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Logic Refresher Exercises

Exercise 1. Check for each of the following formulae which properties are true: validity, satis-
fiability, falsifiability, unsatisfiability.

(1) A ∨ ¬A
(2) A ∧ ¬A
(3) A → ¬A
(4) A → (B → A)
(5) A → (A → B)
(6) A ↔ ¬A
(7) (A ∧B) → (A ∨B)
(8) (A ∨B) → A
(9) (A ∧B) ∧ ¬A

Exercise 2. For a formula F , are the following statements true or false? Give a counter example
for each false statement.

(1) If F is valid, then F is satisfiable.
(2) If F is satisfiable, then ¬F is unsatisfiable.
(3) If F is valid, then ¬F is unsatisfiable.
(4) If F is unsatisfiable, then ¬F is valid.

Exercise 3. Is G a logical consequence of F? For each state if F |= G or F 2 G.

F G F |= G or F 2 G

A A ∨B
A A ∧B
A,B A ∨B
A,B A ∧B
A ∧B A
A ∨B A
A, (A → B) B

Exercise 4. For each pair of atomic formulae, give both a most general unifier and a unifier
which is not most general. Otherwise show that a unifier cannot exist.
(1) p(a,X, c, Y, Z) and p(Y,X, c, a,W )
(2) p(Y, g(Y, f(Y )), g(X, a)) and p(f(U), V, g(h(U, V,W ), U))
(3) p(g(X), h(a,X), h(Y, Y )) and p(U, h(a, g(V )), h(V, g(U)))
(4) p(h(f(X), a), X, h(f(f(X)), f(f(X)))) and p(h(V, a), U, h(W, f(V )))
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Introducing SWI-Prolog

Exercise 1. Hello World

• Download SWI-Prolog to your personal machine. It is already installed in the PC pool.
• Go through the SWI-Prolog reference manual:

http://www.swi-prolog.org/pldoc/refman/

• Write a “Hello world!” program in Prolog, e.g.,
start :- write(’Hello world!’).

• Consult the source file and call it with the goal start.

Exercise 2. Family Relations

• Create the family database adding facts, representing the family tree as follows:
(1) male(X) : X is a male
(2) female(X) : X is a female
(3) parent(X,Y) : X is a parent of Y

• Implement predicates to represent the following relationships:
(1) mother(X,Y)

(2) father(X,Y)

(3) grandmother(X,Y)

(4) grandfather(X,Y)

(5) ancestor(X,Y)

(6) brother(X,Y)

(7) sister(X,Y)

(8) siblings(X,Y)

(9) uncle(X,Y)

(10) cousin(X,Y)

• Add facts about your own family and test if your predicates work correctly.

Exercise 3. Unification
First attempt this exercise by hand without the help of SWI-Prolog, then verify your solutions
by testing them. Specify whether the query submitted to Prolog succeeds or fails; and if it
succeeds, specify what is assigned to the variables by the unification; if it fails, explain why.

(1) ?- X = hans.

(2) ?- anja = hans.

(3) ?- X = hans, X = Y.

(4) ?- X = happy(hans).

(5) ?- X is Y.

(6) ?- 2 + 1 = 3.

(7) ?- f(X,a) = f(a,X).

(8) ?- likes(anja, X) = likes(X, hans).

(9) ?- A = b(c).

(10) ?- a = b(c).

The next exercise to be submitted by e-mail to: amira.zaki@uni-ulm.de. The deadline is on
07.11.2012 by 10:00. You are allowed to work in a group of two people. Please send only one
e-mail per group, containing the solution and both team member names.

Exercise 4. Directed Graphs
A directed graph can be represented by storing information about the edges contained as facts.
Model the given directed graph into respective facts.

a //

��

b

��
c // d // e

Implement a predicate path(X,Y) that holds if there exists a path from the node X to the node
Y. Try the execution of the following goals and trace their execution:

path(a,c). path(b,Y). path(f,g).

http://www.swi-prolog.org/pldoc/refman/
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To follow the execution of Prolog programs use the tracer. To enable the tracer, enter“trace”. To
disable it again, use “notrace”. The tracer will show the computation step by step. A debugger
is also possible, enabled by “debug”. Check the SWI-Prolog manual for more options.

