
Soft Constraint Propagation and Solving in
Constraint Handling Rules

S. Bistarelli1, T. Frühwirth2, M. Marte2, and F. Rossi3

1 CNR Pisa, Istituto per l’Informatica e la Telematica,
(Area della Ricerca di Pisa) Via G. Moruzzi 1, I-56124 Pisa, Italy.

Email: Stefano.Bistarelli@iit.cnr.it
2 Ludwig-Maximilians-Universität München, Institut für Informatik, Oettingenstr.

67, D-80538 Munich, Germany.
Email: {fruehwir,marte}@informatik.uni-muenchen.de

3 Università di Padova, Dipartimento di Matematica Pura ed Applicata,
Via Belzoni 7, I-35131 Padova, Italy.

Email: frossi@math.unipd.it

Abstract. Soft constraints are a generalization of classical constraints,
where constraints and/or partial assignments are associated to preference
or importance levels, and constraints are combined according to combi-
nators which express the desired optimization criteria. Constraint Han-
dling Rules (CHR) constitute a high-level natural formalism to specify
constraint solvers and propagation algorithms. In this paper we present
a framework to design and specify soft constraint solvers by using CHR.
In this way, we extend the range of applicability of CHR to soft con-
straints rather than just classical ones, and we provide a straightforward
implementation for soft constraint solvers.

1 Introduction

Many real-life problems are easily described via constraints, that state the nec-
essary requirements of the problems. However, usually such requirements are
not hard, and could be more faithfully represented as preferences, which should
preferably be followed but not necessarily. In real life, we are often confronted
with over-constrained problems, which do not have any solution, and this also
leads to the use of preferences or in general of soft constraints rather than clas-
sical constraints.

Generally speaking, a soft constraint is just a classical constraint plus a way
to associate, either to the entire constraint or to each assignment of its vari-
ables, a certain element, which is usually interpreted as a level of preference or
importance. Such levels are usually ordered, and the order reflects the idea that
some levels are better than others. Moreover, one has also to say, via a suitable
combination operator, how to obtain the level of preference of a global solution
from the preferences in the constraints.

To identify a specific class of soft constraints, one has just to select a certain
combination operator and a certain ordered set of levels of preferences. For ex-
ample, one can choose the set of all reals between 0 and 1, and the min operator

(this would be the so-called fuzzy constraints); with this framework, one can
give a preference level between 0 and 1 to partial solutions, where a higher level
is considered better, and then compute the preference of a global solution as the
minimal preference on all constraints. In this view, also classical constraints can
be seen as a specific class of soft constraints, where there are only two levels of
preference false and true with true better than false), and logical and is the
combinator operator.

Many formalisms have been developed to describe one or more classes of
soft constraints [6, 7, 3]. In this paper we refer to one which is general enough
to describe most of the desired classes. This framework is based on a semiring
structure, that is, a set plus two operators: the set contains all the preference
levels, one of the operators gives the order over such a set, while the other one
is the combination operator [2, 1].

It has been shown that constraint propagation and search techniques, as usu-
ally developed for classical constraints, can be extended also to soft constraints,
if certain conditions are met [2]. However, while for classical constraints there
are formalisms and environments to describe search procedures and propaga-
tion schemes [12], as far as we know nothing of this sort is yet available for soft
constraints. Such tools would obviously be very useful, since they would pro-
vide a flexible environment where to specify and try the execution of different
propagation schemes.

In this paper we propose to use the Constraint Handling Rules (CHR) frame-
work [8], which is widely used to specify propagation algorithms for classical
constraints, and has shown great generality and flexibility in many application
fields. CHR describe propagation algorithms via two kinds of rules, which, given
some constraints, either replace them (in a simplification rule) or add some new
constraints (in a propagation rule). With a collection of such rules, one can easily
specify complex constraint reasoning algorithms.

