As Time Goes By: Complexity Analysis of
Simplification Rules

Thom Friithwirth
Ludwig-Maximilians-Universitat Miinchen
Oettingenstrasse 67, D-80538 Munich, Germany
www.informatik.uni-muenchen.de/~fruehwir/

Abstract

From a suitable termination order, called a tight ranking, we can automati-
cally compute the worst-case time complexity of CHR constraint simplification
rule programs from its program text.

1 Introduction

CHR (Constraint Handling Rules) [Fru98] are a committed-choice concurrent con-
straint logic programming language consisting of guarded rules that rewrite con-
junctions of constraints into logically equivalent but simpler ones until they are
solved. A CHR program consists of simplification and propagation rules. Sev-
eral implementations of CHR, libraries exist, mostly in Prolog and Java. Dozen of
projects use CHR, and so there is interest in automatic analysis of CHR programs.
Properties like rule confluence [AFM99] and program equivalence [AbFr99] have
been investigated.

In a previous paper [Fru0Oa] we have proven termination of constraint simplifi-
cation rule programs using rankings. A ranking maps lhs (left hand side) and rhs
(right hand side) of each simplification rule to a natural number, such that the rank
of the lhs is strictly larger than the rank of the rhs. A given constraint satisfaction
problem is posed as a query to the CHR solver. Intuitively then, the rank of a
query yields an upper bound on the number of rule applications (derivation steps),
i.e. derivation lengths [FruOOb].

Example 1.1 Consider the constraint even that ensures that a positive natural
number (written in successor notation) is even:

even(0) <=> true.
even(s(N)) <=> N=s(M),even(M).

The first rule says that even(0) can be simplified to true, a built-in constraint that
is always satisfiable. In the second rule, the built-in constraint = stands for syntactic
equality: N=s (M) ensures that N is the successor of some number M. The rule says
that if the argument of even is the successor of some number N, then the predecessor
of this number M must be even.

If a constraint matches the lhs of a rule, it is replaced by the rhs of the rule.
If no rule matches a constraint, the constraint delays. For example, the query
even(N) delays. The query even(0) reduces to true with the first rule. To the
query even(s(N)) the second rule is applicable, the answer is N=s(M) ,even(M).
The query even(s(0)) results in an inconsistency after application of the second
rule, since 0=s (M) is unsatisfiable.

An obvious ranking for the rules of even is

rank(even(N)) = size(N)
size(0) =1
size(s(N)) = 1 + size(N)

The ranking not only proves termination, it also gives us an upper bound on the
derivation length, in case the argument of even is completely known (ground). With
each rule application, we decrease the rank of the argument of even by 2.

In [FruOOb] we have also shown that the derivation length is not a suitable
measure for time complexity. The run-time of a CHR program not only depends
on the number of rule applications, but also, more significantly, on the number of
rule application attempts.

In this paper we combine the predicted worst-case derivation length with a worst-
case estimate of the number and cost of rule tries and the cost of rule applications
to obtain a general theorem for the worst-case time complexity of CHR. constraint
simplification rule programs. In the theorem, we will make no assumptions on the
implementation of CHR, so it applies to naive implementations of CHR as well.

Example 1.2 [Contd.] It is easy to show that the worst-case time complezity of
a single even constraint is linear in the derivation length, i.e. the size of its argu-
ment. If the argument to even is ground, there are no unnecessary rule application
attempts (tries). However, things get more complicated, when we add the rule:

even(s(X)),even(X) <=> false.

where false is a built-in constraint that is always unsatisfiable. This rule may be
applicable to all pairs of even constraints in a query, and again after a reduction of
a single even constraint with one of the previous two rules. But in most cases, the
application attempt (rule try) will be in vain.

The rule is quadratic in the number of even constraints in the query, and po-
tentially applicable in any derivation step. The number of derivation steps can be
bounded by the rank of the query. QOverall, this yields a cubic algorithm in the size
of the query.

Related Work. To the best of our knowledge, only [McA99] is closely related
to our work in that it gives a non-trivial general complexity theorem for a logical
rule-based language. The paper investigates bottom-up logic programming as a
formalism for expressing static analyses. It proves two complexity theorems which
allow, in many cases, to determine the asymptotic running time of a bottom-up
logic programm by inspection.

In many aspects, the paper and our paper complement each other: [McA99]
is concerned with propagation rules (in our terminology) that must be applied to
ground formulae at run-time, while we are concerned with simplification rules for
constraints that typically involve free variables at run-time and arbitrary built-
in constraints. The former paper is concerned with the complexity of optimally
implemented programs using clever indexing, while our results apply even to the
most naive implementation of simplification rules.

In the second theorem of [McA99], the complexity is the sum of size of the
query and the number of potential prefix firings (i.e. ground sub-formulas of lhs
instances) of a rule. Here it is the sum of the rank of the query and the number
of potential rule applications, i.e. rule tries. The computation of the number of
prefix firing is based on the size of the answer and thus requires some insight in the
computation that is performed. The number of potential rule application can be
computed automatically from the program text, once a ranking is known.