Exercise 1. Write the following arithmetic Prolog predicates:

(1) minimum(A,B,C) which succeeds if C is the minimum of A and B.
(2) factorial(X,N) which succeeds if N is the factorial of X.

Exercise 2. Write the following list manipulating Prolog predicates:

(1) member(X,L) which succeeds if X is a member of the list L.
(2) len(N,L) which succeeds if N is the length of a list L.
(3) append(L1, L2, L3) which succeeds if L3 is the concatenation of L1 and L2.
(4) reverse(L1,L2) which succeeds if the list L2 is the reverse of the list L1.
(5) remove(X,L1, L2) which succeeds if L2 is the result of removing X from L1.
(6) union(L1, L2, L3) which succeeds if L3 is the union of L1 and L2.
(7) intersect(L1, L2, L3) which succeeds if L3 is the intersection of L1 and L2.

The next exercise to be submitted by e-mail to: amira.zaki@uni-ulm.de. The deadline is on
21.11.2012 by 10:00. You are allowed to work in a group of two people. Please send only one
e-mail per group, containing the solution and both team member names.

Exercise 3. Implement a Prolog program to help scheduling routes for the freight forwarding
business. The program uses the following knowledge base, giving distances between major cities
in Germany.

Hamburg, Bremen, 80 Hamburg, Hannover,110

Hamburg, Berlin, 230 Bremen, Hannover,100

Bremen, Dortmund, 200 Hannover, Kassel,140

Hannover, Nuernberg, 380 Dortmund, Kassel,130

Dortmund, Koeln, 80 Kassel, Wuerzburg,180

Kassel, Frankfurt, 180 Frankfurt, Wuerzburg,110

Nuernberg, Muenchen, 160

a) Represent the distances with a Prolog predicate dist(city0,city1,km). Test your im-
plementation with queries like ?- dist(dortmund,bremen,Km),
?- dist(From,To,180), and ?- dist(From,To,Km).

b) The Prolog predicate route(From,To) should succeed, iff there is a route between From

and To. Tests should include route(muenchen,berlin), route(ulm,halle), and finally
route(frankfurt,To).

c) Define a ternary predicate route(From,To,Route) which has the same functionality as
route/2 w.r.t. the first and second parameters From and To. Additionally, the third pa-
rameter, Route, contains the cities already visited in order to avoid cycles (i.e. visiting
a city more than once). Testing should include ground and non-ground queries, e.g.,
?- route(dortmund,X,[kassel]).

d) The Prolog predicate shortestpath(From,To,Route,Km) should succeed, iff the min-
imal distance between the cities From and To is Km along Route. Tests should include,
e.g., shortestpath(kassel,bremen,[hannover],X).

amira.zaki@uni-ulm.de
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Constraint Logic Programming

The SWI-prolog documentation of CLP-FD library:
http://www.swi-prolog.org/man/clpfd.html

Exercise 1 (Cryptoarithmetic Puzzle).
Replace distinct letters by distinct digits (numbers have no leading zeros), such that the following
calculation holds (a literal translation to English is “Test thoroughly your strengths”):

T E S T E
+ F E S T E
+ D E I N E

= K R Ä F T E

Use the clpfd library to model the previous puzzle as done in the lecture. You might find it
useful to use the constraint all_different(+Vars).

Exercise 2. Model the following dinner problem as a constraint problem in clpfd:
We are going out to dinner taking 1-6 grandparents, 1-10 parents and 1-40 children. Grandpar-
ents cost 3 euros for dinner, parents cost 2 euros and children 0.50 euros. There must be 20
total people at dinner and it must cost exactly 20 euros. The problem to be solved is to find
how many grandparents, parents and children are going to dinner.

Exercise 3. Can you find the ages according to the following dialogue?

Alex: How old are you mama?

Mama: Our three ages add up to exactly seventy years.

Alex: And how old are you papa?

Papa: Just six times as old as you, my son.

Alex: Shall I ever be half as old as you, papa?

Papa: Yes Alex; and when that happens our three ages will

add up to exactly twice as much as today.

Write a clpfd program to solve this puzzle and return the age of Alex, Mama and Papa today.
Hint: model the age in months.

Exercise 4. The map coloring problem tries to find a way to color a map such that no two
boarding states have the same color. The predicate color(States, NumColors, Adj) should
succeed iff it is possible using a maximum number of colors, NumColors, and the list of adjcacent
pair of states, Adj, to satifty the map coloring rules and color the states as in States.

