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Abstract

Classical Constraint Handling Rules (CHR) provide a powerful tool for
specifying and implementing constraint solvers and programs. The rules
of CHR rewrite constraints (non-deterministically) into simpler ones until
they are solved. In this paper we introduce an extention of CHRs, namely
Probabilistic CHRs (PCHR). These allow the probabilistic “weighting” of
rules, specifying the probability of their application. In this way we are
able to formalise various randomised (constraint solving) algorithms such
as for example Simulated Annealing.

1 Introduction

CHR (Constraint Handling Rules) [Frii98] are a concurrent committed-choice
concurrent constraint logic programming language with ask and tell consisting
of guarded rules that rewrite conjunctions of atomic formulas. CHR go beyond
the CCP framework [SR90, SRP91] in the sense that they allow for multiple
atoms on the left hand side (lhs) of a rule and for propagation rules.

CHR are traditionally used to specify and implement constraint solvers and
programs. The rules of CHR rewrite constraints (conjunctions of atomic for-
mulas) into simpler ones until they are solved. Simplification rules replace con-
straints by simpler constraints. Propagation rules add new constraints which
may cause further simplification.

Over time, CHR have been found useful for implementing other classes of
algorithms, especially in computational logic:

e theorem proving with constraints

e combining deduction, abduction and constraints

combining forward and backward chaining

bottom-up evaluation with integrity constraints

top-down evaluation with tabulation



e parsing with executable grammars
e manipulating attributed variables

e in general, production rule systems

Our probabilistic extension of CHR is modelled after the Probabilistic Con-
current Constraint Programming (PCCP) framework [dW98]. The motivation
behind PCCP was the formalisation of randomised algorithms within the CCP
framework [SR90, SRP91]. These algorithms are characterised by a “coin flip-
ping” device (random choice) which determines the flow of information. In the
last decade randomised algorithms have found widespread application in many
different areas of computer science, for example as a tool in computational geom-
etry and number theory. The benefits of randomised algorithms are simplicity
and speed. For this reason the best known algorithms for many problems are
nowaday randomised ones [Hoc97], e.g. simulated annealing in combinatorial
optimisation [AK89], genetic algorithms [Gol89], probabilistic primality tests in
particular for use in crypto-systems [MR95], and randomised proof procedures
(e.g. for linear logic [LMS95]).

In PCCP randomness is expressed in the form of a probabilistic choice, which
replaces the non-deterministic committed choice of CCP and CHR and allows a
program to make stochastic moves during its execution. For probabilistic CHR
(PCHR), this translates to probabilistic rule choice. Among the rules that are
applicable, the committed choice of the rule is performed randomly by taking
into account the relative probability associated with each rule.

Example 1.1 The following PCHR program implements tossing a coin. We
use concrete Prolog-style syntaz in the program examples.

toss(Coin) <=>0.5: Coin=head.
toss(Coin) <=>0.5: Coin=tail.

Each side of the coin has the same probability. This behaviour is modelled by
two rules that have the same probability to apply to a query toss(Coin), either
resulting in Coin=head or Coin=tail.

The paper is organised as follows. In Section 2 we briefly discuss the syntax
and semantics of classical, non-deterministic CHRs. In Section 3 probabilistic
CHRs are introduced formally. A number of examples using PCHRs are then
presented in Section 4. Finally we conclude by discussing several further possible
developments and ongoing work.

2 Syntax and Semantics of CHR

We first introduce syntax and Semantics for CHR before extending it with a
probabilistic construct. We assume some familiarity with (concurrent) con-
straint (logic) programming [JM94, FA97, MS98].



A constraintis an atomic formula in first-order logic. We distinguish between
built-in (predefined) constraints and CHR (user-defined) constraints. Built-in
constraints are those handled by a predefined, given constraint solver. CHR
constraints are those defined by a CHR program. In line with the usual CCP
terminology we will also refer to a CHR constraint as to an agent.