Overview of the Paper. We will first give syntax and semantics of CHR. In
Section 3, we introduce rankings and show how they can be used to derive tight

upper bounds for worst-case derivation lengths. In the next section we show how to
use these derivation lengths to predict the worst-case complexity of CHR, programs.
Finally, the fifth section reviews some CHR constraint solver programs. Based
on the predicted worst-case derivation lengths, the worst-case time complexity is
computed according to our general complexity theorem. The prediction is compared
with empirical run-time measurements. We conclude with a discussion of the results
obtained.

2 Syntax and Semantics

In this section we give syntax and semantics for CHR, for details see [AFM99]. We
assume some familiarity with (concurrent) constraint (logic) programming [JaMa94,
FrAb97, MaSt98].

A constraint is a predicate (atomic formula) in first-order logic. We distinguish
between built-in (or predefined) constraints and CHR (or user-defined) constraints.
Built-in constraints are those handled by a given constraint solver. CHR constraints
are those defined by a CHR program.

In the following abstract syntax, upper case letters stand for conjunctions of
constraints.

Definition 2.1 A CHR program is a finite set of CHR. There are two kinds of
CHR. A simplification CHR is of the form

N @H <=>G|B
and a propagation CHR is of the form
N @H ==>G|B

where the rule has an optional name N followed by the symbol @. The lhs H (head)
is a conjunction of CHR constraints. The optional guard G followed by the symbol |
is a conjunction of built-in constraints. The rhs B (body) is a conjunction of built-in
and CHR constraints.

The operational semantics of CHR programs is given by a state transition sys-
tem. With derivation steps (transitions, reductions) one can proceed from one state
to the next. A derivation is a sequence of derivation steps.

Definition 2.2 A state (or: goal) is a conjunction of built-in and CHR constraints.
An initial state (or: query) is an arbitrary state. In a final state (or: answer) either
the built-in constraints are inconsistent or no derivation step is possible anymore.

Definition 2.3 Let P be a CHR program and CT be a constraint theory for the
built-in constraints. The transition relation — for CHR is as follows. All upper
case letters occurring in states stand for conjunctions of constraints.

Simplify
HANC— (H=H)ANGABAC
if (H<=>G|B)inP and CT|=C —3Z(H=H'AG)

Propagate
H ANC+—— (H=H)YANGABAH' AC
if (H==>G|B)inP and CT|=C —3Z(H=H'AG)

When we use a rule from the program, we will rename its variables using new
symbols, and these variables are denoted by the sequence Z. A rule with Ths H and
guard G is applicable to CHR constraints H' in the context of constraints C', when
the condition holds that CT = C — 3z(H = H' AG). Any of the applicable rules
can be applied, but it is a committed choice, it cannot be undone.

If an applicable simplification rule (H <=> G | B) is applied to the CHR
constraints H', the Simplify transition removes H' from the state, adds the rhs B
to the state and also adds the equation H = H' and the guard G. If a propagation
rule (H ==> G | B) is applied to H', the Propagate transition adds B, H = H'
and G, but does not remove H'.

We finally discuss in more detail the rule applicability condition CT | C —
3z(H = H' AG). The equation (H = H') is a notational shorthand for equating the
arguments of the CHR constraints that occur in H and H'. More precisely, by (H; A
...ANH,)=(H{A...ANH},) we mean (H; = H{)A...AN(H, = H),), where conjuncts
can be permuted. By equating two constraints, ¢(ti,...,t,) = c(s1,...,8,), we
mean (t1 = s1) A ... A (tn, = sp). The symbol = is to be understood as built-
in constraint for syntactic equality and is usually implemented by a unification
algorithm.

Operationally, the rule applicability condition can be checked as follows: Given
the built-in constraints of C, solve the built-in constraints (H = H' A G) without
further constraining (touching) any variable in H' and C. This means that we first
check that H' matches H and then check the guard G under this matching.

As a consequence, in a CHR implementation, there are several computational
phases when a rule is applied:

LHS Matching: Atomic CHR constraints in the current state have to be found
that match the lhs constraints of the rule.

Guard Checking: It has to be checked if the current built-in constraints imply
the guard of the rule.

RHS Adding: The built-in and CHR constraints of the rhs are added.

In this paper we are only concerned with simplification rules. For the rest of the
paper, we assume that CHR programs do not contain any propagation rules.

3 Rankings for Derivation Lengths

In this section, introduce rankings for constraint simplification rules and show how
the rankings can be used to derive tight upper bounds for worst-case derivation
lengths of CHR programs.

3.1 Rankings

In [FruOOa] we prove termination for CHR programs under any scheduling of rule
applications (independent from the search and selection rule) using linear polyno-
mial rankings, where the rank of a term or constraint is defined by a linear positive
combination of the rankings of its arguments.

Definition 3.1 Let f be a function or predicate symbol of arity n(n > 0) and let
t;(1 < i < n) be terms. A CHR ranking (function) defines the rank of a term or
constraint atom f(t1,...,tn) as a natural number:

rank(f(t1,...,tp)) = a(’; +al s« rank(ty) + ... + af % rank(ty,)

where the a{ are natural numbers. For each variable X we impose rank(X) > 0.

