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An Operational Semantics for the Cognitive Architecture
ACT-R and its Translation to Constraint Handling Rules

DANIEL GALL and THOM FRÜHWIRTH, Ulm University

Computational psychology has the aim to explain human cognition by computational models of cognitive

processes. The cognitive architecture Adaptive Control of Thought – Rational (ACT-R) is popular to develop

such models. Although ACT-R has a well-de�ned psychological theory and has been used to explain many

cognitive processes, there are two problems that make it hard to reason formally about its cognitive models:

First, ACT-R lacks a computational formalization of its underlying production rule system and secondly, there

are many di�erent implementations and extensions of ACT-R with many technical artifacts complicating

formal reasoning even more.

This paper describes a formal operational semantics – the very abstract semantics – that abstracts from as

many technical details as possible keeping it open to extensions and di�erent implementations of the ACT-R

theory. In a second step, this semantics is re�ned to de�ne some of its abstract features that are found in many

implementations of ACT-R – called the abstract semantics. It concentrates on the procedural core of ACT-R

and is suitable for analysis of the general transition system since it still abstracts from details like timing, the

sub-symbolic layer of ACT-R or con�ict resolution.

Furthermore, a translation of ACT-R models to the declarative programming language Constraint Handling

Rules (CHR) is de�ned. This makes the abstract semantics an executable speci�cation of ACT-R. CHR has

been used successfully to embed other rule-based formalisms like graph transformation systems or functional

programming. There are many theoretical results and practical tools that support formal reasoning about

and analysis of CHR programs. The translation of ACT-R models to CHR is proven sound and complete w.r.t.

the abstract operational semantics of ACT-R. This paves the way to analysis of ACT-R models through CHR

analysis results and tools. Therefore, to the best of our knowledge, our abstract semantics is the �rst abstract

formulation of ACT-R suitable for both analysis and execution.
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1 INTRODUCTION
Computational cognitive modeling tries to explore human cognition by building detailed computa-

tional models of cognitive processes [32]. Cognitive architectures support the modeling process by

providing a formal, well-investigated theory of cognition that allows for building cognitive models

of speci�c tasks and cognitive features.
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Currently, computational cognitive modeling architectures as well as the implementations of

cognitive models are typically ad-hoc constructs. They lack a formalization from the computer

science point of view. For instance, Adaptive Control of Thought – Rational (ACT-R) [5] is a widely

employed cognitive architecture. It is a modular production rule system with a special architecture

of the working memory that operates on data stored as so-called chunks, i.e. the unit of knowledge

in the human brain. It has a well-de�ned psychological theory, however, its computational system

is not described formally leading to implementations that are full of technical artifacts as claimed

in [3, 31], for instance. Due to the many technical artifacts it is hard to merge di�erent cognitive

models in a greater context.

Formal analysis of cognitive models can support the modeling process to ensure model quality

and to prove certain properties of cognitive models to validate their plausibility. However, the lack

of formalization, the several implementations and the technical artifacts impede formal reasoning

about the underlying languages and the programmed models. It makes it hard to compare di�erent

implementation variants of the languages. Furthermore, it complicates verifying properties of the

models. These issues call for a formal semantics of cognitive modeling languages together with

proper analysis techniques. This semantics should be an elegant formulation of the core features

all those implementations of cognitive architectures use to explain human cognition.

In this paper, we describe a very abstract formulation of the operational semantics of ACT-R,

called the very abstract semantics. This formalization of the fundamental parts of ACT-R is the basis

for the speci�cation of concrete implementations of the theory of the architecture, as well as for

analysis of cognitive models. This very abstract semantics, extending and adapting the work of [3],

captures all possible kinds of ACT-R implementations. This can be too abstract to formally reason

about actual computational models meaningfully.

Therefore, we give a concrete instance of this very abstract semantics that is suitable for analysis

and implementation – the abstract semantics. It still abstracts from a variety of technical details

like con�ict resolution, times and latency that strongly depend on the actual implementation or

even con�guration of ACT-R, but includes the typical matching process of rules and some common

actions that can be extended. This paves the way for computational analysis of actual cognitive

models.

Eventually, we construct a sound and complete translation of ACT-R models in abstract semantics

to Constraint Handling Rules (CHR). The abstract semantics is therefore directly executable via its

CHR representation making it, to the best of our knowledge, the �rst formal operational semantics

of ACT-R that is suitable for analysis and execution.

The paper is a revised and extended version of our prior work in [18] and [19]. It has the

following contributions:

(1) A very abstract operational semantics of ACT-R (c.f. Section 3),

(2) an instance of this semantics for analysis (abstract semantics, c.f. Section 4),

(3) a translation of ACT-R models to the declarative programming language Constraint Han-

dling Rules (CHR) (c.f. Section 5) and

(4) a soundness and completeness proof of the translation w.r.t. the operational semantics (c.f.

Section 6).

The formulations of the semantics (items 1 and 2) have been improved compared to [18] and the

translation (item 3) has been revised substantially compared to [19] making it suitable for the

proofs. The soundness and completeness proofs (item 4) have not been published before and are

fundamentally new.

Constraint Handling Rules (CHR) [13] has a formally de�ned operational semantics as well as a

declarative semantics with corresponding soundness and completeness results. There are many
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theoretical and practical results and tools for analysis of CHR programs [13]. Due to its strengths

in formal program analysis and its strong relation to �rst order [13] and linear logic [7, 13], it has

been used as a lingua franca that embeds many rule-based approaches [13] like term rewriting

systems [26], graph transformation systems [24, 27] and business rules [23]. Such embeddings

have been used successfully to make the analysis results of CHR available to other approaches.

The sound and complete embedding of ACT-R in CHR enables the use of these results and tools to

formally reason about cognitive models.

The paper is structured as follows: We �rst give a short introduction to ACT-R in Section 2. The

formal de�nition of the very abstract semantics is given in Section 3 and the abstract semantics

is de�ned as an instance in Section 4. The translation scheme of abstract ACT-R models to CHR

programs is described in Section 5 and proven sound and complete w.r.t. the operational semantics

in Section 6. Related work is discussed in Section 7 with a detailed comparison to prior work.

2 DESCRIPTION OF ACT-R
In this section, we describe ACT-R informally. For a detailed introduction to the theory, we refer

to [4–6, 34]. Adaptive Control of Thought – Rational (ACT-R) is a popular cognitive architecture

that is used in many cognitive models to describe and explain human cognition. There have been

applications in language learning models [33] or in the �eld of human computer interaction [9].

The components of the ACT-R architecture have even been mapped to brain regions [4, chapter 2].

Using a cognitive architecture like ACT-R simpli�es the modeling process, since well-investigated

psychological results have been assembled to a uni�ed theory about fundamental parts of human

cognition. In the best-case, such an architecture constrains modeling to only plausible cognitive

models [34]. Computational cognitive models are described clearly and unambiguously since they

are executed by a computer producing detailed simulations of human behavior [32]. By performing

the same experiments on humans and the implemented cognitive models, the resulting data can be

compared and models can be validated.

2.1 Overview of the ACT-R Architecture
The ACT-R theory is built around a modular production rule system operating on data elements

called chunks. A chunk is a structure consisting of a name and a set of labeled slots that are

connected to other chunks. The slots of a chunk are determined by its type. The names of the

chunks are only for internal reference – the information represented by a network of chunks comes

from the connections. For instance, there could be chunks representing the cognitive concepts

of numbers 1, 2, . . . By chunks with slots number and successor we can connect the individual

numbers to an ordered sequence describing the concept of natural numbers. This is illustrated in

Fig. 1.

b

1

2 c

3

number

successor number

successor

Fig. 1. Two count facts with names b and c that model the counting chain 1, 2, 3.

As shown in Fig. 2, ACT-R consists of modules. The goal module keeps track of the current (sub-)

goal of the cognitive model. The declarative module contains declarative knowledge, i.e. factual
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knowledge that is represented by a network of chunks. There are also modules for interaction with

the environment like the visual and the manual module. The �rst perceives the visual �eld whereas

the latter controls the hands of the cognitive agent. Each module is connected to a set of bu�ers
that can hold at most one chunk at a time.

goal

module

goal bu�er

imaginal

module

imaginal

bu�er

declarative

module

retrieval

bu�er

procedural

module

visual

module

visual

bu�er

manual

module

manual

bu�er

environment

Fig. 2. Modular architecture of ACT-R. This illustration is inspired by [34] and [5].

The heart of the system is the procedural module that contains the production rules controlling

the cognitive process. It only has access to a part of the declarative knowledge: the chunks that are

in the bu�ers. A production rule matches the content of the bu�ers and – if applicable – executes

its actions. There are three types of actions:

Modi�cations overwrite information in a subset of the slots of a bu�er, i.e. they change the

connections of a chunk.

Requests ask a module to put new information into its bu�er. The request is encoded in form

of a chunk. The implementation of the module de�nes how it reacts on a request. For

instance, there are modules that only accept chunks of a certain form like the manual

module that only accepts chunks that encode a movement command for the hand according

to a prede�ned set of actions.

Nevertheless, all modules share the same interface for requests: The module receives

the arguments of the request encoded as a chunk and puts its result in the requested bu�er.

For instance, a request to the declarative module is stated as a partial chunk and the result

is a chunk from the declarative knowledge (the fact base) that matches the chunk from the

request.

Clearings remove the chunk from a bu�er.

The system described so far is the so-called symbolic level of ACT-R. It is similar to standard

production rule systems operating on symbols (of a certain form) and matching rules that interact
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with bu�ers and modules. However, to simulate the human mind, a notion of timing, latency,

priorities etc. are needed. In ACT-R, those concepts are subsumed in the sub-symbolic level. It

augments the symbolic structure of the system by additional information to simulate the previously

mentioned concepts.

Therefore, ACT-R has a progressing simulation time. Certain actions can take some time that

depends on the information from the sub-symbolic level. For instance, chunks are mapped to an

activation level that determines how long it takes the declarative module to retrieve it. Activation

levels also resolve con�icts between chunks that match the same request. The value of the activation

level depends on the usage of the chunk in the model (inter alia): Chunks that have been retrieved

recently and often have a high activation level. Hence, the activation level changes with the

simulation time. This can be used to model learning and forgetting of declarative knowledge.

Similar to the activation level of chunks, production rules have a utility that also depends on the

context and the success of a production rule in prior applications. Con�icts between applicable

rules are resolved by their utilities which serve as dynamic, learned rule priorities.

2.2 Syntax
We use a simpli�ed syntax of ACT-R that we have introduced in [16]. It is based on sets of

logical terms instead of the concatenation of syntactical elements. This enables an easier access to

the syntactical parts. Our syntax can be transformed directly to the original ACT-R syntax and

vice-versa.

An ACT-R architecture is de�ned over two possibly in�nite, disjoint sets of (constant) symbols C

and variable symbolsV . Each architecture de�nes a set of bu�ers B ⊆ C.

An ACT-R model in an architecture consists of a set of types T ⊆ C with type de�nitions and

a set of rules Σ. A production rule has the form L ⇒ R where L is a �nite set of bu�er tests and

queries. A bu�er test is a �rst-order term of the form =(b, t, P) where b ∈ B is a bu�er, t ∈ T a type

and P ⊆ C × (C ∪ V) is a set of slot-value pairs (s,v) where s ∈ C and v ∈ C ∪ V . This means

that only the values in the slot-value pairs can consist of both constants and variables.

The architecture de�nes a set of action symbols A from which the right-hand side of the rules

can be formed. Usually, the action symbols are de�ned as A := {=,+,−} for modi�cations, requests

and clearings respectively.

The right-hand side R ⊆ A of a rule is a �nite set of actions where A = {a(b, t , P) | a ∈ A,b ∈
B, t ∈ T and P ⊆ C × (C ∪ V)}. This means that an action is a term of the form a(b, t , P) where

the functor a of the action is in A, the set of action symbols, the �rst argument b is a constant

(denoting a bu�er), the second argument is a constant t denoting a type, and the last argument is a

set of slot-value pairs, i.e. a pair of a constant and a constant or variable. In this paper, we only one

action per bu�er is allowed, i.e. if a(b, t , P) ∈ R and a′(b, t ′, P ′) ∈ R then a = a′, t = t ′ and P = P ′.
Note that the same symbol (=) is used for both bu�er tests and modi�cations, although they

denote di�erent concepts. Nevertheless, this paper adheres to those symbols as they appear in the

ACT-R reference implementation and are widely used in the context of ACT-R.

The function vars maps an arbitrary set of terms to its set of variables inV . For a production

rule L⇒ R the following must hold: vars(R) ⊆ vars(L), i.e. no new variables must be introduced

on the right-hand side of a rule. As we will see in the following sections about semantics, this

restriction demands that all variables are bound on the left-hand side.

The syntactic restrictions on rules are summarized in the following de�nition of well-formedness
as an abstract syntax description. We allow to transfer information in non-terminal symbols as
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arguments and denote enumerations of non-terminal symbols as subsets.

production rule: P ::= L⇒ R(L)

left-hand side: L ::= {T1, . . .Tn},n > 0

bu�er test: T ::= =(b, t, {ST1(t), . . . , STn(t)}),n ≥ 0

slot test: ST (t) ::= (s,v) if s ∈ τ (t)

right-hand side: R(L) ::= {RA1(L), . . . RAn(L)},n > 0 if the bu�ers in RA1(L) and

RAn(L) are disjoint

rule action: RA(L) ::= a(b, t , {SA1(L, t1), . . . , SAn(L, tn)}),n ≥ 0

slot action: SA(L, t) ::= (s,v) if s ∈ τ (t) and v ∈ vars(L)

where b ∈ B, t ∈ T, a ∈ A, s ∈ C and v ∈ V ∪ C. This de�nition is a reduced version of the

de�nition given in [8, p. 17 et seq.] and has only been transformed from LISP style syntax to sets

of �rst-order terms.

2.3 Informal Operational Semantics
In this section, we describe ACT-R’s operational semantics informally. The production rule system

constantly checks for matching rules and applies their actions to the bu�ers. This means that it

tests the conditions on the left hand side with the contents of the bu�ers (which are chunks) and

applies the actions on the right hand side, i.e. modi�es individual slots, requests a new chunk from

a module or clears a bu�er.

The left hand side of a production rule consists of bu�er tests – that are terms =(b, t, P) with

a bu�er b, a type t and a set of slot-value pairs P . The values of a slot-value pair can be either

constants or variables. The test matches a bu�er, if the chunk in the tested bu�er b has the speci�ed

type t and all slot-value pairs in P match the values of the chunk in b. Thereby, variables of the rule

are bound to the actual values of the chunk. Values of a chunk in the bu�ers are always ground, i.e.

they do not contain any variables. This is ensured by the previously mentioned condition in the

syntax of a rule that the right hand side of a rule does not introduce new variables (see Section 2.2).

Hence the chunks in the bu�ers stay ground.

If there is more than one matching rule, a con�ict resolution mechanism that depends on the

sub-symbolic layer chooses one rule that is applied. After a rule has been selected, it takes a certain

time (usually 50 ms) for the rule to �re. I.e. actions are applied after this delay. During that time

the procedural module is blocked and no rule can match.

