Combining Forward and Backward Propagation

Amira Zaki'2, Slim Abdennadher!, and Thom Frithwirth?

! German University in Cairo, Egypt {amira.zaki, slim.abdennadher}@guc.edu.eg
2 Ulm University, Germany thom.fruehwirth@uni-ulm.de

Abstract. Constraint Handling Rules (CHR) is a general-purpose rule-
based programming language. This paper studies the forward and back-
ward propagation of rules, and explores the combination of both execu-
tion strategies. Forward propagation transforms input to output, while
backward propagation uncovers input from output. This work includes
a source-to-source transformation capable of implementing a backward
propagation of the rules. Furthermore with the addition of annotat-
ing trigger constraints, CHR programs can be executed in a strictly-
forward, strictly-backward or combined interleaved quasi-simultaneous
manner. A programmer should only write one program and then the an-
notated transformation empowers the multiple execution strategies. The
proposed work is useful for automatic implementation of bidirectional
search for any search space through the combined execution strategies.
Moreover, it is advantageous for reversible bijective algorithms (such as
lossless compression/decompression), requiring only one algorithm direc-
tion to be implemented.

Keywords: Forward/Backward, Constraint Handling Rules, Bidirectional
Search, Combined Propagation, Source-to-source transformation

1 Introduction

A program P can be defined as a series of transitions transforming an input
state to an output state, while an inverse (or backward) program P~! is one
that uncovers the input given the output [11]. The transition rules transforming
input to output are known as forward rules, whereas those reversing output to
input are known as backward rules. For example, compression can be considered
as a forward program, and decompression is its backward program.

The study of transition directions for the same program captures some inter-
esting program pairs, such as encryption/decryption, compression/decompression,
invertible arithmetic functions and roll-back transactions. Despite the relation
between inverse computations, it is common practice to maintain two separate
programs to perform each transition direction. The two programs are similar
and essentially related to one another, however two disjoint programs have to be
written. Furthermore, maintaining the relationship between the programs can
be a source of errors and inconsistency, since any changes must be reflected in
both programs.

2 Amira Zaki, Slim Abdennadher, and Thom Frithwirth

To avoid duplication of effort, a user ideally wants to write and maintain a
single program. This work facilitates a combination of forward and backward
propagation directions automatically for any given program. Programs are writ-
ten using Constraint Handling Rules (CHR), which is a high-level programming
language based on guarded rewrite rules [7]. The language was originally designed
to write constraint solvers, however it is a strong and elegant general-purpose
language with a large spectrum of applications. Source-to-source transformations
extend CHR programs to ones with additional machinery [8]. This work presents
a source-to-source transformation, to generate a combined program which is
more expressive and complex, featuring two-way execution.

Programming languages themselves vary in the inference direction used;
backward chaining languages are highly non-deterministic compared to committed-
choice forward chaining languages. Languages supporting deterministic forward
and backward computation are known as reversible languages such as the im-
perative language Janus [16]. Recently, [10] proposed a class of programming
languages that generalizes both Constraint Logic and Concurrent Constraint
Programming to combine forward and backward chaining, however the work
lacks a proper implementation. Prolog uses backward chaining, and can be used
to implement two-way programs whose arguments maybe used for input or out-
put. However, implementing such programs is quite tricky, and special care must
be taken while implementing with two-way predicates and operators.

For example, the run-length encoding algorithm is a simple data compres-
sion technique, where consecutive runs of characters within a text are packed and
stored as a single character followed by its count. The text ‘aaaaabccc’ (wrapped
in a compress/1 constraint) is compressed into ‘a5bic3’ (in a result/1 con-
straint). The run-length encoding algorithm can be expressed in CHR as shown
below, where pack/2 is used to pack consecutive letter runs and comp/3 to ac-
cumulate the encoding. This program encapsulates the combined forward and
backward nature of the algorithm, and two-way execution is explored through
the transformations described this work.

start @ compress(In) <=> comp(In,[],[]).
run-end @ comp([H1,H2|T],Run,Acc) <=> H1\=H2 | Run2=[H1|Run],
pack(Run2,PackRun), append(Acc, [PackRun],Acc2), comp([H2|T], [],Acc2).
run-cont @ comp([H1,H2|T],Run,Acc) <=> H1=H2
| Run2=[H1|Run],comp([H2|T],Run2,Acc).
last-char @ comp([H],Run,Acc) <=> Run2=[H|Run],
pack(Run2,PackRun), append(Acc, [PackRun],Acc2), result(Acc2).
end @ comp([],_,_) <=> result([]).

This work presents a source-to-source transformation that captures the back-
wards operational semantics of CHR for range-restricted programs. The trans-
formation was introduced earlier [17] however in this work it is revisited and ex-
pressed more formally. The previously mentioned run-length encoding program
is transformed into a combined form as presented in this work. Then for a string
‘aaaaabccc’, the program can be forwardly run by: ‘fwd, compress([a,a,a,a,a,b,
c,c,cl)’ to produce the compressed form: ‘result([[a,5], [b,1],[c,3]1]1)’. Sim-

Combining Forward and Backward Propagation 3

ilarly, a backward run can be attained through a query: ‘bck, result([[a,5],
[b,11, [c,3]11)’ to decompress the sub-lists to: ‘compress([a,a,a,a,a,b,c,c,cl)’.