This definition implies that rank(¢) > 0 for all rankings in our scheme for all terms
and constraints ¢. Instances of the ranking scheme rank specify the function and
predicate symbols and the values of the coefficients a{ .

A ranking for a CHR program will have to define the ranks of CHR and built-
in constraints. The rank of any built-in constraint is 0, since we assume that
they always terminate and since their derivation length is 0. A built-in constraint
may imply order constraints between the ranks of its arguments (interargument
relations), e.g. s =t — rank(s) = rank(t). In the context of this paper, we also
require that the ranking of a CHR constraint is greater than zero.

In extension of usual approaches for termination [dSD94], we have to define the
rank of a conjunction of constraints, since they are allowed on the lhs of a rule.
Since we want a ranking that reflects derivation lengths, the rank of a conjunction
must be the sum of the ranks of its conjuncts:

rank((A A B)) = rank(A) + rank(B)

Definition 3.2 Let rank be an instance of the CHR ranking function. The ranking
(condition) of a simplification rule H <=> G | B is the formula

Y (OC — rank(H) > rank(B),

where OC' is the conjunction of the order constraints implied by the built-in con-
straints in the rule, i.e. (GAB)— OC.

The intuition behind a ranking condition is that the built-in constraints in the rule
will imply order constraints that can help us to establish that rank of the lhs of a
rule is strictly larger than the rank of the rhs.

3.2 Derivation Lengths

A ranking maps lhs and rhs of each rule to natural numbers, such that the rank of
the lhs is strictly larger than the rank of the rhs. Intuitively then, the rank of a
query gives us an upper bound on the number of rule applications (derivation steps),
i.e. derivation lengths. In [FruOOb] we predicted worst-case derivation lengths using
rankings and compared the predictions with empirical data.

Theorem 3.1 Given a CHR program P containing only simplification rules. A
goal G is bounded if the rank of any instance of G is bounded from above by a
constant.

1. [Fru00a] If the ranking condition holds for each rule in P, then P is termi-
nating for all bounded goals.

2. [Fru00b] If the ranking condition holds for each rule in P, then the worst-case
derivation length D for a bounded goal G in P is bounded by the rank of G:

D = rank(G)

We are interested in rankings that get us as close as possible to the actual
derivation lengths. This is the case if differences between the ranks of the lhs and
rhs of the rules in a program are bounded from above. We call such rankings tight.

Definition 3.3 Given a ranking of a simplification rule S of the form H <=> G | B.
The ranking is exact for the rule S iff rank(H) = rank(B) + 1. The ranking is tight
by n for the rule S iff rank(H) = rank(B)+n. The ranking is tight by n for a CHR
program P iff the ranking is tight by n; for all rules in P and n is the mazimum of
all n;.

4 Worst-Case Time Complexity

We first consider the worst cost of applying a single rule, which consists of the cost
to try the rule on all constraints in the current state and of the cost to apply the rule
to some constraints in the state. Then we choose the worst rule in the program and
apply it in the worst possible state of the derivation. Multiplying the result with
the worst-case derivation length gives us the desired worst-case time complexity.

In the following, we assume a naive implementation of CHR with no optimiza-
tions. The complexity of handling built-in constraints is predetermined by the
built-in constraint solvers used. We assume that the time complexity of checking
and adding built-in constraints is not dependent on the constraints accumulated so
far in the derivation.

Lemma 4.1 Given a simplification rule S of the form HyA...NH, <=>G | CAB,
where the H; are atomic constraints, G and C' are built-in constraints and B are
CHR constraints. The time complexity of applying the rule S in a state with ¢ CHR
constraints is:

O(c")(Omg + Og) + (O¢ + Op),

where Oy is the complexity of matching the Ths Hy A ...\ H,, of the rule, Og the
complezity of checking the guard G, Oc the complexity of adding the rhs built-in
constraints C', and Op the complexity of adding the rhs CHR constraints B.

Proof. The formula consists of two summands, the first is the cost of trying
the rule, the second the cost of applying the rule. In a naive implementation, we
compute all possible combinations (n-tuples) of constraints and try to match them
to the Ihs of the rule. Hence, given c constraints in a query and a rule with n lhs
constraints, there are O(c™) combinations of constraints to try. Each try involves
matching the lhs of the rule with complexity O and, in the worst-case, checking the
guard with complexity Og. At some point, the rule is applicable and will be applied.
In the worst-case, all possible combinations have been tried before the rule is finally
applied. Then, the cost of adding the rhs of the rule, (Oc + Op) is incurred.

Now we are ready to give our general Theorem about the time complexity of
simplification rule programs. To compute the time complexity of a derivation, we
have to find the worst-case for the application of a rule, i.e. the largest number
of CHR constraints ¢ of any state in a derivation and the largest Og, Og, O¢, and
Op of any rule. We know that the number of derivation steps is bounded by D. It
turns out that D is also an upper bound for c.