We describe how to use CHR to specify propagation algorithms for soft con-
straints. The advantages of using a well-tested formalism, as CHR is, to specify
soft constraint propagation algorithms are many-fold. First, we get an easy im-
plementation of new solvers for soft constraints starting from existing solvers
for classical constraints. Moreover, we obtain an easy experimentation platform,
which is also flexible and adaptable. And finally, we develop a general imple-
mentation which can be used for many different classes of soft constraints, and
also to combine some of them.

2 Soft Constraints

In the literature there have been many formalizations of the concept of soft
constraints [6, 7, 3]. Here we refer to a specific one [2], which however can be
shown to generalize and express many of the others. In short, a soft constraint
is a constraint where each instantiation of its variables has an associated value
from a partially ordered set. Combining constraints will then have to take into
account such additional values, and thus the formalism has also to provide suit-

able operations for combination (×) and comparison (+) of tuples of values and
constraints. This is why this formalization is based on the concept of semiring,
which is a set plus two operations.

Semirings and SCSPs. A semiring is a tuple 〈A,+,×,0,1〉 such that: A is
a set and 0,1 ∈ A; + is commutative, associative and 0 is its unit element; ×
is associative, distributes over +, 1 is its unit element and 0 is its absorbing
element.

In reality, we will need some additional properties, leading to the notion of c-
semiring (for “constraint-based”): a c-semiring is a semiring 〈A,+,×,0,1〉 such
that + is idempotent with 1 as its absorbing element and × is commutative.

Let us consider the relation ≤S over A such that a ≤S b iff a + b = b. Then
it is possible to prove that: ≤S is a partial order; + and × are monotone on ≤S ;
0 is its minimum and 1 its maximum; 〈A,≤S〉 is a complete lattice and + is
its lub. Moreover, if × is idempotent, then: + distributes over ×; 〈A,≤S〉 is a
complete distributive lattice and × its glb. The ≤S relation is what we will use
to compare tuples and constraints: if a ≤S b it intuitively means that b is better
than a.

In this context, a soft constraint is then a pair 〈def , con〉 where con ⊆ V , V
is the set of problem variables, and def : D|con| → A. Therefore, a constraint
specifies a set of variables (the ones in con), and assigns to each tuple of values
of these variables an element of the semiring.

An SCSP constraint problem is a pair 〈C, con〉 where con ⊆ V and C is a
set of constraints: con is the set of variables of interest for the constraint set C,
which however may concern also variables not in con.

Combining and projecting soft constraints. Given two soft constraints
c1 = 〈def 1, con1〉 and c2 = 〈def 2, con2〉, their combination c1 ⊗ c2 is the con-
straint 〈def , con〉 defined by con = con1 ∪ con2 and def (t) = def 1(t ↓

con

con1

) × def (t ↓con
con2

), where t ↓X
Y denotes the tuple of values over the variables in

Y , obtained by projecting tuple t from X to Y . In words, combining two soft
constraints means building a new soft constraint involving all the variables of
the original ones, and which associates to each tuple of domain values for such
variables a semiring element which is obtained by multiplying the elements as-
sociated by the original soft constraints to the appropriate subtuples.

Given a soft constraint c = 〈def , con〉 and a subset I of V , the projection of
c over I, written c ⇓I is the soft constraint 〈def ′, con ′〉 where con ′ = con ∩ I and
def ′(t′) =

∑

t/t↓con

I∩con
=t′ def (t). Informally, projecting means eliminating some

variables. This is done by associating to each tuple over the remaining variables
a semiring element which is the sum of the elements associated by the original
constraint to all the extensions of this tuple over the eliminated variables.

Summarizing, combination is performed via the multiplicative operation of
the semiring, and projection via the additive operation.

Examples. Classical CSPs are SCSPs where the chosen c-semiring is Bool =
〈{false, true}, ∨,∧, false, true〉. By using this semiring we mean to associate to

each tuple a boolean value, with the intention that true is better than false, and
we combine constraints via the logical and.