Furthermore this work introduces the addition of annotating trigger con-
straints, to empower the execution of CHR programs in a strictly-forward,
strictly-backward or interleaved quasi-simultaneous bidirectional manner. This
means that only one program is written and the annotated transformation en-
ables multiple execution schemes. This is useful for solving bijective algorithms
and the aforementioned inverse computation pairs. The paper extends by show-
ing how the combined programs can be extended to facilitate bidirectional search.

Previous work, such as [1], tend to use CHR as a language for abduction.
However, the problem is that the user has to write two different programs for
deductive and abductive reasoning. This work presents a technique to write a
program once, then facilitate different reasoning directions.

The paper proceeds by recalling background information about CHR, in Sec-
tion 2. In Section 3, the combined two-way programs are presented through
source-to-source transformations, and then the extension for bidirectional search
is given in Section 4. This is followed by an application in Section 5. The paper
concludes by some remarks and future work in Section 6.

2 Constraint Handling Rules

2.1 Syntax

Constraint Handling Rules (CHR) [7,9] is a high level, committed choice, rule-
based programming language. It consists of guarded rewrite rules that perform
conditional transformation of a multi-set of constraints. It distinguishes between
two types of constraints; built-in constraints which are predefined by the host
language and other user-defined CHR constraints which are declared as func-
tor/arity pairs. A generalized CHR simpagation rule is given as:

rule-id @ H, \ H, & G |B

Every rule has an optional unique identifier preceding it given by rule-id. Hy,
and H, are a conjunction of one or more CHR constraints; known as the kept and
removed head constraints respectively. The guard G is an optional conjunction
of built-in constraints. The body of the rule B consists of a conjunction of both
built-in and CHR constraints.

Simplification and propagation rules are two other rule types which are spe-
cial cases of simpagation rules. Simplification rules have no kept head constraints,
and propagation rules have no removed head constraints. They are of the forms:

stmplification-id @ H, <& G | B

propagation-id @ H, = G | B

Constraint Handling Rules with Disjunction (CHRY) [2] is an extension of CHR
featuring disjunctive rule bodies to allow a backtrack search over alternatives.

4 Amira Zaki, Slim Abdennadher, and Thom Frithwirth

The rules are similar to the rule forms described above, however the rule body
can be composed of two or more disjunctive bodies (B; V Bg). For example a
CHRY simpagation rule is of the form:

disjuntive-id @ H, \ H, < G | By ; Bs

2.2 Operational Forward Semantics

The behavior of a CHR program is modeled through an operational semantics,
in terms of a state transition system. The very abstract semantics (w,) is a state
transition system, where a transition corresponds to a rule application and states
represent goals consisting of a conjunction of CHR and built-in constraints. An
initial state is an arbitrary one and a final state is a terminal one where no
further transitions are possible. The w,, semantics includes one rule which is
shown below, where P is a CHR program and C7 is the constraint theory for
the built-in constraints. The body of a rule (B) and C consist of both built-in and
CHR constraints, moreover Hy and H, are a conjunction of CHR constraints,
while G is a conjunction of built-in constraints.

Apply
(He NHy NC) =0, (He NGABAC)
if there is an instance of a rule r in P with new local variables such that:
r@QHy \ H-< G| Band CT EV(C — 3zG)

The extended transition system for CHRY operates on a disjunction of CHR
states known as a configuration: S;V Sy V- .-V S,. The original apply transition
is applicable to a single state. An additional split transition is applicable to
any configuration containing a disjunction. It leads to a branching derivation
entailing two states, where each state can be processed independently.

Split
(HHVH)NC)V S =y (HIANC)V (HaANC)V S

However, these semantics are highly non-deterministic and thus more refined
semantics are needed for the actual implementation of CHR compilers[5]. The
order of constraint execution and rule application determine how a derivation
proceeds and is defined by the implemented operational semantics. Starting with
the same initial query, multiple derivations are possible. If all derivations ulti-
mately lead to the same goal, then the program is known as a confluent one.

2.3 Operational Backwards Semantics

The forward w,, semantics models a forward rule application on an initial state
to a final state. The inverse of this rule application is defined by a backwards
semantics wy that reverses a final state to an initial state. This semantics was
formally introduced in [17], and it is typically the same as the apply transition
but with exchanging the left and right hand side states of the transition.

Combining Forward and Backward Propagation 5

Backwards
(HkAGANBAC) . (He NH, ANC)
if there is an instance of a rule r in P with new local variables Z such that:
r@QH, \ H- < G| Band CT EV(C — 3zG)

The semantics works by undoing each step of the forward execution. However
without any external knowledge on how to proceed with the inverse tree, the
backwards semantics only shows that any original state can be uncovered. In
fact, inverse programs are normally non-confluent ones.

3 Combined CHR Programs

This work builds upon the K.U. Leuven system [9], which uses CHR with Prolog
as the host language. To introduce the two-way execution, the contribution of
the existing Leuven system is presented and source-to-source transformations
are given to augment additional machinery on-top of the existent CHR system.