Implement the predicate color using clpfd. Test
coloring of the 4 states shown on the right using 3
colors, with the predicate:

?- color([A,B,C,D],3,[(A,B),(B,C),(B,D),(D,A)]).

http://www.swi-prolog.org/man/clpfd.html


Exercise 5 (Magic Square).
A “magic square” is a rectangular array of distinct numbers, usually from 1 to n2, such that each
column, row, and both diagonals have the same sum. The constant sum in every row, column
and diagonal is called the magic sum, M. Using the clpfd library, solve the puzzle for a magic
square with n = 4 and M = 34. Make sure you write the full square on the console.

The next exercise is to be submitted by e-mail to: amira.zaki@uni-ulm.de. The deadline is
on 27.11.2012 by 12:00. You are allowed to work in a group of two people. Please send only one
e-mail per group, containing the solution and both team member names.

Exercise 6 (Survo Puzzle).
Survo puzzle is a kind of logic puzzle presented (in April 2006) and studied by Seppo Mustonen.
The name of the puzzle is associated to Mustonen’s Survo system which is a general environ-
ment for statistical computing and related areas.

In a Survo puzzle the task is to fill an m × n table by integers 1, 2, ...,m × n so that each of
these numbers appears only once and their row and column sums are equal to integers given on
the bottom and the right side of the table. Often some of the integers are given readily in the
table in order to guarantee uniqueness of the solution and/or for making the task easier [taken
from Wikipedia].

Here is a simple Survo puzzle with 3 rows and 4 columns:

A B C D

1 6 30
2 8 18
3 3 30

27 16 10 25

Solve the Survo puzzle using the clpfd library for 3 × 4 tables.
Extra: Think of a generic solution for any Survo puzzle.

amira.zaki@uni-ulm.de
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Write and query Prolog, CLP and CHR online using:
http://chr.informatik.uni-ulm.de/~webchr/

CCLP

We use (a subset of) the Constraint Handling Rules (CHRs) to program in the CCLP paradima.
The following CCLP-clause H ← C | G
is written as N @ H <=> C | G

where N @ is an optional name for the rule.

• Read the SWI-Prolog manual on CHR: http://www.swi-prolog.org/man/chr.html
• Before using CHR, the CHR library must be included, :- use_module(library(chr)).

• User-defined CCLP predicates must be declared, :- chr_constraint contraint/arity.

• To enforce that guards should be checked for (illegal) variable bindings, use,
:- chr_option(check_guard_bindings,on).

Exercise 1 (Comparison of CLP and CCLP).
Compare the following CLP- (in the left column) and CCLP-programs (in the right column),
which consist of one of the given rules by posing the queries given below. Check your answers
with the system’s answers. Make sure, you understand why seemingly innocuous rules produce
different answers.

p(a) :- true.

p(X) :- X=a.

p(X) :- X = a, X = b.

p1 @ p(a) <=> true | true.

p2 @ p(X) <=> X = a | true.

p3 @ p(X) <=> true | X = a.

p4 @ p(X) <=> X = a, X = b | true.

p5 @ p(X) <=> X = a | X = b.

p6 @ p(X) <=> true | X = a, X = b.

Queries: (a) p(a), (b) p(b), and (c) p(C).

Exercise 2. Implement the following three variants of the CCLP minimum program in CHR:

• Variant 1:

min11(X,Y, Z)← > | X ≤ Y, Z = X

min12(X,Y, Z)← > | Y ≤ X, Z = Y

• Variant 2:

min21(X,Y, Z)← X ≤ Y | Z = X

min22(X,Y, Z)← Y ≤ X | Z = Y

• Variant 3:

min31(X,Y, Z)← X ≤ Y, Z = X | >

min32(X,Y, Z)← Y ≤ X, Z = Y | >
Test and explain the different responses of the variants by posing the following six queries (only
one at a time):

min(1,2,C). min(A,2,1). min(A,2,3).

min(A,A,B). min(1,2,1). min(1,2,3).

http://chr.informatik.uni-ulm.de/~webchr/
http://www.swi-prolog.org/man/chr.html


Exercise 3 (Hamming’s problem).
Consider the classical Hamming’s problem, which is to compute an ordered ascending chain of
all numbers whose only prime factors are 2, 3, or 5. The chain starts with the numbers:

1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,...

