Constraint Programming Prof. Dr. Thom Frühwirth, Marc Meister

assignment #9 (winter term 2005) solutions will be presented Tuesday, 17-Jan-2006, 2 PM, o27/2203 http://www.informatik.uni-ulm.de/pm/index.php?id=112

Exercise 1 (Warmup - Single-Source Shortest Path).

Find the shortest path from a given source vertex $s \in V$ to all other vertices $v \in V$ in a weighted directed graph G = (V, E). The weight-function $w : E \to \mathbf{R}$ is lifted for a path $p = \langle v_0, v_1, ..., v_k \rangle$ to $w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$. The shortest path between vertices u and v is the minimum weight of all paths $u \leadsto v$, or if there is no such path it is ∞ .

To avoid negative weight cycles we allow non-negative weights only.

- a) Write a CHR program to solve the SSSP problem using the standard relaxation method.
- b) Enhance your program, s.t. for all vertices $v \in V$ the path from s to v yielding minimal weight is stored.

Test and comment your program.

Exercise 2 (Major assignment – Country Puzzle¹).

Consider a quadratic map consisting of $n \times n$ squares. Find positive integers for the remaining empty squares of the map s.t. any maximal contiguous set of squares containing the same integer (that makes a country) has the size equal to this integer (two squares are contiguous if they share a side). If this is not possible output no. An example puzzle and its unique solution is given below.

Use CHR and the clpfd library.

The unique solution to the given 5×5 country puzzle is given on the right.

- a) Model the problem.
- b) State what "properties" are to be handled by
 - CHR-constraints,
 - solved by the clpfd library, or require
 - auxiliary Prolog-predicates.
- c) Implement the auxiliary predicates.
- d) Implement the constraints.
- e) Comment your source code.
- f) Test your implementation with a test suite containing
 - -1×1 and 2×2 maps (one yes, one no each),
 - the given example above, and
 - the 6×6 example given by

Hint: This major assignment is probably not solvable in one evening's time! You are encouraged to send proposals per mail to the participants and Marc (no matter there's Christmas vacation).

¹Example taken from P. Szeredi, Teaching Constraints through Logic Puzzles, LNAI 3010.