Theorem 4.1 Given a CHR program P containing only constraint simplification
rules. Given a query with worst-case derivation length D. Then the worst-case time
complezity of a derivation starting with the given query is:

O(D™") > (On, + Oc;) + O(D) > (O¢; + Op,),

i i
where the index i ranges over the finite number of constraint simplification rules.

Proof. In the worst-case of a naive implementation, in each of the D derivation
steps, all rules are tried on all combinations of the mazximum possible number of
constraints cmqez and then the most costly rule is applied. Using the Lemma, this
yields O(D)(O(crrlnax) ZZ(OHI + OGi) + Mami(OCi + OBi))'

The worst number of CHR constraints Cpma: n a state of the derivation is
bounded by D. There cannot be more than D CHR constraints in any state of
a derivation starting with a query with worst-case derivation length D, because each

CHR constraint has a rank of at least 1 by definition and because each derivation
step decreases the value of D by at least 1.

The worst-case time complexity of applying the worst rule O(Maz;(Oc, + Op;))
is obviously bounded by the sum of the complexities for applying all rules in the
program O(>_,(Oc,; +OB;)). The resulting formula is the one given in the Theorem.

From the Theorem it can be seen that the cost of rule trys, and in particular of
guard checking, dominates the complexity of a naive implementation of CHR.

We end this section with some general remarks on the complexities of the con-
stituents of a simplification rule. The cost of syntactic matching Op is determined
by the syntactic size of the lhs in the program text. Thus, usually its time com-
plexity is constant.

The complexity of handling the built-in constraints of a rule depends on the size
of the constraints (arguments) at run-time. The complexity of guard checking O¢ is
typically as most as expensive as adding the respective constraints. The worst-case
time complexity of adding built-in constraints O¢ is typically linear in their size.

We can assume that adding CHR constraints (without applying any rules) takes
constant time Op in a naive implementation where no sophistacted data structure
is used to store the CHR constraints.

5 Time Complexity of CHR Constraint Solvers

We now derive worst-case time complexities of two Boolean and one path consistency
CHR constraint solver [Fru98] from the CHR library of Sicstus Prolog [HoFr98]. We
will contrast these results with the time complexities derived from a preliminary set
of test-runs. We expect the empirical results to be better than the predicted ones,
since this CHR implementation uses indexing for computing the combinations of
constraints needed for lhs matching of a rule [HoFr00], while our predictions assume
a naive implementation.

For each solver, we will give a ranking that is an upper bound on the derivation
length. From the ranking, we calculate the worst-case time complexity. We denote
constant time complexity by the number 1 and zero time by 0 (this means that no
computation is performed at all). We then give some preliminary empirical results
derived from test-runs with randomized data. We will summarize the results in a
table, see e.g. Figure 1. The tables have the following columns:

Goal Gives the (abbreviated) goal that was run to produce the test data.
Worst Gives the predicted worst-case derivation length D for the goal.

Apply Gives the actual number of rule applications, i.e. derivation length.

Try Gives the number of rules that have been tried, but not necessarily applied.

Time Gives the time to run the goal with the CHR libarary of Sicstus Prolog, in
seconds, including instrumented source code for randomization, on a Linux
PC with medium work load.

We will then compare the observed time complexity with the predicted one.
The Sicstus Prolog and CHR source code for the test-runs is available at
www.informatik.uni-muenchen.de/~fruehwir/chr/complexity.pl

The code can be run via the WWW-interface of CHR Online at

www.pms.informatik.uni-muenchen.de/~webchr/

5.1 Boolean Algebra, Propositional Logic

The domain of Boolean constraints [Me*93] includes the constants 0 for falsity, 1
for truth and the usual logical connectives of propositional logic, which are modeled
here as CHR constraints. Syntactic equality = is a built-in constraint. In the
constraint solver Bool, we simplify a single constraint and(X,Y, X AY) into one or
more equations whenever possible:

and(X,Y,Z) <=> X=0 | Z=0.
and(X,Y,Z) <=> Y=0 | Z=0.
and(X,Y,Z) <=> X=1 | Y=Z.
and(X,Y,Z) <=> Y=1 | X=Z.
and(X,Y,Z) <=> X=Y | Y=Z.
and(X,Y,Z) <=> zZ=1 | X=1,Y=1.

For example, the first rule says that the constraint and(X,Y,Z), when it is known
that the first input argument X is 0, can be reduced to asserting that the output Z
must be 0. Hence the goal and(X,Y,Z) ,X=0 will result in X=0, Z=0.

Derivation Length. Since a single rule application reduces each CHR, con-
straint to built-in constraints, the worst-case derivation length is just the number
of constraints in the query, c. Let the ranking be defined as

rank(A) = 1 if A is an atomic CHR constraint

For each rule in Bool, H <=> G | B, we have that rank(H) = 1 and rank(B) = 0.
Hence the ranking is exact for all rules. Consequently, the worst-case derivation
length of a Boolean goal is

Dpoor = ¢

It can be much smaller. For example, the goal and(U,V,W) delays, its derivation
length is zero. Another example is a goal that contains the constraint and(0,Y,1).
If it is selected first, it will reduce to the inconsistent built-in constraint 1=0 in one
derivation step. Because of the inconsistency, this is a final state of the derivation.