Define a non-terminating process hamming(N) that will produce the numbers as elements of the
infinite chain starting with 1. Hints:

- pretend that the sequence is already known
- no base cases in recursion as sequences are infinite
- concurrent-process network, processes can be executed in parallel
- to view the stream, you will need an observe/1 rule that writes elements of the stream

as they are produced

Exercise 4 (Bank Transactions).
A classical and good example of a producer/consumer interaction is a bank account model.
The bank “consumes” client’s commands which are in the form:

withdraw(Amount) - withdraws the Amount from the client’s balance
deposit(Amount) - deposits the Amount to the client’s balance
balance(Amount) - binds Amount to the client’s balance

where Amount is a free variable.
For example, a client could produce the following:

[deposit(100), withdraw(25), balance(75)]

The bank process observes these commands and in its second argument modifies the current
balance accordingly. Implement CHR bank/2 rules that handle a stream of the three possible
client commands and update the balance accordingly. Also implement a starter rule bank/1

which initially sets the balance to zero, then calls the bank/2 handlers.

You can use the Prolog predicate read/1 to read the next Prolog term from the current input
stream. Thus additionally, implement a producer/client (client/1) that would continuously
read a term from the user.
The idea is to create these consumer and producer “threads”, to run them using the query:
?- bank(L),client(L).

The next exercises are to be submitted by e-mail to: amira.zaki@uni-ulm.de. The deadline is
on 05.12.2012 by 10:00. You are allowed to work in a group of two people. Please send only one
e-mail per group, containing the solution and both team member names.

Exercise 5 (Fibonacci Sequence).
By definition, the first two numbers in the Fibonacci sequence are 0 and 1, and each subsequent
number is the sum of the previous two. The chain starts with the numbers:

0,1,1,2,3,5,8,13,21,34,55,89,144,...

Define a non-terminating process fib(N) that will produce the numbers as elements of the
infinite chain starting with 0. Hint: You want to create an infinite stream, so do not create a
base case and you can provide the first two Fibonacci elements in the query, along with the
observe/1.

Exercise 6 (Minimum of Stream). Create a recursive stream that produces minimal elements
found so far in a stream (i.e. a sequence of current minima) using min/3. An example query:
?- observe(ML), ML=[31|_], minlist([31,56,13,45,24,52,2,634,58,632,23,1543],ML).

would produce the stream: 31,31,31,13,13,13,13,2,2,2,2,2,2.

amira.zaki@uni-ulm.de
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For debugging, you can use the tracer. To enable the tracer, enter “chr_trace”. To disable it,
use “chr notrace”. The tracer will show you the computation step by step.

Exercise 1. Compare the following CHR programs, which consist of one of the given rules
by posing the given queries. Check your answers with the system’s answers. Make sure you
understand why seemingly similar rules produce different answers.

c1 @ c(X), c(X) <=> q(X,X).

c2 @ c(X), c(Y) <=> r(X,Y).

c3 @ c(X), c(X) ==> q(X,X).

c4 @ c(X), c(Y) ==> r(X,Y).

Queries:

a) c(X), c(X)

b) c(X), c(Y)

c) c(X), c(Y), X=Y

More variants:

q1 @ p(X,Z), q(Z,Y) <=> q(X,Y).

q2 @ q(Z,Y), p(X,Z) <=> q(X,Y).

q3 @ p(X,Z), q(Z,Y) ==> q(X,Y).

q4 @ q(Z,Y), p(X,Z) ==> q(X,Y).

q5 @ p(X,Z) \ q(Z,Y) <=> q(X,Y).

q6 @ q(Z,Y) \ p(X,Z) <=> q(X,Y).

Queries:

d) p(a,b), q(b,c)

e) p(a,b), q(b,c), p(d,a)

Comment on the system’s answers for queries a) to e). Comment on the system’s answers for
the rule q5 and the following two queries:

p(X,C), p(Y,C), q(C,A) and p(Y,C), p(X,C), q(C,A).

Exercise 2. Implement the constraints less/2 (encoding <) und leq/2 (encoding ≤) and
their mutual relations/interactions in CHR. Use the lecture’s CHR program for the ≤ con-
straint helpful (also present on WebCHR). For an example query, take your last name as a
sequence of variables with ≤ constraints between succeeding characters. The name Fruehwirth
translates to the query:
leq(F,R),leq(R,U),leq(U,E),leq(E,H),leq(H,W),leq(W,I),leq(I,R),leq(R,T),leq(T,H)

with answer leq(F,E), R = T, U = T, E = T, H = T, W = T, I = T .
Do additional tests consisting of combined less and leq constraints.

