
Rule-based Programming
Prof. Dr. Thom Frühwirth, Amira Zaki

Summer Term 2013

Assignment #1

Introducing Constraint Handling Rules (CHR)

Exercise 1. Installation

(1) Download and install SWI-Prolog http://goo.gl/RSj8i to your computer. It is also
installed in all PC pools.

(2) If you are using Windows, you can then download and install the SWI-Prolog Editor:
http://goo.gl/6deJX

(3) Use the SWI-Prolog manual on how to use the CHR library: http://goo.gl/wNvQw

Exercise 2 (Hello World). You can use the template file sent to you by e-mail.

(1) Some basic coding rules:
(a) All code lines must end with a dot.
(b) Constraint names and values must begin with a small letter.
(c) Variables (unknowns) must begin with capital letters.
(d) Constraint names, variables and values cannot have spaces.
(e) To add comments which are not be executed, use % followed by the comment.

(2) Before using CHR rules, the CHR library must be included by:
:- use_module(library(chr)).

(3) User-defined constraints must be declared with their name and arity (number of argu-
ments), as:
:- chr_constraint name/arity.

(4) Write a “Hello world!” program in CHR:

:- use_module(library(chr)).

:- chr_constraint start/0.

start <=> write(’Hello world!’).

Run the program with the query: start.
(5) Use chr_trace to switch on the tracer and view interactions with the constraint store.
(6) End the tracing using chr_notrace.

Exercise 3 (Walking by Simplification). A walk can be expressed by movements east, west,

south, north. The number of steps required can be simplified by the following rules:

east, west <=> true.

south, north <=> true.

Implement the walking rules in CHR, and test it for queries like: ‘east, south, west, west,

south, south, north, east, east’.

Exercise 4 (Carry Less). A coin exchange machine aims to help people carry less coins. It works
by reducing the number of coins that a person would carry. For example, instead of carrying
four 50-cents, the machine replaces them with one 2-euro coin. Assume that the least acceptable
coin is the 10-cent coin. Model the coins using the constraints euro2, euro1, cent50, cent20,

cent10, and then write some CHR rules that would collect the smaller-valued coins to produce
less bigger-valued ones. Test your program with the queries below:

(1) cent10,cent10,cent10,cent10,cent10 → cent50

(2) cent20,cent20,cent10,cent10,cent10,cent10,cent10,cent10 → euro1

(3) euro1,cent50,cent50 → euro2

(4) euro1,cent20,cent20,cent20,cent20,cent20,cent50 → euro2,cent50

http://goo.gl/RSj8i
http://goo.gl/6deJX
http://goo.gl/wNvQw

Exercise 5 (Ro-Sham-Bo). Rock-paper-scissors or“Ro-Sham-Bo”is a hand game usually played
by two people, where players simultaneously form one of three shapes with an outstretched hand.
The rock beats scissors, the scissors beat paper and the paper beats rock; if both players
throw the same shape, the game is tied (Wikipedia). Write some CHR rules that determine the
winner of a round of this game or detects a draw.

Knowledge can be processed as “Property of Object is Value”. Examples include:
name of X is julia, birth-date of julia is (2,3,1988), value of city is Ulm, ...
Add the following two lines to have this knowledge representation:

:- op(900, xfx, [of]).

:- chr_constraint of/2.

Exercise 6 (Age Calculator by Propogation). Constraints can be used like a database to
store and process information about famous actors. The year of birth of a person can be ex-
pressed using like birth-year of tom-cruise is 1962. The current year can be expressed as
year of today is 2013. Write a CHR rule that preserves knowledge already stored, and cal-
culates the current age of an actor. (Assume that the exact day and month do not matter). Your
program is correct if it reveals that Tom Cruise is 51 years old! (i.e. age of tom-cruise is 51)

Exercise 7 (Minimum by Simpagation). The age of many people can be represented as age of

tom-cruise is 51, age of arnold-schwarzenegger is 65, Write a single CHR rule
that filters these ages to leave only the youngest person.

The next exercises are to be submitted by e-mail to: amira.zaki@uni-ulm.de. The deadline is
on 06.05.13 by 10:00. You are allowed to work in a group of two people. Please send only one

e-mail per group, containing the solution and both team member names.