Fuzzy CSPs [6] can instead be modeled by choosing the c-semiring Fuzzy =
〈[0, 1], max,min, 0, 1〉. Here each tuple has a value between 0 and 1, where higher
values are better. Then, constraints are combined via the min operation and dif-
ferent solutions are compared via the max operation. The ordering here reduces
to the usual ordering on reals.

Another interesting instance of the SCSP framework is based on set opera-
tions like union and intersection and uses the c-semiring Sets = 〈℘(A),∪,∩, ∅, A〉,
where A is any set. In this case the order reduces to set inclusion and therefore
is partial.

It is also important to notice that the Cartesian product of two semirings
is again a semiring. This allows to reason with multiple criteria (one for each
semiring) at the same time.

Solutions. The solution of an SCSP problem P = 〈C, con〉 is the constraint
Sol(P) = (

⊗

C) ⇓con . In words, we combine all constraints and then we project
the resulting constraint onto the variables of interest.

Soft constraint propagation. SCSP problems can be solved by extending
and adapting the techniques usually used for classical CSPs. For example, to
find the best solution we could employ a branch-and-bound search algorithm
(instead of the classical backtracking), and also the successfully used propagation
techniques, like arc-consistency, can be generalized to be used for SCSPs.

Instead of deleting tuples, in SCSPs obtaining some form of constraint prop-
agation means changing the semiring values associated to some tuples or domain
elements. In particular, the change always brings these values towards the worst
value of the semiring, that is, the 0.

The kind of soft constraint propagation we will consider in this paper amounts
to combining, at each step, a subset of the soft constraints and then projecting
over some of their variables. This is not the most general form of constraint
propagation, but it strictly generalizes the usual propagation algorithms like
arc- and path-consistency, therefore it is reasonably general.

More precisely, each constraint propagation rule can be uniquely identified
by just specifying a subset C of the constraint set, and one particular constraint
in C, say c. Then, applying such a rule consists of performing the following
operation: c := (

⊗

C) ↓var(c). That is, c is replaced by the projection, over its
variables, of the combination of all the constraints in C.

It is easy to see that arc-consistency over classical constraints could be mod-
elled by choosing the boolean semiring and selecting C as the set of constraints
(two unary and one binary) over any two variables, and c as one of the unary
constraints in C.

A soft constraint propagation algorithm operates on a given set of soft con-
straints, by applying a certain set of constraint propagation rules until stability.
It is possible to prove that any constraint propagation algorithm defined in this
way has the following properties [2]:

– it terminates;
– if × is idempotent, then:

• the final constraint set is equivalent to the initial one;
• the result does not depend on the order of application of the constraint

propagation rules.

Note that if the × operator is not idempotent, like for example in the semiring
〈R∪+∞,min,+, 0,+∞〉 for constraint optimizations (where we have to minimize
the sum of the costs, and thus × is the sum), we cannot be sure that constraint
propagation has the above desirable properties.

3 Constraint Handling Rules (CHR)

CHR (Constraint Handling Rules) [8] are a committed-choice concurrent con-
straint logic programming language consisting of multi-headed guarded rules
that rewrite constraints into simpler ones until they are solved. CHR define both
simplification of and propagation over user-defined constraints. Simplification re-
places constraints by simpler constraints while preserving logical equivalence.
Propagation adds new constraints which are logically redundant but may cause
further simplification. CHR have been used in dozens of projects worldwide to
implement various constraint solvers, including novel ones such as terminologi-
cal, spatial and temporal reasoning [8].

In this section we quickly give syntax and semantics for CHR, for details see
[8]. We assume some familiarity with (concurrent) constraint (logic) program-
ming [10, 11].

A constraint is a predicate (atomic formula) in first-order logic. We dis-
tinguish between built-in (predefined) constraints and CHR (user-defined) con-
straints. Built-in constraints are those handled by a predefined, given constraint
solver. For simplicity, we will regard all (auxiliary) predicates as built-in con-
straints. CHR constraints are those defined by a CHR program.

Abstract syntax. In the following, upper case letters stand for conjunctions
of constraints.