Complexity. All rules have one lhs CHR constraint, i.e.. n = 1. The derivation
length is bounded by ¢. Checking or establishing built-in syntactic equality between
variables and the constants 0 and 1 can be implemented in constant time. Then,
for all rules, (Og,Og,0¢,08) is (1,1,1,0), i.e. all rule-dependent complexities
are constant. According to the complexity Theorem, this gives Opgoo(ct ™ (1 + 1) +
c(140)), i.e:

OBool (02)

Empirical Results. In Figure 1, the Prolog predicate test/3 produces a chain
of and constraints, where the last variable of one constraint is the first variable of
the next constraint. The first (A) and the last (B) variable are returned in the second
and third argument of test/3, respectively. The table of Figure 1 shows that

e The order of (built-in) constraints may strongly influence the run-time.

e The actual derivation length reaches the predicted worst-case derivation length.

The number of rule applications may be arbitrarily small.

The number of rule trys is up to 12 times larger than the worst-case derivation
length. Note that there are 6 rules.

Run-time is linear in the number of rule trys.

Goal Worst | Apply Try | Time

test(125,A,B), A= 125 T 750] 0.6
test(250,A,B), A= 250 1] 1509 | 0.10
test(500,A,B), A= 500 1] 3009 | 022
test(1000,A,B), A= 1 1000 1] 6009 | 0.43
test(2000,A,B), A=1 || 2000 1] 12000 | 0.87
test(4000,A,B), A=1 || 4000 1| 24009 | 1.73
test(8000,A,B), A=1 || 8000 1| 48009 | 3.46
test(125,A,B), B=1 125 125 | 1500 | 0.11
test(250,A,B), B=1 250 250 | 3000 | 0.24
test(500,A,B), B=1 500 500 | 6000 | 0.47

1000 1000 | 12000 0.95
2000 2000 | 24000 1.88

B
test(2000,A,B
B
B

o www
»—A»—A»u\»—t

(
(
(
(
(
(
(
(
(
(
test(1000,A,
(
(
(
(
(
(
(
(
(

test(4000,A,B), B= 4000 | 4000 | 48000 | 3.75
test(8000,A,B), B= 8000 | 8000 | 96000 | 7.51
test(125,A,B), A=0 125 125 | 875 | 0.07
test(250,A,B), A=0 250 250 | 1750 | 0.15
test(500,A,B), A=0 500 500 | 3500 | 0.29
test(1000,A,B), A=0 || 1000 | 1000 | 7000 | 0.57
test(2000,A,B), A=0 || 2000 | 2000 | 14000 | 1.16
test(4000,A,B), A=0 || 4000 | 4000 | 28000 | 2.34
test(8000,A,B), A=0 || 8000 | 8000 | 56000 | 4.67

A=0, test(125,A,B) 125 125 | 125 | 0.01

A=0, test(250,A,B) 250 250 | 250 | 0.02
B) 500 500 | 500 | 0.03

1000,A,8) || 1000 | 1000 | 1000 | 0.06
B) | 2000 | 2000 | 2000 | o0.11

0, test(4000.AB) || 4000 | 4000 | 4000 | 0.21
,B)

8000 8000 8000 0.44

Figure 1: Results from Test-Runs with Boolean And

In practice, the observed time complexity of the solver seems to be linear:

O ©).

We attribute this difference to the effect of indexing on variables which allows to
find matching constraints faster. The observations in the list above will also hold
for the other constraint solvers we considered, except of course for the relationship
between the number of rule applications and the number of rule trys.

Boolean Cardinality

The cardinality constraint combinator was introduced in the CLP language cc(FD)
[VHSD95] for finite domains. In the solver Card we adapted cardinality for Boolean
variables. The Boolean cardinality constraint #(L,U,BL,N) is true if the number
of Boolean variables in the list BL that are equal to 1 is between L and U. N is the
length of the list BL. Boolean cardinality can express negation #(0,0,[C],1), ex-
clusive or #(1,1,[C1,C2],2), conjunction #(N,N, [C1,...,Cn],N) and disjunction
#(1,N,[C1,...,Cn],N).

% trivial, positive and negative satisfaction
triv_sat@ #(L,U,BL,N) <=> L=<0,N=<U | true.
pos_sat @ #(L,U,BL,N) <=> L=N | all(1,BL).
neg_sat @ #(L,U,BL,N) <=> U=0 | all(0,BL).

% positive and negative reduction
pos_red @ #(L,U,BL,N) <=> delete(1,BL,BL1)

0<U, #(L-1,U-1,BL1,N-1).
neg_red @ #(L,U,BL,N) <=> delete(0,BL,BL1)

L<N, #(L,U,BL1,N-1).

In this CHR program, all constraints except cardinality are built-in. all(B,L)
equates all elements of the list L to B. delete(X,L,L1) deletes the element X from
the list L resulting in the list L1. Due to the semantics of guard checking, X must
exactly match the element to be removed.