2.1 Abstract Syntax

In the following, upper case letters stand for conjunctions of constraints.

Definition 2.1 A CHR program is a finite set of CHR. There are two kinds of
CHR. A simplification CHR, is of the form

H< G| E,B
and a propagation CHR is of the form
H=G|EB

where the left hand side (lhs) H is a conjunction of CHR constraints. The guard
G followed by the symbol | is a conjunction of built-in constraints. A trivial
guard of the form true | may be dropped. true is a built-in constraint that is
always satisfied. The right hand side (rhs) of the rule consists of a conjunction
of CHR constraints B and a conjunction of built-in constraints E.

2.2 Operational Semantics

The operational semantics of CHR, programs is given by a state transition sys-
tem. The semantics uses interleaving for the parallel construct of conjunction.
With derivation steps (transitions, reductions) one can proceed from one state
to the next. A derivation is a sequence of derivation steps.

Definition 2.2 A state (or: goal) is a conjunction of built-in and CHR con-
straints. An initial state (or: query) is an arbitrary state. In a final state (or:
answer) either the built-in constraints are inconsistent or no new derivation step
is possible anymore.

Definition 2.3 Let P be a CHR program for the CHR constraints and CT be
a constraint theory for the built-in constraints. The transition relation — for
CHR is as follows:

Simplify
HAND— (H=H)YNGANEANBAD
if (Hs G|E,B)inP and CT =V(D — 3z(H = H' AG))

Propagate
HAND+— (H=H)YANGANEANBAH'AD
if(H=G|E,B)inP and CT =VY(D - 3z(H=H'AQG))



When we use a rule from the program, we will rename its variables using new
symbols, and these variables form the sequence Z. A rule with lhs H and guard
G is applicable to CHR constraints H' in the context of constraints D, when the
condition holds that CT = D — 3z(H = H' AG). Any of the applicable rules
can be applied, but it is a committed choice, it cannot be undone.

If a simplification rule (H < G | E,B) is applied to the CHR constraints
H', the Simplify transition removes H' from the state, adds the rhs E A B to
the state and also adds the equation H = H' and the guard G. If a propagation
rule (H = G | E,B) is applied to H', the Propagate transition adds EA B,
H = H' and G, but does not remove H'. Trivial non-termination is avoided by
applying a propagation rule at most once to the same constraints [Abd97].

We now discuss in more detail the rule applicability condition CT = D —
3%(H = H'AG). The equation (H = H') is a notational shorthand for equating
the arguments of the CHR. constraints that occur in H and H'. More precisely,
by (Hy A...ANHyp)=(H{A...\H)) we mean (H, = H{)A ...\ (H, = H)),
where conjuncts can be permuted. By equating two constraints, ¢(ty,...,t,) =
c(S1y.-.,8n), we mean (t; = s1) A ... A (t, = sp). The symbol = is to be
understood as built-in constraint for syntactic equality (defined in CT).

Operationally, the rule applicability condition can be checked as follows:
Given the built-in constraints of D, try to solve the built-in constraints (H =
H' AG) without further constraining (touching) any variable in H' and D. This
means that we first check that H' matches H and then check the guard G under
this matching.

In most CHR implementations, the execution of any CHR program will result
in an on-line (incremental) algorithm and any-time (approximation) algorithm.
The first property means that constraints can be added during run-time, the
second property means that execution can be stopped and resumed after any
rule application, and the intermediate results obtained will approximate the
final results.

To reflect these properties, the operational semantics above is concretised in
the following way: States are split into two parts - one for the built-in constraints
and one for the CHR constraints. Built-in constraints are handled immediately
by the built-in constraint solver. The conjunction of CHR constraints is im-
plemented as a FIFO queue. The left-most (first) constraint must be involved
(match one lhs atom) when a rule is applied. We call this constraint the cur-
rently active constraint. The other constraints that match the remaining rule
lhs atoms may be taken from anywhere in the queue. If the rule is applied, the
active constraint may be removed depending on the rule type, the built-in con-
straints of the rhs of the rule are added to the built-in constraints in the state
and the new CHR constraints from the rhs of the rule are added to the queue.
If no rule was applicable to the currently active constraint, it is moved to the
end of the queue, and the next constraint becomes active. If all constraints of
the queue have been passed without new rule application or if the built-in con-
straints became inconsistent, the computation stops. The final result (answer)
is the contents of the queue together with the built-in constraints.