3.1 General Formulation

The first part of this work is to define a transformation of a CHR program
for forward /backward execution. Programs are intended to be written once and
then executed in several ways; data supplied is considered as input or output de-
pending on the program direction used. Figure 1 represents the relation between
input and output and the expected transitions of the two-way program.

Forward

Input Output

Combined

CHR Program

Backward

Fig. 1. Transitions between input and output

The cardinality of the program that transforms the input to output, decides
on the properties of the two-way program required. If the relation is one-to-one,
then for every output there exists only one input and vice versa. This makes
the backward transition quite straight-forward, since for every output there is
only one possible input that caused it. These relations would require a direct for-
ward /backward execution mechanism. This is especially useful for bijective func-
tions such as loss-less compression/decompression and encryption/decryption.

6 Amira Zaki, Slim Abdennadher, and Thom Frithwirth

On the other hand, a list sorting program transforms several permutations
into the same sorted output. Hence the forward transition has a many-to-one
cardinality, and therefore its backward transition (shuffling a sorted list) is one-
to-many. Due to the committed-choice nature of CHR and the deterministic
implementation of the Leuven system, it would never reach all transition possi-
bilities. Thus, it requires using a source-to-source transformation [6] that fully
explores the search-space to reach all final states.

Therefore, for every transition direction two execution strategies are required;
a direct one-way execution and an exhaustive execution. Annotations are added
to the combined program, to decide on the chosen execution strategy. The an-
notation involves adding a kept head constraint to each program rule, where
its presence will denote the activation of this rule. The annotation will involve
four CHR constraints: fwd/0, fwd-ex/0, bck/0 and bck-ex/0. The following
subsections highlight the necessary changes that are needed to transform a CHR
program into a combined two-way one with control terms that steer the direction.
The summary of the transformations can be depicted in Figure 2.

Transformation Annotation

T

Exhaustive

Forward CHR
Program Combined
— CHR Program
fwd-ex @...

CHR Backward

Simple Inversion beck @. ..
Program CHR Program bck-ex @. ..

L fwd Q...

Exhaustive

Backward

CHR Program
-—__/

+ fwd

Fig. 2. Bidirectional CHR Transformations

3.2 Forward CHR

In order to change the program execution flow, source-to-source transforma-
tions are used to facilitate a straight-forward implementation on top of existing
CHR implementations whilst exploiting the optimizations of current CHR, com-
pilers [15]. The normal execution of a committed-choice CHR program can be
transformed into one featuring exhaustive completion to fully explore a goal’s
search space [6].

Combining Forward and Backward Propagation 7

Directly Forwards The CHR Leuven system follows a refined operational
semantics with additional fixed orders for explored goals and chosen program
rules. It applies the program rules on a goal, until a fixed point is reached. Thus
this provides the direct forwards execution of the combined program.

A constraint fwd/0 is introduced as a kept head constraint to every pro-
gram rule. Thus for every generalized CHR simpagation rule, a corresponding
annotated rule is added of the form shown below. For other rules, the missing
constraints are non-existent accordingly (i.e Hy or H,.).

fwd-simpagation @ fwd , H, \ H. < G | B

Example 1 Run-length Encoding The compression algorithm presented in the in-
troduction can be rewritten using forward annotation as shown below. For a string
‘aaaaabccc’, the program is forwardly run by: ‘fwd,compress([a,a,a,a,a,b,c,c,c])’
to yield the compressed form: ‘result([[a,5], [b,1],[c,3]1)°’.

start @ fwd \ compress(In) <=> comp(In,[],[]).

run-end @ fwd \ comp([H1,H2|T],Run,Acc) <=> H1\=H2 | Run2=[H1|Run],
pack(Run2,PackRun), append(Acc, [PackRun],Acc2), comp([H2|T], [],Acc2).

run-cont @ fwd \ comp([H1,H2|T],Run,Acc) <=> H1=H2
| Run2=[H1|Run],comp([H2|T],Run2,Acc).

last-char @ fwd \ comp([H],Run,Acc) <=> Run2=[H|Run], pack(Run2,PackRun),
append (Acc, [PackRun] ,Acc2), result(Acc2).

end @ fwd \ comp([],_,_) <=> result([]).

Exhaustive Forward For non-confluent programs, overlapping sets of rule
constraints and the order of constraints within rules and queries entail different
derivation paths to several possible outputs. The exhaustive transformation [6]
was proposed to allow full space exploration for any CHR, program to reach all
possible solutions to a query. It changes a CHR derivation into a search tree with
disjunctive branches to reach all leaves.

A depth/1 constraint is added to represent the current depth of the search
tree. The transformation annotates constraint occurrences within the rules with
two additional arguments; one to denote the occurrence number and the other to
represent the current depth within the search tree. Details of the transformation
for forward execution will not be revisited here due to space limitations, and
can be directly referred to in [6]. However it will be presented for backward
execution in the next section, since it is a modification of [6]. Thus for a forward
CHR program, the transformation is applied and the resulting CHR rules are
annotated with a fwd-ex/0 kept head constraint.