The right hand side consists of actions a(b, t , P), where a ∈ A is an action symbol, b is a constant

denoting a bu�er and P is again a set of slot-value pairs. We have already explained the three types

of actions (modi�cations, requests and clearings) roughly. In more detail, a modi�cation overwrites

only the slots speci�ed in P with the values from P . A request clears the requested bu�er and asks

a module for a new chunk. It can take some time speci�ed by the module (and often depending on

sub-symbolic values) until the request is processed and the chunk is available. During that time,

other rules still can �re, i.e. requests are executed in parallel. However, a module can only process

one request for a bu�er at the same time. Bu�er clearings simply remove the chunk from a bu�er.

In the following, we disregard clearings in our de�nitions since they are easy to add.

As mentioned before, a rule can only consist of one action per bu�er. This excludes race conditions

and con�icts between actions. For instance, a modi�cation is typically applied without any delay

whereas a request typically takes some time and overwrites the chunk in the requested bu�er.
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This would lead to losing the modi�cation that has been applied before. The modi�cation cannot

be applied after the request, as it is not clear that the requested chunk is of the same type as the

chunk that has been in the bu�er before. Hence, such rules are undesired. Note that a request can

still result in di�erent chunks as requests typically are not functional but non-deterministic. In

implementations, they often include a noisy component that in�uences the result.

In the following example, a rule is de�ned and its behavior is explained informally.

Example 2.1 (production rule). We want to model the counting process of a little child that has just

learned how to count from one to ten. We use the natural number chunks described in Section 2.1

as declarative knowledge. Furthermore, we have a goal chunk of another type д that memorizes

the current number in a current slot. We now de�ne a production rule, that increments the number

in the counting process (and call this rule inc). We denote variables with capital letters in our

examples. The left-hand side of the rule inc consists of two tests:

• =(goal, g, {(current,X )}) and

• =(retrieval, succ, {(number,X ), (successor, Y )}).

This means that the rule tests if in the goal bu�er there is a chunk of type д that has some number

X (which is a variable) in the current slot. If this number X is also in the number slot of the chunk

in the retrieval bu�er, the test succeeds and the variable Y is bound to the value in the successor
slot. The actions of the rule are:

• =(goal, g, {(current, Y )}) and

• +(retrieval, succ, {(number, Y )}).

The �rst action modi�es the chunk in the goal. A modi�cation cannot change the type, hence it

has to be the same type symbol as in the test. The current slot of the goal chunk is adjusted to

the successor number Y and the declarative module is asked for a chunk of type succ with Y in

its number slot. This is called a retrieval request. After a certain amount of time, the declarative

module will put a chunk with Y in its number and Y + 1 in its successor slot into the retrieval bu�er

and the rule can be applied again.

3 VERY ABSTRACT OPERATIONAL SEMANTICS
Our goal is to de�ne an operational semantics that captures as many ACT-R implementations as

possible and leaves room for extensions and modi�cations. Hence, we �rst give them a common

theoretical foundation that is based on the formalization according to [3] – the very abstract

operational semantics. It describes the fundamental concepts of a production rule system that

operates on bu�ers and chunks like ACT-R. This work extends the de�nition from [3]. We compare

our work with the work from [3] in Section 7.1. Later on, in Section 4, we de�ne an instance of this

very abstract semantics that is suitable for analysis of cognitive models.

An ACT-R architecture is a concrete instantiation of the very abstract semantics and de�nes

general parts of the system that are left open by the very abstract semantics like the set of possible

actions A, the e�ect of such an action or the selection process. In contrast to that, an ACT-R model
de�nes model-speci�c instantiations of parts like the set of types T and the set of production rules

Σ.

3.1 Chunk Stores
As described before in Section 2, ACT-R operates on a network of typed chunks that we call a

chunk store. Therefore, we �rst de�ne the notion of types:
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De�nition 3.1 (chunk types). Let 2
C

be the power set of all constant symbols. A typing function
τ : T→ 2

C
maps each type from the set of types T ⊆ C to a �nite set of allowed slot names. Every

type set T must contain a special type chunk ∈ T with τ (chunk) = ∅.

A chunk store is de�ned over a set of types and a typing function. We abstract from chunk

names as they do not add any information to the system. In fact, chunks are de�ned as unique,

immutable entities with a type and connections to other chunks:

De�nition 3.2 (chunk store). A chunk store ∆ is a set of elements of the form c::(t , val) where

c ∈ C is a unique chunk identi�er, t ∈ T is a chunk type and val : τ (t) → ∆ is a function that maps

each slot of the chunk (determined by the type t ) to another chunk.

Every chunk store ∆ must contain a chunk nil::(chunk, ∅). Each chunk store ∆ has an identi�er
function id∆ : ∆→ C, c::(t , val) 7→ c that returns the chunk identi�er of the chunk. The inverse of

id is de�ned as follows:

id−1

∆ (x) :=

{
c if id∆(c) = x ,

nil otherwise.

The set of all chunk stores over all constant symbols C is denoted by D. Chunk identi�ers can

be omitted, if they do not play a role or are clear from the context, i.e. a chunk c::(t , val) can be

referred to as (t , val).

The typing function τ maps a type t from the set of type names T to a set of allowed slots, hence

the function val of chunk c has the slots of c as domain.

Chunk identi�ers are unique within one chunk store. Note that two chunks are only considered

equivalent, if they have the same chunk identi�er, type and value functions (in that case they are

the indistinguishable in the set and therefore treated as one and the same chunk). Hence, a chunk

store can contain multiple elements with the same values that still are unique entities representing

di�erent concepts. This can be seen in the following example. We model our well-known example

from Fig. 1 as a chunk store.

Example 3.3 (chunk store of natural numbers). The chunk store from Fig. 1 can be modeled as

follows. Note that in the examples, we use chunk identi�ers to de�ne the connections in the slots

(the val functions) instead of the whole chunk de�nition for the sake of brevity.

• The set of types is T3.3 = {number , succ}.
• The typing function τ3.3 : T → 2

C
is de�ned as τ3.3(number) = ∅ and τ3.3(succ) =

{number, successor}.
Note that chunks of type number have no slots. A number chunk represents the mental

concept of the number. To distinguish those chunks on the model level and give them a

semantic meaning, their identi�ers are number symbols. Hence, the chunk with identi�er 1

will represent the mental concept of number 1. However, for the model itself, the identi�er

does not play a semantic role. The semantics comes only from the connections to other

number chunks.

• We have the following chunks in our store ∆3.3:

– the unique entities with identi�ers 1, 2, 3 that are de�ned as (number, ∅),

– b :: (succ, valb ) with valb (s) =

{
1 if s = number
2 if s = successor

– c :: (succ, valc ) with valc (s) =

{
2 if s = number
3 if s = successor
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From the de�nition of a chunk store ∆, we can derive a graph (∆,E) where for each slot-value

pair val(s) = d of a chunk c::(t , val) ∈ ∆ there is an edge (c,d) ∈ E with label s . In the graphical

representation, we can label vertices with the chunk identi�ers. We can apply this to Example 3.3

to derive the graph illustrated in Fig. 1 on page 3.

Sometimes we want to build chunk stores that only have a few chunks in them that refer to

chunks in other chunk stores in their slots. We call this concept a partial chunk store.

De�nition 3.4 (partial chunk store). A partial chunk store with reference to a chunk store ∆,

denoted as ∆⊂ , is a set of elements of the form c::(t , val) where c ∈ C is a unique chunk identi�er,

t ∈ T is a chunk type and val : τ (t) → ∆ ∪ ∆⊂ is a function that maps each slot of the chunk

(determined by the type t ) to another chunk from chunk store ∆ ∪ ∆⊂ . Every chunk in the partial

chunk store ∆⊂ has a unique identi�er that is disjoint from the identi�ers in ∆. The function

id∆⊂ : ∆⊂ → C returns the chunk identi�er for each chunk in ∆⊂ .

The set of all partial chunk stores that refer to a chunk store ∆ is denoted as D⊂∆ .

Example 3.5 (partial chunk store). Let ∆3.3 be the chunk store from Example 3.3. We de�ne ∆3.5 as

a partial chunk store that refers to ∆3.3. It contains the chunk x ::∆3.5 (succ, valx ) with the following

slots:

valx :=

{
2 if s = number
3 if s = successor

We de�ne an operation that merges two (partial) chunk stores. In an abstract way it can be

considered as a special set union that merges two elements of a chunk store, if they have the same

chunk identi�ers. However, since there are many di�erent implementations of ACT-R, we do not

want to limit our formulation to this special type of set union, but de�ne a more general operator ◦.

For the general understanding of the paper and the proofs it is su�cient to think of it as set union

that maintains uniqueness of chunk identi�ers and might merge some chunks to one.

De�nition 3.6 (chunk merging). Let D be the set of all chunk stores, ∆ ∈ D a chunk store and

D⊂∆ the set of all partial chunk stores that refer to ∆. Then ◦ : (D ∪D⊂∆ ) × (D ∪D
⊂
∆ ) → (D ∪D

⊂
∆ )

the chunk merging operator that merges two (partial) chunk stores to one (partial) chunk store.

We require the following properties for ◦. For all chunk stores ∆ ∈ D and all (partial) chunk

stores ∆′,∆′′,∆′′′ ∈ D ∪ D⊂∆ :

(1) The chunk merge operator is only de�ned for two (partial) chunk stores that have disjoint

chunk identi�ers, except for syntactically identical chunks. This means that for all c ′ ∈ ∆′

and c ′′ ∈ ∆′′ with id∆′(c ′) = id∆′′(c ′′), it must hold that c ′ = c ′′, i.e. both chunks have same

types and value functions.

(2) The merging is closed, i.e. if ∆′ and ∆′′ are (partial) chunk stores, then ∆′ ◦ ∆′′ is a (partial)

chunk store.

(3) (∆′ ◦ ∆′′) ◦ ∆′′′ = ∆′ ◦ (∆′′ ◦ ∆′′′), i.e. ◦ is associative.
(4) ∅ is the neutral element, i.e. ∆′ ◦ ∅ = ∅ ◦ ∆′ = ∆′.
(5) If c ′ ∈ ∆′, then c ′ ∈ ∆′ ◦ ∆′′ and id∆′(c ′) = id∆′◦∆′′(c ′), i.e. ∆′ ⊆ ∆′ ◦ ∆′′. This means that

all elements of the left chunk store ∆′ are also part of the merged chunk store.

(6) There is a mapping map∆′,∆′′ : ∆′ ∪ ∆′′ → ∆′ ◦ ∆′′ that maps chunks from the original

chunk stores to the merged chunk store. For all chunks c := i::(t , val) ∈ ∆′ ∪ ∆′′ : If there

is a chunk c ′ ∈ ∆ ◦ ∆′ in the merged chunk store with the same identi�er id∆′◦∆′′(c ′) = i ,
then c = c ′. This means that the mapping function represents the actual merging of the

chunk store and just returns the new identi�ers for the chunks that have been removed

due to the merging. All other chunks remain untouched.
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Note that this also means that map∆′,∆′′(c) = c if c ∈ ∆′, i.e. the chunks from ∆′ remain

untouched by the merging (c.f. Axiom 5).

From the axioms it is clear that (D ∪ D⊂∆ , ◦) is a monoid, since the structure is closed under ◦,

associative and has a neutral element.

The simplest de�nition of a chunk merging operator is the set union (∪). For chunk stores that

obey Axiom 1 (i.e. that have disjoint identi�ers except for syntactic equivalent chunks), set union

is closed, associative and has neutral element ∅. It also obeys Axiom 5. The mapping function is

de�ned as the identity function as no elements are lost in the merging process.

Example 3.7 (set union as ◦). Let ∆ := {c1, c2} and ∆′ := {c2, c3} with id∆(ci ) = i for i = 1, 2 and

id∆′(ci ) = i for i = 2, 3. Then ∆ ◦ ∆′ = {c1, c2, c3}. Due to the same identi�ers, types and value

functions of the two appearances of c2, the merged store only keeps one version of c2. The mapping

just returns the original chunks from both stores.

In most implementations, chunks that have the same structure are merged to one chunk regardless

of identi�er, i.e. for a chunk store ∆ and two partial chunk stores ∆⊂
1

and ∆⊂
2

that refer to ∆: If

c1::(t , val) ∈ ∆⊂
1

and c2::(t , val) ∈ ∆⊂
2

, then c1 and c2 is merged to c1 in ∆⊂
1
◦ ∆⊂

2
. This means that

only c1 is kept in the merged store. The mapping function returns

map∆⊂
1
,∆⊂

2

(c1) = c1 and

map∆⊂
1
,∆⊂

2

(c2) = c1.

3.2 States
ACT-R states are tuples that consist of several parts:

• a chunk store,

• a cognitive state that de�nes which chunks from the chunk store are currently in which

bu�er. Those chunks from the chunk store are the only ones that are visible to the production

system, since it can only match chunks in bu�ers.

• A conjunction of additional information that can be used to store information representing

the sub-symbolic level, and

• a time component.

In the following the missing parts of an ACT-R state are de�ned formally.

De�nition 3.8 (cognitive state). A cognitive state γ is a function B → ∆ × R+
0

that maps each

bu�er to a chunk and a delay. The delay decides at which point in time the chunk in the bu�er is

available to the production system. A delay d > 0 indicates that the chunk is not yet available to the

production system. This implements delays of the processing of requests. The set of all cognitive

states is denoted as Γ, whereas Γpart denotes the set of partial cognitive states, i.e. cognitive states

that are partial functions and do not necessarily map each bu�er to a chunk.

ACT-R adds a sub-symbolic level to the symbolic concepts that have been de�ned so far. The

sub-symbolic level adds implicit information to the symbolic structures that account for neural

processes usually associated with neural network models of cognition [34]. This distinguishes

ACT-R from pure symbolic architectures like SOAR [34].

To gather information from the sub-symbolic layer, we add a component to the state that contains

(sub-symbolic) additional information needed to calculate sub-symbolic values. This information

can be altered by an abstract function as can be seen in Section 3.3. The information will be

expressed as conjunctions of predicates from �rst-order logic. The additional information is also

used to manage data used in ACT-R’s modules.
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Additionally, modules other than the procedural module hold their data in the additional infor-

mation.

ACT-R states are de�ned as follows:

De�nition 3.9 (very abstract state). A very abstract state is a tuple 〈∆;γ ;υ; t〉 where γ is a cognitive

state in the sense of De�nition 3.8, υ is a conjunction of ground, atomic �rst order predicates (called

additional information), t ∈ R+
0

is a time. The state space is denoted with Sva.

The chunk store ∆ contains a type that is denoted by a constant and a valuation function that

connects slot names (constants) to other elements from ∆. The cognitive state γ connects bu�er

names (constants) with chunks from ∆ and a delay in R+
0

.

The additional information component υ is a conjunction of ground, atomic predicates over a

signature ϒ and the time is also a number. The set of allowed predicates for additional information

is denoted as ϒ and must contain at least true. Additionally, the allowed additional information

ϒ is closed under conjunction. Additional information holds data of ACT-R’s modules as well as

sub-symbolic information. It can be considered as a bag of structured information that can be used

to store values needed for the computation process as in a database. The notation of a conjunction

is of only syntactical nature at �rst, as we do not de�ne a logical reading for the expressions. The

semantics of additional information comes from its use in the operational semantics for instance

in the rule selection function or the interpretation of actions as it will be de�ned in Section 3.3.