Exercise 8 (Water). Water molecules can be produced from hydrogen and oxygen molecules
if they are heated. With electricity, the water molecules get decomposed into hydrogen and
oxygen molecules. These chemical reactions can be expressed as:

heat + 2H2 + O2 → 2H2O

electricity + 2H2O → 2H2 + O2

Using CHR constraints h2, o2, h2o, heat, electricity and assuming that one heat or
electricity unit is needed for each reaction, write CHR rules to model these reactions. Test your
program with queries like:

• heat,h2,h2,o2 → h2o, h2o

• heat,h2,h2,o2,h2,h2,o2 → h2,h2,o2,h2o,h2o

• heat,h2,h2,o2,h2,h2,o2,heat → h2o,h2o,h2o,h2o

• heat,h2,h2,o2,h2,h2,o2,heat,electricity → h2,h2,o2,h2o,h2o

• electricity,electricity,h2o,h2o,h2o,h2o → h2,h2,h2,h2,o2,o2

Exercise 9 (Better Age Calculator). Modify the age calculator program so that it calculates the
exact age of a person. Dates can be expressed by 3 arguments: the day, the month and the year
as (day,month,year). The current date can be given as date of today is (25,4,2013). More-
over, the date of birth of a person is now represented to also include the day, month and year.
You will need to define multiple rules to calculate the exact age, with different guard expressions.

Your corrected program reveals that Tom Cruise is actually only 50 years old!

Hint: Test your program with more examples to make sure that you cover all possible cases.

mailto:amira.zaki@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frühwirth, Amira Zaki

Summer Term 2013

Assignment #2

Exercise 1 (Online CHR). Add the following two lines to any CHR program to make it
more interactive. It allows to add more constraints incrementally and then shows the resultant
constraint store. To invoke this interactive run, add more at the end of your initial query. Then
type a semi-colon ; to provide more input.

:-chr_constraint more/0.

more <=> true ; (read(Constraint), call(Constraint), more).

Test this with any of the examples from assignment#1.

Exercise 2 (Counting Items). You are given as input a sequence of items in i/1 constraints, for
example i(bread), i(cheese), i(water), i(bread). Your task is to count the items. The
output is as n/2 constraints, for example n(bread,2), n(cheese,1), n(water,1).

Exercise 3 (Hobo Cigarettes). A certain hobo can make one cigarette out of four cigarette
butts (the butt is what is left after smoking a cigarette). If he finds some cigarettes and some
cigarette butts, how many cigarettes can he smoke in total?
The input is any number of constraints of this form: cigarette/0, butt/0, and pack/1. Each
cigarette represents one cigarette, and each butt represents one cigarette butt. The constraint
pack(N) represents a pack containing N cigarettes. The output is one constraint of the form
smoked(T), where T is the total number of cigarettes the hobo has smoked. There can be no
cigarettes left (the hobo smokes every cigarette he finds or makes), but there can be (will be)
cigarette butts left (always less than four). Examples:

?- pack(4). ?- pack(25). ?- butt, pack(3).

butt butt butt

smoked(5) smoked(33) smoked(4)

Exercise 4 (Geometry). In an example from geometry, assume that lines are given by variables
(or constants) and that CHR constraints express the relationships between two lines, parallel
and orthogonal. Write rules that derive further such relationships from given relationships, e.g.
parallel(L1,L2), parallel(L2,L3) ==> parallel(L1,L3).

Ensure termination.

Exercise 5 (Hamming’s problem - to be done next week).
Consider the classical Hamming’s problem, which is to compute an ordered ascending chain of
all numbers whose only prime factors are 2, 3, or 5. The chain starts with the numbers:

1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,...

Define a non-terminating process hamming(N) that will produce the numbers as elements of the
infinite chain starting with 1. Hints:

- pretend that the sequence is already known
- no base cases in recursion as sequences are infinite
- concurrent-process network, processes can be executed in parallel
- to view the stream, you will need an watch/2 rule that writes elements of the stream as

they are produced

Implement a mixed Prolog and CHR solution then a compact four-ruler pure CHR solution.

