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Abs t rac t .  Constraint Logic Programming (CLP) is a new class of program- 
ming languages combining the declarativity of logic programming with the 
efficiency of constraint solving. New application areas, amongst them many 
different classes of combinatorial search problems such as scheduhng, plan- 
ning or resource allocation can now be solved, which were intractable for logic 
programming so far. The most important advantage that these languages of- 
fer is the short development time while exhibiting an efficiency comparable 
to imperative languages. This tutorial aims at presenting the principles and 
concepts underlying these languages and explaining them by examples. The 
objective of this paper is not to give a technical survey of the current state 
of art in research on CLP, but rather to give a tutorial introduction and 
to convey the basic philosophy that is behind the different ideas in CLP. 
It will discuss the currently most successful computation domains and pro- 
vide an overview on the different consistency techniques used in CLP and its 
implementations. 

1 I n t r o d u c t i o n  

During the last decade a new programming paradigm called "logic programming" 
has emerged. The best known representative of this new class of programming lan- 
guages is Prolog, originated from ideas of Colmerauer in Marseille and Kowalski 
in Edinburgh. Programming in Prolog differs from conventional programming both  
stylistically and computationally, as it uses logic to declaratively state problems and 
deduction to solve them. 

It has been argued in the literature [Kow79, Ste80] that  a program is best divided 
into two components called competence and performance or logic and control. The 
competence component describes factual informat ion-  s ta tements  of relationships - 
which must  be manipulated and combined to compute the desired result. The  per- 
formance component deals with the strategy and control of the manipulations and 
combinations. The competence part  is responsible for the correctness of the pro- 
gram; the performance part  is responsible for the efficiency. An ideal programming 
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methodology would first be concerned with the competence ("what"), and only then, 
if at all, worry about the performance ("how"). Logic programming provides a means 
for separation of these concerns. It is based on first order predicate logic, and the 
performance component is mostly automatic by relying on a built-in computation 
mechanism called SLD-resolution. 

In this way, logic programming has the unique property that its semantics, oper- 
ational and declarative, are both simple and elegant and coincide in a natural way. 
These semantics, however, have their limitations. Firstly the objects manipulated by 
a logic program are uninterpreted structures - the set of all possible terms that can 
be formed from the functions and constants in a given program. Equality only holds 
between those objects which are syntactically identical. Every semantic object has 
to be explicitly coded into a term; this enforces reasoning at a primitive level. Con- 
straints on the other hand are used to implicitly describe the relationship between 
such semantic objects. These objects are often ranging over such rich computation 
domains, as integers, rationals or reals. 

The second problem related to logic programming stems from its uniform but 
simple computation rule, a depth-first search procedure, resulting in a generate and 
test procedure with its well-known performance problems for large search applica- 
tions. Constraint manipulation and propagation have been studied in the Artificial 
Intelligence community in the late 1970s and early 1980s [Mon74, Ste80, Mac86] to 
make search procedures more intelligent. Techniques like local value propagation, 
data driven computation, forward checking (to prune the search space) and look 
ahead have been developed for solving constraints. These techniques can be sum- 
marised under the heading "Consistency Techniques". 

Constraint Logic Programming (CLP) is an attempt to overcome the difficulties 
of logic programming by enhancing a Prolog-like language with constraint solving 
mechanisms. Curiously both of these limitations of logic programming can be lifted 
using "constraints". However, each limitation is treated by a quite different notion 
of constraint. CLP has hence two complementary lines of descent. 

Firstly it descended from work that aimed at introducing richer data structures 
to a logic programming system thus allowing semantic objects, e.g. arithmetic ex- 
pressions, directly to be expressed and manipulated. The core idea here is to replace 
the computational heart of a logic programming system, unification, by constraint 
handling in a constraint domain. This scheme, called CLP(X), has been laid out in 
the seminal paper of Jaffar & Lassez [JL87]. X has been instantiated with several so 
called computation domains, e.g. reals in CLP(7~), rationals in CLP(Q), and integers 
in CLP(Z). 

Secondly CLP has been strongly influenced by the work on consistency tech- 
niques. With the objective of improving the search behaviour of a logic programming 
system Gallaire [Gal85] advocated the use of these techniques in logic programming. 
He proposed the active use of constraints, pruning the search tree in an a priori 
way rather than using constraints as passive tests leading to a "generate and test" 
or "standard backtracking" behaviour. Subsequently the different inference mecha- 
nisms underlying the finite domain part of the CLP system CHIP [DVS+88] were 
developed. The key aspect is the tight integration between a deterministic process, 
constraint evaluation, and a nondeterministic process, search. It is this active view 
of constraints which is exploited in CHIP to overcome the well-known performance 



problems of "generate and test". This new paradigm exhibits a data-driven compu- 
tation and can be characterised as "constrain and generate". 

Constraint solving has been used in many different application areas such as en- 
gineering, planning or graphics. Problems like scheduling, allocation, layout, fault 
diagnosis and hardware design are typical examples of constrained search prob- 
lems. The most common approach for solving constrained search problems consists 
in writing a specialised program in a procedural language. This approach requires 
substantial effort for program development, and the resulting programs are hard 
to maintain, modify and extend. With CLP systems a large number of constrained 
search problems have been solved, some of them were previously solved with con- 
ventional languages. CLP languages dramatically reduce the development time while 
achieving a similar efficiency. The resulting programs are shorter and more declara- 
tive and hence easier to maintain, modify or extend. The wealth of applications shows 
the flexibility of CLP to adapt to different problem areas. Many Operations Research 
problems have been solved with the CLP system CIIIP [DVS+88, Van88, DSV90]. 
Another very promising application domain is circuit design [Sim92, FSTW91]. Ex- 
tensive work has also been devoted to financial applications [Ber89, LMY87]. More 
recently applications in user interfaces [HttLM91] and in databases [KKR90] have 
been studied. As the subsequent tutorial in this summer school focusses on industrial 
applications of CLP, we will not further discuss them in this article. 

The aim of this informal tutorial is to present the most prominent ideas and con- 
cepts underlying CLP languages. It is not intended to present the underlying theory 
of this new class of programming languages or to give an overview on the current 
state of art in CLP research. There are already technical surveys in the literature, 
giving more details on those aspects. In particular the article of IVan91] is worth 
reading. A restricted view is presented in [Coh90, Frii90] discussing work around the 
CLP scheme. For the usage of "consistency techniques" in CLP, IVan89] is a valu- 
able source going from theory to application with a large number of programming 
example. 

This tutorial is organised as follows: In the next section we will introduce the CLP 
scheme and review the most important computation domains that have been devel- 
oped so far, linear and non-linear arithmetic and boolean constraints. Then we will 
introduce the concept of finite domains, consistency techniques and their extension 
to arbitrary domains. Next we will explore ways of extending and tuning constraint 
systems. Then the work on search and optimisation in CLP will be presented. Finally 
current CLP implementations will be reviewed, amongst them the most well-known 
systems: CHIP [DVS+88], CLP(7~) [JMSY90] and Prolog III [Col90]. 

2 T h e  C L P  S c h e m e  

In this section we will introduce in an informal way the basics of the Constraint Logic 
Programming Scheme (called CLP(X)), as developed by Jaffar and Lassez [JL87]. 
The key aspect in the CLP scheme is to provide the user with more expressiveness 
and flexibility concerning the primitive objects the language can manipulate. Clearly 
the user wants to design his application using concepts that are as close as possible 
to his domain of discourse, e.g. he wants to use sets, boolean expressions, integers, 



rationals or reals, instead of coding everything as uninterpreted structures, i.e. fi- 
nite trees, as is advocated in logic programming. Associated with each computation 
domain are the usual algebraic operations, including set intersection, conjunction of 
boolean expressions or multiplication of arithmetic expressions. These computation 
domains also have certain relations defined on them, such as set equality, equality be- 
tween boolean expressions or equality, disequality and inequality between arithmetic 
expressions. 

The constraint logic programming scheme admits computation directly over these 
domains. Special function and predicate symbols are introduced into logic program- 
ming, whose interpretation in the domain of computation is fixed. The relations 
over the domain of discourse are termed "constraints". Formulae involving the spe- 
cial function and predicate symbols are called "constraint formulae". Informally the 
word "constraint" is used also for constraint formulae. 

