and
transitive. ut

In other words, if the source state contains built-in constraints, the target state
contains them as well.

The next lemma states an important monotonicity property of CHR. It is a
variation of the classic CHR monotonicity Lemma (Sect. 4.2. in [4]). It can be
proven from the operational semantics of CHR using Lemma 2 and induction
over the computation steps.



10

Lemma 3. (CHR monotonicity) If a rule r is applicable to a state, it is also
applicable to the state when constraints have been added, as long as this state
is not failed.

If G 7→r G′ then (G ∧H) 7→r (G′ ∧H),

provided G ∧H is satisfiable.
A computation can be repeated in any larger context, i.e. with states in which

constraints have been added.

If G 7→∗ G′ then (G ∧H) 7→∗ (G′ ∧H) or the computation diverges.

Note that G′ may be satisfiable while G′ ∧H may be a failed state.

4.2 Main Misbehavior Theorem

We are now ready to state the main theorem of the paper.

Theorem 2. Let Q be a built-in constraint. Given Q and a recursive rule

Q, r : H ⇔ C Bbi ∧Bud,

and their disjoint variant with variables x̄

Q′, r : H ′ ⇔ C ′ B′bi ∧B′ud,

Then the general misbehavior condition

CT |= ∃(Q ∧ C ∧Bbi) ∧

∀((Q ∧ C ∧Bbi)→ ∃x̄(Bud=H ′ ∧Q′ ∧ C ′)).

implies non-termination or failure of the computation of the goal

H ∧ C ∧Q

through rule r.

Proof. We prove the claim by induction over the computation steps.

Base Case. The claim is that the goal H ∧ C ∧ Q either is failed or there
exists a computation step by applying the recursive rule r. We show that there
is always such a computation step possible (and that the resulting state is not
failed).

According to the abstract operational semantics of CHR, this computation
step must be of the form:

(H ∧ C ∧Q) 7→r (B′bi ∧B′ud ∧ C ∧Q ∧H ′=H ∧ C ′)

if CT |= ∃(C ∧Q) ∧ ∀(C ∧Q→ ∃(H ′=H ∧ C ′))

We have to show that the applicability condition holds, so that we can ap-
ply the recursive rule. By the first, existential part of the general misbehavior



11

condition we know that ∃(Q ∧ C ∧ Bbi) is satisfiable. Since this conjunction
logically implies ∃(C ∧Q), we know that the source state ∃(H ∧ C ∧Q) is sat-
isfiable, too. By Lemma 1 we know that ∀(C → ∃(H ′=H ∧ C ′)) trivially holds.
So ∀(C ∧ Q → ∃(H ′=H ∧ C ′)) holds as well. Thus the applicability conditions
holds and the recursive rule r is applicable.

The resulting target state of the transition is (B′bi∧B′ud∧C∧Q∧H ′=H∧C ′).
B′ud is a user-defined constraint and thus can be ignored for determining the
satisfiability of the state. We already know from the applicability condition that
∃(C ∧ Q ∧ H ′=H ∧ C ′). By Lemma 1 we know that ∀(C ∧ Bbi → ∃(H ′=H ∧
C ′∧B′bi)) trivially holds. By the first part of the misbehavior condition we know
that ∃(Q∧C ∧Bbi) is satisfiable. Thus (B′bi ∧C ∧Q∧H ′=H ∧C ′) must also be
satisfiable. Thus the target state is satisfiable.

Inductive Step. We have to show that given a state where the recursive
rule has been applied, either the recursive rule is applicable again or the state is
failed.

We assume such states are of the form (G ∧Bbi ∧Bud ∧ C ∧Q), where G is
an arbitrary constraint. This form holds for the target state of the base case.

Now consider a source state of the desired form. If it is failed, we are done.
If it is not failed, we show that the following computation step is possible with
the recursive rule:

(G ∧Bbi ∧Bud ∧ C ∧Q) 7→r (G ∧Bbi ∧B′bi ∧B′ud ∧ C ∧Q ∧H ′=Bud ∧ C ′)

if CT |= ∃(Gbi ∧Bbi ∧ C ∧Q) ∧ ∀(Gbi ∧Bbi ∧ C ∧Q→ ∃(H ′=Bud ∧ C ′))

For the proof of applicability of the recursive rule we reuse the one for the base
case. Instead of H ′, we have now Bud, and there are additional constraints G∧Bbi

in the source state. By monotonicity of CHR (Lemma 3), we know that if a rule
is applicable to a state, it is also applicable to the state when constraints have
been added, as long as this state is not failed. Thus the additional constraints
G ∧Bbi cannot inhibit the applicability of the rule, since the state is not failed.

We still have to show that the target state is of the required form. But Q′

seems to be missing from it. The implication of the misbehavior condition in the
theorem is

∀((Q ∧ C ∧Bbi)→ ∃(Bud=H ′ ∧Q′ ∧ C ′)).