However, there is a close relation to additional information and built-in constraints in the translation

of ACT-R to CHR as shown in Section 5 that is made explicit by this syntactic choice. Nevertheless,

it is always possible to think of additional information as a (multi-)set of relational data represented

as �rst-order predicates.

Note that in an initial state, the chunk store contains at least the chunks that appear in the rules.

Additionally, a very abstract state cannot contain variables fromV , but is only compound from

terms, sets and functions over constants from C.

We continue our running example by de�ning a very abstract state with one of the chunks

de�ned in Example 3.3.

Example 3.10 (ACT-R states). We want to model the counting process of a little child that has

learned the sequence of the natural numbers from one to ten as declarative facts and can retrieve

those facts from declarative memory. Therefore, we add a chunk of type д with a current slot that

memorizes the current number in the counting process.

The following state has a chunk of type д in the goal bu�er that has the current number 1. The

retrieval bu�er is currently retrieving the chunk b with number 1 and successor 2. The retrieval is

�nished in one second as denoted by the delay. Fig. 3 illustrates the state. The formal de�nition is:

• In addition to Example 3.3, we add a chunk type д with a current slot that takes track of

the current number in the counting process.

– T3.10 = T3.3 ∪ {д} where T3.3 is the set of types from Example 3.3.

– τ3.10(t) =

{
{current} if t = д

τ3.3(t) otherwise.

• We de�ne an initial goal chunk cд of this new type д as cд := (д, valgoal) where

valgoal(current) = 1.

• This chunk and the number chunks from Example 3.3 are part of a chunk store

∆3.10 := ∆3.3 ] {cд}.
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• The initial state in this example is de�ned as σ0 := 〈∆3.10;γ0; true; 1〉. It is a very abstract

ACT-R state with the chunk store ∆3.10, a cognitive state γ0, empty additional information

and with current time 0.

• The cognitive state γ0 of the very abstract state σ0 is de�ned as follows:

– γ0(goal) = (cд , 0), i.e. the goal bu�er holds the initial goal chunk cд . It has the delay 0,

i.e. it is directly available to the procedural system.

– γ0(retrieval) = (b, 1) where b is de�ned as in Example 3.3. The delay 1 indicates that

this chunk is not yet available to the procedural system. This represents the situation

where the chunk b has been requested from the declarative module and the request is

still processed.

The current time in the state is 1. The delay of the goal bu�er is 0, i.e. its chunk is visible to the

procedural system. The delay of the retrieval bu�er is 1, i.e. the chunk will be visible when the

global time of the state is 2.

retrieval 1 b

1 2

goal 0

number successor

current

Fig. 3. Visual representation of the very abstract state defined in Example 3.10. The dashed arrow signifies
that the chunk in the retrieval bu�er is not yet visible (as indicated by the delay right of the bu�er’s name).

In Example 3.10, the additional information component was empty. This is not completely

accurate, since the declarative module has its own chunk store – called declarative memory – that

is a subset of the global chunk store. To resolve requests, only the chunks in this separate chunk

store are considered. In the following example, additional information for the declarative memory

is de�ned.

Example 3.11 (additional information). Chunks in the declarative memory can be represented by

predicates of the form dmchunk(c, t)where c is a chunk identi�er and t a type. The slot connections

can be represented by predicates of the form dmslot(c, s, c ′) that models the connection of slot s in

chunk c to chunk c ′.
The declarative memory consisting of the chunks b, 1 and 2 can be represented as follows:

dmchunk(1, number) ∧ dmchunk(2, number) ∧

dmchunk(b, succ) ∧ dmslot(b, number, 1) ∧ dmslot(b, successor, 2).

In practice, the chunks in the declarative memory are complemented with some sub-symbolic

information, namely activation levels that in�uence the latency of a retrieval request and that can

model learning and forgetting.
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3.3 Operational Semantics
In this section, the state transition system of the very abstract semantics is de�ned. First of all,

the set of applicable rules has to be de�ned. Therefore, a selection function S is introduced that is

de�ned by the architecture and maps a state to a set of applicable rules and the variable bindings

implied by the application of the rule.

De�nition 3.12 (selection function). Let Θ(V,C) be the set of possible ground substitutions over

variablesV and constants C that replace every variable fromV with at most one value from C.

The set 2
Σ×Θ(V,C)

denotes the power set of all tuples (r ,θ ) where r ∈ Σ is a rule and θ ∈ Θ(V,C)
is a ground substitution of variables fromV with constants from C as described before.

A selection function is a function S : Sva → 2
Σ×Θ(V,C)

that maps a state to a set of pairs (r ,θ )
where r ∈ Σ is a production rule and θ ∈ Θ(V,C) is a substitution of variables from V with

constants from C, such that all variables from the rule r are substituted, i.e. dom(θ ) = vars(r ).

The function S usually de�nes a notion of matching and makes sure that only rules that match

visible information in the bu�ers can �re (i.e. only chunks that are not delayed are considered).

In implementations the set of applicable rules typically is restricted to none or one element. The

reason is that the set of syntactically matching rules is �ltered using sub-symbolic information

to get rid of non-determinism. Abstract de�nitions of ACT-R can allow more than one rule to be

applicable.

To de�ne the modi�cation of a state by a transition, we de�ne interpretation functions of actions

that determine the possible e�ects of an action.

De�nition 3.13 (interpretation of actions). Let Sva be the set of all very abstract states and 2
D⊂∆

the power set of all partial chunk stores that refer to ∆. An interpretation of an action is a function

I : A × Sva → 2
D⊂∆×Γpart×ϒ

that maps a tuple of an action and a very abstract state to a set of tuples.

Each tuple consists of a partial chunk store, a partial cognitive state and additional information.

The following conditions must hold: (∆∗,γ ∗,υ∗) ∈ I (α ,σ ) if

(1) I (α ,σ ) , ∅, i.e. the interpretation of an action has at least one e�ect,

(2) I (α , 〈∆,γ , true ∧ υ, t〉) = I (α , 〈∆,γ ,υ, t〉), i.e. true is the neutral element of additional

information and has no e�ect on the processing of actions,

(3) the resulting chunk store ∆∗ is a partial chunk store that refers to ∆ and whose chunk

identi�ers are disjoint from ∆,

(4) the co-domain of γ ∗ is ∆∗ × R+
0

, i.e. the cognitive state can only refer to chunks in the

resulting chunk store ∆∗, and

(5) if the action α has the bu�er b in its scope, i.e. α := (b, t ,p), then the resulting partial

cognitive state γ ∗ has only b in its domain, i.e. dom(γ ∗) = {b}.

An interpretation maps each state and action of the form a(b, t , P) – where a ∈ A is an action

symbol, b ∈ C a constant denoting a bu�er, t ∈ C a type, and P ⊆ C × (C ∪V) is a set of slot-value

pairs – to a tuple (∆∗,γ ∗,υ∗). Thereby, ∆∗ is a partial chunk store that refers to ∆, γ ∗ is a partial

cognitive state, i.e. a partial function that assigns only the bu�er b from the action to a chunk and

a delay. The partial cognitive state γ ∗ will be taken in the operational semantics to overwrite the

changed bu�er contents, i.e. it contains the new contents of the changed bu�ers. Analogously, the

additional information υ∗ de�nes the additions to the sub-symbolic level induced by the action.

Note that the interpretation of an action can return more than one possible e�ect that can be

chosen non-deterministically. This is used in the abstract semantics where due to the lack of

sub-symbolic information all possible e�ects have to be considered. For example, the declarative

module can �nd more than one chunk matching the retrieval request. Usually, by comparing
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activation levels of chunks, one chunk will be returned. However, in the abstract semantics all

matching chunks are possible. In the re�ned semantics, we restrict the selection to one possible

e�ect as proposed by the ACT-R reference manual [8]. This is achieved by de�ning an interpretation

function that returns a set of at most one e�ect.

Example 3.14 (interpretation of an action). In this example we de�ne a neutral e�ect. We will see

later that if this e�ect is applied to a state, the state does not change modulo time.

Let α := a(b, t ,p) be our action that produces the neutral e�ect and σ := 〈∆;γ ;υ; t〉 an ACT-R

state. We de�ne

I (α ,σ ) := {({c},γ ′, true)}
where γ ′(b) := (c,d) for a bu�er b with γ (b) = (c,d) for some chunk c ∈ ∆ and some delay d ∈ R+

0
.

The partial cognitive state γ ′ has the domain {b} ⊆ B and is unde�ned for all other bu�ers.

Intuitively, this action returns a chunk store with only one chunk c that has the same type and

value as the chunk γ (b) that has been in bu�er b in the state σ . The resulting partial cognitive state

just links b to this new chunk c . No additional information (true) is added.

This is a valid interpretation, since I (α ,σ ) , ∅ and ∆∗ := {c} is a valid partial chunk store that

refers to ∆. Therefore val : τ (t) → ∆ is a valid value function.

To combine interpretations of all actions of a rule, we �rst de�ne how two interpretations can be

combined. Therefore, we introduce the following set operator, that combines two sets of sets:

De�nition 3.15 (combination operator t for e�ects). Let e, f be e�ects of two actions, i.e. results

of an interpretation function of an action in a state σ with chunk store ∆, i.e. e ∈ I (α ′,σ ) and

f ∈ I (α ′′,σ ). Let e := (∆′,γ ′,υ ′) and f := (∆′′,γ ′′,υ ′′) where ∆′,∆′′ are partial chunk stores with

disjoint chunk identi�ers that refer to ∆, γ ′ : B′→ ∆ ◦ ∆′ ×R+
0
,γ ′′ : B′′→ ∆ ◦ ∆′′ ×R+

0
are partial

cognitive states with disjoint domains, i.e. B′,B′′ ⊆ B and B′ ∩ B′′ = ∅ and υ is a conjunction of

�rst-order predicates. Then the combination of the e�ects e and f w.r.t. a chunk store ∆ is de�ned

as

e t f := (∆′ ◦ ∆′′,γ ,υ ′ ∧ υ ′′)

where γ : B′ ∪ B′′→ (∆′ ◦ ∆′′) × R+
0

with

γ (b) :=

{
map∆′,∆′′(γ

′(b)) if b ∈ dom(γ ′),
map∆′,∆′′(γ

′′(b)) if b ∈ dom(γ ′′).

The intuition behind this de�nition is that two e�ects of an action, i.e. two triples of chunk

store, cognitive state and additional information, are merged to one e�ect that combines them.

Hence, we get a merged partial cognitive state that has the combined bu�er-chunk mappings of

the two original cognitive states. This is possible, since the domains of the partial cognitive states

are required to be disjoint.

The partial chunk stores are merged to one partial chunk store referring to the same total chunk

store. Note that from the de�nition of ◦, the chunk store of the �rst e�ect is a subset of the merged

store. However, the second chunk store might have lost some members. The mapping function

assigns every chunk from the second store one from the merged store.

The merged additional information is a conjunction of the additional information from both

e�ects.

The combination is well-de�ned: ∆′ ◦ ∆′′ exists since ∆′ and ∆′′ are partial chunk stores that

refer to the same chunk store ∆. Additionally, they have disjoint identi�ers because they are results

of an interpretation function (see De�nition 3.13) and therefore their merging cannot fail due to

di�erent chunks with same identi�ers.
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The cognitive state is valid, since it has the combined domain of γ ′ and γ ′′ and just maps the

chunks from those original partial cognitive states to their versions in the merged chunk store by

map, i.e. the co-domain of γ is just the merge product of the co-domains of γ ′ and γ ′′ and keeps

their connections of bu�ers to chunks.

The de�nition of combinations of e�ects can be lifted to sets of e�ects by the following de�nition.

Let E and F be two sets of e�ects in some state σ with chunk store ∆, then their combination is

de�ned as all possible pairwise combination of their elements:

E t F := {e t f | e ∈ E ∧ f ∈ F }.

Since the interpretation of an action is possibly non-deterministic, i.e. might have more than one

e�ect triple, the combination of such sets of e�ect triples is a set that combines each e�ect from the

�rst set with each e�ect from the second set. This leads to a set of combined e�ects from which the

transition system will be able to choose one non-deterministically. However, since every e�ect set

is required to have at least one e�ect, the same applies for their combination.

The interpretation function I : Σ × ×Sva → 2
D×Γpart×ϒ

that maps a rule to all its possible e�ects

(i.e. chunk store, cognitive state and additional information) in a given state is de�ned as follows:

De�nition 3.16 (interpretation of rules). In a state σ := 〈∆;γ ;υ; t〉, a rule r := L⇒ R is interpreted

by an interpretation function I : Σ × Sva → 2
D⊂∆×Γpart×ϒ

. It maps a rule and a state to a set of tuples

of partial chunk stores, partial cognitive states and additional information, i.e. a set of all possible

e�ects of the rule in the given state. The interpretation function is de�ned as follows: I (r ,σ ) applies

the function applyr to all tuples in the result set when combining the individual actions of the rule:

• apply : D⊂∆ × Γpart × ϒ→ D
⊂
∆ × Γpart × ϒ is a function that applies some more e�ects at the

end of the rule application and is de�ned by the architecture. It maps a tuple of a partial

chunk store, a partial cognitive state and a conjunction of additional information to another

tuple of the same kind.

• For all actions α ∈ R, the resulting chunk stores are disjoint (i.e. chunk identi�ers are

renamed apart).

• The interpretation has the result

I (r ,σ ) = applyr (
⊔
α ∈R

I (α ,σ ))

where the combination operator t refers to ∆ and the apply function is applied to each

member of the combination set. Hence, all possible e�ects of the rules are combined and

each of the resulting partial cognitive states is then modi�ed by the apply function that is

de�ned by the architecture.

The apply function can apply additional changes to the state that are not directly de�ned by its

actions. For instance, it can change some sub-symbolic values that depend on the rule application

like the utility of the rule itself. Note that by de�nition of the ACT-R syntax it is ensured that each

of the γpart in the combination of the individual actions is still a function, since only one action per

bu�er is allowed as de�ned in Section 2.2.

It is important to mention, that there are two types of non-determinism in the interpretation of

a rule:

(1) The �rst non-determinism comes from the non-deterministic nature of interpretations of

an action. Each action can lead to di�erent results (depending on their de�nition). This is

why all interpretation functions have power sets of e�ects as co-domain.

(2) The second type of non-determinism comes from the de�nition of the combination operator

that merges chunk stores by using the chunk merging operator ◦. Since ◦ is not required
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to be commutative, the result of the merged chunk stores may vary. This leads to possibly

di�ering chunk identi�ers. It is possible to abstract from this kind of non-determinism by

introducing the concept of (graph) isomorphism on chunk stores.