A CHR program is a finite set of CHR. There are two kinds of CHR. A
simplification CHR is of the form

N @ H <=> G | B

and a propagation CHR is of the form

N @ H ==> G | B

where the rule has an optional name N followed by the symbol @. The multi-
head H is a conjunction of CHR constraints. The optional guard G followed by
the symbol | is a conjunction of built-in constraints. The body B is a conjunction
of built-in and CHR constraints.

A simpagation CHR is a combination of the above two kinds of rule, it is of
the form

[N ’@’] H1 ’\’ H2 ’==>’ [G ’|’] B.

where the symbol ’\’ separates the head constraints into two nonempty
conjunctions H1 and H2. In this paper, a simpagation rule can be regarded as
efficient abbreviation of the corresponding simplification rule:

[N ’@’] H1, H2 ’<=>’ [G ’|’] H1, B.

Operational semantics. The operational semantics of CHR programs is given
by a state transition system. With derivation steps (transitions, reductions) one
can proceed from one state to the next. A derivation is a sequence of derivation
steps.

A state (or: goal) is a conjunction of built-in and CHR constraints. An initial
state (or: query) is an arbitrary state. In a final state (or: answer) either the
built-in constraints are inconsistent or no derivation step is possible anymore.

Let P be a CHR program for the CHR constraints and CT be a constraint
theory for the built-in constraints. The transition relation 7−→ for CHR is as
follows.

Simplify

H ′ ∧D 7−→ (H = H ′) ∧G ∧B ∧D
if (H <=> G | B) in P and CT |= D → ∃x̄(H = H ′ ∧G)

Propagate

H ′ ∧D 7−→ (H = H ′) ∧G ∧B ∧H ′ ∧D
if (H ==> G | B) in P and CT |= D → ∃x̄(H = H ′ ∧G)

When we use a rule from the program, we will rename its variables using new
symbols, and these variables are denoted by the sequence x̄. A rule with head H
and guard G is applicable to CHR constraints H ′ in the context of constraints
D, when the condition CT |= D → ∃x̄(H = H ′ ∧G) holds.

In the condition, the equation (H = H ′) is a notational shorthand for equat-
ing the arguments of the CHR constraints that occur in H and H ′. More pre-
cisely, by (H1∧. . .∧Hn) = (H ′

1∧. . .∧H ′
n) we mean (H1 = H ′

1)∧. . .∧(Hn = H ′
n),

where conjuncts can be permuted. By equating two constraints, c(t1, . . . , tn) =
c(s1, . . . , sn), we mean (t1 = s1)∧ . . .∧ (tn = sn). The symbol = is to be under-
stood as built-in constraint for syntactic equality and is usually implemented by
a unification algorithm (as in Prolog).

Operationally, this condition requires to check first whether H ′ matches H
according to the definition of the built-in constraints in CT , i.e. whether H ′ is
an instance of (more specific than) the pattern H. When matching, we take the
context D into account since its built-in constraints may imply that variables in
H ′ are equal to specific terms. This means that there is no distinction between,
say, c(X) ∧X = 1 and c(1) ∧X = 1.

If H ′ matches H, we equate H ′ and H. This corresponds to parameter passing
in conventional programming languages, since only variables from the rule head

H can be further constrained, and all those variables are new. Finally, using the
variable equalities from D and H ′ = H, we check the guard G.

Any of the applicable rules can be applied, but it is a committed choice, it
cannot be undone.

If an applicable simplification rule (H <=> G | B) is applied to the CHR
constraints H ′, the Simplify transition removes H ′ from the state and adds
the body B, the equation H = H ′, and the guard G. If a propagation rule (H
==> G | B) is applied to H ′, the Propagate transition adds B, H = H ′, and
G but does not remove H ′. Trivial non-termination is avoided by applying a
propagation rule at most once to the same constraints.

4 Implementation

Typically, CHR are used within a CLP environment such as Eclipse or Sicstus
Prolog [4]. This means that propagation algorithms are described via CHR, while
the underlying CLP language is used to define search procedures and auxiliary
predicates. This is the case in our implementation of soft constraints, where
the underlying language is Sicstus Prolog. Notice that the actual running code
has been slightly edited to abstract away from technicalities like cuts and term
copying.