When constraints are introduced into logic programming, a mechanism to solve 
them must also be introduced. In traditional logic programming the only constraint 
is equality between terms, and the unification algorithm is used to solve such con- 
straints. There are two aspects related to unification. Firstly it tells us if the equation 
t l  " -  t2  has a solution. Secondly in case there exists a solution, it gives us a most 
general solution, which is logically equivalent to the original equation. The impor- 
tant aspect of unification is the first one deciding whether- a constraint (or a set of 
constraints) has a solution or not. In other computation domains, where such a most 
general solution may not exist, the system can continue manipulating the original 
set of constraints. Therefore in order to accommodate constraints in logic program- 
ming the unification algorithm needs to be replaced by a decision procedure telling 
us whether a constraint or a set of constraints is satisfiable. In the following we will 
call such a decision procedure a constraint solver. 

One reason for the success of CLP in recent applications has been the choice 
of constraint systems integrated into the different implementations. The selection 
of new constraint domains needs to satisfy both technical and practical criteria 
[DVS+88, JL87, SA89]. Most important are 

- the expressive power of the computation domain, 

- the existence of a complete and efficient constraint solver, 

- its relevance in applications. 

The constraint solver is complete if it is able to decide the satisfiability o f  any 
set of constraints of the computation domain. To achieve efficiency the constraint 
solver needs to be incremental, i.e. when adding a new constraint C to an already 
solved set of constraints S, the constraint solver should not start solving the new set 
S U {C} from scratch. 

In the following we will illustrate the operational behaviour of a CLP(X) system 
and the two most successful constraint domains, arithmetic and Boolean constraints. 
A description of other~interesting domains may be found in section 6 where specific 
constraint languagesare described. 



2.1 The  A r i t h m e t i c  D o m a i n  

Linear  Cons t r a in t s  Providing arithmetic was one of the motivations behind the 
research in combining logic programming with constraints. Although Prolog has 
built-in facilities for evaluating arithmetic expressions the behaviour is not what one 
would ideally expect. Prolog cannot handle equations like X - 3 = Y + 5. In Prolog the 
term X - 3 is not equM to the term Y + 5 as Prolog knows only about uninterpreted 
structures. The programmer needs to resort to the built-in arithmetic. And here the 
problems are the same as in any other programming language. Indeed the program- 
mer needs to know which of the variables will be instantiated first and then he can 
use assignment ( is)  to instantiate the other. CLP(n)  [:IL87] was the first constraint 
programming language to introduce arithmetic constraints. There is a caveat. The 
decision procedure is only complete for linear arithmetic constraints. Nonlinear con- 
straints are suspended until they become linear. Linear constraint handling turned 
out to be sufficient in many applications such as simulation of circuits and devices, 
decision-support systems and geometrical problems. 

Linear arithmetic expressions are terms composed from numbers, variables and 
the usual arithmetic operators: negation ( - ) ,  addition (+), subtraction ( - ) ,  multipli- 
cation (.) and division (/). For the condition of linearity to be satisfied it is required 
that in a multiplication at most one of the components is a variable and that in a 
division the denominator is a number. An arithmetic constraint is an expression of 
the form tl R t2 where R is one of the following predicates {>, >_, =, <, <, 5}. 

There are several decision procedures for deciding a system of linear arithmetic 
constraints. Usually a combination of Gaussian elimination and a modified Simplez  

algorithm is employed. The Simplex algorithm is required as soon as inequality 
constraints need to be solved. The Simplex algorithm is used because it has quite a 
good behaviour on average, it is well-understood, and it can be made incremental. 

We now present the execution mechanism for CLP languages informally through 
a small example. Consider the following problem from [Col90]. 

Given the definition of a meal as consisting o] an appetiser, a main meal and a 
dessert and a database o] ]oods and their calorific values we wish to construct 

light meals i.e. meals whose sum of calorific values does not exceed 10. 

A CLP program (in an arithmetic domain) for solving this problem is given below. 

lightmeal(A,M,D) :- 

I > O, J > O, K > O, 

I + J + K <= iO, 

appetiser(A,I), 

main(M,3), 

dessert(D,K). 

main(M, I) :- 

meat (M, I). 

main(M, I) :- 

fish(M,I). 



appetiser(radishes,l). 
appetiser(pasta,6). 

meat(beef,S). 

meat(pork,7). 

f i s h ( s o l e , 2 ) .  
f i s h ( t u n a , 4 ) .  

dessert(fruit,2). 
dessert(icecream,6). 

A CLP program is syntactically a collection of clauses which are either rules or 
facts. Rules are as in Prolog, with the addition that  they may contain constraints 
in their premises. Rules describe the conclusions that  can be reached given certain 
premises. For our example we read "The meal consisting of foods A, H and D is a 
light meal if A is an appetiser (with a positive calorific value I), M is a main meal 
(with positive calorific value J), D is a dessert (with positive calorific value K) and 
I + J + K is less than or equal to 10". The premise of a rule is a conjunction of 
constraints, e.g. I + J + K <= 10 and atoms e.g. a p p e t i s e r ( A , I ) .  Facts express 
known relationships. In our case, the calorific value of beef (which is a meat) is 5. 

We shall describe the intermediate results of an execution of a CLP program as 
computation states. A computation state consists of two components, a constraint 
store and the remaining goals. We shall separate the constraint store from the re- 
maining goals by the symbol o. The constraint store consists of the set constraints 
collected during the computation so far. CLP programs are executed by reducing 
the goals in the computation state using the facts and rules. In each intermedi- 
ate computation state the constraint store must be consistent. Consider the general 
query ?- l i g h t m e a l ( A  ,M ,D) asking for all light meal plans. This corresponds to 
the initial computation state 

o lightmeal(A, M, D). 

For our first reduction step we first have to choose an atomic goal to reduce. There 
is only one possibility i.e. l i g h t m e a l ( A ,  M, D). Next we need to choose an ap- 
plicable rule. Again there is only one possibility i.e. the rule with the consequent 
l i g h t m e a l ( A ,  M, D). The next step is to form equations between variables in the 
consequent of the rule and the selected atom. The constraint store of  the new com- 
putation state consists of the current constraint store, this equation set and the 
set of constraints in the premise of the rule. The atom set of the new computation 
state is the current atom set where the selected goal is replaced by the atoms of the 
premise of the rule (as in the case of Prolog). Thus our first reduction step produces 
the following computation state: 

I + J + K <--I0, I > O, J > O, K > 0 o 

appetiser(A,I), main(M, J), dessert(D,K) .2 

2 In the examples trivial equations axe omitted 



A CLP system searches for all solution by systematical ly t rying all possible rules 
(and facts) for the reduction of all the a toms in the a tom set. Therefore any one 
possible al ternative is in fact a sequence of reduction steps called a derivation. A 
derivation terminates  when there are no more a toms  to be reduced and  the final 
constraint  store is consistent.  For the first example a successful derivation is the 
following: 

A=radishes, I=l, I+J+K <= I0, I>0, J>O, K>O 

o main(N, J), dessert(D, K) 

A=radishes, I=l, M=MI, J=II, I+J+K <= I0, I>0, J>O,K>O 
o meat(Ml, II), dessert(D, K) 

A=radishes, I=l, M=beef, J=5, Ml=beef, II=5, I+5+K <= 10, I>0, 5>0, K>O 
o dessert(D, K) 

A=radishes, I=I, M=beef, J=5, Ml=beef, II=5, D=fruit, K=2, 1+5+2 <= I0, 
1>0, 5>0, 2>0 o. 

Note tha t  the answer to this query is given by the constraint  store. A simplified 
answer in te rms of the input variables is A=radishes,  M=beef, D--fruit .  

I f  the constraint  store becomes inconsistent, the derivation fails. An example  of  
a failed derivation is now presented. We begin with the same initial computa t ion  
s tate  as above but  make some different choices in the rules and facts to apply. 

A=pasta, I=6, 6+J+K <= 10, 6>0, J>0, K>0 
o main(M,J),  dessert(D,K) 

A=pasta, I=6, M=M1, J=I1, 6+J+K <= 10, 6>0, J>0, K>0 
r meat(Ml, I1) ,  dessert(D,K) 

g=pasta ,  I=6, M=beef, J=5, Ml=beef, I1=5, 6+5+K <= 10, 5>0, 6>0, K>0 
o dessert(D,K) ( incons is tency)  

I f  the last computa t ion  s tate  for this derivation is examined it can be seen tha t  the 
constraint  store containing 6+S+g <= 10 and K > 0 is not satisfiable. 