Submit the next exercise by e-mail to: amira.zaki@uni-ulm.de latest by 19.12.2012 by 10:00.

Exercise 3. The addition of natural numbers written in successor notation (the natural number
3 is written as s(s(s(0)))) can be implemented by:

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

Write a constraint solver in CHR, that solves as many as possible single add-constraints, e.g.,
the first Prolog clause implies:

add(0,Y,Z) <=> Y=Z.

add(X,Y,Y) <=> X=0.

You will need to write the other base cases and the recursive cases required for the addition.

amira.zaki@uni-ulm.de
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Exercise 1 (Warmup – generate and test).
Implement a Prolog-predicate permutation/2 that generates permutations: permutation(A,B)
generates a permutation B of a list A with fixed length. All permutations can be computed by
backtracking using “;” when promted. Do not use built-in predicates for manipulating lists.
Describe your observations with the following queries:

• permutation([1,2,3],[L,M,N]).
• permutation([L,M,N],[1,2,3]).
• permutation([1,2,3],B).
• permutation(A,[1,2,3]).

Exercise 2 (Permutation Sort – “generate and test”).
Use the permutation sort algorithm for sorting a list of integers. To implement the generate and
test version, use three Prolog predicates permsort(List,Sorted), permutation(List,Sorted),
and sorted(Sorted) (all arguments are lists).

Exercise 3 (Permutation Sort – “constrain and generate”). Use the CHR Constraint leq/2

from assignment #6-2 for a “constrain-and-generate” version of the permutation sort algorithm,
replacing the Constraint =< by the CHR-constraint leq.
Your tests should (at least) include the following queries
?- permsortCHR([1,A,3],[1,3,7]).

?- permsortCHR([2,A],X).

?- permsortCHR([A,B,A],X).

?- permsortCHR(List,[1,X,3]).

?- permsortCHR([1,X,Y],[X,1,Y]), permsortCHR([4,5,10], [Z,Y,W]).

Submit the next exercise by e-mail to: amira.zaki@uni-ulm.de, latest by 09.01.2013 at 10:00.

Exercise 4. Write a CHR program for the maximum(X,Y,Z)-constraint, which succeeds iff Z is
the maximum of X and Y. Use your implementation of the leq/2- and less/2-constraints from
assignment #6-2. Consider the following items in this order:

(1) Write a CHR rule, which computes the maximum Z of two given numbers X and Y.
(2) Enhance by inserting a CHR rule, such that queries like ?- maximum(X,X,3) can be

handled satisfactorily (we expect X = 3).
(3) Insert a CHR rule which, given the constraint maximum(X,Y,Z), propagates the con-

straints leq(X,Z) and leq(Y,Z). Test with the query ?- maximum(A,B,C),maximum(C,A,B).

(4) Insert CHR rules, such that under a given unequality between X and Y (e.g. X leq Y)
the constraint maximum(X,Y,Z) is replaced by the implied equality (e.g. Y = Z).

(5) Insert a CHR rule, such that for a query like ?- less(X,Z), maximum(X,Y,Z) the
answer Y=Z is returned.

(6) In order to handle queries like ?- maximum(X,Y,3),maximum(X,Y,5) in a satisfactory
manner, extend the program for a rule for this class of queries.

(7) Which are the sufficient conditions, given that two variables are unequal, to allow more
inferences from maximum(X,Y,Z).
Implement this case by (additional) rules in your CHR program.

amira.zaki@uni-ulm.de
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Constraint System B
Download boole.pl from the lecture web page (also sent to your email): http://www.uni-ulm.
de/fileadmin/website_uni_ulm/iui.inst.170/home/betz/boole.pl. It contains the imple-
mentation of the constraints neg/2, and/3, or/3, xor/3, and imp/2 of the Boolean Algebra.
Use this constraint-solver for the following exercises.

Exercise 1 (Equivalence).

Extend boole.pl with rules (similar to the ones already defined) in order
to introduce equivalence, i.e. implement simplifications for a CHR-constraint
equiv(X,Y,Z) which obey the given truth table.