4.1 Choice of the semiring

The implementation is parametric w.r.t. the semiring. To choose one particular
semiring S, the user states (that is, asserts) the fact semiring(S) using the
predicate use semiring(S), defined as follows:

use_semiring(S) :-

retractall(semiring(_)),

assert(semiring(S)).

The implementation supports the classical, fuzzy, set and weighted semirings.
The cartesian product of semiring is also supported.

Semirings S with an idempotent multiplicative operator are recognised by
stating the fact idempotent(S).

idempotent(classical). idempotent(fuzzy). idempotent(set).

idempotent((S1, S2)) :- idempotent(S1), idempotent(S2).

The last clause regards semirings obtained by combining two semirings S1
and S2: their cartesian product is idempotent if both components are idempotent
[2].

Recall that a semiring is characterized by 〈A,+,×,0,1〉. While the definition
of the set A is implicit through the operations, the operations and remaining
parameters are defined by CLP clauses.

The two operators of the chosen semiring are defined via predicate plus/3

for the additive operator + and times/3 for the multiplicative operator ×:

plus(W1,W2,W3) :- semiring(S), plus(S,W1,W2,W3).

times(W1,W2,W3):- semiring(S), times(S,W1,W2,W3).

The partial order of the chosen semiring is defined via predicate leqs/2, in
terms of the additive operator, as in the definition of the semiring structure:

leqs(A, B) :- plus(A, B, B).

Finally, the top and bottom element are defined via predicates one/1 and
zero/1. For example, for the classical semiring (for hard constraints), we have:

plus(classical,W1,W2,W3) :- or(W1,W2,W3).

times(classical,W1,W2,W3) :- and(W1,W2,W3).

one(classical, t).

zero(classical, f).

For the cartesian product of two semirings, we define the operators in terms
of the corresponding operators for each semiring:

plus((S1,S),W1,W2,W3) :-

W1=(A1,B1), W2=(A2,B2), W3=(A3,B3),

plus(S1,A1,A2,A3),

plus(S,B1,B2,B3).

times((S1,S),W1,W2,W3) :-

W1=(A1,B1), W2=(A2,B2), W3=(A3,B3),

times(S1,A1,A2,A3),

times(S,B1,B2,B3).

one((S1, S2), (One1, One2)) :- one(S1, One1), one(S2, One2).

zero((S1, S2), (Zero1, Zero2)) :- zero(S1, Zero1), zero(S2, Zero2).

4.2 Domains and constraints

Variable domains are described as lists of pairs, where each pair contains a
domain element and an associated preference. The operator in allows to state
the unary constraint that a variable is in a certain domain. For example: [X]
in [[a]-2,[b]-3].

The operator in can also be used for stating n-ary constraints. For exam-
ple: [X,Y] in [[a,b]-3,[b,c]-4]. We call such a definition extensional. N-ary
constraints can also be defined intensionally, which comes handy in the case of
infinite relations. For example, [X,Y] in leq-3-1 associates importance value
3 to all tuples satisfying the constraint leq/2 and value 1 to the others.

Notice that this is just one way to interpret intensional constraints. For leq,
we have also experimented with preferences where all pairs that satisfy the rela-
tion have maximum preference 1, while for the other pairs the preference could
be computed as 1/(1+ d) where d is the difference between the two values that
do not satisfy the constraint. Another formula we have used was inspired from
work in neural networks: if the importance level of the constraint is l, we give
preference level (1 − l)ead to all the tuples that do not satisfy the constraint,

where it is assumed that the preference levels are between 0 and 1 (so 1− l is the
dual of l), and where a is a parameter which allows one to control the steepness
of the function.