The  answer A=radishes, M=beef, D=fruit is definite in the sense tha t  a con- 
s tant  is equated with each variable in the query. However, in general answers can also 
be indefinite, i.e. the answer consists of a set of constraints representing a possibly 
infinite set of solutions. An example of this kind will be presented a little later when 
nonlinear constraints are discussed. How to extract  an understandable  answer f rom 
the constraints in the constraint  store is an active field of research [JMSY92]. 

N o n l i n e a r  c o n s t r a i n t s  To introduce nonlinear ar i thmetic  constraints we shall use 
a p rogram mult iplying two complex numbers  R1 + I * I 1 ,  R2 + I * I 2  taken f rom 
[JL87]: 
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z m u l ( R 1 ,  I 1 ,  R2, I 2 ,  R3, I 3 ) : -  
R3 = RI*R2 - I 1 . I 2 ,  
I3 = RI*I2 + R2*I1 .  

If the query z m u l ( 1 , 2 , 3 , 4 , R 3 , I 3 )  is given, then the nonlinear equations become 
linear at run time, and the answer produced by e.g. CLP(7~) is: 

R3 = - 5  
I 3  = 10  

*** Yes 

If we ask the query zmul(l,2,R2,12,R3,I3), the solution is a co,unction of 
two linear equalities: 

12 = 0.2.13 - 0.4.R3 
R2 = 0.4.13 + 0.2.R3 

*** Yes 

This answer is an example for an indefinite solution. The solution is an infinite 
set of points that  is represented by a minimal set of constraints stating relations 
between the variables of the query. To obtain precise values for I2 and R2 (i.e. to 
obtain I2 equal to a constant and R2 equal to a constant), the user has to further 
instantiate I3 and R3. 

For the two previous queries, there is no need for a nonlinear solver. But for 
the query z m u l ( R 1 , 2 , R 2 , 4 , - 5 , 1 0 ) ,  R2 < 3 nonlinear constraints appear in the 
solution. CLP(7~) gives the answer: 

RI = -0.5.R2 + 2.5 

3 = RI * R2 
R2 <3 
*** Maybe 

This is due to the property of CLP(7~), whose decision procedure can only solve 
linear arithmetic. When a nonlinear constraint is encountered during computation, 
then it is delayed until it becomes linear. For the previous query, two nonlinear equa- 
tions are encountered during computation. They are delayed, but no instantiation 
makes them linear. So at the end of the computation CLP(7~) gives back the delayed 
constraints without knowing if there are some solutions or not ( *** Maybe). 

This introduces the need for nonlinear arithmetic solvers in constraint logic pro- 
gramming. Nonlinear constraints arise for instance in computational geometry [PS85], 
and financial applications. Several algorithms can be used to solve nonlinear con- 
straints. Their capacities and complexities are quite different (see [Mon92a] for a 
comparison of different solvers). For example GrSbner bases [Buc85] treat only equa- 
tions whereas quantifier elimination [Co175] can handle all (well formed) formulae 
over the reals at, sometimes, considerable extra cost. 

For the first two queries of the previous example (multiplication of complex 
numbers) the answer given by nonlinear solvers is the same as the one from CLP(~) .  
But the last query zmul(R1, 2, R2, 4, -5 ,  10),  R2 < 3 is completely solved, and 
the answer is definite: 
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R1 = 1.5 

R2=2 

GrSbner Bases are used in CAL [Att92], and in the system of [Mon92b]; and an 
improved version of quantifier elimination [tton90] is used in RISC-CLP [lion92]. 

2 . 2  T h e  B o o l e a n  D o m a i n  

The most prominent applications of boolean constraints are in the area of circuit 
design [Sim92], here in particular hardware verification [FSTW91], and in theorem 
proving in the domain of propositional calculus [SD90, Col90]. Such applications 
motivated the incorporation of boolean constraint solvers into constraint logic pro- 
gramming languages. 

Boolean terms are built from the truth values (false and true, represented some- 
times also by 0 and 1), from variables and from logical connectives (e.g. V, @3, A, 
neg). The only constraint between boolean terms is the equality (=). In some im- 
plementations (e.g. CHIP) additional constants can be used in the construction of 
terms. This is particularly important in hardware verification as these constants can 
be used to represent symbolic names for input arguments of circuits. 

Each of the systems mentioned above employs quite different ways of handling 
boolean constraints. A Boolean unification algorithm [BS87] is used in the case of 
CHIP. In the literature a number of different unification algorithms for Boolean con- 
straints are reported [MN90, Bue88]. Another possibility is to implement boolean 
constraint solving as a special case of numerical constraint solving. A modified ver- 
sion of the GrSbner bases algorithm [ASS+88] is used in CAL. Prolog III uses a 
saturation method to solve boolean constraints [Col90]. This method does not com- 
pute a most general solution and is hence not easily applicable to circuit verification. 
Since boolean constraint solving provides a decision procedure for propositional cal- 
culus and is therefore NP-complete, any algorithm for boolean constraints has an 
exponential worst case complexity. It is thus very important to use a compact descrip- 
tion of boolean terms to achieve efficiency. CHIP [DVS+88], for example, represents 
boolean terms as directed acyclic graphs, which are manipulated by special purpose 
graph algorithms [Bry86]. 

The following classic example coming from hardware verification illustrates how 
boolean constraints can be solved by boolean unification. 

% Full-adder circuit example 

add(I1, 12, I3, O1,O2) : - 
X1 = I1 $ I2, 
A1 = I1 A I2, 
O1 ---= X1 @ I3, 
A2 = I3 A X1, 
02 -- A1 V A2. 

3 ~ is the exclusive or 



I1 

I2 

I3 

]2 

Figure 1: Full Adder Circuit 

O1 

02 

The computation of an answer to the query add(a, b, c, O1, 02) gives the following 
set of intermediary constraints: 

X l  = a ~ b  
Al  = b A a  
O l = a ~ b ~ c  
A2 = cA (a~  b) 
0 2 = a A b $ a A c ~ b A c .  

The boolean solver hence produces the answer: 

Ol = a ~ b ~ c ,  0 2 = a A b @ a A c ~ b A c  

which describes the logical function of the piece of hardware. The output parameters 
are expressed as boolean expressions constructed from the input parameters. These 
boolean expressions can now be compared with the specification of the circuit, which 
is also expressed in terms of boolean expressions. 

In case of hardware verification the full power of boolean unification is needed. 
But obviously boolean unification is a very costly method. For simulation tasks for 
instance, where the input parameters are not symbolic constants but the ground 
values 0 or 1, this power is not needed and other methods are more efficient. In 
section 3.2 and 4.2 we will describe such other techniques. 

3 C o n s i s t e n c y  T e c h n i q u e s  

3.1 F in i t e  Domains  

Consistency techniques were first introduced for improving the efficiency of picture 
recognition programs, by researchers in artificial intelligence [WalT2]. Picture recog- 
nition involves labelling all the lines in a picture in a consistent way. The number of 
potential labellings can be huge, while only very few are consistent. 
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Consistency techniques effectively rule out many inconsistent labellings at a very 
early stage, and thus cut short the search for consistent labellings. These techniques 
have since proved to be effective on a wide variety of hard search problems, made 
even wider since their integration into a logic programming framework in CHIP and 
subsequent CLP implementations. 

The handling of constraints using consistency techniques is unlike constraint 
solving in the CLP Scheme, as described earlier, in that it does not guarantee to 
detect inconsistency of the (global) constraint store until the labelling of the problem 
variables is complete. Instead consistency techniques provide an efficient way to 
extract from the constraint store new information about the problem variables. 

A Schedul ing  E x a m p l e  To illustrate one such consistency technique let us take a 
very simple scheduling problem, with six tasks to be scheduled into a five-hour day, 
where each task takes an hour. The following diagram shows tasks on the left which 
must precede other tasks on the right: 

T2 

T1 T6 
\ / 

T3--T5 
/ 

T4 

In addition we impose the constraint that tasks T2 and T3 cannot be scheduled at 
the same time. 