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

Exercise 2 (Half Adder).

Write a CHR constraint add(A,B,S,C),
which implements a half adder by means
of Boolean constraints.
Test with queries add(1,0,S,C),
add(A,B,S,1) and add(A,B,S,0).

Exercise 3 (Who is lying?).

Lehmann says Mueller lies.
Mueller says Schulze does not tell the truth.
Schulze says both lie.

Write a Prolog-predicate tellTruth(Lehmann,Mueller,Schulze) which determines who of the
three people is lying and who is telling the truth; it should succeed iff the three arguments are a
valid interpretation of the given statements by Lehmann, Mueller, and Schulze. Use the Boolean
constraints and, neg, . . .
Hint: Lehmann’s statement can be modeled by Lehmann = MuellerLies, or using equivalence,
with MuellerLies being the negation of Mueller.

http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.170/home/betz/boole.pl
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.170/home/betz/boole.pl


Exercise 4 (Cross Circuit).

A cross circuit exchanges two wires/signals
with the help of a logic circuit without
crossing them physically. For the input pins
(X, Y ) and the output pins (A, B) we have
A = Y and B = X.
Write a CHR constraint cross(X,Y,A,B),
which implements a cross circuit by means
of Boolean constraints.
Test with queries cross(1,0,A,B),
cross(1,Y,1,B) and cross(0,Y,A,B).

Submit the next exercises by e-mail to: amira.zaki@uni-ulm.de, latest by 23.01.2013 at 10:00.

Exercise 5 (To like or not to like).
I know three people: Pat, Quincy and Ray. I like at least one of them. If I like Pat but not
Ray then I also like Quincy. I like both Ray and Quincy or none of them. Describe the facts as
Boolean constraints and determine who I like for sure and who I may dislike.

Exercise 6 (De Morgan’s laws).
Translate the rewrite rules for De Morgan’s law of propositional logic into CHR simplification
rules:

not(and(X,Y)) -> or(not(X),not(Y)).

not(or(X,Y)) -> and(not(X),not(Y)).

amira.zaki@uni-ulm.de
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Exercise 1 (Extension of FD-solver).
Extend the finite domain constraint solver over enumeration domains presented in the lecture.

a) Implement rules to let the leq, eq, and neq constraints interact with the given solver.
Tests should include X leq Y, Y leq Z, X in [0,3], Y in [-1,2], Z in [0,1,2,3].

b) Introduce the maximum(X,Y,Z) constraint to the given solver, where Z is the maximum of
X and Y. Tests should include maximum(X,Y,Z),X in [0,1],Y in [2,4],Z in [3,4].

c) Implement a label(List)-constraint to bind the variables in List. An easy test case
is, e.g. X in [0,1], Y in [0,1], X leq Y, label([X]).

Exercise 2 (N-Queens).
Implement a solver for the N-Queens puzzle as covered in the lecture. You can change no_attack/3
to the following:

no_attack(X,Y,N) <=> X neq Y,

add(X,N,XPN), XPN neq Y,

add(Y,N,YPN), YPN neq X.

Hint: You will need to implement a special handler for the add/3 constraint. Only consider
propagation where the first input values is fixed/known and the second is a number.

Exercise 3 (Sudoko).
Sudoko is a logic puzzle which is solved using logic and reasoning. The objective is to fill a 9×9
grid with digits so that each column, each row, and each of the nine 3× 3 sub-grids (or blocks)
that compose the grid contains all of the digits from 1 to 9. Implement a sudoko solver in CHR
using the above FD-solver.

Hint: Represent each puzzle cell using a constraint cell(R,C,B,V), where the value V is stored
in the puzzle at row R and column C which belongs to the sub-grid or block B. Then write the
appropriate rules that propagate the relevant neq constraints. Create a sudoko constraint that
produces all 64 cell constraints with the correct variables.

Submit the next exercise by e-mail to: amira.zaki@uni-ulm.de, latest by 30.01.2013 at 10:00.

Exercise 4 (Pyramid – Crypto-arithmetic Puzzle).
Solve the following crypto-arithmetic puzzle using finite domain constraints. Replace distinct
letters by distinct digits, such that each number is the absolute difference of the two numbers
below (e.g. A = |B − C|), and the numbers are the positive integers from 1 to 10.