The next exercises are to be submitted by e-mail to: amira.zaki@uni-ulm.de. The deadline is
on 07.05.13 by 10:00. You are allowed to work in a group of two people. Please send only one

e-mail per group, containing the solution and both team member names.

Exercise 6 (Walking with Big Steps). In the previous assignment, a walk was expressed by
four movements east, west, south, north. The steps of this walk can be changed to give
a number of steps to be walked in a certain direction. Thus a step west(3) is equivalent to 3
steps in the west direction, i.e. west, west, west.
Extend the walk program with generic CHR rules that decompose these big steps into single
movements. You will need to define new constraints with 1 argument, like west/1. For mathe-
matical calculations use is, for example A is B-1.
Then test it for queries like: ‘east(3), south(4), west(3), west(2), south(4), north(2)’.

Exercise 7 (CHR-Compactness). Implement the Hamming’s problem of exercise#5 in your
favourite programming language. Within your submission-group, prepare 2-3 presentations slides
to present the idea of your solution. You will present your solution to the entire class for
discussion on 07.05.13.

mailto:amira.zaki@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frühwirth, Amira Zaki

Summer Term 2013

Assignment #3

Refer to the SWI-Prolog reference manual http://www.swi-prolog.org/pldoc/refman/ for
documentation on the usage of the built-in predicates and the CHR library.

Exercise 1 (CHR-Writer). A generalized CHR simpagation rule which is given as follows:

Head1 \ Head2 <=> Guard | Body.

can be represented using a chrl/4 constraint in the form:

chrl(Head1, Head2, Guard, Body)

where Head1, Head2, Guard, Body are lists of CHR and built-in constraints. If they do not
exist (i.e. for propagation or simplification rules, or guard-less rules), then they are given as [].
Implement a CHR program that once triggered with a console/0 constraint, writes to the
console a well-formatted CHR rule equivalent to that encoded in chrl constraint by changing the
lists to goals. Hint: use numbervars to pretty print a term by unifying variables (123, 456, . . .)
to more readable variable names (A,B, . . .). Test your program with (but not limited to) queries
such as:

• chrl([],[a,b],[],[c]) represents: a,b <=> true | c.

• chrl([a,b],[],[],[c]) represents: a,b ==> true | c.

• chrl([a],[b],[],[c]) represents: a \ b <=> true | c.

• chrl([a(X)],[b(Y,Z)],[X<Y],[c(Z)]) represents: a(A) \ b(B,C) <=> A<B | c(C).

Exercise 2 (CHR-File-Writer). Modify the program of the previous exercise; such that instead
of displaying on the console, the output CHR rule is written to a file once triggered by a file/1

constraint. Hint: Use built-in open/3, write/2 and close/1 to write to file streams. A file
stream must be closed after writing to. You may find it useful to have rules for the constraints:
file(new), file(append), file(close).

Exercise 3 (File-Reader). Implement a program that reads a text file when triggered with a
file(read) constraint. It should transform each line into a line/1 constraint. Hint: Use read/2
to read a term from a stream.

Next exercises are to be submitted by e-mail to: amira.zaki@uni-ulm.de by 21.05.13 by 10:00.

Exercise 4 (Exchange Sort). An array can be represented as a multiset of pairs of the form
a(Index,Value). Implement the exchange sort algorithm that sorts the array of numbers by
exchanging values at positions that are in the wrong order. Test it with an appropriate query.

Exercise 5 (Shortest Paths). The following program takes a directed graph, where the edges
are represented as e/2 constraints (e(A,B) means that there is a (directed) edge from A to B),
and computes the reachability relation p/2 (where p(A,B) means that there is some path from
A to B).

e(X,Y) ==> p(X,Y).

p(X,Y) \ p(X,Y) <=> true.

e(X,Y), p(Y,Z) ==> p(X,Z).