To express this as a constraint satisfaction problem, we associate a variable Ti 
with the start time of each task, whose domain of possible values is {1, 2, 3,4,5}. 
We then impose the constraints 

before(T1,T2)  
before(T1,T3)  
before(T2,T6)  
before(T3,TS)  
before(T4,TS)  
before(TS,T6)  
notequal(T2,T3) 

Consistency techniques work by propagating information about the variables via 
the constraints between them. For example given that T1 E {1, 2, 3, 4, 5} and that 
T2 E {1, 2, 3,4, 5}, then based on the constraint before(T1,T2)  our consistency 
technique deduces the information that T1 E {1, 2, 3,4} and T2 E {2, 3, 4, 5}. The 
value 5 is removed from the domain of T1 because there is no value in the domain 
of T2 which is consistent with it - that satisfies the constraint before(T1 ,T2). The 
value 1 is removed from the domain of T2 for the same reason. (This consistency 
technique, which removes values inconsistent with a single constraint between two 
variables, is termed arc consistency [Mac77].) 
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Propagation continues until no further new domain reductions can be extracted 
from the constraints. The effect of applying arc consistency in our example is to 
reduce the domains associated with the tasks' start times as follows: 

TIE {I, 2},T2 E {2,3,4},T3 E {2, 3},T4 e {1,2,3},T5 E {3,4},T6 E {4,5} 

Consistency techniques alone can rarely be used to solve a problem, since in gen- 
eral there remain combinations of values in the resulting domains which are inconsis- 
tent. For example the constraint before  (T1, T2) has been used during propagation 
to reduce the domains of T1 and T2, but it is still not satisfied by all the values 
of the resulting domains of T1 and T2. (Although T1 = 2 is consistent with some 
values in the domain of T2, it is not consistent with the value T2 = 2.) 

To find a solution to this scheduling problem the system therefore performs some 
search, by labelling a variable with some value in its domain (search is discussed in 
detail in section 5 below). This choice (which may prove later to have been er- 
roneous), allows further propagation to be attempted. For example suppose T1 is 
labelled with the value T1 = 2. Propagation yields T2 E {3, 4} and T3 E {3}. At this 
point the constraint not  equal (T2, T3) is used actively for the first time to produce 
the information T2 E {4}. Propagation continues until the following information has 
been extracted: T1 E {2}, T2 E {4}, T3 E {3}, T4 e {1, 2, 3}, T5 e {4}, T6 e {5}. 

Propagation versus Solving The treatment of the notequal constraint with arc 
consistency is a typical example of how and why consistency techniques differ from 
constraint solving. If.variables X and Y each have domains with more than one 
value, then the constraint notequal(X,Y) will not yield any new information. The 
reason is that every value in the domain of Y will be consistent with at least one 
value in the domain of X, and vice versa. Propagation on the constraint notequal 
can be implemented very efficiently. The constraint yields no information until one of 
the Variables has a domain with only one remaining value. This value is immediately 
removed from the domain of the other variable, and the constraint is satisfied. It 
can never again yield new information. 

However if the constraint notequal  is handled by a constraint solver it can yield 
more information than propagation. For example suppose variable X, Y and Z all 
have two-value domains: X E {1, 2}, Y e {1, 2}, Z E {1, 2}. The constraints 

notequal(X,Y) notequal(Y,Z) notequal(Z,X) 

are not satisfiable. Although this is detected by a solver for the notequal constraint, 
arc consistency yields no information. 

For simple examples, such as this, the solver can detect the inconsistency at little 
cost. However non-trivial problems involve a reasonably large number of constraints 
and domains containing a reasonably large number of values; and in this case the cost 
of solving the constraints increases very quickly (exponentially) with the number of 
variables involved. For such problems it is often too expensive to attempt constraint 
solving on the notequal  constraints, and constraint propagation proves to be a more 
effective technique. 
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C o n s t r a i n t  Driven Computation Consistency techniques extend the notion of 
data driven program execution. The arrival of "data" no longer means the arrival of 
a specific value for a variable, but rather any reduction of the domain associated with 
the variable. We call it constraint driven. In this framework new "data" may arrive 
many times on a single variable - each time its domain is reduced. Much research 
has been published on constraint propagation and its complexity, and we list some 
important references [MH86, Mon74, FreT8, HE80, Mac77, MF85]. 

For handling constraints defined extensionally as relations, there is a range of 
standard consistency techniques. However for particular constraints, specialised con- 
sistency techniques can be applied which take advantage of their particular seman- 
tics. The speciMised techniques can support more efficient constraint propagation 
than the standard techniques [DV91]. 

For problems modelled using integers (like the scheduling example above), the 
constraints most often required are equations and inequations between mathematical 
expressions (involving the predicates =, > >, < and <). These can be efficiently 
handled by reasoning on maxima and minima. For example suppose X, Y and Z 
each have domain {1, . . . ,  10}. Reasoning on the constraint 2*X + 3*Y + 2 < Z we 
use maxima and minima to remove inconsistent values from the domains of all 
three variables. Since 10 is the maximum possible value for Z, we can deduce that 
2 * X + 3 * Y < 8. Since the minimum value for Y is 1, it follows that 2 * X < 5. 
Consequently the domain of X can be reduced to X E {1, 2}. Similarly Y E {1}. 
Finally by reasoning on the minima of X and Y we conclude that Z E {8, 9, 10}. 

Of particular importance for current day computing systems is that constraint 
propagation can be performed in parallel. Propagation on the different constraints 
can occur concurrently and asynchronously, and as long as it continues until no more 
domain reductions are possible the result is independent of the precise behaviour. 

E m b e d d i n g  in CLP  We now illustrate the embedding of consistency techniques 
in a logic programming system, by expressing a couple of problems in the CHIP 
language (see section 6 for information about CLP languages). 

The above example can be encoded in CHIP as follows: 

7- [X,Y,Z] : : 1 . . 1 0 ,  
2*X + 3.u + 2 #< Z, 
indomain(X), indomain(Y), indomain(Z). 

First the finite domain variables X, Y and Z over the subrange 1. .  10 are decl.ared. 
Then the constraint that must hold between X, Y and Z are stated as a goal 4. This goal 
is recognised by its syntax to be a constraint that will be handled by propagation. 
Finally the search for admissible values of X, Y and Z is expressed using the goal 
indoma• This goal instantiates its argument to a value in its current domain. This 
instantiation will cause constraint propagation to take place, which may reduce the 
domains of the remaining variables, or even cause a failure. If this choice proves later 
to have been wrong, and the system backtracks, another value in the domain will be 
chosen, until all the alternatives have been exhausted. 

4 The symbol #< stands for < on finite domains. 
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Because the domains are pruned by propagation, the two admissible combina- 
tions of values are found without any wrong guesses. For this simple example, it 
is an interesting exercise to write a logic program without constraints tha t  avoids 
unnecessary search. For real-life problems, such an exercise is no longer interesting, 
and it can easily lead to unmaintainable and even incorrect logic programs. Using 
CLP however, we use a simple standard program structure and rely on consistency 
techniques for efficiency. The structure is as follows: 

- Declare problem variables and their finite domains 
- Set up the constraints 
- Search for a solution 

Notice that  consistency techniques are deterministic, as opposed to the search which 
is non-deterministic (and usually entails backtracking). This s tandard structure en- 
sures that  deterministic computat ion during propagation is performed as soon as 
possible and non-deterministic computat ion during search is used only when there is 
no more propagation to be done. The importance of prioritising deterministic com- 
putat ion has been recognised as an impor tant  principle in the logic programming 
community. 

It is also possible to specify user-defined predicates as constraints for propagation, 
by a declaration such as lookahead. 5 

Thus in the following program goals for the predicate less will be treated using 
consistency techniques, whilst goals for the predicate gteq will be treated by choice 
and backtracking in the normal fashion of logic programming. 6 

lookahead less (d, d). 
less(l,l). 
less(l,2). 
less(2,2). 
less(2,3). 

gteq(2,1). 
gteq(3,2). 

The query 

?- [X,Y,Z]:: [1,2,3,4,5], less(X,Y), less(Y,Z), gteq(X,Z) 

is evaluated as follows. As soon as the constraints (less(X,Y), less(Y,Z)) are set 
up, the domains of the variables are reduced by consistency techniques to {1, 2, 3). 
Now the goal gteq(X, Z) is invoked; the system selects the first clause defining gteq 
and attempts to add the constraints Z = I,X -- 2 to the constraint store. Arc 
consistency on less (X,Y) reduces the domain of Y to Y E (2, 3}, then propagation 
on less(Y,Z) reveals an inconsistency. Thus the attempt to match the first clause 
for gtsq fails, and the second clause is tried. This fails similarly, and so the whole 
query fails. 