Derivation Length. Our ranking is based on the length of the list argument
of the Boolean cardinality constraint:

rank(#(L,U, BL,N)) = 1 + length(BL)

length([]) =0
length([X|L]) = 1+ length(L)

delete(X,L,L1) — length(L) = length(L1) + 1

The rank adds one to the length of the list in order to give a cardinality with the
empty list a positive rank. For example, consider the goal #(0,0, [1,0). Any of the
three satisfaction rules can be applied to it and the derivation length will always be
one.

From the ranking we see that the derivation length of a single cardinality con-
straint is bounded by the length of the list argument. For example, the goal
#(1,1,[0,0,0,0,X1,5) needs five derivation steps to reduce to X=1. The first
four steps remove the zeros from the list. The derivation length of a goal is less or
equal to the sum of the lengths of the lists occurring in the goal. Hence it is linear
in the syntactic size of the goal in the worst-case.

If the length of the lists is bounded by I — 1, we have that:

Deora = cl

The ranking is exact for the two recursive reduction rules, because of the order
constraint implied by delete. It is tight by [only for the three satisfaction rules,
since a cardinality constraint with arbitrary rank may be reduced to built-in con-
straints with rank 0 in one derivation step. Hence the solver program Card is tight
by .

Complexity. All rules have one lhs CHR constraint. Time complexity for the
built-in constraints delete and all can be assumed to be linear in the length of
the list, and is constant for the other built-in constraints. The derivation length
is bounded by ¢l. The time complexities, (Op,Oga, Oc,Op), of the five rules are
(1,1,1,0),(1,1,1,0),(1,1,1,0),(1,7,1,1) and (1,1,1,1) respectively. Hence the com-
plexity for both the rule trys and the rule applications is linear in I. According to
the Theorem, the time complexity is O((cl)'*'1 + (cl)i), i.e.

O(c?1?).

Empirical Results. Our empirical results are presented in Figure 2. allr is a
variation on all, it starts equating the list elements from the back of the list. This
means that in the guards of the recursive rules for cardinality, delete has to search
till the end of the list to find a zero or one. card_random produces a random list
of variables, zeros and ones, each of the three with the same probability. The list
lengths were chosen at random between 0 and 1000 and then the problem instances
were ordered by list length. The table shows that

10

Goal Worst | Apply | Try | Time
N=Worst-1,card_random(N,A,B,L),# (A ,B,L,N) 40 30 132 0.03

91 56 | 260 | 0.12
217 143 | 655 0.71
298 199 | 901 1.25
655 450 | 2029 5.07
672 446 | 2008 5.10
N=Worst-1,#(0,1,L,N),all(0,L) 109 108 | 1071 0.65
200 199 | 1981 1.98
318 317 | 3161 4.01
382 381 | 3801 5.27
N=Worst-1,#(0,1,L,N),allr(0,L) 109 108 | 1071 0.69
200 199 | 1981 2.38
318 317 | 3161 4.47
382 381 | 3801 7.72
N=Worst-1,#(0,1,L,N),all(X,L),X=0 109 108 | 1076 | 0.34
200 199 | 1986 | 0.99
318 317 | 3166 2.29
382 381 | 3806 | 3.21
N=Worst-1,all(0,L),#(0,1,L,N) 109 108 536 | 0.14
200 199 | 991 0.45
318 317 | 1581 1.12
382 381 | 1901 1.58

Figure 2: Results from Test-Runs with Boolean Cardinality

e For the card random problem, the figures follow from to the probability dis-
tribution and the run-time is roughly quadratic in the list length.

e The other problem instances show the influence of the order of built-in con-
straints on the run-time. However, timings differ by a constant factor, so
complexity is not affected.

e The number of rule trys is up to 10 times larger than the worst-case derivation
length. Note that there are 5 rules, and they may be tried in vain.

e Run-time is roughly quadratic in the list length.

We also did some experiments with more than one cardinality constraint but found
that the overall run-time was the sum of the run-times of each constraint alone.
Thus the actually measured time complexity has lower exponents than those pre-
dicted:

02l 4 (cl?)

We again attribute this difference to the effect of indexing on variables.

5.2 Path Consistency

In this section we analyze a constraint solver that implements the classical artificial
intelligence algorithm of path consistency [MaFr85, MoHe86].

A disjunctive binary constraintc(I, J,{r1,...,rn}), also written I {ry,...,r,} J,
is a finite disjunction (I ry J)V ...V (I r, J), where each r; is a binary relation.
The r; are called primitive constraints. The number p of primitive constraints is
finite and they are pairwise disjoint.

W.lo.g. we will assume that in a query, for each ordered pair of variables, there
is a disjunctive binary constraint between them. The basic operation of path consis-
tency computes a tighter constraint between two variables I and .J by intersecting

11

it with the constraint composed from the two constraints between I and a third
variable K and between K and J. This operation can be implemented directly by
a single rule in the solver Path:

path_consistency @

c(I,K,C1), c(X,J,C2), c(I,J,C3) <=>
composition(C1,C2,C12),intersection(C12,C3,C123),
C123=\=C3 |
c(I,K,C1), c(K,J,C2), c(I,J,C123).