Therefore, since the target state contains (Q∧C∧Bbi), it also contains (Bud=H ′∧
Q′ ∧C ′). Thus the target state is equivalent to (G′ ∧B′bi ∧B′ud ∧C ′ ∧Q′), when
we let G′ be (G ∧Bbi ∧ C ∧Q ∧H ′=Bud).

So the target state is also of the required form. ut

Theorem 2 states an implication between the general misbehavior condition and
failing or non-terminating goals. The condition is sufficient for misbehavior, but
not necessary. As we will see, due to the next theorem, the converse does not
hold (unlike Theorem 1).

We continue with some examples, old and new, for the application of the
main misbehavior theorem.



12

Example 6. Consider a variation of the recursive rule from Example 5 with the
opposite guard:

c(X)⇔ notprime(X) c(s(s(X))).

The basic misbehavior condition amounts to

∃Xnotprime(X)∧∀X(notprime(X)→ ∃X ′(c(s(s(X)))=c(X ′)∧notprime(X ′))).

Since the successor of the successor of a non-prime may be prime, the condition
does not hold. By Theorem 1, the goal c(X) ∧ notprime(X) thus terminates.

Let Q be odd(X). The implication of the general misbehavior condition is

∀X(odd(X)∧notprime(X)→ ∃X ′(c(s(s(X)))=c(X ′)∧odd(X ′)∧notprime(X ′))).

Again, it does not hold. The status of non-termination is undecided by The-
orem 2. (Actually, there is no infinite sequence of odd numbers that does not
contain a prime, therefore any computation containing c(X) ∧ odd(X) will ter-
minate.)

Now let Q be even(X)∧X=s(s(s(Y ))). This time the condition holds, since
any sequence of even numbers greater or equal to three (since X=s(s(s(Y ))))
does not contain a prime number. The corresponding goal c(X) ∧ even(X) ∧
X=s(s(s(Y ))) is non-terminating. (So c(X) terminates for odd numbers but
does not terminate for even numbers greater than two.)

The following example exhibits a non-terminating computation for a list
concatentation constraint.

Example 7. Let cons and nil denote function symbols to build lists. Then we
can define the concatentation of two lists L1 and L2 resulting in a third list L3:

append(L1, L2, L3)⇔ L1=nil L2=L3.

append(L1, L2, L3)⇔ L1=cons(X,L1′)

L2=L2′ ∧ L3=cons(X,L3′) ∧ append(L1′, L2′, L3′).

The implication of the basic misbehavior condition is

∀(L1=cons(X,L1′) ∧ L2=L2′ ∧ L3=cons(X,L3′)→

∃(append(L1′, L2′, L3′)=append(L1′′, L2′′, L3′′) ∧ L1′′=cons(X ′, L1′′′)))

This formula does not hold, because the premise of the implication does not
constrain L1′′ (which is equivalent to L1′) to be a cons term as required by the
conclusion.

Regarding the general misbehavior condition, let Q be L1′=L3. Then the
implication of the general condition amounts to

∀(L1′=L3 ∧ L1=cons(X,L1′) ∧ L2=L2′ ∧ L3=cons(X,L3′)→

∃(append(L1′, L2′, L3′)=append(L1′′, L2′′, L3′′)∧L1′′′=L3′′∧L1′′=cons(X ′, L1′′′)))



13

This formula does hold, because L1′=L3 and L3=cons(X,L3′) in the premise
implies L1′=L1′′∧L1′′′=L3′′∧L1′′=cons(X ′, L1′′′) in the conclusion, as we can
choose X ′=X and L3′′=L3′. Indeed, the computation for the goal

append(L1, L2, L3) ∧ L1=cons(X,L1′) ∧ L1′=L3

is non-terminating, producing longer and longer lists.

4.3 Containment Theorem

Theorem 2 only gives us a particular goal that is non-terminating or fails. By
the following theorem we can apply the theorem to any goal that contains that
particular goal. Usually, there are infinitely many such goals. The proof directly
follows from the previous theorem and the monotonicity property of CHR.

Theorem 3. Any goal
H ∧ C ∧Q ∧G

with arbitrary constraint G , where the general misbehavior condition according
to Theorem 2, holds for H ∧ C ∧Q, will either not terminate or fail.

Proof. We prove the claim by induction.
Base Case. The state H ∧ C ∧ Q ∧ G is either failed or not. In the first

case we are done. In the second case, the recursive rule is applicable to the state.
Because by monotonicity of CHR (Lemma 3), we know that if a rule is applicable
to a state, it is also applicable to the state when constraints have been added,
as long as this state is not failed.

Induction Step. The same reasoning holds for all subsequent states in the
computation: If we have a state, it is either failed or the recursive rule is appli-
cable to it by monotonicity.