To compute the level of preference that the intensional constraint gives to
each tuple, we use the predicate checkconstraint/3, which takes the relation
to check, the variables involved, and returns the level of preference for the tuple
(W2). For example:

checkConstraint(leq-W1-WA, [X, Y], W2) :-

!,

(X =< Y

-> W2 = W1

; W2 = WA).

checkConstraint(slq-W1-WA, [X, Y], W2) :-

!,

(X =< Y

-> W2 = W1

; one(ONE), W2 is max(WA, ONE / (X - Y + 1) * W1)).

The first relation assigns weight W1 to each tuple that satisfies the relation
X=<Y, and WA to the other tuples. The second relation assigns to each tuple a
weight which depends on the distance between X and Y.

4.3 Constraint combination

Two extensionally defined soft constraints are combined using the predicate
combination/3, which takes two constraints and returns a third constraint which
is their combination.

combination(Con1 in Def1, Con2 in Def2, Con3 in Def3) :-

isExtensional(Def1),

isExtensional(Def2),

!,

union(Con1, Con2, Con3),

copy_term_without_blocked_goals(Con1-Con2-Con3, CCon1-CCon2-CCon3),

semiring(S),

zero(S, Z),

findall(CCon3-W3,

(member(CCon1-W1, Def1),

member(CCon2-W2, Def2),

times(S, W1, W2 ,W3),

W3 \== Z),

Def3).

The combined constraint CCon3 in Def3 is computed as follows: the vari-
ables involved in the constraint are computed by the union operator. Then built-
in predicate findall/3 collects all tuples CCon3-W3 of the new constraint in the

list Def3, where each tuple is found by computing all pairs of consistent tu-
ples from CCon1 and CCon2 using member/2 and by computing their preference
value W3 using the times operator of the specified semiring S. For performance
reasons, the tuples with zero preference value are deleted (W3 =̄ Z). The pred-
icate copy term without blocked goals is an utility defined to locally work
with variables, constraints and semiring levels, without have to interfere with
the general propagation rules active in the store.

For intensionally defined constraints, a variation of combination/3 is defined,
called longcombination/4. It takes an intensionally defined constraint and two
extensional domain constraints, and computes a new extensionally defined con-
straint, which represents the combination of the three original constraints.

longcombination(A in L1, B in L2, E in L4, C in L3) :-

isIntentional(L1),

isExtensional(L4),

isExtensional(L2),

!,

union(A, B, AB),

union(AB, E, C),

copy_term_without_blocked_goals([A, B, C, E], [CA, CB, CC, CE]),

semiring(S),

zero(S, Z),

findall(CC-W3,

(member(CB-W2, L2),

member(CE-W4, L4),

checkConstraint(L1, CA, W1),

times(S, W1, W2, W12),

times(S, W12, W4, W3),

W3 \== Z),

L3).

Notice that the implementation only support combination of at most one
implicitly defined constraint. In this way implicit constraints are substituted by
explicit constraints.

4.4 Constraint projection

Predicate projection/3 implements the projection operator for an extensionally
defined soft constraint and a list of variables Con2, resulting in a new constraint
Con2 in Def2.

projection(Con1 in Def1, Con2, Con2 in Def2) :-

isExtensional(Def1),

!,

copy_term_without_blocked_goals(Con1-Con2, CCon1-CCon2),

findall(CCon2-W1, (member(CCon1-W1, Def1)), Def3),

keysort(Def3, Def4),

semiring(S),

allplus(Def4, Def2, S).

First findall/3 finds all tuples in terms of the variables of interest Con2

using the tuples from the original constraint Con1 in Def1. These tuples are
sorted so that tuples with the same domain element are neighbouring. Then
predicate allplus/3 sums all the semiring values whose domain element is the
same to compute the final new domain Def2.

4.5 Node- and arc-consistency

A variable is node-consistent if for every value in the current domain of the
variable, each unary constraint on the variable is satisfied. The following CHR
rule achieves node-consistency by intersecting the domains associated with the
variable X using combination/3:

node_consistency @ Con in Def1, Con in Def2 <=>

isExtensional(Def1), isExtensional(Def2) |

combination(Con in Def1, Con in Def2, Con in Def3),

Con in Def3.