The repeated application of the rule will make the initial query constraints path
consistent. The built-in constraints composition and intersection implement
functions on pairs of disjunctive binary constraints:

composition(Cy,C2,C3) iff I Cy K N K Cy J — I C3 J, where Cj5 is
the smallest set of primitive constraints implied for given C; and Cs.

intersection(Cy,Co,C3) T I C1 J AN I Cy J+ I C5 J.

The check C123=\=C3 makes sure that the new constraint C123 is different from the
old one C3.

Derivation Length. We rely on the following ranking:
rank(c(I,J,C)) = 1+ card(C)

card({c1,...,en}) =n

intersection(C1,C2,C3) — card(C3) < card(C1) A card(C3) < card(C2)
intersection(C1,C2,C03) A C3 # C2 — card(C3) # card(C2)

For the ranking, one is added to the cardinality of C' so that constraints with an
empty set C' have a positive rank as well. Queries are bounded, when C' is known.

Because of the properties of intersection and the guard check C123=\=C3, the
cardinality of C123 must be strictly less than that of C3. Hence the rhs is ranked
strictly smaller than the lhs of the rule. Every rule application removes at least one
primitive constraint and at most all of them from the set of primitive constraints C3
by intersecting it with C12. Hence, if the maximum number of primitive constraints
is p, the ranking is tight by p. The worst-case derivation length is linear in the
syntactic size of the goal, which is bound by p:

Dpain = cp

Complexity. There is one rule, it has three lhs CHR constraints. For small p,
the built-in constraints for composition, intersection and inequality checking can be
implemented by table look-up, i.e. in constant time. Otherwise, we define the oper-
ations in terms of primtive constraints. Composition of disjunctive constraints can
be computed by pairwise composition of its primitive constraints. Intersection for
disjunctive constraints can be implemented by set intersection, since primitive con-
straints are disjoint. We assume constant time access to individual elements in the
composition table of primitive constraints. Then composition can be implemented
in quadratic time, O(p?). Intersection and inequality checking can be implemented
in linear time.

Hence, according to the Theorem, the complexity is O((ep)>™ (1 + (p* + p +
P) + (ep)(0 + 1), i.e:

OPath (c4p6)

12

Empirical Results. In the goals of Figure 3, tpath generates constraints
between each pair of different variables in its argument list. The disjunctive con-
straints C' are randomly chosen non-empty subsets of {<, =, >}, each with the same
probability. Hence p is a constant, p = 3. For a list of length n, there are exactly
¢ = n(n — 1) constraints. Thus the worst case derivation length is 3n(n — 1). The
table entries have been sorted. The table shows that

Goal Worst | Apply Try | Time
V=8,length(L,V),tpath(L,A) 168 32 1079 0.44
168 41 1151 0.50
168 45 1477 | 0.65
168 49 1279 | 0.55
V=12length(L,V),tpath(L,A) 396 87 4024 1.76

396 101 | 4791 | 2.11
396 102 | 4622 | 2.00
396 104 | 4895 | 2.12
V=16,length(L,V),tpath(L,A) 720 155 | 10241 | 4.54
720 155 | 10724 | 4.82
720 160 | 11709 | 5.23
720 185 | 12330 | 5.54
V=20,length(L,V),tpath(L,A) || 1140 241 | 22075 | 10.33
1140 263 | 23578 | 11.04
1140 269 | 24154 | 11.24
1140 277 | 23573 | 11.02

Figure 3: Results from Test-Runs with Path Consistency

e The actual derivation length is roughly linear in the predicted worst-case
derivation length, i.e linear in the number of constraints.

e The number of rule trys increases faster than the worst-case derivation length.

e Run-time is roughly linear in the number of rule trys. It is roughly cubic in
the number of variables V.

We can conclude from the current experiments, where p is constant, that the ob-
served complexity is much lower than the predicted one. Since O(V?) = O(c) we
have:

O (c"?)

This corresponds to the complexity of the best known general algorithm for path
consistency, which is O(V?3p*) [MaFr85, MoHe86].

6 Conclusions

From the worst-case derivation length, i.e. a tight ranking, we were able to give a
general complexity Theorem for the worst-case time complexity of CHR constraint
simplification rule programs. Once a tight ranking has been found, the complexity
can be computed automatically from the program text. Our Theorem assumes a
naive implementation of CHR simplification rules.

The dominating factor in the complexity are the rule trys, not the rule appli-
cations. The number of rule trys depends on the number of lhs CHR constraints
n, the complexity of the guard checking and the worst-case derivation length D.
Built-in constraints only contribute if they have non-constant complexity s*, this is
the case if non-scalar datatypes like lists or sets are involved. In our examples, the

13

complexities were of the form ¢®*'s?*'*k where ¢ is the number of atomic CHR
constraints in the query, s the maximum size (rank) of an atomic CHR, constraint
in the query, and k is a small number introduced by the built-in constraints.