Example 2 Sets of Cards Given N cards, each represented with a card/1 constraint,
a simple program can be written to select three cards whose sum equals 12, to form a

set (set/3) using the predefined sumlist/2 list predicate.

select @ card(A), card(B), card(C) <=> sumlist([A,B,C],12) | set(A,B,C).

8 Amira Zaki, Slim Abdennadher, and Thom Frithwirth

Running the program with a query ‘card(1),card(2),card(3),card(4),card(5),
card(6) ,card(7),card(8),card(9),card(10)’, will result in: ‘card(10), card(8),
card(7) ,card(6) ,set(5,4,3),set(9,2,1)’. Due to the implementation of the CHR
compiler, only one result is reached. However there are multiple other sets that
can be assembled from those 10 cards. The forward program is transformed ac-
cording to the exhaustive transformation to produce the below program (where
card(X,_,_) is equivalent to card(X)):

src-mod @ fwd-ex \ depth(Z), card(A,1,Z), card(B,2,Z), card(C,3,Z)
<=> sumlist([A,B,C],12) | set(A,B,C).
assign @ fwd-ex, depth(Z) \ card(A)
<=> card(A,0,Z); card(A,1,Z); card(A,2,Z); card(A,3,Z).
rest @ fwd-ex, depth(Z) \ card(A,0,Z1) <=> Z1 < Z | card(A).
pruning @ fwd-ex \ end, card(A,_,_), card(B,_,_), card(C,_,_.)
<=> sumlist([A,B,C],12) | fail.

The exhaustive forward program can be run with the same query as before
but adding the appropriate fwd-ex trigger. The query’s execution gets trans-
formed into a derivation tree, producing all possible card set combinations.

3.3 Backward CHR

Directly Backwards The backwards semantics w, can be achieved through a
source-to-source transformation of the CHR program. The transformation idea
was introduced in [17] but will be formalized in this paper.

Definition 1. Backwards Transformation Every range restricted rule of the form
(r @ H, \ Hr & G | B) in program P (where B = By A\ B. representing the built-in
and CHR constraints respectively), an inverse rule in-r is added to the transformed
program P~Y of the form (where bek is an annotating trigger constraint):

in-r @ bek, Hy \ B. & By, G| Hr

Applying the backwards transformation on the cards example, would require
one backward rule as shown below:

bck-select @ bck \ set(A,B,C)<=>sumlist([A,B,C],12) |card(A),card(B),card(C).

Similarly, the previous run-length encoding program (Example 1) can be
transformed using the backwards transformation as follows:

bck-start @ bck \ comp(In,[],[]) <=> compress(In).
bck-run-end @ bck \ comp([H2|T], [],Acc2) <=>
Run2=[H1|Run], pack(Run2,PackRun), append(Acc, [PackRun],Acc2), H1\=H2
| comp([H1,H2|T],Run,Acc).
bck-run-cont @ bck \ comp([H2|T],Run2,Acc) <=> Run2=[H1|Run], H1=H2
| comp([H1,H2|T],Run,Acc).
bck-last-chr @ bck \ result(Acc2) <=>
Run2=[H|Run], pack(Run2,PackRun), append(Acc, [PackRun],Acc2)
| comp([H],Run,Acc).
bck-end @ bck \ result([]) <=> comp([],_,_.).

Decompression of the encoded message can be easily attained by a back-
wards transition from output to input. Thus a query ‘bck, result([[a,5],
[b,1],[c,3]])’ decompress the sub-lists to: ‘compress([a,a,a,a,a,b,c,c,c])’.

Combining Forward and Backward Propagation 9

Exhaustive Backward The completeness of the backwards transformation
relies on the high-level non-determinism of the w,, semantics. The completion
fails when implementing on top of current CHR systems. Thus for implemen-
tation, the backwards transformation is coupled with an exhaustive execution
transformation [6]. To illustrate why this is necessary consider the next sorting
example.

Example 3 (Ezchange sort) In CHR, constraints of the form n(Index,Value) can be
sorted by exchanging any pair of constraints with an incorrect order. This is possible
through a forward program consisting of a single simplification rule:

sort @ fwd \ n(I,V),n(J,W) <=> I>J,V<W | n(I,W),n(J,V).
Using the defined transformation, the program becomes:
in-sort @ bck \ n(I,W),n(J,V) <=> I>J,V<W | n(I,V),n(J,W).

The two-way program sorts a query ‘fwd,n(0,9),n(1,1), n(2,5)’ to ordered
numbers represented as ‘n(0,1),n(1,5), n(2,9)". On the other hand, a query
‘bck,n(0,1),n(1,5),n(2,6) uncovers the permutation ‘fwd,n(0,9) ,n(1,4),n(2,1)".
This is a correct input, but not necessarily the exact one used in the forward
run. The reason is that sorting is a many-to-one function, where permutations
of unsorted lists derive the same sorted list. The inverse of sorting problem is a
shuffle operation which generates all possible permutations of the ordered list.
This cannot be achieved here as the backwards transition generates only one
permutation.

The transformation required to generate exhaustive backward program rules
is shown next. All the generated rules are annotated with a bck-ex constraint
to distinguish them within the two-way program. All unannotated inverse rules
(in-r @ Hy \ B. & By, G| H,) in program P! are transformed as described
by the upcoming Definition 2.