A
B C

D E F
G H I J

Hint: You will need to implement CHR rules for an absolute difference abs/3 constraint, only
consider propagation where one of the input values is fixed/known. Additionally implement a
constraint allneq(List) that succeeds iff the variables in List are (pairwise) distinct.
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Exercise 1. Implement the axioms of the theory of rational trees for the CHR equality con-
straint X eq Y.
Hints:

• Change terms to list of functor and arguments by: f(X1,...,XN)=..[f,X1,...,XN]
• Rules leading to immediate contradiction should go first in the program text
• For termination reasons remove duplicate constraints

Queries:

(a) p(a,X,c,Y,Z) eq p(Y,X,c,a,W)

gives Y = a, Z = W
(b) p(Y,g(Y,f(Y)),g(X,a)) eq p(f(U),V,g(h(U,V,W),U))

gives Y = f(a), X = h(a, g(f(a), f(f(a))), W), U = a, V = g(f(a), f(f(a)))
(c) p(h(f(X),a),X,h(f(f(X)),f(f(X)))) eq p(h(V,a),U,h(W,f(V)))

gives X = U, V = f(U), W = f(f(U))
(d) p(g(X),h(a,X),h(Y,Y)) eq p(U,h(a,g(V)),h(V,g(U)))

gives false

Extend your implementation of rational trees to include the occur-check axiom of Clark’s Equal-
ity Theory (CET). This means that infinite trees are now disallowed and should fail, an example
of such a failing query: X eq f(Y), Y eq f(X).

Submit the next exercise by e-mail to: amira.zaki@uni-ulm.de, latest by 06.02.2013 at 10:00.

Exercise 2. The theory of rational trees should define the (purely) syntactic inequality ˙6=
between two terms :

irreflexivity ∀(x ˙6=x→ ⊥)
symmetry ∀(x ˙6=y → y ˙6=x)
compatibility ∀(x1 ˙6=y1 ∨ . . . ∨ xn ˙6=yn → f(x1, . . . , xn) ˙6=f(y1, . . . , yn))
decomposition ∀(f(x1, . . . , xn) ˙6=f(y1, . . . , yn)→ x1 ˙6=y1 ∨ . . . ∨ xn ˙6=yn)
distinctness ∀(> → f(x1, . . . , xn) ˙6=g(y1, . . . , ym)) iff 6= g or n 6= m

Implement a CHR-constraint X neq Y that succeeds iff CT |= X ˙6=Y. The implementation should
follow the one for syntactic equality. A satisfaction-complete implementation is not necessary.
Implement the negated same_args by a CHR constraint one_neq/2 that uses disjunction. The
two arguments are lists of the same length and the constraint should succeed iff at least one
pair of list-elements is unequal.

Queries:

(a) X neq f(X)

(b) f(a,X) neq f(X,Y)

(c) f(g(X),a) neq f(Y,X)
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Exercise 1 (< as special RT solver).
Modify the solver for rational trees (RTs) of Assignment 10:

idempotency @ X eq Y \ X eq Y <=> true.

reflexivity @ X eq X <=> true.

orientation @ T eq X <=> var(X), X@<T | X eq T.

decompostion @ T1 eq T2 <=> nonvar(T1), nonvar(T2) | ...

confrontation @ X eq T1 \ X eq T2 <=> var(X), X @< T1, T1 @=< T2 | T1 eq T2.

as a polynomial equation solver by only changing the body of the decomposition rule to handle
linear polynomial equations: The resulting equation T1 minus T2 is computed in normal form.
An equation is in normal form if X eq A + B*Y + ... for variables, X, Y, ... and numbers
A, B, ....

You can test your solver with queries like:
5+3*X eq 5+3*X.

Y eq 7+2*X+1*Z, Y eq -2+3*X, X eq 3.

Y eq 7+1*Z+2*X, Y eq -2+3*X, X eq 3.

Exercise 2 (Inequations Solver using Fourier Elimination).
Implement an inequations solver for the geq/2 constraint as discussed in the lecture: use Gauss-
ian variable elimination for equations, use Fourier variable elimination and the bridge rule
combining the variable elimination approaches for equations and inequations.

You can test your solver with queries like:
0+1*Y+1*X geq 0, 0+1*Y+(-1)*X geq 0.

3+2*X+4*Y geq 0, 12+4*X+2*Y eq 0.