3 Probabilistic CHR

Probabilistic CHR (PCHR) is characterised by a probabilistic rule choice: Among
the rules that are applicable, the committed choice of the rule is performed ran-
domly by taking into account the relative probability associated with each rule.

3.1 Syntax and Operational Semantics of PCHR

Syntactically, PCHR rules are the same as CHR rules but for the addition of a
probability measure:

Definition 3.1 A probabilistic simplification CHR, is of the form
H<<,G|E,B

and a probabilistic propagation CHR is of the form
H=,G|E,B

where p is a nonnegative real number.

The probability associated with each rule alternative expresses how likely it is
that, by repeating the same computation sufficiently often, the computation will
continue by actually performing that rule choice. This can be seen as restricting
the original non-determinism in the choice of the rule by specifying the frequency
of choices.

The operational meaning of the probabilistic rule choice construct is as fol-
lows: Given the current constraint, find all the rules that are applicable. Each
rule is associated with a probability. We have to normalise the probability dis-
tribution by considering only the applicable rules. This means that we have to
re-define the probability distribution so the sum of these probabilities is one.
Finally, one of the applicable rules is chosen according to the normalised prob-
ability distribution.

As a consequence, in the definition of the transition system, each transition
(resulting from a rule application) will have a probability associated to it.

Definition 3.2 The transition relation —; for PCHR is indezed by the nor-
malised probability p and is defined as follows:

Simplify
H ADvw+—3;(H=H')ANGANEANBAD
if (H<,G|E,B)inP and CT|=V(D - 3z(H=H' AG))

Propagate
H' ANDvw+—3;(H=H')AGANEANBAH'AD
if (H=,G|E,B)inP and CTE=VY(D — 3z(H=H' AGQG))



where

pi = 1
n

fopj if 32,95 >0
7
otherwise

where the sum er pj is over the probabilities of all rules r; applicable to the
current constraint in the current state and the number of applicable rules is n.

This definition specifies the probabilities associated to a single rewrite step.
If we look at a whole sequence of rewrites we have to combine these probabilities:
The probability of a derivation is the product of the probabilities associated with
each of its derivation steps. Finally, we may end up with the same result along
different derivations, i.e. different sequences of rewrites may end up with the
same final state: In this case we have to sum the probabilities associated to each
of these derivations leading to the same result.

For example, in the PCHR, program

c(X) <=>1: X>=0 | a(X).
c(X) <=>2: X=<0 | b(X).

The query constraint c(X) will be replaced by a(X) if X is greater than zero, by
b(X) if X is less than zero. In those two cases, only one rule is applicable and
its normalised application probability is therefore always one. If X is zero, both
rules are applicable, and their normalised probabilities are % and %, respectively.
That means that in the long run, the second rule will be applied two times as
often as the second rule.

4 Examples

In order to give an overview of the type of programs and algorithms we can
easily specify using PCHR we present in the following a number of examples.
These examples also illustrate a number of interesting features of PCHRs like
probabilistic termination (cf Example 4.2) which are fundamentally different
from notions and concepts in the classical case. We use concrete Prolog-style
syntax in the examples.

The first example shows that PCHR can be used to generate an n bit random
numbers.

Example 4.1 (n Bit Random Number) The random number is represented
as a list of bits that are generated recursively and randomly one by one.

rand(0,L) <=>1: L=[].
rand(N,L) <=>0.5: N>0
rand(N,L) <=>0.5: N>0

[0IL1], rand(N-1,L1).

| L
| L=[1IL1], rand(N-1,L1).