Definition 2. Exhaustive Backwards Transformation A transformed inverse ex-
haustive program P~T is defined for a program P by the three following steps (adapted
from [6] but with no pruning of intermediate states).

1. Each constraint ¢(X1, ..., X») in a forward program’s B. constraints is changed to
(X1, ..., Xn,y, Z), such that constraint occurrences within the program (where m
is the total number of occurrences) are annotated with an argument y and depth
Z. y represents the yth occurrence of the constraint c, i.e. y € [1,m]. Thus, for
every constraint ¢(X1, ..., Xn) that appears in the forward program’s rule body, an
assignment rule is added to the transformed program, defined as follows:
assign, @ bek-ez, depth(Z) \ ¢(X1,..., Xn)

& Xy X0, 0,2) V.V (X oy Xy, Z)

2. For every rule (H, < G | By, B.) in a forward program, with Be = c1(X11, ...,
Xing), - a(Xi, ...,Xlnl), a modified source rule is added to the transformed pro-
gram, as follows:
in-ry @ bek-ex \ depth(Z),ci' (X1, ., Xing, U1, Z), -

Clt(Xll, ey in“yl, Z) < By,G | Hy, d@pth(Z + 1)

10 Amira Zaki, Slim Abdennadher, and Thom Frithwirth

3. An additional Tule is needed to reset unmatched constraints if a newly state in the
tree is derived. Hence, for every constraint ¢(X1, ..., X») that appears in Be, a reset
rule is added to the transformed program:
reset. @ beck-ex, depth(Z) \ ' (X1,...Xn,0,2)V & Z' < Z | c(X1,..., Xn)

Example 4 (Ezchange sort - Revisited) Applying the newly defined transformation on
the exchange sort of Example 3, will generate the following rules:

assign-a @ bck-ex, depth(Z) \ n(X,Y)
<=>n_t(X,Y,0,2); n_t(X,Y,1,Z); n_t(X,Y,2,2).
in-sort-t @ bck-ex \ depth(Z),n_t(I,W,1,Z),n_t(J,V,2,Z)
<=> I>J, VW | n(I,V), n(J,W), depth(Z+1).
reset-a @ bck-ex, depth(Z) \ n_t(X,Y,0,Z1) <=> Z1 < Z | n(X,Y).

The transformed rules can be run with the sorted input: bck-ex, depth(0),
n(0,1), n(1,5),n(2,9). It generates several results, which form the complete
set of all permutations of those three numbers. However there exists several
redundancies; the intensive use of disjunction produces several duplicate states
which are revisited multiple times. The backward run is terminating, and the
use of a breadth-first strategy covers the entire search space. The reason for this
is that the number of permutations of a list is finite.

4 Interleaved Forward/Backward Propagation

The combined two-way program enables either a strictly forward or strictly back-
ward execution depending on the used trigger. However, we further propose an
additional transformation towards a combined interleaved execution, which is
inspired from bidirectional search. Bidirectional search tries to find the shortest
path to a node/element by running two simultaneous searches. It involves one
forward search from the initial state, and one backward search from the goal
state. The search stops when the two searches reach the same state, somewhere
in the middle. In many problems, bidirectional search can dramatically reduce
the amount of required exploration [14]. The two-way CHR programs can be
modified to implement a bidirectional search for a goal. Instead of running a
transition in a strictly forward or strictly backward manner, we introduce a
technique to have an interleaved forward and backward manner to achieve a
combined quasi-simultaneous two-way execution.

For clarity, bidirectional search is exemplified with direct forwards and back-
wards transitions. The technique can also be applied to the exhaustive variants,
but it makes the presentation too long for the scope of this paper.

Example 5 List Searching Determining whether an element is found within o list
can be performed in CHR as shown below. A constraint £ind/2 is used to search in the
first argument (a list) for the second argument and a constraint found/1 denotes that
it has been found. A query fud, f£ind([0,1,2,3,4],3) would reach the goal found(3).

end @ fwd \ find([X],Y) <=> X=Y, found(Y).
middle @ fwd \ find([X|_],Y) <=> X=Y | found(Y).
search @ fwd \ find([X[|Xs],Y) <=> X\==Y | find(Xs,Y).

Combining Forward and Backward Propagation 11

The backward search from a found element, constructs arbitrary lists con-
taining this element. The direct backward rules are given as:

in-end @ bck \ found(Y) <=> X=Y | find([X]1,Y).
in-middle @ bck \ found(Y) <=> X=Y | find([X|_],Y).
in-search @ bck \ find(Xs,Y) <=> X\==Y | find([X|Xs],Y).

Due to the chosen direct (non-exhaustive) execution, the second rule (in-middle)
becomes unreachable in this context and these rules form a non-confluent pro-
gram; the first two rules have the exact same rule heads and guards. One way
to resolve this problem is to use the previously introduced exhaustive execution.
Alternatively, since these rules are single-headed with the same guards, then it is
sufficient to use Clark’s completion and merge the two rules into one. For clarity
and to save writing space, the second representation is preferred here over the
exhaustive execution. Thus the rules in-end and in-middle are equivalent to:

in-end-middle @ bck \ found(Y) <=> X=Y | find([X1,Y) ; find([XI_1,Y).