As usual for consistency techniques, the evaluation of the constraint goals less 
are constraint driven, and there is no backtracking on these goals. 

s "Looking ahead" is another name used for consistency techniques [lIE80] 
s The d in lookahead less(d,d) signifies that this argument of less is a domain variable. 
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3.2 Genera l i sed  P r o p a g a t i o n  

The study of constraint propagation has been recently extended to remove the re- 
quirement for finite domains associated with the variables. One step in this direction 
is to admit intervals instead of finite domains (eg 1 < X < 10 for real X) [Day87]. 
However, more radically, it is possible to perform propagation without requiring 
either domains or intervals to be associated with the problem variables. This tech- 
nique has been named generalised propagation [LW92a]. Generalised propagation 
integrates the CLP scheme, described in section 2 above, and constraint satisfaction 
techniques, described in this section. 

In the CLP scheme an answer to a goal is a (consistent) set of constraints on the 
problem variables. Standard logic programming is a particular instance of the CLP 
scheme, where answers are expressed using equations on terms. Thus if predicate p 
is defined by 

p(1,1). 
p(2 ,2 ) .  

the query ?- p(X,Y) has two answers X = 1,Y = 1 and X = 2, Y = 2. The idea of 
generalised propagation is to enable p (X, Y) to be used as a constraint, even though 
there are no domains or intervals associated with its arguments. Instead of extracting 
information in the form of reduced domains for X and Y, the information extracted 
is in the form of constraints in the current computation domain - i.e. equations 
between terms. 

As with finite domain propagation, the information extracted must not exclude 
any answers to p (X, Y). Thus generalised propagation only extracts information com- 
mon to all the answers to p(X,Y). Over this computation domain, the information 
extracted from a goal is technically the "most specific generalisation" of all the 
answers to the goal. In this case the most specific generalisation is X = Y. 

I fp  is handled as an ordinary predicate in the query ?- p(X,Y), p(V,W), Y=V, 
notequal(X,W), the system will backtrack four times before failing. To use p(X,Y) 
and p(Y,Z) as constraints for generalised propagation, it is merely necessary to 
annotate the query as follows: 

?- propagate p(X,Y), propagate p(V,W), Y=V, notequal(X,W) 

The annotation propagate Goal tells the system to perform generalised propagation 
on Goal, instead of treating it as an ordinary logic programming goal. Generalised 
propagation will immediately deduce that X = Y and V = W. Consequently when 
the goals Y=V, notequal(X,W) are executed, the inconsistency will be detected with- 
out any backtracking. 

Another example of generalised propagation is its application to the predicate 
and, defined as follows: 

and (0 ,0 ,0 ) .  
and (0 ,1 ,0 ) .  
and(l, O, O). 
and(1 ,1 ,1 ) .  
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Consider the query ?- propagate and(X,Y, Z), Rest where Rest is some goal that 
performs search, eventually yielding further information about the variables X, Y 
and Z. Initially no information can be extracted from the constraint and(X,Y,Z). 
However as further information is added to the constraint store, during evaluation 
of Rest, interesting propagations on and(X, Y, Z) may become possible. For example 
if the constraint X -- 0 is added to the constraint store, generalised propagation on 
and(X,Y,Z) immediately yields the new equation Z = 0. Alternatively if X -- 1 is 
added to the constraint store, generalised propagation yields Z -- Y. 

Like propagation, generalised propagation is a form of constraint driven com- 
putation. As more information about the problem variables becomes available, via 
the constraint store, further information is extracted from the constraints. All the 
extracted information is added to the constraint store, which enables further prop- 
agation to take place. Propagation is repeatedly attempted on all constraints until 
there is no more information to be extracted. 

In section 4.2 below, it is described how the user can explicitly program the 
handling of constraints, so as to achieve a similar constraint driven behaviour for 
the constraint and(X, Y, Z). The advantage of generalised propagation is that such 
constraint driven behaviour is achieved by a single annotation, and without risk of 
incorrectness or potential omission of possible propagation steps. 

Generalised propagation yielding equality constraints, as in the above examples, 
has been implemented in a system called Propia [LW92b]. Programming in Propia 
has shown three advantages of generalised propagation. 

- It is relatively simple to encode the constraints of real problems in Propia, and 
there is no need to explicitly add finite domains. (In fact current systems only 
admit  finite domains of integers which implies an extra encoding step). 

- It is very natural to encode a problem using a logic program without regard 
for efficiency. To turn such a program into a Propia program utilising gener- 
alised propagation, it is merely necessary to add annotations as in the above 
example. Consequently it is easy to experiment with different ways of executing 
the program by changing the annotations. The final program still has the same 
structure as the original logic programming "specification" and is therefore easy 
to maintain. 

- Even some problems which involve finite domains prove to be solved more effi- 
ciently when encoded in Propia, than is achieved with finite domain propagation. 
For propositional logic problems, which can be encoded using finite domains with 
two values, generalised propagation produces more information than arc consis- 
tency. In fact Propia turns but to be broadly as efficient as specialised programs 
on a current benchmark of such problems. For problems which involve large 
finite domains, on the other hand, generalised propagation scores again by its 
simplicity: it extracts less information but it avoids wasting storage and execu- 
tion time doing so. Consequently Propia can solve problems which are too big 
and too slow to run on existing CLP systems with finite domains. 
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4 E x t e n d i n g  a n d  S p e c i a l i s i n g  t h e  C o n s t r a i n t  S y s t e m  

A given constraint system supports certain computation domains, and certain con- 
sistency techniques, enabling it to solve a range of problems efficiently. However, 
specialised problems may require specialised constraints, with specialised solving 
and consistency techniques. Two different approaches have been developed to tackle 
this problem. The first approach consists in identifying frequently occurring con- 
straints and offering them via a system library. The second consists in offering the 
user a language to define his own constraints and the necessary propagation. 

4.1 Specia l i sed  Cons t r a in t s  

In the past a variety of frequently occurring constraints, have been identified, which 
caused problems if they are encoded using the standard built-in constraints. For 
these, specialised constraint solving algorithms have been developed. We shortly 
mention some of those, developed within the CHIP system. Note that the user of 
these constructs need not be concerned about the implementational aspects, as they 
all have a declarative reading. 

Th e  E l emen t  Cons t r a in t  Many constraint problems use the notion of a cost func- 
tion associated with a choice. This can describe the cost which we want to optimise, 
or it can be just an internal figure that has to be kept within certain limits. For 
example in a production unit switching a job from one machine to another involves 
a certain setup time. Now the overall time needed is restricted by some constraints. 
These constraints provide a pruning on the possible choices of jobs. An efficient im- 
plementation of arc-consistency for the functional constraint between choices (jobs 
in this example) and their costs (here the setup times) is supported via a special 
element constraint. It has the following structure: element (11, L i s t ,  Value),  with 
the reading: Value is the N-th value of the list List. 

[MI,M2,M3] :: I..5, ~ 3 Machines, 5 jobs 
alldistinct([MI,M2,M3]), ~ no job is done twice 
element(Ml,[3,2,6,8,9],C1), 
element(M2,[4,6,2,3,2],C2), 
element(M3,[6,3,2,5,2],C3), 
CI+C2+C3 #= Cost, 

Cost #<= 9. 

Running this query will give the result that M1 does Job 1 or 2, M2 can do all jobs 
except Job 2, and M3 all except Job 1. The cost is guaranteed to be between 6 and 
9. 

Note that this constraint works in all directions, e.g. restrictions of the possible 
values also prune the associated index. 

A variety of special constraints on lists of choices have been developed. They 
express e.g. that all the elements have to be different ( a l l d i s t i n c t ) ;  certain values 
may not occur morethan a certain number of times (atmost, as exampled below); 
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that only one variable may take a certain value, etc. A special constraint - cumula- 

tive - developed for scheduling and loading problem has been recently presented in 
lAB92]. 

[r 7J : 

A = $_267 
C = $_287 

B=5 
yes .  

[A,B,C] 

[0..43 
[0..43 

: : O..5, atmost (I, [A,B,C] ,5) ,BfS. 