As long as there are bits to generate, the next bit will either get value 0 or 1,
both with same probability.



The next two examples are taken from PCCP [DW00] and have been adopted
to PCHR.

Example 4.2 (Randomised Counting) Consider the following PCHR pro-
gram to compute natural numbers:

nat (X) <=>0.5: X=0.
nat (X) <=>0.5: X=s(Y), nat(Y).

In an non-probabilistic implementation, o fized rule order among the applicable
rules is likely to be used, and then the result to the query nat(X) is either
always X=0 or the infinite computation resulting from the infinite application of
the second rule.

On the other hand, the probabilistic PCHR program will compute all nat-
ural numbers, each with a certain likelihood that decreases as the numbers get
larger. For example, X=0 has probability 0.5, X=s(0) has probability 0.25. More
precisely, the probability of generating the number s™(0) is 1/27+1.

Note that although this program does not terminate in CHR, it is probabilisti-
cally terminating in PCHR as the probability of a derivation with infinite length
is zero.

Example 4.3 (Gambler’s Ruin) Consider the following PCHR program which
implements a so called “Random Walk in one Dimension” illustrating what is
also known as “Gambler’s Ruin”:

walk(X,Y) <=>1: X\=Y | walk(X+1,Y).
walk(X,Y) <=>1: X\=Y | walk(X,Y+1).
walk(X,Y) <=>1: X=Y | true.

Let X be the number of won games (or number of pounds won) and let Y be
the number of lost games (or number of pounds lost). Then we can interpret
walk(1,0) as meaning that the game starts with a one pound stake and is over
when all money is lost.

Elementary results from probability theory show that the game will terminate
with a ruined gambler with probability 1, despite the fact that there exists the
possibility of (infinitely many) infinite derivations, i.e. enormously rich gam-
blers.

Although there are these infinite computations (corresponding to infinite ran-
dom walks), the sum of the probabilities associated to all finite derivations (i.e.
random walks which terminate in X=Y ) is one [GS92, GS97]. Thus, the proba-
bility of (all) infinite derivations must be zero. As a consequence, this program,
which classically does not terminate, does terminate in a probabilistic sense: If
one continues playing, almost certainly he will ultimately loose everything.

In the following example we make use of the probability measure zero; in
this way we can express absolute rule preference and negation of a guard (if-
then-else).



Example 4.4 The following PCHR program is an implementation of merge/3,
i.e. merging two lists into one list while the elements of the input lists arrive.
Thus the order of elements in the final list can differ from computation to com-
putation.

merge ([1,L2,L3) <=>1: L2 = L3.
merge (L1, [],L3) <=>1: L1 = L3.
merge ([X|L1],L2,L3) <=>0: L3 [XIL], merge(L1,L2,L).
merge (L1, [Y|L2],L3) <=>0: L3 = [YIL], merge(L1,L2,L).

The effect of the probabilities associated with the rules is as follows: If an empty
input list is involved in the query, one of the first two rules will always be
chosen, even though one of the recursive two rules may apply as well. A query
merge ([a], [b],L3) may either result in L3=[a,b] or L3=[b,al. Since in that
case, the first two rules do not apply and both recursive rules have the same
probability as a consequence, both outcomes are equally likely. In that sense the
PCHR implementation of merge is efficient and fair.

The next example shows the use of allowing for parametrised probability
measures.

Example 4.5 (Primes) We implement the sieve of Eratosthenes to compute
primes in a way reminiscent of the chemical abstract machine [BJPD88]: The
constraint candidates(N) generates candidates for prime numbers, prime (M),
where M is between 1 and N. The candidates react with each other such that each
number absorbs multiples of itself. In the end, only prime numbers remain.

noprime @ candidates(1l) <=> true.
generate @ candidates(N) <=> N>1 | prime(N), candidates(N-1).

sieve @ prime(I), prime(J) <=>1/J: I mod J =:= 0 | prime(J).

the first two rules generate candidate primes from N to 2. The first rule says
that the number 1 is not a good candidate for a prime, candidates(1) is thus
rewritten into true. The generate rule generates a candidate prime(N) and
proceeds with recursively with the next smaller number, provided the guard N>1
is satisfied.