Modify the above program such that it computes the distance relation d/3, where d(A,B,N)

means that the shortest path to go from A to B uses N edges. (Try for queries like e(a,b),

e(a,c), e(b,c), e(b,d), e(d,f))

http://www.swi-prolog.org/pldoc/refman/
mailto:amira.zaki@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frühwirth, Amira Zaki

Summer Term 2013

Assignment #4

Term Rewriting Systems (TRS)

Exercise 1 (Flattening). Define eq to be a binary CHR constraint in infix notation denoting
equality, using op/3. Write a CHR rule that implements the flattening function that transforms
an atomic equality constraint X eq T, where X is a variable and T is a term, into a conjunction
of equations as follows, where X1, . . . , Xn are new variables.:

flatten(X eq T) :=

{
X eq T if T is a variable
X eq f(X1, . . . , Xn) ∧ (

∧n
i=1[Xi eq Ti]) if T = f(T1, . . . , Tn)

Hint: You can change terms to list of functor and arguments by: f(X1,...,XN)=..[f,X1,...,XN]

Implement a second version of the flattening rule, implemented by having a flatten/2 which
flattens a term passed as the first argument into a list (as the second argument).

Exercise 2 (Translate TRS to CHR). It is required to translate TRS rules into CHR simpli-
fication rules. A CHR constraint translate/2 has the type trs as the first argument and the
second containing a TRS rule of the form:

S --> T

Write a rule that transforms the encoded TRS rule to a CHR simplification rule (with X as a
new variable):

flatten(X eq S) <=> flatten(X eq T)

The output CHR rule can be encoded in a chrl/4 constraint as in assignment#3, thus as:

chrl([],[flatten(X eq S)],[],[flatten(X eq T)])

The translator rule invokes the CHR-writer of assignment#3 to output the CHR simplification
rules to the console or file. Hint: You will need to define the binary operator (-->). Test your
translator with appropriate examples.

Enhance your program with an additional constraint capable of reading an input text file con-
taining TRS rules and producing a translated CHR program written in an output text file.

Exercise 3 (Translate to CHR). Two rewrite rules that define the addition of natural numbers
in successor notation, are:

0+Y --> Y.

s(X) + Y --> s(X+Y).

Translate the rules into CHR using by applying the flattening function manually. Then use your
translator to show its output result. Include in your program 6 appropriate test examples to
show the correctness of your work; these examples can be present as comments.

Exercise 4 (Propositional Logic). Given the following TRS for conjunction in propositional
logic, where X, Y and Z are propositional variables and the function and(X,Y) stands for X ∧ Y:

and(0,Y) --> 0.

and(X,0) --> 0.

and(1,Y) --> Y.

and(X,1) --> X.

and(X,X) --> X.

Write down similar TRS rules for negation, neg, and disjunction, or, in propositional logic.
Run the translator and produce the equivalent CHR rules for conjunction, disjunction and
negation. Include in your program 6 appropriate test examples to show the correctness of your
work; these examples can be present as comments.

Exercise 5 (Run Translated TRS Program). Test the correctness of the TRS programs pro-
duced by adding an evaluation rule for an eq/2 constraint, which fires when triggered. A test
query must be flattened before fed to the TRS program, hence write a rule for the constraint
evaluate(Query) which flattens the Query then triggers the TRS evaluation.

Sample run for the evaluation of the number addition translated program:

?- evaluate(X eq s(s(s(0)))+s(0)).

X = s(s(s(s(0))))

Exercise 6 (Functional Dependency). Augment your program with a functional dependency
simpagation rule that implements structure sharing to ensure completeness. This CHR rule
must be come first within the program.

fd @ X eq T \ Y eq T <=> X=Y.

The fd rule removes equations, thus some rules may not be applicable anymore. For example,
for the TRS rule:

and(X,X) --> X

which translates in the CHR rule:

T eq and(T1,T2), T1 eq X, T2 eq X <=> T eq X.

The rule expects two copies of the equations T1 eq X and T2 eq Y. Thus variants of the existing
CHR rules must be created, where head constraints have been unified such that the rules apply
after the fd rule has fired. For the previous example, this results in the additional rule:

T eq and(T1,T1), T1 eq X <=> T eq X.

Manually write down all other additionally required rules for the other conjunction and disjunc-
tion rules.

Next exercise is to be submitted by e-mail to: amira.zaki@uni-ulm.de by 27.05.13 by 10:00.