We compared the predicted complexities with the complexities observed in pre-
liminary empirical tests of two Boolean and one path consistency constraint solver
written in CHR. Due to indexing on variables that is used in the Sicstus Prolog
CHR implementation, the observed complexities were better than the predicated
ones. They involved the same parameters, but lower exponents. In the case of the
two Boolean constraint solvers, the complexity of rule trys was lowered to the com-
plexity of rule applications. In the path consistency solver we observed a complexity
that corresponds to the complexity of the best known algorithm for the problem.
This solver consists of just one rule.

Further work will take into account the effect of indexing and other optimiza-
tions in the complexity predictions. We also would like to extend our approach to
propagation rules. The difficulty is that for propagation rules, the ranking approach
for derivation lengths does not apply.

After submission of this paper, we became aware of the recently published paper
[GaMcO01]. This work extends [McA99] by rules with deletions and priorities. Such
rules correspond to CHR simpagation rules [Fru98] without guards and built-in
constraints.

References

[AbFr99] S. Abdennadher and T. Frithwirth, Operational Equivalence of CHR Pro-
grams And Constraints, 5th International Conference on Principles and Practice
of Constraint Programming (CP’99), Springer LNCS 1894, 1999.

[AFM99] S. Abdennadher, T. Frithwirth and H. Meuss, Confluence and Semantics
of Constraint Simplification Rules, Constraints Journal Vol 4(2):133-165, Kluwer
Academic Publishers, 1999.

[dSD94] D. de Schreye and St. Decorte, Termination of Logic Programs: The Never-
Ending Story, Journal of Logic Programming Vol 19,20:199-260, Elsevier, 1994.

[FrAb97] T. Frithwirth and S. Abdennadher, Constraint-Programmierung (in Ger-
man), Textbook, Springer Verlag, Heidelberg, Germany, September 1997.

[Fru98] T. Frithwirth, Theory and Practice of Constraint Handling Rules, Special
Issue on Constraint Logic Programming (P. J. Stuckey and K. Marriot, Eds.),
Journal of Logic Programming Vol 37(1-3):95-138, Elsevier, 1998.

[Fru00a] T. Frithwirth, Proving Termination of Constraint Solver Programs, in New
Trends in Constraints, (K.R. Apt, A.C. Kakas, E. Monfroy and F. Rossi, Eds.),
Springer LNAT 1865, 2000.

[FruO0b] T. Frithwirth, On the Number of Rule Applications in Constraint Pro-
grams, Declarative Programming - Selected Papers from AGP 2000, (A. Dovier,
M. C. Meo, A. Omicini, Eds.), Electronic Notes in Theoretical Computer Science
(ENTCS), Vol 48, Elsevier Science Publishers, June 2001.

[GaMc01] H. Ganzinger and D. McAllester, A New Meta-Complexity Theorem for
Bottum-up Logic Programs, (R. Gore, A. Leitsch and T. Nipkow, eds.) First
Intl. Joint Conference on Automated Reasoning IJCAR 2001, Springer LNAI
2083, 2001.

14

[HoFr98] Ch. Holzbaur C. and T. Frithwirth, Constraint Handling Rules Reference
Manual for Sicstus Prolog, TR-98-01, Osterreichisches Forschungsinstitut fiir Ar-
tificial Intelligence, Vienna, Austria, July 1998.

[HoFr00] C. Holzbaur and T. Frithwirth, A Prolog Constraint Handling Rules Com-
piler and Runtime System, Applied Artificial Intelligence, Special Issue on Con-
straint Handling Rules (C. Holzbaur and T. Frithwirth, Eds.), Taylor & Francis,
Vol 14(4), 2000.

[JaMa94] J. Jaffar and M. J. Maher, Constraint Logic Programming: A Survey,
Journal of Logic Programming Vol 19,20:503-581, Elsevier, 1994.

[MaFr85] A. K. Mackworth and E. C. Freuder, The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems, Artificial
Intelligence Vol 25:65-74, 1985.

[MaSt98] K. Marriott and P. J. Stuckey, Programming with Constraints, MIT
Press, USA, 1998.

[McA99] D. McAllester, On the Complexity Analysis of Static Analyses, (A. Cortesi
and G. File, eds.), 6th Intl. Static Analysis Symposium (SAS’99), Springer LNCS
1694, 1999.

[Me*93] S. Menju et al., A Study on Boolean Constraint Solvers, Constraint Logic
Programming: Selected Research, (F. Benhamou and A. Colmerauer, Eds.), MIT
Press, Cambridge, Mass., USA, 1993.

[MoHe86] R. Mohr and T.C. Henderson, Arc and Path Consistency Revisited, Ar-
tificial Intelligence 28:225-233, 1986.

[VHSD95] P.van Hentenryck, V. A. Saraswat, and Y. Deville, Constraint Processing
in cc(FD), Chapter in Constraint Programming: Basics and Trends, (A. Podelski,
Ed.), Springer LNCS 910, 1995.

15