Due to the lossy nature of the program the other un-found values are lost. Thus
a query bck, found (3) would reach several lists with unknown filler values. Some
of the backward goals reached are: £ind([3]1,3), find([3,.1,3), find([_,3,.]1,3),
etc.

For the automatic implementation of a bidirectional search, the idea is to
change the execution of these rules such that it follows alternating forward and
backward transitions.

Definition 3. Bidirectional Transform A combined two-way program P~ can be
transformed to enable quasi-simultaneous bidirectional search by the following steps:

1. Trigger constraints bck and fwd should not be kept head constraints. They must

be consumed by the rules, and on rule application, the opposite direction trigger is
added. Thus forward rules (fud , H, \ H, < G | B) should be changed into:

Hi \ fwd, H, < G | B, bck
Similarly, backward rules (bek, Hy \ B. < By, G | Hy) become:
Hi \ bek, B. & By, G| Hy, fud

2. Constraints of the backward rules must be differentiated from the forward rules,
such that each search direction operates on different goals until they meet. Thus
every constraint ¢(X1, ..., Xp) in the backward rules is changed to c®(X1, ..., Xn).

3. A unification rule must be added to halt the execution once both search goals can be
unified with one another. Thus given a forward goal ¢(X1, ..., X»n) and a backward
goal ¢ (Ya, ..., Yy), a possible unifying rule would be of the form:

unify @ c(Xi,...,Xn), *(Y1,...,Ys) < unifiable(c(X1,..., Xn), (Y1, ..., Yn),)
| write(‘Bidirectionally found!’).

Therefore the interleaved quasi-simultaneous bidirectional list search pro-
gram becomes as shown below; all constraints of backward rules are distinguished
with (_b).

12 Amira Zaki, Slim Abdennadher, and Thom Frithwirth

end @ fwd, find([X],Y) <=> X=Y, found(Y), bck.
middle @ fwd, find([X|_],Y) <=> X=Y | found(Y), bck.
search @ fwd, find([X|Xs],Y) <=> X\==Y | find(Xs,Y), bck.
unify @ find(X,Y), find_b(Z,Y) <=> unifiable(Z,X,_)

| write(’Bidirectionally found!’).
in-end-middle @ bck, found_b(Y) <=> X=Y

| (find_b([X1,Y); find_b([X|_1,Y)), fwd.
in-search @ bck, find_b(Xs,Y) <=> X\==

| find_b([XIXs],Y), fwd.

Searching for an element 3 in a list [0, 1,2, 3,4] can be performed by the bidi-
rectional search program, with a query find([0,1,2,3,4],3), found b(3), fwd.
The derivation for this query would be as shown below, while underlining the
matched constraints (a trace is also shown in Figure 3): fud, find([0,1,2,3,41,3),
found_b(3)

Fsearcn £ind([1,2,3,41,3), bck, found b(3)
>in-middale find([1,2,3,4]1,3), fwd, find b([3,_]1,3)
searcn £ind([2,3,4],3), bck, find b([3,.],3)
—in-search £ind([2,3,4],3), fwd, find b([_,3,.1,3)
—unisy write(’Bidirectionally found!’).

Step

find([0,1,2,3,4], 3) |®

FWD find([1,2,3,4]1, 3) |®
| find ([2,3,41, 23) |®

BCKC find b([3, 1, 3) ®
——

Fig. 3. Bidirectional search trace: ‘fwd, find([0,1,2,3,4]1,3), found b(3)’

UNIFY @

®

5 Application for Combined Programs

Another application of the proposed work is for reasoning. Reasoning is the
process of using existing knowledge to infer conclusions, speculate predictions,
and create explanations. The philosopher C. S. Pierce distinguished between
three kinds of reasoning; deduction, induction and abduction [13]. Deduction
involves applying rules to specific cases to deduce a certain result, while induction
is reasoning which infers a rule from a case and result. Abduction is a kind of
backward reasoning which infers a case from the rule and result.

Combining Forward and Backward Propagation 13

The relation between abduction and reverse deduction has been studied in
several works to highlight the difference between them [12]. However, it has also
been argued that abduction is a form of reversed deduction and that there is a
duality in the explanation of abduction and deduction [3].

The combined two-way programs capture the duality relation between de-
duction and abduction, and produce a powerful reasoning program. The rea-
soner exploits existent knowledge to infer conclusions and speculate predictions
for observed phenomena. Logic theories that describe the real world are mod-
eled in CHR. Then the exhaustive forward transformation facilitates exhaustive
exploration of a query’s search space and thus enables deductive reasoning. Fur-
thermore, an exhaustive backward execution of the modeled CHR programs
empowers abductive reasoning.

It is not the first time that CHR has been used for abductive reasoning. In [1],
logic programs containing Horn clauses are expressed in CHR, while differenti-
ating between intensional predicates and extensional ones to perform abductive
reasoning. However in this work, all logic clauses including non-Horn ones can
be modeled in CHR. Moreover the framework empowers both abductive and
deductive reasoning. This is not possible with [1] since the used representation
relied heavily on the underlying meaning of abduction and manually gathered
similar rule bodies as disjunctive rule bodies.