Exercise 7 (Structure Sharing). Write a CHR program which produces automatically the extra
rules generated by structure sharing of exercise#6 for any TRS rule during translation.

mailto:amira.zaki@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frühwirth, Amira Zaki

Summer Term 2013

Assignment #5

Functional Programming (FP)

Exercise 1 (Translating FP to CHR). It is required to translate FP rewrite rules into CHR
simplification rules. A CHR constraint translate/2 has the type fp as the first argument and
the second containing an FP rule of the form:

S --> (G) | T

Write a CHR rule which translates it to a CHR simplification rule:

X eq S <=> G | flatten(X eq T)

where X is a new variable. The rule should write the output CHR simplification rules to the
console, by using translating the FP rule to a chrl/4 constraint and triggering the writer from
assignment#3. Test your translator with appropriate examples. Hint: You will need to define
the binary operator (-->) . Also consider that some FP rules can be written without a guard,
i.e. as S --> T .

Enhance your program with an additional constraint capable of reading an input text file con-
taining FP rules and producing a translated CHR program written in an output text file.

Exercise 2 (Executing FP in CHR). The CHR program produced by the translator imple-
mented above, requires additional rules for treating data and mapping auxiliary functions to
built-in constraints. It should be able to evaluate built-in contraints and bind ground values to
variables. Using the built-in SWI predicates: arithmetic_expression_value/2, number/1,

var/1, ground/1, write the appropriate CHR rules that are needed for the execution of any
translated FP program.

Then, modify your translator such that it augments the additional rules to the translated FP
rules written in the beginning of the output file. It should also add the required CHR header
lines such that the output code is executable.

Exercise 3 (Fibonacci Numbers). Recall that the first two numbers in the Fibonacci sequence
are 0 and 1, and each subsequent number is the sum of the previous two. Write the FP rules
that calculate the Fibonacci of a number. Translate the rules into CHR manually. Then use
your translator using the input FP rules to show its output CHR program. Try your modified
translator to produce the CHR code for the translation of the Fibonacci code. Then try to run
the Fibonacci code and test is for obtaining several of the Fibonacci numbers.

Next exercises are to be submitted by e-mail to: amira.zaki@uni-ulm.de by 03.06.13 by 10:00.

Exercise 4 (Factorial). The factorial of a non-negative integer n is the product of all positive
integers less than or equal to n. Write the FP rules for the factorial problem. Produce the
equivalent CHR code by the translator, and run it with appropriate test queries.

Exercise 5 (Translating CHR to FP). Go back through the first examples presented in earlier
lecture slides. Which of these CHR examples can be expressed in Functional Programming? Also
present their equivalent code in Functional Programming. Which examples cannot be expressed,
and why?

mailto:amira.zaki@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frühwirth, Amira Zaki

Summer Term 2013

Assignment #6

GAMMA

Exercise 1 (Translating GAMMA to CHR). It is required to translate each GAMMA pair
into a CHR simplification rule. Implement a rule for the CHR constraint translate/2 that
transforms a GAMMA pair:

(c/n, f/n)

into a CHR simplification rule:

d(x1), . . . , d(xn) <=> c(x1, . . . , xn) | f(x1, . . . , xn)

where d/1 is a CHR constraint that wraps the data elements, and c/1 is a built-in constraint
that checks for a certain condition. The function f is manually defined by a simplification rule
of the form:

f(x1, . . . , xn) <=> G | D, d(y1), . . . , d(ym).

where G is a guard and D are the auxiliary built-ins. The built-in constraint c/n is a Prolog
test predicate, that can be manually defined explicitly per problem. Assume that the definitions
for f/n and c/n will be done separately.

Exercise 2 (GAMMA Lecture Examples). Test your translator with the following GAMMA
examples from the lecture slides:

min = (</2, first/2)

gcd = (gcd_check/2, gcd_sub/2)

prime = (div/2, first/2)

For each example, define the CHR rule for the function f/2 and the Prolog predicate for c/2,
also give the translated CHR rule. Test the produced CHR codes with appropriate queries.

Exercise 3 (Translating CHR to GAMMA - Mergers and Acquisitions). A large company
will buy any smaller company. A CHR constraint company(Name,Value) can be defined where
Value is the market value of the company. A rule that describes the merge-acquisition cycle
that is observed in the real world is given as:

company(Name1, Value1), company(Name2, Value2)

<=> Value1 > Value2 | company(Name1:Name2,Value1+Value2).