Note that Con can be any list of variables. Thus the rule performs intersection
of the domains of two soft constraints over the same list of variables.

The following simpagation rule implements arc-consistency, by combining
binary and unary constraints involving two variables X and Y and then projecting
onto each of the two variables. In effect, the two unary constraints on X and Y

are tightened taking into account the binary constraint.

arc_consistency @ [X,Y] in C \ [X] in A, [Y] in B <=>

var(X), var(Y), isExtensional(C) |

combination([X,Y] in C, [X] in A, [X,Y] in D),

combination([X,Y] in D, [Y] in B, [X,Y] in E),

(semiring(S), idempotent(S)

-> projection([X,Y] in E, [X], [X] in F),

projection([X,Y] in E, [Y], [Y] in G)

; classicalProjection([X,Y] in E, [X] in A, [X] in F),

classicalProjection([X,Y] in E, [Y] in B, [Y] in G)),

[X] in F,

[Y] in G.

We recall here that soft arc-consistency can be applied only when the (mul-
tiplicative operation of the) semiring is idempotent. Otherwise, in our imple-
mentation, we apply a variation of arc-consistency that uses another projection
predicate. It eliminates from the domains only those elements with zero as asso-
ciated preference level.

4.6 Complete solvers

Naive solver. Predicate solve1/3 implements the notion of solution, by com-
bining all the constraints in Cs and then projecting over the variables of interest

(those in Con). Predicate globalCombination/2 folds combination/3 over a list
of constraints.

A variant of solve1 with two arguments (solve1)computes the list of con-
straints Cs by looking in the current constraint store. It use the built-in pred-
icate findall constraints(?Pattern, ?List) that unifies List with a list
of Constraint # Id pairs from the constraint store that match Pattern. The
utility predicate removeIds(Cs0, Cs) only remove the id part to the list of
constraints in Cs0 and give s result Cs.

solve(Con, Solution) :-

findall_constraints(_ in _, Cs0),

removeIds(Cs0, Cs),

solve1(Cs, Con, Solution).

solve1(Cs, Con, Solution) :-

globalCombination(Cs, C),

projection(C, Con, Solution).

Solver based on dynamic programming. This solver, called dp, incremen-
tally eliminates a set of variables from the constraint store. It is working on
one variable at a time. First, it selects a variable X (by using the built/in predi-
cate find constraint([X] in ,)) to eliminate. Second, it identifies the con-
straints involving X and combines them into a single constraint Cs. Third, it elim-
inates X from Cs (by using the utility predicate dpDelete(X, Con0, Con1)) by
projection obtaining C. Finally, the constraints involving X are replaced by C (by
using the utility predicate removeConstraints(Cs0) and by asserting C). Then
the solver iterates to eliminate the remaining variables.

dp(Con, Solution) :-

find_constraint([X] in _, _),

\+ (member(Y, Con), X == Y),

!,

findall_constraints(X, _ in _, Cs0),

removeIds(Cs0, Cs),

globalCombination(Cs, C0),

C0 = (Con0 in _),

dpDelete(X, Con0, Con1),

projection(C0, Con1, C),

removeConstraints(Cs0),

C,

dp(Con, Solution).

Solver based on branch & bound with variable labeling. This solver,
called varbb, performs branch and bound with variable labeling in the search
for a solution with maximal weight. It essentially retract all the bound (at the
beginning we have no bounds) and call varbb1. This predicate, given a list
of variables Xs0 and constraints Con, compute the solution Solution. It per-
form the following steps: first a variable X is selected deterministically from Xs0

according to some built-in strategy. Second, a value-weight pair is chosen non-
deterministically from the domain of X according to some built-in strategy. Then
the resulting unary constraint [X] in [A-AW] is imposed. If there is already a
current bound (weight), the constraints Con are solved using solve and it is
made sure that there is at least one possible value in the solution domain whose
weight is lower than the current weight. Finally, the recursive call continues with
the remainder of the variables Xs1.