5.1 Modeling

In order to use the annotated transformations for two-way reasoning, the model-
ing of logic theories in CHR must first be formalized. A logic theory T is a set of
well-formed formulae, where each formula is an implication of the form A — B,
and A and B are conjunctions of one or more literals. Logic implications are
mapped in a one-to-one manner to CHR simplification rules. The mapping is
quite similar to [1], nonetheless in our model both A and B can be conjunctions.

The model is defined by representing literals with CHR constraints and built-
ins. Due to the syntax of CHR, two filtering functions are also defined: a chr/1
function that extracts the predicates/constraints from a set of literals and a
built/1 function that extracts the built-in expressions from a set of literals.

Thus, every implication of the form A — B is modeled as a forward CHR
simplification rule of the form:

fwd \ chr(A) & built(A) | B
Given the following logic theory which defines some family relations [1]:

Example 6 father(F,C) — parent(F,C), mother(M,C) — parent(M,C),
parent(P,C1), parent(P,C2),C1 # C2 — sibling(C1,C2)

It is transformed into the following annotated forward CHR rules:

fwd \ father(F,C) <=> parent(F,C).
fwd \ mother(M,C) <=> parent(M,C).
fwd \ parent(P,C1), parent(P,C2) <=> C1\=C2 | sibling(C1,C2).

14 Amira Zaki, Slim Abdennadher, and Thom Frithwirth

Integrity constraints can be added to the modeled program to provide se-
mantic optimization to the reasoner. Since these rules ensure the integrity, they
are not involved in any of the transformations and thus should not be annotated
with any trigger constraints. For Example 6, the following integrity constraints
can be added:

father(F1,X) \ father(F2,X) <=> F1=F2.

mother (M1,X) \ mother(M2,X) <=> Mi=M2.
person(P,G1)\ person(P,G2) <=> G1=G2.

father (F,X) ==> person(F,male), person(X,_).
mother (M,X) ==> person(M,female), person(X,_).

An extensional (trigger-less) introduction rule is required to add all the facts
into the constraint store, to be introduced with a start constraint in any query:

start ==> parent(john,mary), father(john,peter), mother(jane,mary),
person(john,male), person(mary,female), person(paul,male),
person(peter,male), person(jane,female).

To ensure a closed world, the set of hypothesis facts for a given predicate
need to be pruned. Closing rules (also without trigger constraints) are added for
these predicates [1]. For a predicate p/n defined by p(t1,...,t1), ... p(th, ... tk),
a closing rule is required as a propagation rule shown below:

p(xl,...,:ﬁn):>(x1zt%,/\,...,/\:cnzti) \/---\/(Jc1ztlf,/\,...,/\xn:tﬁ)

To restrict the person/2 predicate of Example 6, a closing rule would be added
as shown below:

person(X,Y) ==> (X=john, Y=male);(X=peter, Y=male); (X=paul, Y=male);
(X=jane, Y=female);(X=mary, Y=female).

5.2 Strictly Forward

Due to the modeling of non-Horn clauses, the normal execution of CHR would
not yield deductive reasoning. However, transforming the program to an ex-
haustive variant would ensure the completeness of the search-space. Using the
transformation, it is possible to start from an initial query and deduce all possible
derivations to goals.

Thus for deductive reasoning, only rules representing the main transformed
implications (i.e. those annotated with fwd) are transformed into rules featur-
ing exhaustive execution using the exhaustive transformation. These other rules
maintain certain properties for the modeling, hence they need not be trans-
formed.

The three implication rules of the family example can be modeled into CHR
and then transformed into their exhaustive executing variant with the constraint
trigger fwd-ex. Using the initial knowledge that John is the father of Peter and
Mary and that Jane is the mother of Mary, one can deduce that Mary and Peter
are siblings and that Paul, Jane, Peter, Mary and John are all persons. This
deduction can be reached using a query ‘fwd-ex, start, father(john,peter),
father (john,mary), mother(jane,mary),depth(0)’, to produce the final state:

Combining Forward and Backward Propagation 15

sibling(mary,peter), person(paul,male), person(jane,female),
person(peter,male), person(mary,female), person(john,male).

5.3 Strictly Backward

For abductive reasoning, the exhaustive backwards transformation is performed
for, again, only the main annotated CHR rules representing transformed impli-
cations from the logic theory.

Abductive reasoning involves deriving hypotheses about certain predicates
that are incompletely defined; these are known as abducible predicates. Thus to
include the notion of abducibles in the proposed model, only the closing rules
of non-abducible predicates are retained (as forward and untransformed rules);
other closing rules are completely removed from the program. All other integrity
constraint rules and extensional introduction rules are also kept unchanged in
the abductive program.

In the family example, predicates father and mother are abducible but
not person. Thus the abductive program should contain only one closing rule
for person. Executing the query ‘sibling(paul,mary),bck-ex’ with the abduc-
tive program, arrived to the following two possibilities: father (john,paul), or
mother (jane,paul).