Translate the Company Mergers CHR program into GAMMA, stating the CHR rule for the
function f and the Prolog predicate for c. Run the translator on the GAMMA pair, and show
that the output CHR rules are semantically equivalent to the initial CHR program.

Exercise 4 (Translating CHR to GAMMA - Walk). Assume we describe a walk (a sequence
of steps) by giving directions, east, west, south, north. A description of a walk is just a
sequence of these CHR constraints. With simplification rules, we can model the fact that certain
steps (like east, west) cancel each other out, and thus we can simplify a given walk to one
with a minimal number of steps that reaches the same position.

east, west <=> true.

south, north <=> true.

Translate the Walk CHR program into GAMMA, stating the CHR rule for the function f and
the Prolog predicate for c. Run the translator on the GAMMA, and show that the output CHR
rules are equivalent to the initial CHR program. Test the produced CHR codes with appropriate
queries.

Petri Nets

Exercise 5 (Petri Nets - Barber Shop). A typical scenario at a Barber shop is as follows:
Customers enter a Barber shop and wait till a barber is idle and ready to serve them. Then
the barber cuts the hair of a customer. When the hair cut is done, the customer leaves and the
barber becomes idle once again. This can be represented using the Petri net given below:

Translate the Barber shop Petri net into CHR by adding the constraints customers_waiting/0,
idle_barbers/0, customers_cutting/0, and customers_done/0 for each of the places. Add
an observer/0 constraint to print the interesting states of the problem. A typical test query
would be ?-observer,customers_waiting,customers_waiting,idle_barbers.

Exercise 6 (Colored Petri Nets - Elevator). An elevator operates between 4 levels, a petri-net
is designed such that a level token represents the level of the elevator and the direction tokens
represent the required movements of the elevator. The elevator can go upwards, increasing its
level only if it is not on the maximum floor. Similarly the elevator can go down, decreasing its
level only if it is not on the ground floor. The system can be represented using the following
colored Petri net:

Translate the elevator Petri net into CHR by adding the constraints level/1, direction/1

and the equivalent transition rules. Add an observer/0 constraint to print the interesting states
of the problem. A typical test query would be
?- observer, level(0), direction(up),direction(up),direction(up),direction(down).

Next exercise is to be submitted by e-mail to: amira.zaki@uni-ulm.de by 12.06.13 at 10:00.

Exercise 7 (Translating CHR to GAMMA - More examples). For each of the following prob-
lems, write down the CHR rules to solve them. Then translate the CHR program into GAMMA,
stating the CHR rule for the function f and the Prolog predicate for c. Run the translator on the
GAMMA pair, and show that the output CHR rules are semantically equivalent to the initial
CHR program. Test the produced CHR codes with appropriate queries.

(1) Exclusive OR - A multi-set of xor constraints denoting the output can be used to
compute the output as a single remaining xor constraint where truth values true and
false are represented by the numbers 1 and 0 respectively.

(2) Exchange Sort - Sort an array by exchanging values at positions that are in the wrong
order, given an unsorted array as a sequence of constraints of the form a(Index,Value).

(3) Destructive Assignment - In a declarative programming language, bound variables
cannot be updated or overwritten. However, in CHR it is possible to simulate the de-
structive (multiple) assignment of procedural and imperative programming languages
by using recursion in CHR. The original constraint with the old value is removed and
a constraint of the same type with the new value is added. For example, we can store
variable name-value pairs in the CHR constraint cell/2 and use the CHR constraint
assign/2 to assign to a variable a new value.