The operational semantics is de�ned as the state transition system (Sva,�):

De�nition 3.17 (very abstract operational semantics). In the very abstract operational semantics of

ACT-R, the transition relation�: Sva × Sva over very abstract states is de�ned as follows:

Apply For a rule r the following transitions are possible:

(r ,θ ) ∈ S(σ ), (∆∗,γ ∗,υ∗) ∈ I (rθ ,σ )

σ := 〈∆;γ ;υ; t〉�r
apply 〈∆ ◦ ∆

∗
;γ ′;υ ∧ υ∗; t ′〉

where

• γ ′ : B→ ∆ ◦ ∆∗,

γ ′(b) :=

{
(map∆,∆∗ (c),d) if γ ∗(b) = (c,d) is de�ned

(map∆,∆∗ (c),d 	 δ ) otherwise, if γ (b) = (c,d),

• x 	 y :=

{
x − y if x > y

0 otherwise

for two numbers x ,y ∈ R+
0

, and

• t ′ = t + δ for a delay δ ∈ R+
0

de�ned by the concrete instantiation of ACT-R.

When applying the rule, the resulting partial chunk store ∆∗ is merged with the chunk store

∆ from the state. Hence, ∆ ◦ ∆∗ = ∆ ◦ ∆∗α1

◦∆ . . . ◦∆ ∆∗αn for all actions αi on the right-hand

side of the rule. Note that ∆ ⊆ ∆ ◦ ∆∗, i.e. all chunks in ∆ also appear in the merged chunk

store with preservative chunk identi�ers by De�nition 3.6 of the chunk merging.

The partial cognitive state that comes from the interpretation of the rule replaces all

positions in the original cognitive state where it is de�ned, otherwise the original cognitive

state remains untouched. Note that for all bu�ers b ∈ B and b < dom(γ ∗) with γ (b) = (c,d)
we can also write γ ′(b) := (c,d 	 δ ) instead of γ ′(b) := (map∆,∆∗ (c),d 	 δ ) since the chunk

merging guarantees that ∆ ⊆ ∆ ◦ ∆∗ with preservative identi�ers as mentioned before.

The delays are taken from the partial cognitive state γ ∗ or are reduced by a constant

amount that models progression of time.

When it is clear from the context, we just use�r
to denote that the transition applies

rule r .

No Rule
C(σ )

σ := 〈∆;γ ;υ; t〉�no 〈∆;γ ′;υ;ϑ (σ )〉

where

• C ⊆ Sva is a side condition in form of a logical predicate,

• update : Sva → Γpart a function that describes how the cognitive state should be

transformed,

• ϑ : Sva → R
+
0

a function that describes the time adjustment in dependency of the

current state, and

• γ ′(b) :=

{
update(σ )(b) if de�ned

γ (b) otherwise

is the updated state.

An apply transition applies a rule that satis�es the conditions of the selection function S by

overwriting the cognitive state γ with the result from the interpretations of the actions of rule r .

Thereby, one possible combination of all e�ects of the actions is considered. Note that the transition

is also possible for all other combinations. Only the bu�ers with a new chunk are overwritten,
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Table 1. Parameters of the very abstract semantics that must be defined by the architecture or the cognitive
model respectively.

Architecture Model

C set of constants T set of types

V set of variables τ typing function

B set of bu�ers Σ set of rules

A set of action symbols σS start state

δ rule delay

ϒ allowed additional information

◦ chunk merging operator

S rule selection function

I interpretation functions

update
transformation of cognitive state after no

rule transition

ϑ progress of time after no rule transition

the others keep their contents. The same applies for parameters: They keep their value except for

those where υ∗ de�nes a new value. Additionally, the rule application can take a certain time δ that

is de�ned by the architecture. Time is forwarded by δ , i.e. the time in the state is incremented by δ
and the delays in the cognitive state that determine when a chunk becomes visible to the system

are decremented by δ (with a minimal delay of 0).

The no rule transition de�nes what happens if there is no rule applicable, but there are still e�ects

of e.g. requests that can be applied. This means that there are bu�ers b ∈ B with γ (b) = (c,d) and

d > 0, i.e. information that is not visible to the production rule system. In that case there are no

possible transitions in the original semantics. We generalized this case in our de�nition of the

no rule transition that allows state transitions without rule applications. It ensures that if a side

condition C(σ ) de�ned by the ACT-R instantiation, the cognitive state is updated according to the

function update and the current time of the system is set to a speci�ed time ϑ (σ ). Both functions

are also de�ned by the concrete architecture. This makes new information visible to the production

system and hence new rules might �re. In typical ACT-R implementations, the side condition C(σ )
is that S(σ ) = ∅, i.e. that no rule is applicable, and ϑ (σ ) := t + d∗ where σ has the time component

t and d∗ is the minimum delay in the cognitive state of σ . This means that time is forwarded to

the minimal delay in the cognitive state and makes for instance pending requests visible to the

production rule system. It can be interpreted like if the production rule system waits with the

next rule application until there is new information present that leads to a rule matching the state.

This behavior coincides with the speci�cation from the ACT-R reference implementation [8]. If no

transition is applicable in a state σ , i.e. there is no matching rule and no invisible information in σ ,

then σ is a �nal state and the computation stops.

The de�nition of our very abstract semantics leaves parts to be de�ned by the actual architecture

and the model. Table 1 summarizes what has to be de�ned by an architecture and a model.

In the following, it is shown that the neutral e�ect from Example 3.14 is a neutral element of the

rule application except for the time component.

Example 3.18 (neutral element of rule applications). Let σ := 〈∆;γ ;υ; t〉 be an ACT-R state and

r := L⇒ {α } an ACT-R rule with only one action α := a(b∗, t∗, P∗). Let γ (b∗) := (c∗,d∗).
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We de�ne the neutral e�ect from Example 3.14 e := I (α ,σ ) := {({c∗},γ ∗, true)} as the only e�ect

of α . By de�nition of the neutral e�ect, γ ∗(b∗) := (c∗,d∗), i.e. the same chunk and delay as in the

original cognitive state γ and unde�ned for all other inputs. Then

I (r ,σ ) := {({c∗},γ ∗, true)}.

Let σ �r σ ′. Then σ ′ := 〈∆ ◦ {c∗};γ ′;υ ∧ true; t ′〉. The follow-up cognitive state γ ′ is

γ ′(b) :=

{
(map∆, {c∗ }(c),d) if γ ∗(b) = (c,d) is de�ned

(map∆, {c∗ }(c),d 	 δ ) otherwise, if γ (b) = (c,d).

This can be reduced to

γ ′(b) :=

{
(c∗,d) if b = b∗

(c,d 	 δ ) otherwise, if γ (b) = (c,d),

Since c∗ has the same type and value function, γ ′(b) can be considered equivalent to γ (b) modulo

delays for all b ∈ B. The action only adds the predicate true to the conjunction of additional

information which is ignored when actions are processed, i.e. e�ectively no information is added.

Hence, σ is equivalent to σ ′ modulo delays and the time component that comes from the pure rule

application. of an

4 ABSTRACT SEMANTICS AS INSTANCE OF THE VERY ABSTRACT SEMANTICS
The abstract semantics is de�ned as an instance of the very abstract semantics. It is suitable for

the analysis of procedural core of cognitive models because it abstracts from timings and con�ict

resolution by leaving parts of the transition system to non-deterministic choices and still giving room

for extensions and modi�cations. The idea is to de�ne the minimal core of all implementations of

ACT-R’s procedural system disregarding parameter choices, timings, sub-symbolic information and

module con�guration. The abstract semantics captures all possible state transitions the procedural

system can make.

4.1 Definition of the Abstract Semantics
Since it is a central part of the procedural system of ACT-R, we �rst de�ne the notion of matchings:

De�nition 4.1 (matching). A bu�er test β := =(b, t, P) for a bu�erb ∈ B testing for a type t ∈ T and

slot-value pairs P ⊆ C × (C ∪V)matches a state σ := 〈∆;γ ;υ;x〉, written β v σ , if and only if there

is a substitution θ : V → C such that γ (b) = (c::(t , val), 0) and for all (s,v) ∈ P : id∆(val(s)) = vθ .

We de�ne Bindings(β ,σ ) := θ as the function that returns the smallest substitution that satis�es

the matching β v σ .

This de�nition can be extended to rules: A rule r := L⇒ R matches a state σ , written as r v σ ,

if and only if for all bu�er tests t ∈ L match σ . The function Bindings(r ,σ ) returns the smallest

substitution that satis�es the matching r v σ .

This means that a bu�er test matches a state, if the tested bu�er contains a chunk of the tested

type and all slot tests hold in the state, i.e. the variables in the test can be substituted by values

consistently such that they match the values from the state. The values in the test are denoted by

the identi�ers of the chunks. Note that a test can only match chunks in the cognitive state that are

visible to the system, i.e. whose delay is zero. A test cannot match chunks with a delay greater

than zero.

We give the architectural parameters that are left open in the very abstract semantics:

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0. Publication date: June 2018.



An Operational Semantics for ACT-R and its Translation to CHR 0:19

States We set the time in every state to t := 0 (or any other constant) because abstract states are

not timed. Hence, each abstract state is a tuple 〈∆;γ ;υ; 0〉 where γ ∈ Γ is a cognitive state.

We sometimes project an abstract state 〈∆;γ ;υ; 0〉 to 〈∆;γ ;υ〉 for the sake of brevity.

Selection Function The rule selection in the abstract semantics is simply de�ned as Sabs(σ ) :=

{(r ,Bindings(r ,σ )) | r ∈ Σ ∧ r v σ }. Hence we select all matching rules in state σ and

replace the variables from the rules by their actual values from the matching, since in the

state transition system the substitution θ is applied to the rule when calculating the e�ects.

E�ects For a state σ = 〈∆;γ ;υ; 0〉 with γ (b) = (ib ::(t , valγ ),d), the interpretation function Iabs for

actions A := {=,+} in the abstract semantics is de�ned as follows:

• Iabs(= (b, t , P),σ ) = {(∆
∗,γ ∗, true)} for modi�cations

where

– c := ic ::(t , valb ) for a fresh id ic ∈ C,

– ∆∗ := {c},
– γ ∗(b) := (c, 0), and

– the new slot values are:

valb (s) :=

{
id−1

∆ (v) if (s,v) ∈ P

valγ (s) otherwise.

This means that a modi�cation creates a new chunk that modi�es only the slots

speci�ed by P and takes the remaining values from the chunk that has been

in the bu�er. Note that the type cannot be modi�ed, since the resulting chunk

always has the type derived from the chunk that has previously been in the

bu�er. Modi�cations are deterministic, i.e. that there is only one possible e�ect.

The slot-value function valb is well-de�ned, since it appears in a partial chunk

store that references ∆, it has ∆ as co-domain by De�nition 3.4 of a partial chunk

store.

If the action contains a slot-value pair (s,v) that modi�es s to a chunk that was

not existent in the original state σ , this chunk is not magically constructed, since

we do not know its type or values. Instead, we map this slot to nil. This comes

from the de�nition of id−1

∆ , which is nil for v , since the chunk referenced by v
does not exist in ∆.

• (∆∗,γ ∗,υ∗) ∈ Iabs(+(b, t , P),σ ) for requests

if

– requestb : T× 2
C×(C∪V) × ϒ→ 2

∆×R+
0
×ϒ

is a function de�ned by the architecture

for each bu�er. It calculates the set of possible answers for a request that is

speci�ed by a type and a set of slot value pairs. Possible answers are tuples

(c,d,υ) of a chunk c , delay d and parameter valuation function υ.

– For all (c∗,d∗,υ∗) ∈ requestb (t , P ,υ) we set γ ∗(b) :=

{
(c∗, 1) if d∗ > 0

(c∗, 0) otherwise,

and ∆∗ := {c∗}.
Note that the additional information in the result of the request is directly added to

the result of the interpretation function to update the internal state of the requested

module.

• The function apply from De�nition 3.16 that adds additional changes to the state when

a rule is applied is de�ned as the identity function, i.e. no changes to the state are

introduced by the rule application itself but only by its actions.
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Rule Application Delay The delay of a rule application is set to δ := 0, since the abstract

semantics does not care about timings.

No Rule Transition In the no rule transition, there are three parameters to be de�ned by the

actual ACT-R instantiation: The side condition C , the state update function update and the

time adjustment function ϑ . We de�ne them for a state σ := 〈γ ;υ; t〉 as follows:

• σ ∈ C if and only if there is a b∗ ∈ B such that γ (b∗) = (c,d) with d > 0, i.e. there is a

bu�er with a chunk that is not visible to the system. Those are the cases where there

is a pending request. This means that the no rule transition is possible as soon as there

is at least one pending request. We call the bu�er of one such request b∗.
• [update(σ )] (b∗) := (c, 0) if γ (b∗) = (c,d) and d > 0 for one b∗ ∈ B. This means that one

pending request is chosen to be applied (the one appearing in C). Since this is a rule

scheme and b∗ can be chosen arbitrarily, the transition is possible for all assignments

of b∗. This coincides with the original de�nition of our abstract semantics where one

request is chosen from the set of pending requests.

• The function ϑ that determines how the time is adjusted after a chunk has been made

visible is de�ned as ϑ (σ ) := t , i.e. the time is not adjusted.

Table 2 shows the parameters of the abstract semantics that have to be de�ned by the architecture.

Table 2. Parameters of the abstract semantics that must be defined by the architecture.

Architecture

C set of constants

V set of variables

B set of bu�ers

A set of action symbols

δ rule delay

ϒ allowed additional information

◦ chunk merging operator

requestb result of requests

We summarize the transition scheme of the abstract semantics:

Rule transition
r v σ ∧ θ = Bindings(r ,σ ) ∧ (∆∗,γ ∗,υ∗) ∈ I (rθ ,σ )

σ := 〈∆;γ ;υ〉�r
apply 〈∆ ◦ ∆

∗
;γ ′;υ ∧ υ∗〉

where γ ′ : B→ ∆ ◦ ∆∗,

γ ′(b) :=

{
(map∆,∆∗ (c),d) if γ ∗(b) = (c,d) is de�ned

(map∆,∆∗ (c),d) otherwise, if γ (b) = (c,d).

Again, since ∆ ⊆ ∆ ◦ ∆∗ with preservative chunk identi�ers, we can also write

γ ′(b) :=

{
(map∆,∆∗ (c),d) if γ ∗(b) = (c,d) is de�ned

(c,d) otherwise, if γ (b) = (c,d).

No rule transition
γ (b∗) = (c∗,d∗) ∧ d∗ > 0

σ := 〈∆;γ ;υ; t〉�no 〈∆;γ ′;υ〉
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where γ ′(b) :=

{
(c∗, 0) if b = b∗

γ (b) otherwise.

The running example is extended by a derivation in the abstract semantics:

Example 4.2 (abstract semantics). We begin with the state σ0 = 〈∆3.10;γ0; true; 1〉 from Exam-

ple 3.10. It is visualized in Fig. 3. We extend the state with additional information as described in

Example 3.11. Thereby, the same chunks as in the global chunk store ∆. Additionally, we change

the time to 0 according to the de�nition of the abstract semantics. This results in the following

state:

σ ′
0
= 〈∆3.10;γ0;DM0 ; 0〉

whereDM0 is the declarative memory containing all chunks from ∆. Then, the following derivations

are possible:

σ ′
0
�no 〈γ1;DM0 ; 0〉

�inc 〈γ2;DM0 ; 0〉 =: σ2

where

• γ1(retrieval) = (b, 0) (and γ1(goal) = γ0(goal) as in σ0),

• γ2(retrieval) = (c, 1) and

• γ2(goal) = ((д, valд2
, 0) where valд2

(current) = 2.