Thus the computation of a goal H ∧ C ∧Q ∧G either fails or diverges. ut

The following example introduces some specific goals for a non-terminating
computation.

Example 8. Consider a variant of the rule of Example 4 with empty guard and
X≥Y in its body

p(X,Y )⇔ X≥Y ∧ p(Y,X).

Let Q be true. The implication of the misbehavior condition then is

∀XY ((X≥Y )→ ∃X ′Y ′(p(Y,X)=p(X ′, Y ′)).

This condition holds. So any computation for a goal consisting of p(X,Y ) and
arbitrary built-in constraints either fails or is non-terminating. The computation
for the goal p(X,Y ) is non-terminating. So is the more specific goal p(X,Y ) ∧
X=Y . The more specific goal p(X,Y )∧X<Y fails. So do the goals with the built-
in constraints X>Y and X 6=Y . The goal p(X,Y ) ∧ p(Y,X) is non-terminating
as well, producing the constraint X=Y .



14

Note that while Q satisfies the misbehavior condition, Q∧G need not do so.
Thus the converse of Theorem 2 does not hold. The following example illustrates
this point.

Example 9. Continuing with Example 3, let Q be X=Y in the general misbe-
havior condition. The implication of the condition is

∀((X=Y ∧X=s(X1) ∧ Y =s(s(Y 1)))→

∃(double(X1 ,Y1 )=double(X ′,Y ′) ∧X ′=Y ′ ∧X ′=s(X1′))).

It can be simplified into

∀((X=Y ∧X=s(X1) ∧X1=s(Y 1))→

∃(X1=X ′ ∧ Y 1=Y ′ ∧X1=Y 1 ∧X1=s(X1′))).

where X1=s(Y 1) and X1=Y 1 are in contradiction. Thus the implication does
not hold. However, the goal double(X,Y )∧X=s(X1)∧X=Y does not terminate.

But there is a more general Q that shows by Theorem 3 that the computation
for this goal either fails or is non-terminating. Let Q be X≥Y . The implication
of the misbehavior condition is

∀((X≥Y ∧X=s(X1) ∧ Y =s(s(Y 1)))→

∃(double(X1 ,Y1 )=double(X ′,Y ′) ∧X ′≥Y ′ ∧X ′=s(X1′))).

It can be simplified into

∀((X1≥s(Y 1) ∧X=s(X1) ∧ Y =s(s(Y 1)))→

∃(X1=X ′ ∧ Y 1=Y ′ ∧X1≥Y 1 ∧X1=s(X1′))).

where X1≥s(Y 1) implies X1≥Y 1 ∧ X1=s(X1′). The misbehavior condition
holds. So the goal double(X,Y ) ∧ X=s(X1) ∧ X≥Y does not terminate or it
fails. Actually it is non-terminating.

5 Conclusions

The paper introduced theorems with so-called misbehavior conditions for non-
termination and failure as well as termination of linear direct recursive simplifi-
cation rules in CHR. Certain goals for a given recursive rule are non-terminating
or failing if a certain implication between the built-in constraints of the guard
and body of the rule holds.

We proved a basic theorem for non-termination or failure of the most general
goal for recursive rules that consists of their head and guard. A kind of converse
also holds: If the misbehavior condition for this goal is violated, it will terminate.
We then gave the main condition for misbeavior. It is parameterised with regard
to suitable additional built-in constraints in the goal. Finally, a third theorem
showed that any goal that contains a misbehaved goal will also be misbehaved.



15

Future Work. Having stated the theorems describing non-termination and fail-
ure, the immediate next question is how to find the built-in constraints that
satisfy the misbehavior condition. This is very likely to be an undecidable prob-
lem due to the undecidabilty of termination itself. We can imagine an iterative
approach of finding better and better approximations for suitable constraints.
Another possibility is the systematic enumeration of possible built-in constraints
over the involved variables, as one reviewer suggested.

One should extend our approach to a more general class of rules and to other
types of recursion. Our approach readily seems applicable to CHR propagation
rules. If other CHR constraints occur in the body of the rule, they would have
to be abstracted to / approximated by built-in constraints. Multiple and mutual
(indirect) recursion cover the standard formulations of e.g. the Fibonacci and
the Ackermann function. We think that existing rule unfolding techniques for
CHR will come handy to replace mutual by direct recursion.

Another open problem is if there is some kind of converse for the main The-
orem 2, similar to the one for Theorem 1. A related question is if there are most
general built-in constraints for Theorem 2. The answer seems to depend on the
expressibility of the built-in constraints in the constraint theory.

Last but not least, it should be investigated how our approach carries over
to related languages like constraint logic programming ones and the other rule-
based approaches that have been embedded in CHR. In conclusion, we think this
paper can serve as a basic reference and nucleus for a wealth of further research.