The goals present two different abductive explanations as to how Paul and
Mary are siblings, i.e. either John is the father of Paul or that Jane is the mother
of Paul. Furthermore, the abductive query ‘sibling(goofy,mary)’ fails because
person is not abducible. These results match those reached by the abductive
CHR modeling of [1].

6 Conclusion

The paper presents a combined perspective for Constraint Handling Rules based
on a source-to-source transformation. It involves transforming CHR programs
into ones capable of both forward and backward propagation, either in a direct
committed-choice manner or in an exhaustive full-space explorative manner. The
combination is especially useful for implementing high-level bijective functions,
such as encryption/decryption and compression/decompression algorithms, for
implementing quasi-simultaneous bidirectional search algorithms and for exploit-
ing dual definitions of reasoning, such as for deduction and abduction.

For future work, an evaluation of the bidirectional search is needed to de-
termine how bidirectionality reduces the amount of required exploration. The
search implementations can also be extended to experimenting with different
search directions, such as the breadth-first traversal of CHR [4]. Moreover, the
proposed reasoning framework is to be compared with other abductive and de-
ductive systems and to evaluate the attained results. Moreover, it could be possi-
ble to include the notion of probabilistic abduction by encoding the probabilities
in the search tree generated by the exhaustive transformation. Then once the
transformation is defined, it would be compared with other implementations of
probabilistic abductive logic programs.

16

Amira Zaki, Slim Abdennadher, and Thom Frithwirth

References

10.

11.

12.

13.

14.

15.

16.

17.

Slim Abdennadher and Henning Christiansen. An experimental CLP platform for
integrity constraints and abduction. In FQAS ’00: Proc. 4th Intl. Conf. Flexible
Query Answering Systems, pages 141-152, 2000.

. Slim Abdennadher and Heribert Schiitz. CHR": A flexible query language. In

Flexible Query Answering Systems, volume 1495 of Lecture Notes in Computer
Science, pages 1-14. Springer-Verlag, 1998.

Luca Console, Daniele Theseider Dupr, and Pietro Torasso. On the relationship
between abduction and deduction. J. Log. Comput., 1(5):661-690, 1991.

Leslie De Koninck, Tom Schrijvers, and Bart Demoen. Search strategies in
CHR(Prolog). In T. Schrijvers and Th. Frithwirth, editors, Proceedings of the 3rd
Workshop on Constraint Handling Rule, pages 109-124. K.U.Leuven, Department
of Computer Science, Technical report CW 452, 2006.

Gregory J. Duck, Peter J. Stuckey, Maria Garcia de la Banda, and Christian
Holzbaur. The refined operational semantics of Constraint Handling Rules. In
B. Demoen and V. Lifschitz, editors, Proceedings of the 20th International Confer-
ence on Logic Programming, pages 90-104, 2004.

Ahmed Elsawy, Amira Zaki, and Slim Abdennadher. Exhaustive execution of
chr through source-to-source transformation. In Maurizio Proietti and Hirohisa
Seki, editors, Logic-Based Program Synthesis and Transformation, volume 8981 of
LNCS, pages 59-73. 2015.

Thom Frithwirth. Constraint Handling Rules. Cambridge University Press, 2009.
Thom Frithwirth and Christian Holzbaur. Source-to-source transformation for a
class of expressive rules. In F. Buccafurri, editor, Joint Conference on Declarative
Programming APPIA-GULP-PRODE 2003 (AGP 2003), pages 386-397, 2003.
Thom Frithwirth and Frank Raiser, editors. Constraint Handling Rules: Compila-
tion, Ezecution, and Analysis. Books on Demand, March 2011.

Rémy Haemmerlé. On combining backward and forward chaining in constraint
logic programming. In Proceedings of 16th International Symposium on Principles
and Practice of Declarative Programming (PPDP 2014), 2014.

Cong Hou, George Vulov, Daniel Quinlan, David Jefferson, Richard Fujimoto, and
Richard Vuduc. A new method for program inversion. In Proceedings of the 21st
International Conference on Compiler Construction, volume 7210 of C'C’12, pages
81-100. Springer-Verlag, 2012.

Marta Cialdea Mayer and Fiora Pirri. Abduction is not deduction-in-reverse. Logic
Journal of the IGPL, 4(1):95-108, 1996.

C. S. Peirce. Collected Papers of Charles Sanders Peirce, volume 2. Harvard
University Press, 1931-1958.

Ira S. Pohl. Bi-directional search. Machine Intelligence, 6:127-140, 1971.

Jon Sneyers, Peter Van Weert, Tom Schrijvers, and Leslie De Koninck. As time
goes by: Constraint Handling Rules — A survey of CHR research between 1998 and
2007. Theory and Practice of Logic Programming, pages 1-47, 2010.

Tetsuo Yokoyama. Reversible computation and reversible programming languages.
Electronic Notes in Theoretical Computer Science, 253(6):71 — 81, 2010. Proceed-
ings of the Workshop on Reversible Computation (RC 2009).

Amira Zaki, Thom W. Frithwirth, and Slim Abdennadher. Towards inverse exe-
cution of constraint handling rules. Theory and Practice of Logic Programming,
13(4-5-Online-Supplement), 2013.

	Combining Forward and Backward Propagation