If the list of variables is empty, the second clause for varbb computes a
solution and updates the bound to be the weight occurring in the solution.

varbb(Xs, Con, Solution) :-

retractall(bound(_)),

varbb1(Xs, Con, Solution).

varbb1([], Con, Solution) :-

!,

solve(Con, Solution),

(retract(bound(_)) -> true; true),

Solution = (_ in [_-B]),

assert(bound(B)).

varbb1(Xs0, Con, Solution) :-

selectVariable(Xs0, X, Xs),

selectValue(X, A-AW, Id),

remove_constraint(Id),

[X] in [A-AW],

(bound(LB)

-> solve(Con, _ in Def),

once((member(_-W, Def), W \== LB, leqs(LB, W)))

; true),

varbb1(Xs, Con, Solution).

5 Conclusions

We have implemented a generic soft constraint environment where it is possi-
ble to work with any class of soft constraints, if they can be cast within the
semiring-based framework: once the semiring features have been stated via suit-
able clauses, the various solvers we have developed in CHR and Sicstus Prolog
will take care of solving such soft constraints. We have implemented semi-rings
for classical, fuzzy, set, and Cartesian-product soft constraints. Our solvers in-
clude propagation-based node- and arc-consistency solvers as well as the several
complete solvers using branch and bound with variable or constraint labeling or
dynamic programming. The solvers will soon be available online at
(http://www.pms.informatik.uni-muenchen.de/~webchr/).

We plan to predefine more classes of soft constraints and to develop other
soft propagation algorithms and solvers for soft constraints.

We also plan to compare our approach to the one followed by the soft con-
straint programming language clp(fd,S) [9]. Of course we do not expect to show
the same efficiency as clp(fd,S), but we claim the same generality, and a very

natural envornment to develop new propagation algorithms and solvers for soft
constraints. Moreover, we did not need to add anything, except the clauses and
CHR rules shown in this paper, w.r.t. the existing CHR environment and CLP
language of choice. On the other hand, clp(fd,S) needed a new implementation
and abstract machine w.r.t. clp(fd) [5], from which it originated.

References

1. S. Bistarelli. Soft Constraint Solving and programming: a general framework. PhD
thesis, Dipartimento di Informatica, University of Pisa, 2001.

2. S. Bistarelli, U. Montanari and F. Rossi. Semiring-based Constraint Solving and
Optimization. Journal of ACM, vol. 44, no. 2, March 1997.

3. A. Borning, M. Maher, A. Martindale, and M. Wilson. Constraint hierarchies and
logic programming. In Martelli M. Levi G., editor, Proc. 6th International Conference

on Logic Programming, pages 149–164. MIT Press, 1989.
4. M. Carlsson and J. Widen. SICStus Prolog User’s Manual. On-line version
at http://www.sics.se/sicstus/. Swedish Institute of Computer Science (SICS),
1999.

5. P. Codognet and D. Diaz. Compiling constraints in CLP(FD). Journal of Logic
Programming, vol. 27, n. 3, 1996.

6. D. Dubois, H. Fargier and H. Prade. The calculus of fuzzy restrictions as a basis
for flexible constraint satisfaction. Proc. IEEE International Conference on Fuzzy
Systems, IEEE, pp. 1131–1136, 1993.

7. E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. AI Journal, 58,
1992.

8. T. Frühwirth, Theory and Practice of Constraint Handling Rules, Special Issue on
Constraint Logic Programming (P. J. Stuckey and K. Marriot, Eds.), Journal of Logic
Programming, Vol 37(1-3):95-138 Oct-Dec 98.

9. Y. Georget and P. Codognet. Compiling Semiring-based Constraints with
clp(FD,S). Proceedings of CP’98, Springer, 1998.

10. K. Marriott and P. J. Stuckey. Programming with constraints: an introduction.
MIT Press, 1998.

11. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

12. P. Van Hentenryck and al. Search and Strategies in OPL. ACM Transactions on
Computational Logic, 1(2), October 2000.