Inσ0 no rule is applicable, but there is a pending request whose result is not visible for the production

system. Hence, we can apply the no rule transition which makes the chunk b visible. Then the rule

inc from Example 2.1 is applicable.

If we assume that requestretrieval(succ, {(number, 2)},υ) = (creq, 1, ∅) for all additional information

υ where creq = (succ, {(number, 2), (successor, 3)}), i.e. a chunk of type succ with the number 2 in

the number slot and 3 in the successor slot, we reach the state σ2 that is illustrated in Fig. 4.

Note that in this state σ2 the no rule transition is possible again. This transition just chooses

one invisible chunk non-deterministically and makes it visible. It can always be applied non-

deterministically. This means that if there was another rule applicable in σ2, either the rule can be

applied or the no rule transition is used.

The additional information does not change in the rewriting process. This comes from the

de�nition of the no rule transition that never changes the additional information component.

Furthermore, modi�cations do not change the additional information according to their de�nition.

Requests to the declarative memory do not change additional information as well in the setting

of our example as we only consider symbolic chunk structures in the declarative memory. As no

new chunks are created or added to the declarative memory in a retrieval request, no additional

information is added.

In general, requests can add additional information according to their de�nition. If sub-symbolic

information of the structures in the declarative memory is considered, then a request to it will add

information about the retrieval of a chunk to consider it when calculating activation levels. Since

we abstract from those features, a retrieval request does not add any additional information.

4.2 Discussion
The abstract semantics formalizes the symbolic part of the ACT-R architecture. This means, that

the procedural system and its interaction with the modules are in focus. Additionally, it captures all

transitions that could be possible in an ACT-R model without the knowledge of actual values of sub-

symbolic information. By concentrating on the core elements of ACT-R, our work makes analysis
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retrieval 1 c

2 3

goal 0

number successor

current

Fig. 4. Visual representation of state σ2 from Example 4.2.

of cognitive models possible. Future work could deal with the expected behavior of sub-symbolic

components. Sub-symbolic information often has noisy components, for instance the activation

level of a chunk in declarative memory has a noisy component [34]. Additionally, sub-symbolic

information can change by parameter adaptations. Those parameters are often adapted repeatedly

in the modeling process to match data from experiments.

In [18], a re�ned semantics is presented. It has been designed to thoroughly describe the core of

the reference implementation according to the reference manual [8]. It is shown that the re�ned

semantics is sound w.r.t. the abstract semantics, i.e. every computation of the re�ned semantics

is a computation of the abstract semantics. This means that the abstract semantics captures all

computations possible in ACT-R implementations regardless of actual sub-symbolic components.

Since the semantics of ACT-R and its reference implementation is only given informally (c.f.

[5, 8, 34]), it is not possible to formally verify our de�nition of the semantics. We closely followed

the descriptions in the reference manual and designed the semantics with the reference implemen-

tation in mind. The soundness result for the re�ned semantics supports the close relation of our

formalization and implementations. In [15], an older version of our ACT-R implementation that

is closely related to the formalization has been evaluated to match the results of typical ACT-R

implementations with di�erent con�ict resolution mechanisms.

Furthermore, in [2, 3] a formal semantics for ACT-R is presented that has emerged independently

from our work (c.f. Section 7.1). Our very abstract semantics is an improved version of this

semantics. Since the abstract semantics can be expressed in terms of the very abstract semantics, it

is shown that it is a valid ACT-R formalization in terms of the semantics from [2, 3].

Our semantics can be easily extended by new modules by changing the signature of the allowed

additional information and by adding an interpretation of the corresponding request in the in-

terpretation function of actions (c.f. De�nition 3.13). The very abstract and abstract semantics

ignore di�erent con�ict resolution mechanisms and represent rule con�icts by non-determinism.

By specifying a di�erent selection function (c.f. De�nition 3.17) than in the abstract semantics

(c.f. Section 4.1), di�erent con�ict resolution mechanisms can be represented. Since the selection

function of the abstract semantics simply de�nes matching of production rules, it can be easily

extended to �lter the matching rules according to some con�ict resolution mechanism. This has

been shown in [18], where the re�ned semantics is de�ned as another instance of the very abstract

semantics that is sound w.r.t. the abstract semantics.
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5 TRANSLATION OF ACT-R MODELS TO CONSTRAINT HANDLING RULES
In this section we show how to translate an ACT-R model to a Constraint Handling Rules (CHR)

program. This is one of the main contributions of this paper. The translation is the �rst that matches

the current operational semantics of ACT-R. The proof of the soundness and completeness of the

translation w.r.t. the abstract operational semantics of ACT-R is a new contribution of this paper.

Therefore, we �rst give a quick introduction to CHR and its basic concepts we need for de�nitions

and proofs in Section 5.1. Then we introduce a normal form of ACT-R rules that simpli�es the

translation process and proofs in Section 5.2. In Section 5.4 we show the translation of ACT-R states

to CHR states and in Section 5.5 we de�ne the translation scheme for rules. Finally, in Section 6

our translation of ACT-R models to CHR programs is proven sound and complete w.r.t. the abstract

operational semantics of ACT-R.

5.1 Constraint Handling Rules (CHR)
Before we de�ne the translation scheme of ACT-R models to CHR program, we �rst recapitulate

syntax and semantics of CHR brie�y. For an extensive introduction to CHR, its semantics, analysis

and applications, we refer to [13]. We use the latest de�nition of the state transition system of

CHR that is based on state equivalence [25]. This semantics allows for more elegant proofs and

has been proven to be equivalent to the canonical so-called very abstract semantics of CHR. The

de�nitions from those canonical sources are now reproduced. We assume the reader to be familiar

with the common concepts of �rst-order predicate logic like predicate symbols, function symbols,

predicates, functions, constants, variables, terms and formulas.

The syntax of CHR is de�ned over a set of variablesV , a set of function symbols (with arities) Φ
and a set of predicate symbols with arities Π that is disjointly composed of CHR constraint symbols
and built-in constraint symbols. The set of constraint symbols contains at least the symbols = /2,

true/0 and false/0.

For a constraint symbol c/n ∈ Π and terms t1, . . . , tn overV and Φ for 1 ≤ i ≤ n, c(t1, . . . , tn) is

called a CHR constraint, if c/n is a CHR constraint symbol or a built-in constraint if c is a built-in

constraint respectively. CHR states are de�ned as follows.

De�nition 5.1 (CHR state). A CHR state is a tuple 〈G;B;V〉 where the goal G is a multi-set of

constraints, the built-in constraint store B is a conjunction of built-in constraints and V is a set of

global variables.
All variables occurring in a state that are not global are called local and the local variables that

are only used for built-in constraints are called strictly local variables.

CHR states can be modi�ed by rules that together form a CHR program.

De�nition 5.2 (CHR program). A CHR program is a �nite set of rules of the form

r @ Hk \ Hr ⇔ G | Bc ,Bb

where r is an optional rule name, the heads Hk and Hr are multi-sets of CHR constraints, the guard

G is a conjunction of built-in constraints and the body is a multi-set of CHR constraints Bc and a

conjunction of built-in constraints Bb . Note that at most one of Hk and Hr can be empty. If G is

empty, it is interpreted as the built-in constraint true.
If Hk = ∅, the rule is called a simpli�cation rule and we write

r @ Hr ⇔ G | Bc ,Bb .

Conversely, if Hr = ∅, the rule is called a propagation rule and we write

r @ Hk ⇒ G | Bc ,Bb .
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Informally, a rule is applicable, if the head matches constraints from the store G and the guard

holds, i.e. is a consequence of the built-in constraints B. In that case, the matching constraints from

Hk are kept in the store, the constraints matching Hr are removed and the constraints from Bc , Bb
and G are added.

To de�ne the operational semantics formally, we �rst have to de�ne state equivalence over

CHR states following the work in [25]. Therefore, we assume a constraint theory CT for the

interpretation of the built-in constraints in Π.

De�nition 5.3 (state equivalence of CHR states). Equivalence between CHR states is the smallest

equivalence relation ≡ over CHR states that satis�es the following conditions:

Equality as substitution

〈G;X=t ∧ B;V〉 ≡ 〈G[X/t];X=t ∧ B;V〉.

Transformation of the constraint store If CT |= ∃s̄ .B ↔ ∃s̄ ′.B′ where s̄, s̄ ′ are the strictly

local variables of B,B′, respectively, then:

〈G;B;V〉 ≡ 〈G;B′;V〉.

Omission of non-occurring global variables

〈G;B; {X } ∪ V〉 ≡ 〈G;B;V〉.

Equivalence of failed states

〈G; false;V〉 ≡ 〈G′; false;V′〉.

The operational semantics is now de�ned by the following transition scheme over equivalence

classes over CHR states i.e. [σ ] ::= {σ ′ | σ ′ ≡ σ }

De�nition 5.4 (operational semantics of CHR). For a CHR program the state transition system

over CHR states and the rule transition relation 7→ is de�ned as the following transition scheme:

r @ Hk \ Hr ⇔ G | Bc ,Bb
[〈Hk ] Hr ] G;G ∧ B;V〉] 7→r [〈Hk ] Bc ] G;G ∧ Bb ∧ B;V〉]

Thereby, we assume that r is a variant of a rule in the program such that its local variables are

disjoint from the variables occurring in the representative of the pre-transition state.

We may just write 7→ instead of 7→r
if the rule r is clear from the context.

5.2 Set Normal Form
To simplify the translation scheme, we assume the ACT-R production rules to be in set normal
form. The idea is that each bu�er test contains each slot exactly once. In the general ACT-R

syntax it is possible to specify more than one slot-value pair for each slot or none at all. If we

assume set-normal form, we can reduce the cases to consider in the translation and soundness and

completeness proofs.

In the following, the set-normal form is de�ned formally and it is shown that every ACT-R

production rule can be transformed to set-normal form with same semantics.

De�nition 5.5 (set normal form). An ACT-R rule r := L⇒ R is in set normal form, if and only if

for all bu�er tests =(b, t, P) ∈ L and s ∈ τ (t) there is exactly one v ∈ V ∪ C such that (s,v) ∈ L.

Theorem 5.6 (set normal form). For all ACT-R models with rules Σ, there is a set of rules Σ′ with
the following properties: For all rules r ∈ Σ with r := L⇒ R that are applicable in at least one state
there is a rule r ′ ∈ Σ′ with r ′ := L′ ⇒ R in set-normal form such that for all ACT-R states σ ,σ ′ it
holds that σ �r σ ′ if and only if σ �r ′ σ ′ (in the abstract semantics).
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The set Σ′ that contains the rules of Σ in set-normal form can be constructed as follows. All

rules in Σ that are not applicable in any state do not appear in Σ′. For all remaining rules r ∈ Σ, we

�rst transform r to a rule r ′ that is in set-normal form. For every bu�er test =(b, t, P) ∈ L there is a

test =(b, t, P ′θ ) ∈ L′ for a substitution θ . Thereby, P ′ has the following slot-value pairs:

• For all s ∈ τ (t) where there is exactly one v ∈ V ∪ C such that (s,v) ∈ P , (s,v) ∈ P ′.
• For all s ∈ τ (t) where there is no v ∈ V ∪ C such that (s,v) ∈ P , there is a slot-value pair

(s,V ) ∈ P ′ for a fresh variable V ∈ V .

• For all s ∈ τ (t) where there is are v1, . . . ,vn ∈ V ∪ C such that (s,vi ) ∈ P for 1 ≤ i ≤ n
we produce a substitution θb := {v1/v, . . . ,vn} and add a slot-value pair (s,v) ∈ P ′ for a

v ∈ V ∪ C. There are the following cases:

(1) v1, . . . ,vn ∈ V : Then v ∈ V is a fresh variable. Intuitively, we just introduce a new

variable and replace all other variables by this new variable.

(2) v1, . . . ,vn ∈ C : Then v = v1. Intuitively, since r is applicable in at least one state,

v1 = v2 = · · · = vn . The slot-value pairs are redundant and therefore we only add one

of them.

(3) v1, . . . ,vn ∈ V ∪ C : W.l.o.g., v1 ∈ C. Then v = v1.

We de�ne the substitution θ as the composition of all substitutions θb . The rule r ′ is obviously in

set normal form.

The proof idea is that if r v σ all variables or constants that appear in the same slot test in

the same bu�er have the same values. If there is a bu�er test =(b, t, P) with two slot-value pairs

(s,v) ∈ P and (s,v ′), then vθ = v ′θ for θ = Bindings(r ,σ ). Hence, we can replace all occurrences

of v and v ′ by v and remove (s,v ′) from P . This is exactly what our construction of the set-normal

form does.

5.3 Notational Aspects
We use the following symbols:

• Lists are denoted by enumerating their elements, e.g. [a,b, c] for the list with elements a,b
and c . [] denotes the empty list. We use [H |T ] for a list with head element H and tail list T .

We also use the following notation for list comprehension: [x : x ∈ M ∧ p(x)] is the list

with all elements x from a set M that satisfy p(x).
• The list concatenation is denoted with ++.

• For a function f : A → B with �nite domain A, we de�ne Jf K := [(a,b) : a ∈ A ∧ b ∈
B∧ f (a) = b] sorted by an order onA and B, i.e. the (sorted) enumerative list notation of the

function f . It can be understood as the list representation of the relational representation

of f as a set of tuples f ⊆ A × B.

5.4 Translation of States
To translate an ACT-R state to CHR, we have to de�ne translations for the individual components

of such a state.

De�nition 5.7 (translation of chunk stores). A (partial) chunk store ∆ can be translated to a �rst

order term as follows:

[chunk(c, t , JvalK) : c::(t , val) ∈ ∆]

Thereby, Jf K denotes the explicit relational notation of the function f as a sorted list of tuples and

[x : p(x)] is the list comprehension as de�ned in Section 5.3.

We denote the translation of a (partial) chunk store ∆ with chr(∆).
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Each chunk in a chunk store is translated to a term chunk/3 that is member of a list. Note that we

do not have de�ned the order of chunks in the list that represents the chunk store. We consider all

permutations of such chunk store lists as equivalent, since for the proofs the actual choice of order

will not make any di�erence, since we always can choose just the translation with the “correct”

order. Where necessary, we comment on that issue in our proofs in Section 6. The slot-value pairs

in the chunk terms are sorted as de�ned in J·K.

The cognitive state γ will be represented by gamma/3 constraints that map a bu�er b ∈ B
to a chunk identi�er and a delay. Since additional information is already represented as logical

predicates, we represent them as built-in constraints in the CHR store. We can now de�ne the

translation of an abstract state.

De�nition 5.8 (translation of abstract states). An abstract ACT-R state σ := 〈∆;γ ;υ〉 can be

translated to the following CHR state:

〈{delta(chr(∆))}

] {gamma(b, id∆(c),d) | b ∈ B, c ∈ ∆ ∧ γ (b) = (c,d)};υ; ∅〉.

We denote the translation of an ACT-R state σ by chr(σ ).

The chunk store is represented by a delta constraint that contains the translated chunk store as

de�ned in De�nition 5.7. Hence, a valid translation of an ACT-R state can only contain exactly one

delta constraint.