4.2 User  Def ined Cons t r a in t s  

The implementation of special constraints can only be done by the system designer. 
But as it is useful to have special constraint solving mechanisms available the trend 
now is to develop tools to allow the constraint solving behaviour necessary for the 
specific application to be defined by the application programmer. Given these tools 
provide means for a simple declarative specification, they once again support one 
key concept behind logic programming: the programming time is reduced, different 
possibilities can be tested easily, and support of the software becomes easier. 

In this section we discuss facilities for the user to control the evaluation of con- 
straints, to specify constraint-driven computation, and to define constraint solvers 
for new constraints. 

De lay  Dec la ra t ions  We saw above that for certain constraints (like non-linear 
constraints in CLP(7~)) it is necessary to delay their handling until certain variables 
have a specific value. In some systems the delaying of the appropriate constraints 
is built into the system. Often, however, the user needs to be able to control the 
delaying of goals and constraints. An example of a declaration to delay the handling 
of a goal till a certain condition is satisfied is 

delay employee(Nr,Sal) until ground(Nr) 

Such a declaration will prevent the system from trying to look up salaries for employ- 
ees until a specific employee number is known. The declaration would also postpone 
the application of consistency techniques to this goal, in case employee was a con- 
straint. 

Declarations are annotations applied to a program which refer to the program 
text. As such they are termed "me ta -commands"  to distinguish them from com- 
mands within the program which manipulate the data. 

G u a r d s  There is another approach to providing user control based on the concept 
of a guard The guard defines a logical condition, and is part of the program itself 
rather than a meta-command. An example of a guarded clause is 

~d(X,Y,Z) <=> X=O [ Z=O 
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The guard is X = 0. When the current set of goals include an atomic goal of the 
form ?- and(A,B,C) the guard is used to control when, or if, the clause can be 
applied. Specifically it can be applied as soon as the constraint store contains, or 
implies that, X = 0. As soon as this is true, the atomic goal can be rewritten into 
its body (in this case Z = 0). Hence the query ?- and(X, u Z) ,X = 0 will result in 
a constraint store X = 0, Z = 0. 

A special feature of definitions by guarded clauses is that when a guard is satis- 
fied, the system commits to the clause and there is never any backtracking to alterna- 
tive clauses. This means that guarded clauses define a computation with "don't care" 
nondeterminism, rather than the "don't know" nondeterminism of logic program- 
ming which involves backtracking to check the other alternatives. The declarative 
semantics of logic programming is sacrificed with the move to don't care nondeter- 
minism, unless strict conditions are met by the guarded clauses as given in [Mah87]. 
An advantage is that the guards can be evaluated concurrently, which is why guarded 
clauses are interesting for concurrent CLP, discussed later in this section. 

The control offered by the guards is precisely constraint driven computation, 
without backtracking, as needed to explicitly encode constraint propagation 

Example  We shall take as an example the and constraint used earlier in our dis- 
cussion of generalised propagation. 

Declaratively and is defined as follows: 

and(O,O,O). 
and(O,1,0) .  
and(i,0,O). 
a n d ( I , 1 , 1 ) .  

We can specify a propagation behaviour for handling and goals using the following 
guarded clauses: 
and(X,Y,Z) r X=O I Z=O. 
and(X,Y,Z) r Y=O J Z=O. 
and(X,Y,Z) 4~ Z=l I X=I,Y=I. 
and(X,Y,Z) r X=l ] Y=Z. 
and(X,Y,Z) r Y=I I X=Z. 
and(X,LZ) ~, X=Y I Z=X. 
Notice that the information Z = 0 is not sufficient to allow any further consequences 
to be extracted from the and constraint. Thus if the constraint store only contains 
Z = 0 none of the guards are satisfied. In this case more information on X or Y will 
be needed before any of the clauses can fire. 

Consider the full-adder circuit 

a d d ( I I , I 2 , I 3 , 0 1 , 0 2 )  : -  
z o r ( I I , I 2 , X l ) ,  
a n d ( I I , I 2 , A 1 ) ,  
xo r (X l , I3 ,01 ) ,  
and(I3,Xl,A2), 
or(AI,A2,02). 
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together with rules for the logical gates (as was exemplified by the rules for the 
and-gate). 

The query add(I  1, I 2 , 0 , 0 1 , 1 )  will produce I I = l ,  I2=1,01"0. The computation 
proceeds as follows: Because I3=0, the result of the and-gate with input I3, the 
output A2, must be 0. As 02=1 and A2=0, the other input A1 of the xor-gate must 
be 1. Because A1 is also the output of an and-gate, its inputs I1 and I2 must  be 
both 1. Hence the output Xl of the first xor-gate must be 0, and therefore also the 
output 01 of the second xor-gate must be 0. 

In this particular case the same behaviour is obtained by applying generalised 
propagation to the declarative specification of mad. However the facility to define 
explicitly what propagation is to take place on a given goal means that tailored 
propagation behaviour can be obtained for particular applications. 

E m b e d d i n g  in C L P  CHIP was the first constraint logic programming language to 
introduce constructs to specify user-defined constraint propagation. Their need was 
realised in applications for diagnosis and test pattern generation of digital circuits 
[SD87, Sim89]. They have been called "demon constructs" [DVS+88] because of their 
event-driven activation. CHIP introduces in addition conditional propagation with 
the i f - t h e n - e l s e  construct. A framework for using guarded rules for constraint 
handling is given in [Smo91]. 

Cons t r a in t  Solving To express constraint solving it is necessary to be able to han- 
dle the interaction of multiple constraints. Consequently a multi-headed guarded rule 
is introduced. A unified approach encompassing single- and multi-headed guarded 
clauses has been developed under the name Simplification Rules [Frii92]. Two rules 
encoding a solver for the g r e a t e r  constraint are as follows: 

greater(X,Y) <=> X=Y I fail 
greater(X,Y), greater(W,Z) => Y=W I greater(X,Z) 

~. irreflexivity 
7.transitivity 

(If the second clause is executed it does not replace the goal with the body, it merely 
augments the current set of remaining goals with the clause body.) 

The above rules capture the transitivity and irreflexivity of g r e a t e r  but not its 
semantics: "less" is also transitive and irreflexive! We now add one further guarded 
rule to check that g r e a t e r  is indeed the same as the built-in comparator ">" :7 

grea te r (X,Y)  <=> grotmd(X), ground(Y) I X>Y 

C o n c u r r e n t  Cons t r a in t s  User-defined constraint propagation and simplification 
is a very active area of research in constraint logic programming. A framework 
including a powerful set of constraint constructors is described in [VDgl]. The 
concept of constraint agents, and their transformational semantics underlies much 
ongoing work, e.g. [Sar92, Van91]. The idea behind all these approaches is to express 

r Since groundness is a meta-concept, some people prefer to use the delay declaration 
instead of a guard for this control. The framework of simplification rules supports control 
by both guards and delays 
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constraint evaluation in terms of concurrent computations. The first such concurrent 
constraint logic programming language has been suggested in [Mah87]. In [Sar92] a 
general framework for these languages has been developed based on the notion of ask 
& tell. The basic operation in these languages, besides telling (adding) a constraint 
to the constraint store and deciding its consistency, is to ask for a constraint, i.e. 
to decide if this constraint is entailed (implied) by the constraint store. Algorithms 
for constraint entailment are extensions of constraint solving algorithms. In case of 
demons above this simplifies to deciding whether the variables in the guard have 
certain values or not. 

5 S e a r c h  a n d  O p t i m i z a t i o n  in  C L P  

As outlined above the key idea behind constraint reasoning systems is to tackle 
complex tasks by incrementally inferring properties of the problem solutions and 
using this information to enforce consistency IVan89]. This deterministic knowledge 
is acquired in an explicit form. It is therefore possible to prune the space of possible 
alternatives, i.e. excluding certain cases (choices) that need not be considered in the 
future. 

As in general the solution cannot be inferred right away after the determinis- 
tic reasoning steps some assumptions about the problem solution have to be made. 
Those assumptions are fed back into the constraint reasoning scheme, thus yield- 
ing more information about the solution. This process continues until a solution is 
obtained. 

If an inconsistent solution description is obtained the assumptions have to be 
withdrawn. In this case the process has to be continued with alternative assumptions. 
This process is usually referred to as backtracking. The nature of this is another 
reason why constraint propagation fits well in the Prolog language, which supports 
a backtracking mechanism. 