Acknowledgements. We thank the anonymous referees for their helpful sug-
gestions on how to improve the paper.

References

1. H. Betz, F. Raiser, and T. Frühwirth. A complete and terminating execution
model for constraint handling rules. Theory and Practice of Logic Programming,
10:597–610, 7 2010.

2. M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated detection of non-
termination and nullpointerexceptions for Java bytecode. In Formal Verification
of Object-Oriented Software, pages 123–141. Springer, 2012.

3. J. Endrullis and H. Zantema. Proving non-termination by finite automata.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 36. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

4. T. Frühwirth. Constraint Handling Rules (Monography). Cambridge University
Press, Aug. 2009.

5. T. Frühwirth. Constraint handling rules – what else? In Rule Technologies: Foun-
dations, Tools, and Applications, pages 13–34. Springer International Publishing,
2015.

6. T. Frühwirth. A devil’s advocate against termination of direct recursion. In Pro-
ceedings of the 17th International Symposium on Principles and Practice of Declar-
ative Programming, pages 103–113. ACM, 2015.

7. T. Frühwirth. The CHR Web Site – www.constraint-handling-rules.org. Ulm
University, 2016.



16

8. A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu. Proving
non-termination. ACM Sigplan Notices, 43(1):147–158, 2008.

9. T. C. Le, S. Qin, and W.-N. Chin. Termination and non-termination specification
inference. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 489–498. ACM, 2015.

10. S. Liang and M. Kifer. A practical analysis of non-termination in large logic
programs. Theory and Practice of Logic Programming, 13(4-5):705–719, 2013.

11. É. Payet. Loop detection in term rewriting using the eliminating unfoldings. The-
oretical Computer Science, 403(2):307–327, 2008.

12. É. Payet and F. Mesnard. A non-termination criterion for binary constraint logic
programs. Theory and Practice of Logic Programming, 9(02):145–164, 2009.

13. É. Payet, F. Mesnard, and F. Spoto. Non-termination analysis of Java bytecode,
CoRR abs/1401.5292, 2014.

14. D. Voets and D. Schreye. A new approach to non-termination analysis of logic pro-
grams. In Proceedings of the 25th International Conference on Logic Programming,
pages 220–234. Springer-Verlag, 2009.

A Appendix: Proof of Theorem 1

Using the proof of Theorem 2 as a basis, we now can now prove Theorem 1, too.

Proof of Theorem 1.
The first claim is that the basic misbehavior condition of this theorem

implies non-termination or failure of the goal H∧C. This is a simple consequence
of Theorem 2 where Q is taken to be true.

The second claim is that if the basic misbehavior condition

CT |= ∃(C ∧Bbi) ∧

∀((C ∧Bbi)→ ∃(Bud=H ′ ∧ C ′)).

does not hold, then the goal H ∧ C terminates.
We prove the claim by case distinction. If the condition does not hold, then

either
Case 1 the existential part of the condition ∃(C ∧Bbi) is unsatisfiable or
Case 2 the implication part ∀((C ∧Bbi)→ ∃(Bud=H ′ ∧ C ′)) does not hold.

For Case 1, we distinguish two sub-cases;
Case 1.1 ∃(C ∧Bbi) is unsatisfiable, because ∃C is unsatisfiable.
Case 1.2 ∃(C ∧Bbi) is unsatisfiable, but ∃C is satisfiable.

Case 1.1 If ∃C is unsatisfiable, then the state H ∧C is failed, so no compu-
tation step is possible, the computation trivially terminates and we are done.

Case 1.2 and Case 2 Otherwise C and thus H ∧C are satisfiable. Then we
can apply the recursive rule to H.

In the proof of the base case in Theorem 2, let Q be true. There we have
shown that if the source state (H ∧C ∧Q) is satisfiable, then we can apply the
recursive rule and the resulting target state of the transition is (B′bi ∧B′ud ∧C ∧
Q ∧H ′=H ∧ C ′).



17

Case 1.2 Now if ∃(C ∧ Bbi) is unsatisfiable, then so is ∃(C ′ ∧ B′bi) of the
target state, since the two formulas are variants. Then the state is failed and we
are done.

Case 2 Otherwise, the implication of the basic misbehavior condition and its
variant ∀((C ′∧B′bi)→ ∃(B′ud=H ′′∧C ′′)) do not hold. The applicability condition
for applying the recursive rule to B′ud is ∀((B′bi∧C∧H ′=H∧C ′)→ ∃(B′ud=H ′′∧
C ′′)). Since by C ′ → ∃(H ′=H ∧ C) by Lemma 1, the two implications are
equivalent. Thus the applicability condition does not hold and the recursive rule
is not applicable. The computation terminates also in this case.

Thus the rule is not applicable and no computation step is possible anymore.
ut