For every bu�er of the given architecture, a constraint gamma with bu�er name, chunk id

and delay is added to the state. Since γ is a total function, every bu�er has exactly one gamma
constraint. Additionally, the chunk identi�er in the gamma constraint must appear in exactly one

chunk constraint because the co-domain of gamma refers to ∆ and the chunk identi�ers are unique.

Additional information is used directly as built-in constraints.

5.5 Translation of Rules
In our translation scheme, ACT-R rules are translated to corresponding CHR rules.

5.5.1 Auxiliary Functions for Variable Names. To manage relations between newly introduced

variables, we de�ne some auxiliary functions. The functions all produce variable names from the

set of variablesV for a set of arguments that are from the set of constants C (or a subset of it) and

are applied during the translation, i.e. they do not appear in the generated CHR code.

De�nition 5.9 (variable functions). LetV,C be the set of variables and constants of an ACT-R

architecture respectively, B ⊂ C the set of bu�ers of this architecture andVi ⊂ V for i = 1, . . . , 6
are disjoint subsets of the set of variables. Then the following auxiliary functions are de�ned:

Chunk variable function CVar : B→ V1,b 7→ Cb that returns a fresh, unique variable C1

b for

each bu�er b. It identi�es the chunk of a particular bu�er in the translation.

Delay variable function DVar : B → V2,b 7→ Db that returns a fresh, unique variable Db for

each bu�er b. It identi�es the delay of a particular bu�er in the translation.

Result variable functions ResStore, ResId, ResDelay : B → Vi for i = 3, 4, 5 are de�ned as

b 7→ X i
b and return a fresh, unique variable X i

b for each bu�er b. They are needed to

memorize the results of an action.

Merge variable function MergeId : B × V6, (b, s) 7→ Vb,s that returns a fresh, unique variable

X 6

b for each bu�er b. It is needed to memorize the new chunk identi�er after merging the

chunk in b with the existing chunk store.
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Cognitive state variable function CogState : 2
B → 2

B×V1 ,CogState(B) 7→ [(b,CVar(b)) : b ∈
B] (where the list is sorted by the b). The function returns a set of bu�er-variable pairs

for a set of bu�ers that connects each bu�er with the chunk variable of its chunk. When

equating CVar(b) with id∆(γ (b)) for all bu�ers b ∈ B, CogState(B) can be considered as a

pattern for the cognitive state.

The functions start with capital letters to emphasize that they represent CHR variables (or tuples

of CHR variables in the case of CogState) in the translated rules.

5.5.2 Built-in Constraints for Actions. We de�ne some built-in constraints that are needed

for the translation. The idea is that they calculate the results of actions, chunk merging and chunk

mapping as de�ned in the operational semantics of ACT-R. For actual instantiations of the abstract

semantics (i.e. with a de�ned set of actions and chunk merging and mapping mechanisms), it has

to be shown that their CHR implementations obey the properties that we de�ne in the following.

De�nition 5.10 (action built-ins). Let α := a(b, t , P) be an action and σ := 〈∆;γ ;υ〉 an ACT-R state.

Let D := chr(∆) be the CHR representation of the chunk store in σ andG := Jγ K be the enumerative

list representation of the cognitive state γ . Then the action constraint is de�ned as follows:

action(α ,D,G,Dres,Cres,Eres) ∧ υ ↔ Dres = (∆
∗,γ ∗,υ∗) ∈ I (α ,σ ) ∧ chr(∆∗) ∧ γ ∗(b) := (c∗b ,d

∗
b )∧

Cres = id∆∗ (c∗b ) ∧ Eres = d
∗
b ∧ υ

∗

This means that the action constraint is equivalent to the situation where the triple (∆∗,γ ∗,υ∗) ∈
I (α ,σ ) is a result of the interpretation of action α in the ACT-R state σ with γ ∗(b) := (c∗b ,d

∗
b ) and

the result variables Dres,Cres,Eres are syntactically equivalent to the translations of their ACT-R

counterparts.

Intuitively, the action built-in constraint represents a function that gets the action α , CHR

representations of the constraint store ∆ and the cognitive state γ as input and returns by the help

of the additional information υ the CHR representation of I (α ,σ ). The constraint theory of the

action constraint is well-de�ned, since in De�nition 3.13, γ ∗ has the domain {b} and co-domain

∆∗ × R+
0

, hence γ ∗(b) is de�ned. Since c∗b ∈ ∆
∗
, id∆∗ (c∗b ) is de�ned.

5.5.3 Built-in Constraints for Chunk Merging. In the abstract semantics, chunk stores are

merged by the operator ◦. In the following, built-in constraints are de�ned that implement ◦ and

the corresponding mapping function map.

De�nition 5.11 (merge built-in). For a set of chunk stores {∆1, . . . ,∆n} with Di := chr(∆i ) for

i = 1, . . . ,n, the built-in merge/2 is de�ned as follows:

merge([D1,D2, . . .Dn],D) ↔ D = chr(∆1 ◦ ∆2 ◦ . . . ◦ ∆n).

De�nition 5.12 (map built-in). For two CHR representations of chunk stores D := chr(∆) and

D ′ := chr(∆′), the built-in constraint map/4 is de�ned as:

map(D,D ′,C,C ′) ↔C ′ = id∆◦∆′(map∆,∆′(id
−1

∆ (C))) if chunk(C,T , P) in D or

C ′ = id∆◦∆′(map∆,∆′(id
−1

∆′ (C))) otherwise.

The main di�erence of this de�nition from the de�nition of the function map from the abstract

semantics is that the built-in constraint operates on chunk identi�ers whereas the function operates

directly on chunks. Note that in the case that the chunk with identi�er C appears in neither in D
nor in D ′, C ′ is bound to nil by de�nition of id (see De�nition 3.2).
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5.5.4 List Operations. We use the built-in constraint in/2 to denote that a term is member of

a list.

De�nition 5.13 (member of a list). For a term c and a list l , the constraint c in l holds, i� there is a

term c ′ that is member of l and c = c ′.

Note that variables in c are bound to the values in l by this de�nition.

5.5.5 Translation Scheme for Rules. We can now de�ne the translation scheme for rules.

De�nition 5.14 (translation of rules). An ACT-R rule in set-normal form r := L ⇒ R can be

translated to a CHR rule of the following form:

r @ {delta(D)} ] {gamma(b,CVar(b),DVar(b)) | b ∈ B}
⇔ ∧

=(b, t,P)∈L

(chunk(CVar(b), t , P) in D ∧ DVar(b)=0) |

{delta(D∗)}

] {gamma(b,MergeId(b), ResDelay(b)) | a(b, t , P) ∈ R}

] {gamma(b,CVar(b),DVar(b)) | a(b, t , P) < R},∧
α=a(b,t,P )∈R

action(α ,D,CogState(B), ResStore(b), ResId(b), ResDelay(b))

∧ merge([ResStore(b) : a(b, t , P) ∈ R],D ′)}

∧ merge([D,D ′],D∗) ]

∧
∧

a(b,t,P )∈R

map(D,D ′, ResId(b),MergeId(b)).

Note that ACT-R constants and variables from C andV are implicitly translated to corresponding

CHR variables.

We denote the translation of a rule r by chr(r ) and the translation of an ACT-R model Σ that is a

set of ACT-R rules by chr(Σ). Thereby, chr(Σ) := {chr(r ) | r ∈ Σ}.

The intuition behind the translation can be described as follows:

The CHR rule tests the state for a delta/1 constraint representing the chunk store and gamma/3
constraints that come from the bu�er tests of the rule. In the gamma/3 constraints a variable for the

chunk identi�er is introduced. In the guard, the built-in constraint in/2 checks, if the chunk store

represented as a list contains a term chunk/3 with the same type and slot-value pairs as speci�ed

in the bu�er tests. The connection to the bu�er is realized by the same variable for the chunk

identi�er (through the variable function CVar). Since the rule is in set-normal form, the bu�er tests

are already completed (i.e. all slots are tested) and represented as a sorted list of slot-value pairs as

in the state.

In the body of the rule, the built-in constraint calculates the result of each action from the

right-hand side of the ACT-R rule. The resulting chunk stores are merged to one store D ′ by the

built-in constraint merge. Note that the order of merging is not speci�ed by the translation scheme

(as it is not speci�ed by the ACT-R abstract semantics).

The built-in constraint map/4 implements the map function of the ACT-R semantics and gives

access to the possibly modi�ed chunk identi�er of all elements in D ′. By de�nition of map, only

chunk identi�ers in D ′ are modi�ed by merging. The resulting chunk identi�ers are bound to a

variable speci�ed by the variable function MergeId/1.
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The resulting chunk store delta and gamma constraints for all bu�ers are added. If the bu�ers

have been modi�ed, the gamma constraints points to the resulting chunk of the action, if not it

shows to the chunk that has been in the bu�er before.

Example 5.15 (translation of rules). In this example, the rule inc : L ⇒ R from Example 2.1 is

translated to CHR. Let αg ∈ R and αr ∈ R be the actions for the goal and the retrieval bu�er,

respectively.

The following rule is the result of the translation chr(inc). For readability, multi-set brackets are

omitted and built-in constraints and CHR constraints are mixed and separated by comma in the

body.

inc @ delta(D),

gamma(goal,Cg,Eg), gamma(retrieval,Cr,Er)

⇔

chunk(Cg,д, [(current,X )]) in D ∧ Eg=0 ∧

chunk(Cr, succ, [(number,X ), (successor,Y )]) in D ∧ Er=0 |

action(αg,D, [(goal,Cg), (retrieval,Cr)], RDg, RCg, REg),

action(αr,D, [(goal,Cg), (retrieval,Cr)], RDr, RCr, REr),

merge([RDg, RDr],D
′),

merge([D,D ′],D∗),

map(D,D ′, RCg,Mg),

map(D,D ′, RCr,Mr),

delta(D∗),

gamma(goal,Mg, REg),

gamma(retrieval,Mr, REr).

5.6 No Rule Transition
In addition to transitions by rule applications, ACT-R can also have state transitions without rule

applications. This is useful for instance, if no rule is applicable (i.e. computation is stuck in a state)

but there are pending requests, then simulation time can be forwarded to the point where the next

request is �nished and its results are visible to the procedural system. This may trigger new rules

and continue the computation.

The no rule transition can be modeled in CHR by one individual generic rule:

no @ gamma(B,C,D) ⇔ D > 0 | gamma(B,C, 0)

This transition is possible for all requests that are pending (i.e. that have a delay D > 0). Hence,

the system chooses one request non-deterministically.

6 SOUNDNESS AND COMPLETENESS OF THE TRANSLATION
In this section, we show that our translation is sound and complete w.r.t. the abstract semantics of

ACT-R. This means that every transition that is possible in the abstract ACT-R semantics is also

possible in CHR and vice versa.

The �rst step is to show that the results of the built-in constraints in the body of a translated

ACT-R rule are equivalent to the interpretation of the right-hand side of the ACT-R rule. Therefore,

we use that by de�nition the built-in constraints action,merge and map are equivalent to their
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ACT-R counterparts. Additionally, we have to show that the combination of the results of individual

actions leads to the same result as the built-in constraints. We use induction to show that in the

following lemma.

Lemma 6.1 (eqivalence of effects). For an ACT-R rule r := L⇒ R in set-normal form, a state
σ := 〈∆,γ ,υ, t〉 and D = chr(∆). Let I (r ,σ ) := (∆∗,γ ∗,υ∗) with

∧
b ∈dom(γ ∗) γ

∗(b) = (c∗b ,d
∗
b ). Then the

following two propositions are equivalent:
(1) ∧

αb ∈R

action(αb ,D,G, ResStore(b), ResId(b), ResDelay(b)) ∧ υ ∧

merge([ResStore(b) : a(b, t , P) ∈ R],D∗) ∧

merge([D,D∗],D ′) ∧∧
αb ∈R

map(D,D∗, ResId(b),MergeId(b))

(2)

D∗ = chr(∆∗) ∧ D ′ = chr(∆ ◦ ∆∗)∧∧
b ∈dom(γ ∗)

(MergeId(b) = id∆◦∆∗ (map∆,∆∗ (c
∗
b )) ∧ ResDelay(b) = d

∗
b ) ∧ υ

∗ ∧ υ

Proof. We use induction over the number of actions in R.

base case: |R | = 1 Let r := L ⇒ R be an ACT-R rule in set-normal form with one action α ∈
R and σ := 〈∆,γ ,υ, t〉. Let D = chr(∆) and G = Jγ K. Let I (r ,σ ) := (∆∗,γ ∗,υ∗) with∧

b ∈dom(γ ∗) γ
∗(b) = (cb ,db ) and I (α ,σ ) := (∆α ,γα ,υα ) with (cα ,dα ) = γα (b).

We start with

action(α ,D,G,Dres,Cres,Eres) ∧ υ ∧

merge([Dres],D
∗) ∧

merge([D,D∗],D ′) ∧

map(D,D∗,Cres,C
′
res).

First of all, we reduce the action constraint by use of De�nition 5.10:

action(α ,D,G,Dres,Cres,Eres) ∧ υ ↔ Dres = chr(∆α ) ∧Cres = id∆α (cα ) ∧ Eres = dα
∧υ ∧ υα .

By De�nition 5.11, we can reduce the merge constraints to

D∗ = chr(chr−1(Dres)) ∧ D
′ = chr(chr−1(D) ◦ chr−1(D∗))

which is by de�nition of D := chr(∆) from the assumptions and Dres = chr(∆α ) from the

last step equivalent to

D∗ = chr(∆α ) ∧ D ′ = chr(∆ ◦ ∆α ).

Since Cres = id∆α (cα ) and therefore a chunk term with identi�er Cres appears in D∗ (and

not in D), we can now reduce the map built-in by De�nition 5.12 and get together with the

de�nitions of D and D∗ to

map(D,D∗,Cres,C
′
res) ↔ C ′res = id∆◦∆α (map∆,∆α (id

−1

∆α
(Cres))).
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Since we have that Cres = id∆α (cα ), this is equivalent to

C ′res = id∆◦∆α (map∆,∆α (cα )).

By De�nition 3.16, we have that for one action ∆α = ∆∗ and cα = c∗. Hence, this is

equivalent to

C ′res = id∆◦∆∗ (map∆,∆∗ (c
∗)).

All in all, this proves the proposition for |R | = 1.

induction step: |R | → |R | + 1 Let σ := 〈∆;γ ;υ〉 be an ACT-R state and D := chr(∆) the CHR

representation of the chunk store and G := Jγ K the enumerative list representation of the

cognitive state.

Let r ′ := L ⇒ R′ with R′ := R ∪ α be a rule that has been constructed from a rule

r := L⇒ R. Let I (r ,σ ) := (∆∗,γ ∗,υ∗) with

∧
b ∈dom(γ ∗) γ

∗(b) = (c∗b ,d
∗
b ) be the interpretation

of the smaller rule r with |R | actions.

Let I (r ′,σ ) := (∆∗∗,γ ∗∗,υ∗∗) with

∧
b ∈dom(γ ∗∗) γ

∗∗(b) = (c∗∗b ,d
∗∗
b ) be the interpretation of

the rule r ′ that has |R | + 1 actions..