Note that the generate and test approach uses the same schema, but the inference 
engine is only used when complete solutions are obtained, i.e. only a test is done, if 
a complete solution candidate has been produced. 

The constraints reasoning schema depends crucially on two aspects: 

- The inference power of the reasoning engine. 
- The strategy to make the assumptions. 

In this section we will concentrate on the second aspect. In general this is referred 
to as the search. We will concentrate on the finite domain case, where this process 
is also called labelling. 

5.1 Aspec ts  of  Search 

In AI, problem solving is classically seen as a state space search: solving a problem 
is to find a path from an initial state to the goal state - representing the solution. 
Within that framework search is the general mechanism that is used when no other, 
better method is known. 
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Similarly in constraint reasoning we refer to search, if the constraint handler 
cannot provide us with more information. But note that we deal here with partial 
solutions: e.g. in each state of the search we know some variable values but not 
all. In a traveling sMesman problem (TSP), for example, the instantiated variables 
represent" known parts of the route. Once we do a search step we assume that a 
certain city should be visited best at a certain point of the trip. 

Taking a search step within a constraint reasoning framework involves two deci- 
sions: 

1. On which aspect of the problem do we want tb make an assumption ? 
2. What should that assumption should be ? 

T h e  R igh t  G r a n u l a r i t y  In general it is important that the granularity and the 
strategy of the search process fits well with the constraint handler. The right choices 
here are crucial for the performance of the overall system. The assumptions made 
during search perform two roles. First they are queries about the solution. Secondly, 
and even more important, they provide input to the constraint handler which per- 
forms reasoning on the constraints and their impact on other problem variables. 
With the right input the solver will be able to prune large parts of the search space, 
thus yielding a good problem solving performance. 

Dec l a r a t i venes s  Within the approaches discussed below the strategy for selecting 
variables/values can be defined declaratively. This means that the complexity of the 
program used to define the strategy is independent of the complexity of the strategy 
itself. This has the important consequence that certain real world problems can still 
be tackled with this declarative technology, while specialised procedural constructs 
are hard to build. In fact it is has been our experience that CLP solves problems 
that are new in the sense that they have not been solved systematically by software 
so far - despite the fact that specialised algorithms have been known. 

5.2 Labe l l ing  S t ra t eg ies  

Within the CHIP system the user is free to program his own search strategy. This can 
be done easily with the support of the underlying Prolog system. As some general 
approaches have given good results they are already incorporated into the system. 
They make labelling based 

- on individual problem variables and 
- on single values for those variables. 

The problem variables in the TSP example are the stops on the tour, the values 
are the location of those stops. 

In many cases it is most effective to use the variable with the smallest remaining 
domain for labelling. This principle is often referred to as first fail principle as 
with fewer choices possible we will find out earlier if those were right or wrong. 
Alternatively the variable which occurs in most constraints can be chosen. Several 
combinations of these principles are possible IVan89]. 
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label(Problem_variables) 
label ( [] ) .  
label(Problem_variables) :- 

deleteff(Var, Problem_variables, Rest_vars), 
choose var .ith minimal choices 

indomain(Var), 
choose a value from its domain 

label(Rest_vars). 

Which value then to give that  chosen variable is harder to answer in general. For 
some problems it is possible to define a metric, with the 'smallest '  values being most  
promising. 

For the map colouring problem good results have been obtained by rotat ing the 
colours used for labelling. I.e. for the country A use the first colour, for country B 
the second and so on. This approach has the effect of the intuitively appealing idea 
of using different colours whenever possible, as connected countries have to have 
different colours. 

special labelling routine for map colouring example 
label_colour(Countries, Available_Colours) 

label_colour([],_). 
label_colour([FirstIRest],Colours):- 

member(First,Colours), 
rotate(Colours,Coloursl), 
label_colour(Rest,Coloursl). 

rotate( [A,B,C,D],  [B,C,D,A] ) .  

Within the generalised propagation schema it can be very natural  to use an entire 
tuple of values tha t  satisfies a constraint, as the tuples satisfying / defining a con- 
straint are usually available. E.g. if we want to solve a crossword puzzle, it makes 
sense to put  (assume) a word in a certain position, which means labelling a set of 
variables with characters at the same time. 

L a b e l l i n g  w i t h  s e v e r a l  va lue s  In some cases selecting a specific value for a vari- 
able can be a very strong assumption. It can therefore be bet ter  to make an as- 
sumption on the set of possible values of that  variable. The classical approach here 
is to make a binary chop of the domain. This means that  we cut the domain in two 
halves and then assume that  the value is in one half. This can be done by stating an 
additional constraint which excludes the other hMf. This technique has been used 
successfully for the cutting stock application [DSV88]. 



26 

binary chop labelling routine 

iabel_chop([]). 
label_chop([X[Vars]):- 

mindomain(X,Min), 
maxdomain(X,Max), 
Mid is (Min + Max)//2, 
above_or_below(X,Mid), 
label_chop(Vars). 

above_or_below(X,Mid) :- 
X #<= Mid. ~ set up additional constraint 

above_or_below(X,Mid) :- 
X #> Mid. 

5.3 B r a n c h  a nd  B o u n d  

Due to the incremental approach of constraint solving branch and bound strategies 
fit well with it. For a constraint problem with minimization the current minimal 
value of the target function is maintained. As soon as a choice / search step is done 
that would increase that value again, this is rejected. Thus parts of the search tree 
need not be considered. If a new minimum value has been obtained a new branch 
and bound run with that value can be invoked. Note that the previously considered 
combinations need not be considered againl as the current minimum is known to be 
optimal with regard to the search space already considered. 

Given the classical setup of a CHIP program: 

s o l v e  ( V a t s )  "-  

def ine_vars (Vats) ,  
setup_constraints (Vats), 
label(Vats). 

the program for the minimal solution can be written easily: a labelling routine that 
produces the cost values is combined with the minimise declaration. 

~. 2-dimensional c u t t i n g  stock example 
~. Vertical and horizontal cuts, Waste Produced 

label_min(Vert_Hor_Cuts) :- 

minimis e ( 
label_waste(Vert_Hor_Cuts, Waste), 

~. labelling routine that also computes the waste 

Waste). 
~. minimise Waste value 

As seen in the example in CHIP the declaration to use the branch and bound min- 
imization schema is very simple to be added to a program. For some problems this 
approach gives quitegood performance results. 
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5.4 Optimization and Advanced Search 

For optimization problems it is not always easy to infer deterministic information 
about the optimal solution. If fewer inferences can be made the proper choice of 
assumptions will become more important. 

Local  Sea rch  One approach is to improve the current assumptions by local search. 
The idea is here that an initial solution - satisfying the constraints - is improved in 
terms of the cost function to be minimised. An operator is defined that maps one 
solution to others that are similar (in the sense that most of the variables retain the 
same value). The operator must, of course, ensure the constraints are still satisfied. 

Search in this framework means applying the operator to the current solution. If 
the new solution has lower cost it becomes the current solution, and search continues 
until a solution is reached which cannot be improved upon by a single application of 
the operator. The final solution is better than its immediate neighbours, but there 
may be still better solutions in another part of the search space. In other words 
the final solution may only be a "local" optimum. This approach works well for the 
unconstrained traveling salesman problem [LLKS85], where a typical operator is one 
that exchanges two edges of a tour. To apply this approach to constrained problems, 
it is necessary to impose constraints on the operator that maps solutions to new 
solutions. Currently available systems do not offer this feature. 

Nove l  Sea rch  Techn iques  The so called 'novel search techniques' suggest differ- 
ent ways of moving through the search space, while more or less implicitly informa- 
tion about the solution is acquired and used to further guide the search. Currently 
they offer the best approaches to solving many important classes of optimization 
problems, as e.g. the TSP. For an overview of these techniques see [Kiic92b]. 

The main disadvantage of these techniques is their missing completeness and 
correctness properties. There is no guarantee that a certain mechanism will ever 
find an optimal or even constraint satisfying solution. Therefore these approaches 
are often ruled out for real world applications where certain requirements - hard 
constraints - definitely have to be met. On the other hand it is not necessary to 
always obtain the optimal solution with regard to the cost function - which may be 
very hard to compute - but rather a good solution can be sufficient [HT85]. Many 
real world problems are a mix of constraint satisfaction problems and optimization 
problems. A classical example is the vehicle scheduling problem. A fleet of vehicles 
has to deliver goods to customers with minimal effort. The problem is related to the 
TSP-optimization problem, but additional constraints also have to be met. Those 
are for example the capacity constraints of the vehicles. It may thus be permitted to 
offer a solution that is not optimal with regard to the length of the proposed tour, 
but in any case none of the vehicles may be overloaded. 