The third rule named sieve actually performs the work of determining which
numbers are not prime: If there is prime (1) and some other prime (J) such that
I mod J =:= 0 holds, i.e. I is a multiple of J, then remove prime(I) but keep
prime(J).

The probability of applying a rule to a certain pair of prime candidates de-
pends on the value of J. The larger J, the less likely it is. Thus the computation
prefers rule applications where it is more likely that a multiple of J will be found,
because J is small. In particular, if prime (I) is the active constraint, it is likely
that a small J will be chosen. If prime(J) is the active constraint, all choices
of an I are equally likely, i.e. any I is chosen with same probability.



Example 4.6 (Simulated Annealing) Simulated Annealing (SA) is one of
the most general and most popular randomised optimisation algorithms. It was
inspired by the physical process of annealing in thermodynamics [MRR*53]: If a
slow cooling is applied to a liquid, it freezes naturally to a state of minimum en-
ergy. The SA algorithm applies annealing to the minimisation of a cost function
for solving problems in the area of combinatorial optimisation.

The SA algorithm tries to find a global optimum by iteratively progressing
towards better solutions while avoiding to get trapped in local optima.

The algorithm proceeds by random walks from one solution to another one,
i.e. from the current solution a new solution is computed randomly. Each so-
lution is associated with a cost, and we are looking for the best solution, one
with the least cost. To avoid being trapped in a local optimum, sometimes the
worse of two subsequent solutions is chosen. The likelihood to do so depends on
a control parameters called the temperature. With each iteration, the tempera-
ture decreases and thus makes the choice of the worse solution more and more
unlikely. The actual probability to choose a worse solution was taken from ther-
modynamics. It is exponential in the cost difference of the two solution divided
by the temperature multiplied with a constant.

The following PCHR program scheme implements the generic SA algorithm:

solution(T,S,C) <=>1: stop_criterion(T,S,C)
best_solution(S,C).
solution(T,S,C) ==>0:
cool_down(T,T1),
generate(S,C,S1,C1),
anneal ((T,S,C),(T1,S1,C1)).

anneal (TSC,TSC1) <=>1:
solution(TSC1).

anneal ((T,S,C),(T1,S1,C1)) <=>e~((C1-C)/(k*T))-1: Ci1>C |
solution(T1,S,C).

5 Conclusions

In this paper we presented a first step towards Probabilistic Constraint Handling
Rules. These allow for an explicite control of the likeliness that certain rewrite
rules are applied. The resulting extention of traditional (non-deterministic)
CHRs is straight forward, nevertheless does exhibit interesting new aspects, e.g.
allows the analysis and discussion of average properties.

Our immediate plan is to implement probabilistic CHRs in order to gain
practical experience in the specification of various algorithms. In particular,
we would like to apply PCHRs to the search procedures of constraint solver
written in CHR. Simulated Annealing algorithms are promising candidates for
essentially probabilistic constraint solving and/or optimisation algorithms.

Another research direction — closely related to the application of PCHR
to constraint solving problems — is to study in depth the relation between



“chaotic iteration” in the context of classical CHR [Apt97] and “ergodicity”
in a probabilistic setting [AW99]: these two concepts seem to exhibit a striking
similarity, and we think that a more detailed analysis of their relationship would
be desirable.

Finally, the introduction of probabilities into the CHR framework seems to
be an essential step in allowing for an “average case” analysis of classical as
well as probabilistic algorithms. A particular aspect in this context concerns
the investigation of the average running time of algorithms and/or the notion of
probabilistic termination. Along the lines for computing derivation lengths for
CHR [Frii01], we want to compute average derivation lengths for PCHR, similar
in spirit to what has been done for PCCP [DWO00].
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