We begin with ∧
αb ∈R′

action(αb ,D,G,Db ,Cb ,Eb ) ∧ υ ∧

merge([Db : a(b, t , P) ∈ R′],D∗∗) ∧

merge([D,D∗∗],D ′′) ∧∧
αb ∈R′

map(D,D∗∗,Cb ,C
′′
b ).

We need to apply the induction hypothesis. Therefore, we split the conjunctions and

lists and get the equivalent formula∧
αb ∈R

action(αb ,D,G,Db ,Cb ,Eb ) ∧ action(αb ,D,G,Dα ,Cα ,Eα ) ∧ υ ∧

merge([Db : a(b, t , P) ∈ R] + +[Dα ],D
∗∗) ∧

merge([D,D∗∗],D ′′) ∧∧
αb ∈R

map(D,D∗∗,Cb ,C
′′
b ) ∧map(D,D∗∗,Cα ,C ′α ).

By de�nition of merge (c.f. De�nition 5.10) and associativity of ◦ and neutral element

[] = chr(∅), we can split the merging as follows: We �rst merge the actions in R to D∗ and

then merge D∗ with the result chunk of action α to D∗∗:∧
αb ∈R

action(αb ,D,G,Db ,Cb ,Eb ) ∧ action(α ,Cα ,Tα , Pα ,Dα ) ∧ υ ∧

merge([Db : a(b, t , P) ∈ R],D∗) ∧

merge([D∗,Dα ],D
∗∗) ∧

merge([D,D∗∗],D ′′) ∧∧
αb ∈R

map(D,D∗∗,Cb ,C
′′
b ) ∧map(D,D∗∗,Cα ,C ′α ).

We can now introduce an intermediate result chunk store that merges the original store

D with the results from r , i.e. D∗, to a chunk store D ′. We introduce some auxiliary variables

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0. Publication date: June 2018.



0:32 Daniel Gall and Thom Frühwirth

C ′b that map the chunk identi�ers of the intermediate chunk store D∗ to the resulting chunk

store D∗:∧
αb ∈R

action(αb ,D,G,Db ,Cb ,Eb ) ∧ action(α ,Cα ,Tα , Pα ,Dα ) ∧ υ ∧

merge([Db : a(b, t , P) ∈ R],D∗) ∧

merge([D,D∗],D ′) ∧∧
αb ∈R

map(D,D∗,Cb ,C
′
b ) ∧

merge([D∗,Dα ],D
∗∗) ∧

merge([D,D∗∗],D ′′) ∧∧
αb ∈R

map(D,D∗∗,Cb ,C
′′
b ) ∧map(D,D∗∗,Cα ,C ′α ).

We can now apply the induction hypothesis:

(∗) :=

υ ∧ υ∗ ∧

D∗ = chr(∆∗) ∧ D ′ = chr(∆ ◦ ∆∗) ∧∧
b ∈dom(γ ∗)

(C ′b = id∆◦∆∗ (map∆,∆∗ (c
∗
b )) ∧ Eb = d

∗
b ) ∧

merge([D∗, [chunk(Cα ,Tα , Pα )]],D∗∗) ∧

merge([D,D∗∗],D ′′) ∧∧
αb ∈R

map(D,D∗∗,Cb ,C
′′
b ) ∧map(D,D∗∗,Cα ,C ′α ).

Thereby, it holds by de�nition of I (r ,σ ) that dom(γ ∗) = {b | αb ∈ R}.
If we apply De�nition 5.10 to the remaining action constraint of action α , we get

action(α ,D,G,Dα ,Cα ,Eα ) ∧ υ ↔ Dα = chr(∆α ) ∧Cα = id∆α (cα ) ∧ Eα = dα
∧υ ∧ υ∗.

Hence, we have that

merge([D∗,Dα ,D
∗∗) ↔ D∗∗ = chr(∆∗ ◦ ∆α ).

Thus, D∗∗ is the CHR version of the merging of the results from the actions in R merged

with the results from α . By De�nition 3.16 of the interpretation of rules, we have that

I (r ′,σ ) = (∆∗ ◦ ∆α ,γ
′ ∪ γα ,υ

∗ ∧ υα ).

This is equivalent to

I (r ′,σ ) = (∆∗∗,γ ∗∗,υ∗∗)

by de�nition of r , r ′ and the interpretation of rules (De�nition 3.16).

The last merge constraint can be reduced to:

merge([D,D∗∗],D ′′) ↔ D ′′ = chr(∆ ◦ ∆∗∗)
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The map constraints can be reconnected which yields∧
αb ∈R

map(D,D∗∗,Cb ,C
′′
b ) ∧map(D,D∗∗,Cα ,C ′α ) ↔

∧
αb ∈R′

map(D,D∗∗,Cb ,C
′′
b )

By De�nition 3.17, for all de�ned bu�ers γ ∗∗(b) = map∆,∆∗∗ (cb ) and we have assumed

that γ ∗∗(b) = c∗∗b . By De�nition 5.12, this yields

C ′′b = id∆◦∆∗∗ (map∆,∆∗∗ (id
−1

∆∗∗ (Cb ))).

id−1

∆∗∗ (Cb ) exists, since the co-domain of γ ∗∗ is ∆∗∗ × R+
0

by De�nition 3.4 and the Cb are

identi�ers for the chunks in γ ∗∗.
If we apply all this to the conjunction in (∗), we get

D∗∗ = chr(∆∗∗) ∧ D ′′ = chr(∆ ◦ ∆∗∗) ∧∧
b ∈dom(γ ∗∗)

(C ′′b = id∆◦∆∗∗ (map∆,∆∗∗ (c
∗∗
b )) ∧ Eb = d

∗∗
b ) ∧ υ

∗∗ ∧ υ

�

The next lemma proves that rule application transitions are sound.

Lemma 6.2 (soundness of rule applications). For all ACT-R rules r and ACT-R states σ ,σ ′ ∈
Sabs : if σ �r σ ′ then chr(σ ) 7→r chr(σ ′).

Proof. Let r := L ⇒ R and σ := 〈∆;γ ;υ; 0〉. Since r v σ , we know that for every bu�er

test β := =(b, t, P) there is a substitution θ such that γ (b) = (c::(t , val), 0) and for all (s,v) ∈ P :

id∆(val(s)) = vθ .

Let ρ := chr(σ ) the CHR translation of the ACT-R state σ . By De�nition 5.8, we have that

ρ ≡ 〈{delta([chunk(ic , t , JvalK) : c ∈ ∆ ∧ c = ic ::(t , val)])}

] {gamma(b, id∆(c),d) | b ∈ B ∧ c ∈ ∆ ∧ γ (b) = (c,d)};υ; ∅〉

In the next step we split the state to only concentrate on the parts we are interested in for the

rule application, i.e. gamma constraints for bu�ers that occur in a test. We do the same by splitting

the representation of the constraint store to the chunks that occur in bu�ers and all other chunks.

This is possible, since chr(∆) does not de�ne an order on the chunk terms in the list in the delta
constraint.

ρ ≡ 〈{delta([chunk(ic , t , JvalK) : =(b, t ′, P) ∈ L ∧ γ (b) = (c, 0) ∧ c = ic ::(t , val)]++D)}

] {gamma(b, id∆(c),d) | =(b, t, P) ∈ L ∧ γ (b) = (c,d)} ] G;υ; ∅〉

Note that by now we only have rewritten the CHR state without requiring that the tests we refer

to match.

Due to the fact that r v σ , we can apply this knowledge to the translated state:

ρ ≡ 〈{delta([chunk(ic , t , JvalK) : =(b, t, P) ∈ L ∧ γ (b) = (c, 0) ∧ c = ic ::(t , val)

∧ for all (s,v) ∈ P : id∆(val(s)) = vθ ]++D)}

] {gamma(b, id∆(c), 0) | =(b, t, P) ∈ L ∧ γ (b) = (c, 0)} ] G;υ; ∅〉

Since r is in set-normal form, we can assume that there is only one test for each bu�er in L. Hence,

we �nd a gamma constraint in ρ for each such test without violating De�nition 5.8, that only

produces one gamma constraint for each bu�er.
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Due to set-normal form of r and hence totality of P w.r.t. the domain of val, it is clear that

Pθ = JvalK. Hence, we can reduce the state to:

ρ ≡ 〈{delta([chunk(id∆(c), t , Pθ ) : =(b, t, P) ∈ L ∧ γ (b) = (c, 0)]++D)}

] {gamma(b, id∆(c), 0) | =(b, t, P) ∈ L ∧ γ (b) = (c, 0)} ] G;υ; ∅〉

We introduce a substitution with fresh variables to replace the chunk identi�ers in the state, i.e.

θ ′ := {CVar(b)/id∆(c) | γ (b) = c}.

ρ ≡ 〈{delta([chunk(CVar(b)θ ′, t , Pθ ) : =(b, t, P) ∈ L]++D)}

] {gamma(b,CVar(b)θ ′, 0) | =(b, t, P) ∈ L} ] G;υ; ∅〉

LetΘ be the conjunction of syntactic equality constraints that can be derived from the substitution

θ ∪ θ ′, i.e. each substitution x/t ∈ θ ∪ θ ′ appears in Θ as x = t . By De�nition 5.3, we can move the

substitution to the built-in store:

ρ ≡ 〈{delta([chunk(CVar(b), t , P) : =(b, t, P) ∈ L]++D)}

] {gamma(b,CVar(b), 0) | =(b, t, P) ∈ L} ] G;Θ ] υ; ∅〉

We introduce a fresh variable D and add D=[chunk(CVar(b), t , P) : =(b, t, P) ∈ L]++D to the

built-in store, which leads to the equivalent state:

ρ ≡ 〈{delta(D)} ] {gamma(b,CVar(b), 0) | =(b, t, P) ∈ L} ] G;

Θ ] D=[chunk(CVar(b), t , P) : =(b, t, P) ∈ L]++D ] υ; ∅〉

By De�nition 5.13, we have that D=d ↔ {chunk(CVar(b), t , P) in D | =(b, t, P)}. We can replace

the corresponding built-ins by De�nition 5.3:

ρ ≡ 〈{delta(D)} ] {gamma(b,CVar(b), 0) | =(b, t, P) ∈ L} ] G;

Θ ] {chunk(CVar(b), t , P) in D | =(b, t, P)} ] υ; ∅〉

Let chr(r ) := H ⇔ G | Bc ,Bb . By De�nition 5.14, we have that

ρ ≡ 〈H ] G;Θ ]G ] υ; ∅〉

By De�nition 5.4, chr(r ) is applicable in ρ ≡ chr(σ ) and ρ 7→r ρ ′ with

ρ ′ ≡ 〈Bc ] G;Θ ∧G ∧ Bb ∧ υ; ∅〉

Due to the De�nition 5.14 of chr(r ), we have that

Bb :=
∧

α=a(b,t,P )∈R

(action (α , ResId (b) , restype (b) , resslots (b) , ResDelay (b))) ∧

merge([[chunk(ResId(b), restype(b), resslots(b))] : a(b, t , P) ∈ R],D ′) ∧

merge([D,D ′],D∗) ∧∧
a(b,t,P )∈R

(map(D,D ′, ResId(b),MergeId(b)))

Bc :={delta(D∗)} ]

{gamma(b,MergeId(b), ResDelay(b)) | a(b, t , P) ∈ R}

Since r is in set-normal form, all bu�ers appearing in L also appear in R. Hence, all gamma
constraints removed by chr(r ) are added in Bc . There is exactly one delta constraint in ρ ′. It

remains to show that the delta and gamma constraints are the ones describing the state σ ′.
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By Lemma 6.1, we have that for all I (r ,σ ) 3 (∆∗,γ ∗,υ∗) with γ ∗(b) = (c∗b ,d
∗
b ) for all b ∈ dom(γ ∗)

Bb ↔ D∗ = chr(∆∗) ∧ D ′ = chr(∆ ◦ ∆∗) ∧∧
b ∈dom(γ ∗)

(MergeId(b) = id∆◦∆∗ (map∆,∆∗ (c
∗
b )) ∧ ResDelay(b) = d

∗
b ) ∧ υ

∗ ∧ υ

Finally, we get by De�nition 5.8 that ρ ′ ≡ chr(σ ′). Hence, the translation of rule applications is

sound w.r.t. the abstract operational semantics of ACT-R. �

We have now shown that our translation is sound regarding rule applications, i.e. a rule that can

be applied in the abstract semantics of ACT-R can also be applied in the translated CHR program

and leads to the same result. The state transition system of ACT-R has a second type of transitions:

the no-rule transitions, that can be applied if there is a bu�er with a delay > 0, i.e. an invisible

chunk. In that case, the no-rule transition allows us to make this chunk visible to the production

system by setting the delay to zero. In the following it is shown that our translation is sound and

complete regarding the no-rule transition.

Lemma 6.3 (soundness and completeness of the no-rule transition). For an ACT-R model
M , ACT-R states σ and σ ′ and their CHR counterparts chr(M), chr(σ ) and chr(σ ′) the following
propositions are equivalent:

(1) σ �no σ
′ in the modelM

(2) chr(σ ) 7→no chr(σ ′)

Proof. We start with proposition 1. Let σ := 〈∆;γ ;υ〉 and σ ′ := 〈∆;γ ′;υ〉. In the abstract

semantics, the no-rule transition is de�ned as

γ (b∗) = (c∗,d∗) ∧ d∗ > 0

〈∆;γ ;υ〉�no 〈∆;γ ′;υ〉

where γ ′(b) =

{
(c∗, 0) if b = b∗,

γ (b) otherwise.

The no-rule transition in CHR is represented by the following CHR rule in chr(M):

no @ gamma(B,C,D) ⇔ D > 0 | gamma(B,C, 0)

Since the no-rule transition is applicable in σ for some arbitrary but �xed b∗, it holds that

γ (b∗) = (c∗,d∗) ∧ d∗ > 0.

Therefore, chr(σ ) must have the following form by De�nition 5.8:

chr(σ ) ≡ 〈gamma(B,C,D) ] G;B=b∗ ∧C=id∆(c∗) ∧ D=d∗ ∧ C; ∅〉.

Since d∗ > 0, this is equivalent to

chr(σ ) ≡ 〈gamma(B,C,D) ] G;D > 0 ∧ B=b∗ ∧C=id∆(c∗) ∧ D=d∗ ∧ C; ∅〉

and therefore the rule no can be applied to chr(σ ) by De�nition 5.4. This leads to the state ρ ′ with

ρ ′ ≡ 〈gamma(b∗, c∗, 0) ] G;C; ∅〉.