In an ideal system for constraint optimization an advanced search mechanism is 
combined with a constraint solver. It is a current research topic to consider such a 
combination in detail. 
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6 CLP systems 

This section reviews some constraint programming systems /~nd discusses briefly 
their most important features. This list cannot be complete and is not intended to 
be. The objective of the single descriptions is not to be exhaustive, but rather to 
give a rough idea of the presented system. The interested reader is referred to the 
cited literature for each of the systems. 

6.1 C H I P  

The Constraint Logic Programming language CHIP [DVS+88] has been developed 
at the European Computer-Industry Research Centre (ECRC). The most important 
feature of the CHIP system is the introduction of arithmetic constraints over finite 
domains solved by consistency techniques. In addition CHIP provides a rich set of 
symbolic constraints. Minimization is done by a branch and bound technique. 

Beside constraints over finite domains CHIP provides the following constraint 
Solvers: 

- Boolean constraints are solved with a Boolean unification algorithm 
- Linear rationM constraints are handled by an extended Simplex algorithm. 

Finally as already mentioned CHIP gives the user the possibility to define his 
own constraints and control their execution. The demon rules are most prominent. 
Conditional propagation based on an if-then-else construct is another way to control 
the evaluation of constraints. 

Based on the CHIP technology there are currently four different commercial prod- 
ucts available or under development. Bull is offering the finite domain technology 
within its CHARME system, ICL has a product called DECISION POWER based on 
the CHIP/SEPIA compiler [MAC+89, AB91]. Siemens-Nixdorf Informationssysteme 
are currently developing their new version of SNI-Prolog, which will incorporate the 
whole CHIP technology. Finally the CHIP interpreter has been productised by the 
French company COSYTEC. 

CHIP's finite domain constraints, and generalised propagation, have been inte- 
grated into the OR-parallel logic programming platform ElipSys [DSVX91]. Cur- 
rently a successor to CHIP is under development at ECRC. It will provide integra- 
tion of new constraint solvers [Mon92b]; generalised propagation [LW92b] working 
on various computation domains; constraint simplification rules [Frfi92]; and novel 
search techniques [Kiic92a]. 

6.2 C L P ( ~ )  

The Constraint Logic Programming language C L P ( ~ )  [JMSY90] has been devel- 
oped as a demonstrator for the CLP(X) scheme at Monash University, IBM Yorktown 
Heights and Carnegie Mellon University. The constraint domain of CLP(~)  is real 
linear arithmetic. As already mentioned non-linear constraints are delayed. The un- 
derlying constraint solver is an extended Simplex algorithm. Currently there are two 
implementations available from IBM /Carnegie  Mellon University, an interpreter 
and since recently a compiler-based version. 
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6 . 3  P r o l o g - I I I  

PROLOG III [Co190] is the CLP language developed at the University of Marseille 
and at Prologia in France. It includes three new constraint domains: linear rational 
arithmetic, boolean terms and finite strings (or finite lists). 

- Linear rational arithmetic is handled via an extended Simplex algorithm. 
- The boolean constraint-solver is based on a saturation method. 
- The facilities of PROLOG III for finite string (lists) processing is explained be- 

low. The constraint solver is based on a restricted string unification algorithm. 

For finite strings there exists a single function to concatenate two strings, denoted 
by "." and the only constraint is the equality constraint. To illustrate how these finite 
strings may be used consider the following problem (from [Co190]). 

Find the string(s) Z such that <1,2,3>.Z = Z.<2,3,1> 

There are in fact an infinite number of solutions. Hence Prolog III delays the evalua- 
tion of such constraints until their length is known. Let us consider the string length 
10 (the length operator is infix in Prolog-III and denoted by the operator : :). 

( Z :: 10, <1,2,3>.Z = Z.<2,3,1> ]- ; 

The system comes back with the single solution: 

( Z = < 1 , 2 , 3 , 1 , 2 , 3 , 1 , 2 , 3 , 1 >  ]- 

PROLOG III is a commercial product of Prologia, Marseille. 

6.4 Tr i logy 

Trilogy [Vod88] is a constraint programming language developed at Complete Logic 
Systems in Vancouver. The constraint domain of Trilogy is integer arithmetic, i.e. 
it allows linear equations, inequations, and disequations over integers and integer 
variables to be expressed. The solver is based on a decision procedure for Presburger 
Arithmetic. Unlike other CLP systems TRILOGY is not integrated into a Prolog 
environment, but it is based on an own "theory of pairs" [Vod88]. Trilogy is compiled 
into native code for PCs as target machines. It can be acquired via Complete Logic 
Systems in Vancouver. 

6.5 CAL and  G D C C  

CAL [ASS+88] (Constrainte Avec Logique), developed at ICOT, Tokyo, was the first 
CLP language to provide non-linear constraints. During the last few years a parallel 
version of CAL has been developed at ICOT, called GDCC [AH92]. The system can 
handle constraints in the following domains: 

- Non-linear real equations are solved with a GrSbner Base algorithm. 
- The constraint solver for boolean constraints is based on a modified GrSbner 

Base algorithm. 
- Linear rational arithmetics are again solved with a Simplex algorithm. A branch 

and bound method has been implemented on top of this constraint solver to 
solve integer optimization problems. 

Both CAL and GDCC are available from ICOT, Tokyo. 
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6 . 6  B N R - P r o l o g  

BNR-Prolog [Be188] has been developed at Bell-Northern Research, Ottawa. It has 
been specifically designed for Apple Macintosh. The interesting feature of BNR- 
Prolog from a CLP point of view is the introduction of the so called relational arith- 
metic. This new constraint domain is based on a new interval variable representing 
a real number lying between lower and upper bound of this interval. The constraint 
handler is based on interval arithmetic [OV90]. The system can be acquired from 
Bell-Northern Research, Ottawa. 

6.7 R I S C - C L P  

RISC-CLP [IIon92] is a prototype system in the domain of real arithmetic terms. It 
has been developed at the RISC, Linz. It can handle any arithmetic constraints over 
the reals. The constraint solver behind is an improved version of Tarski's quantifier 
elimination method [Hon90]. 

7 Conclusion 

This paper aimed at giving an informal introduction into the different concepts of 
CLP. It tried to explain the philosophy behind the main ideas in CLP and illustrate 
them by examples. Emphasis has been put on the practically relevant parts. 

CLP is successfully employed in a large variety of applications, in particular 
ones that can be expressed as constrained search problems. While keeping the main 
features of logic programming, i.e. declarativeness and flexibility, CLP brings into 
these languages 

- the efficiency of special purpose algorithms written in imperative languages and 
- the expressiveness of the different constraint domains it embodies. 

The main advantage of CLP compared to other approaches is that it drastically 
reduces development time and provides more flexibility offered by the solution while 
showing an efficiency comparable to solutions written in procedural languages. 

Constraint Logic Programming is moving out of the research labs into the com- 
mercial world. A number of products based on this technology are offered today. 
These products have been applied in a large range of very different application 
which are in use. Amongst them: 

- At Hongkong International Terminal and in the Harbour of Singapore the re- 
source planning and scheduling system controls ships, cranes, containers and 
stacks. 

- At Cathay Pacific the Movement Control Systems supports the planning and 
scheduling of their entire fleet. 

- At the French national railway SNCF movements of empty waggons are opti- 
mised. 

- Within Siemens CLP is supporting the circuit designers with their Circuit Ver- 
ification Environment. 
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- In the ESPRIT projects APPLAUSE, CIIIC and PRINCE a large number of 
applications is currently under development. 

CLP is still very much under development. The main practical systems are im- 
plemented to run on a single processor. Many researchers are studying concurrent 
constraint handling and parallel implementations of CLP. Secondly constraints in 
existing systems need to be well-understood by the end user if he is to obtain maxi- 
mum benefit of them in his programs. The development of cleaner and simpler ways 
to specify constraint behaviour will be essential for its future industrial acceptance. 
Thirdly the practical requirement to integrate constraint handling with other soft- 
ware techniques and systems is becoming pressing. The current work on integrating 
CLP with data base technology is an important step in this direction. 
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