By De�nition 5.8, we have that ρ ′ ≡ chr(σ ).
The other direction is analogous. �

Lemma 6.4 (completeness of rule applications). Let ρ, ρ ′ be CHR states that have been trans-
lated from ACT-R states, i.e. there are ACT-R states σ ,σ ′ such that ρ := chr(σ ) and ρ ′ := chr(σ ′). Let
r be a CHR rule translated from an ACT-R rule s . If ρ 7→r ρ

′ then σ �s σ
′.
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Proof. The CHR rule r := H ⇔ G | Bc ,Bb has been translated from an ACT-R rule s . Let

s := L⇒ R be an ACT-R rule in set normal form. Then r has the following form by De�nition 5.14:

delta(D) ] {gamma(b,CVar(b),DVar(b)) | b ∈ B}
⇔ ∧

=(b, t,P)∈L

chunk(CVar(b), t , P) in D ∧ DVar(b)=0 |

{delta(D∗)} ]

{gamma(b,MergeId(b), ResDelay(b)) | a(b, t , P) ∈ R} ]

{gamma(b,CVar(b),DVar(b)) | a(b, t , P) < R},∧
α=a(b,t,P )∈R

(action(α ,D,CogState(B), ResStore(b), ResId(b), ResDelay(b)))

∧ merge([ResStore(b) : a(b, t , P) ∈ R],D ′)

∧ merge([D,D ′],D∗)

∧
∧

a(b,t,P )∈R

(map(D,D ′, ResId(b),MergeId(b)))

where Bb are the built-in constraints of the body and Bc the CHR constraints.

Since r is applicable in ρ, by De�nition 5.4, ρ must have the following form:

ρ ≡ 〈H ] G;G ∧ C;V〉

Thereby, G is a multi-set of user-de�ned constraints and C a conjunction of built-in constraints.

Since by de�nition of ACT-R states, H ] G must be ground and therefore there must be some

built-in constraints Θ in C that bind those variables to the values from the state:

ρ ≡ 〈H ] G;Θ ∧G ∧ C′;V〉

Θ is a conjunction of constraints of the form V = c for a variable V and a term c , that binds the

variables from H and G to the values from the state, i.e. the variables CVar(b),DVar(b) (for all

b ∈ B) and the variables appearing in the P from the guard are bound to some values from the state.

We denote θ as the substitution that follows from Θ. Furthermore, ρ must contain the additional

information υ:

ρ ≡ 〈H ] G;Θ ∧G ∧ υ ∧ C′′;V〉

In the following, the ACT-R state σ is constructed. Let σ := 〈∆;γ ;υ ′〉. Thereby, chr(∆) = D and

for all b ∈ B : γ (b) = (id−1

∆ (CVar(b)),DVar(b))θ by De�nition 5.8. Additionally, υ ′ := υ. We can

now apply the same equivalences as in Lemma 6.2 in reverse order and get

ρ ≡ 〈{delta([chunk(ic , t , JvalK) : =(b, t, P) ∈ L ∧ γ (b) = (c, 0) ∧ c = ic ::(t , val)

∧ for all (s,v) ∈ P : id∆(val(s)) = vθ ]++D)}

] {gamma(b, id∆(c), 0) | =(b, t, P) ∈ L ∧ γ (b) = (c, 0)} ] G;Θ ∧G ∧ υ ∧ C′′; ∅〉

From there it is clear that the ACT-R rule s v σ by De�nition 4.1. The rule s can be applied to σ
according to De�nition 3.17 which yields

σ ′ := 〈∆ ◦ ∆∗;γ ′;υ ∧ υ∗〉

where (∆∗,γ ∗,υ∗) ∈ I (sθ ,σ ) and γ ′(b) :=

{
(map∆,∆∗ (c),d) if γ ∗(b) = (c,d) is de�ned

(map∆,∆∗ (c),d) otherwise, if γ (b) = (c,d).
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By De�nition 5.4, the application of r in ρ leads to the state ρ ′ with

ρ ′ ≡ 〈Bc ] G;G ∧ Bb ∧ Θ ∧ υ;V〉.

By Lemma 6.1, we get that Bb is equivalent to

D∗ = chr(∆∗) ∧ D ′ = chr(∆ ◦ ∆∗)∧∧
b ∈dom(γ ∗)

(MergeId(b) = id∆◦∆∗ (map∆,∆∗ (c
∗)) ∧ ResDelay(b) = d∗b ) ∧ υ

∗ ∧ υ

Hence, ρ ′ and σ ′ correspond directly to each other, i.e. ρ ′ ≡ chr(σ ′) and therefore rule transitions

in the translation are complete w.r.t. the abstract operational semantics of ACT-R. �

Theorem 6.5 (soundness and completeness of translation). For an ACT-R modelM , ACT-R
states σ and σ ′ and their CHR counterparts chr(M), chr(σ ) and chr(σ ′) the following propositions are
equivalent:

(1) σ � σ ′ in the modelM
(2) chr(σ ) 7→ chr(σ ′)

Proof. This follows directly from Lemmas 6.2 to 6.4. �

7 RELATEDWORK
We want to highlight the contribution of [3] that we have used as a starting point to improve our

work by unifying and extending it by our needs. We discuss this line of work in detail in Section 7.1.

In Section 7.2 we summarize other work related to this paper.

7.1 Formal Semantics According to Albrecht et al.
The formalization according to [3] has been developed independently from our work in [14, 16].

Our very abstract semantics is based on it. Our abstract semantics from [16] is expressed in terms

of this very abstract semantics based on [3] in [18] to show its compliance with other approaches

of formalizing ACT-R.

[3] basically de�nes a general production rule system that works on sets of bu�ers and chunks

without specifying actual matching, actions and e�ects for the sake of modularity and reusability.

We brie�y summarize the di�erences between the semantics in [3] and our very abstract semantics.

For details, we refer to the original papers. The nomenclature in this paper di�ers in some points

from the original paper [3] to unify it with our previous work. We omit module queries for the

sake of brevity.

The sets of bu�ers B and action symbols A are de�ned as in Section 2. For the sake of brevity, we

have omitted the so-called bu�er queries in our de�nition of the very abstract semantics. Queries

are an additional type of test on the left-hand side of a rule. The very abstract semantics can be easily

extended by queries. We have adopted the de�nition of chunk types, chunks and cognitive states

from the formalization of [3], although the set of chunks in [3] should be a multi-set-like structure

as Example 3.3 shows. However, we have reduced the de�nition in our very abstract semantics

by omitting the notion of a �nite trace, which is a sequence γ0,γ1, · · · ∈ Γ∗ of cognitive states.

Those traces are used to compute the e�ects of an action. This de�nition seems inaccurate as the

information of a �nite trace that only logs the contents of the bu�ers at each step does not su�ce to

calculate sub-symbolic information. In typical de�nitions the calculation of production rule utilities

needs the times of all rule applications that are not part of the trace. In other implementations and

instantiations of ACT-R, there can be more additional information that is needed for sub-symbolic

calculations. That is why we have extended the states by a parameter valuation function that
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abstracts from the information needed and leaves it to the architecture to de�ne which information

is stored.

In [3], e�ects of actions with action symbol α ∈ A are de�ned by an interpretation function

Iα : Π → 2
Γpart×2

∆
(we have omitted queries as stated before). Similarly to the very abstract

semantics, it assigns to each �nite trace the possible e�ects of an action. E�ects are a partial

cognitive state that overwrites the contents of the bu�ers as in the very abstract semantics and

a set C ⊆ ∆ that de�nes the chunks that are removed. In typical implementations of ACT-R, the

chunks in C are moved to the declarative module which explains the need to de�ne such a set. We

have generalized this information by the notion parameter valuations that can be manipulated by

an interpretation function. This enables us to abstract from the speci�c concept of moving chunks

to declarative memory in our abstract semantics for example. Note that in [3], the combination of

interpretation functions to a rule interpretation is only stated informally. Additionally, we have

extended the domain of an action interpretation function to actions, i.e. terms over the actions

symbols in A, and states instead of only action symbols, since more information is needed to

calculate, like the parameters of the actions (i.e. the slot-value pairs) and information from the

state.

The production rule selection function S : Π → 2
Σ

maps a set of applicable rules to each �nite

trace. In the very abstract semantics we have extended the domain from traces to a whole state since

again additional information might be needed to resolve rule con�icts. With parameter valuations,

we abstract from the information that is actually needed and leave it to the architecture de�nition.

Additionally, our de�nition of selection function adds the notion of variable bindings that are not

considered in [3].

The operational semantics in [3] is de�ned as a labeled, timed transition system with the following

transition relation over time-stamped cognitive states from Γ × R+
0

:

(γ , t)π
r,d,ω
 (γ ′, t ′)

for a production rule r ∈ Σ, an execution delay d ∈ R+
0

, a set of chunks ω ⊆ ∆ and a �nite

trace π ∈ Π, if and only if r ∈ S(π ,γ ), i.e. r is applicable in γ , the actions of r according to the

interpretation functions yield γ ′ and t ′ = t + d .

Note that the set of chunks ω has been used but never de�ned in the original paper [3]. We

suspect that it represents an equivalent to the chunk store from our abstract semantics, i.e. the

used subset of all possible chunks (which is how ∆ is de�ned according to the paper). Although we

consider it an integral part of ACT-R, the matching of rules – and particularly binding of variables

by the matching – is completely hidden in S or even not de�ned. On the one hand this simpli�es

exchanging the matching, on the other hand the function S should then be de�ned slightly di�erent

to enable proper handling of variable bindings and con�ict resolution as we discuss in Section 3.

In the original semantics according to [3] there is no de�nition of what happens if there is no

rule applicable, but there are still e�ects of e.g. requests that can be applied. We have treated this

case by adding the no rule transition to the very abstract semantics.

7.2 Other Work
The reference implementation of ACT-R is described in a technical document [8] that de�nes the

operational semantics mostly verbally and determines various technical details that are important

for this exact implementation but not the architecture itself. In [18], we have de�ned a semantics

that describes the core of the reference implementation of ACT-R and show that every transition

possible in this re�ned semantics is also possible in the abstract semantics. This shows that formal

reasoning about our abstract semantics is meaningful to actual implementations.
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There are approaches of implementing ACT-R in other languages, for example a Python im-

plementation [31] or (at least) two Java implementations [22, 28]. All those approaches do not

concentrate on formalization and analysis, but only introduce new implementations. In [31] it is

stated that exchanging integral parts of the ACT-R reference implementation is di�cult due to the

need of an extensive knowledge of technical details. They propose an architecture that is more

concise and reduced to the fundamental concepts (that they also identify in their paper). However,

their work still lacks a formalization of the operational semantics.

In [2], the authors summarize the work on semantics in the ACT-R context. They also come to

the conclusion that there are only new implementations available that sometimes try to formalize

parts of the architecture, but no formal de�nition of ACT-R’s operational semantics. The authors

use this result as a motivation for their work in [3].

We describe an adaptable implementation of ACT-R using Constraint Handling Rules (CHR) in

[14, 15, 17] that is based on our formalization. Due to the declarativity of CHR, the implementation

is very close to the formalization and easy to extend. This has been proved by exchanging the

con�ict resolution mechanism (that is an integral part of typical implementations) with very low

e�ort [15]. Even the integration of refraction, i.e. inhibiting rules to �re twice on the same (partial)

state, has been exempli�ed and can be combined with other con�ict resolution strategies. The

translation presented there is close to both the core of the reference implementation and the abstract

semantics whose abstract parts are de�ned such that the match the reference implementation and

some of its extensions.

8 CONCLUSION
In this paper, we have de�ned a very abstract operational semantics for ACT-R that can serve as

a common base to analyze other operational semantics since it leaves enough room for various

ACT-R variants. We then have re�ned this semantics to an abstract semantics.

Similar to the very abstract semantics, the abstract semantics abstracts from details like timings,

latencies, forgetting, learning and speci�c con�ict resolution. However, it de�nes the matching

of rules and the processing of actions as they are typically found in ACT-R implementations.

Hence, the abstract semantics concentrates on an abstract version of the typical implementations

of ACT-R’s procedural system. This makes it possible to reason about the general transitions that

are possible in many ACT-R implementations.

The proposed operational semantics and its instances are extensible by exchanging or extending

the individual abstract components of the semantics as argued in Section 4.2. For instance, new

modules can be represented by new allowed additional information with corresponding interpreta-

tion and con�ict resolution can be introduced and adapted by replacing or extending the de�nition

of the selection function.

We have de�ned a translation of ACT-R models to Constraint Handling Rules (CHR) that is

sound and complete w.r.t. our abstract semantics of ACT-R. To the best of our knowledge, the

abstract semantics together with the sound and complete translation to CHR is the �rst formal

formulation of ACT-R that is suitable to implementation.

The translation can be used for automated model analysis, since the faithful embedding in CHR

opens many possibilities to reason about cognitive models by applying theoretical results from the

CHR world to ACT-R models. For instance, con�uence is the property that a program always yields

the same result for the same input regardless of the order rules are applied. In CHR, con�uence

has been studied extensively. Most importantly, there are a decidable con�uence criterion for

terminating programs [13] and a completion method [1] that introduces new rules to a program in

order to make it con�uent. Although the human mind is probably not con�uent because there are
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many competing strategies with di�erent outputs for the same task, there are always sequences of

rules in cognitive models that should not be interfered by any other rule. A con�uence criterion

helps identifying the parts of the model that are not con�uent. This can improve model quality

by allowing for controlled non-con�uence where desired guaranteeing the rules in the rest of the

program not interfering with each other.

However, in practice con�uence usually is too strict. With the notion of invariant-based con-

�uence [12] only valid states that can be reached are considered, making con�uence analysis

applicable for practical use. However, this comes at the cost of losing decidability of the con�uence

test in general. Based on our work in this paper, we have described a method to test cognitive

models in ACT-R for con�uence in [20]. For this purpose, the translation scheme of this paper is

used to transform ACT-R models to CHR programs. Additionally, an ACT-R invariant is de�ned

that restricts the CHR state space to only valid ACT-R state representations according to the scheme

in this paper. It is shown that this invariant is actually maintained by the translated CHR rules.

Furthermore, it is proven that the invariant does not increase the complexity of the con�uence test.

Hence, depending on the decidability of the module requests de�ned by the ACT-R architecture of

interest, the con�uence test on translated ACT-R models is decidable for terminating models.

The de�nition of the operational semantics is independent of CHR and hence directly available to

all ACT-R users with a formal background. By implementing the translation w.r.t. the standard ACT-

R modules and the reference architecture, the CHR implementation and the con�uence test can be

made available to cognitive modelers without CHR experience. A �rst step of this implementation

can be found in [14, 15]. To adapt the implementation or extend the translation or the con�uence

test, some understanding of both ACT-R and CHR are required.

For the future, we want to investigate how the con�uence test for CHR can be used in practice

to prove other program properties by relaxing the con�uence condition even further with the

notion of con�uence modulo equivalence [10, 11, 21]. A program is considered con�uent modulo

an arbitrary, user-de�ned equivalence relation, if all equivalent states can be joined to a pair of

equivalent states (both w.r.t. the user-de�ned equivalence relation). This could be used to analyze if

an ACT-R model always yields a certain class of chunks for the same input. For instance it could be

interesting for the modeler to know if a certain bu�er always contains a chunk of a certain chunk

type or with a certain value in some slot at the end of a computation. By that method, models

could guarantee certain properties on their �nal states improving explanatory power and quality

of cognitive models.

To make predictions on the probability that a cognitive model has a certain result, we plan to use

the CHR extension CHRiSM [29, 30] that allows to enrich CHR rules with probabilities. It supports

probability computation and even an expectation-maximization learning algorithm that could be

used for parameter learning of cognitive models.
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