(4) Merge sort - To represent a directed edge (arc) from node A to node B, we use a
binary CHR constraint written in infix notation, A -> B. We use a chain of such arcs
to represent a sequence of values that are stored in the nodes, e.g. the sequence 0,2,5

is encoded as 0 -> 2, 2 -> 5. A one-rule CHR program performs an ordered merge
of two chains by zipping them together, provided they start with the same (smallest)
node.

mailto:amira.zaki@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frühwirth, Amira Zaki

Summer Term 2013

Assignment #7

Production Rule Systems - OPS5

Exercise 1 (Preprocessing OPS5). The OPS5 rule for the iterative Fibonacci sequence gener-
ation is given as:

(p next-fib (limit is <limit>)

{(fibonacci ^index {<i> <= <limit>}

^this-value <v1>

^last-value <v2>) <fib>}

--> (modify <fib> ^index (compute <i> + 1)

^this-value (compute <v1> + <v2>)

^last-value <v1>)

(write (crlf) fib <i> is <v1>)

)

We define a slight preprocessing step on the input OPS5 rules to make it more readable through
Prolog by removing reserved Prolog operators and introducing lists. This involves:

• removing the arrow -->

• changing all rounded and curly brackets to square brackets, i.e. () and { } to []

• changing all spaces to commas ,

• removing attribute markers ^

• removing variable markers < > and instead indexing all variables with a capital V to
translate them into valid Prolog variable names

• removing control statements such as (halt) and (crlf)

Applying this preprocessing step on the previous Fibonacci example, it becomes:

[p, next_fib,

[limit, is, Vlimit],

[[fibonacci, index, [Vi =< Vlimit],

this-value, Vv1,

last-value, Vv2], Vfib],

[modify, Vfib, index, [compute, Vi + 1],

this-value, [compute, Vv1 + Vv2],

last-value, Vv1],

[write, fib, Vi, is, Vv1]

]

Apply this preprocessing technique on the Greatest Common Divisor example of the lecture.

Exercise 2 (Translating OPS5 Production Rules to CHR). An OPS5 production rule:

(p N LHS --> RHS)

which after applying the preprocessing step becomes:

[p,N,LHS,-->,RHS]

translates to the CHR generalized simpagation rule:

N @ LHS1 \ LHS2 <=> LHS3 | RHS’

where LHS: if-clause, RHS: then-clause, LHS1: patterns of LHS for facts not modified in RHS, LHS2:
patterns of LHS for facts modified in RHS, LHS3: conditions of LHS, and RHS’: RHS without re-
moval (for LHS2 facts).

Write a rule for a translate/2 constraint that takes a list containing the preprocessed OPS5
rule and transforms it to an equivalent CHR program.

CHR Rules with Negation as Absence

Exercise 3 (CHR with Negation). An extension of CHR deals with rules which fire if a certain
condition is negated or when a constraint does not exist in the store (i.e. negation as absence).
These rules can be expressed as:

N @ Hk \ Hr <=> G | B : (NegB, NegC).

Using an auxiliary check/1 constraint, it translates to the following CHR rules:

N1 @ Hk, Hr <=> G | check(Hk,Hr).

N2 @ NegC \ check(Hk,Hr) <=> NegB | true.

N3 @ Hk \ Hr, check(Hk,Hr) <=> G | B.

Write a rule for a translate/2 constraint that takes a list containing a negated CHR rule and
transforms it to an equivalent CHR program.

Exercise 4 (Negated Examples). The minimum program can be written with negation as
follows:

num(X) ==> min(X) : (Y<X,num(Y)).

Translate the rule to an equivalent CHR one and check with appropriate examples.

Write negated CHR rules for the transitive closure and marital status examples covered in the
lecture. Translate them to normal CHR, and test with appropriate examples.

Exercise 5 (Special Case of CHR with Negation). Negated CHR propagation rules whose body
consists of only CHR constraints can be considered as a special case. For their transformation,
it is not necessary to use the auxiliary check constraint.
These rules are of the form:

N @ Hk ==> G | Bc : (NegB, NegC).

This translates to the following pair of CHR rules:

Nn @ NegC \ Bc <=> NegB | true.

Np @ Hk ==> G | B.

Write a rule for a translate/2 constraint that takes a list containing a negated CHR rule and
transforms it to an equivalent CHR program.

Exercise 6 (Special Negated Examples). Rewrite the three programs of exercise 4 into the
special case form and produce their transformed CHR programs. Test the resultant programs
with appropriate examples.

Rule-based Programming
Prof. Dr. Thom Frühwirth, Amira Zaki

Summer Term 2013

Assignment #8

Incremental Conflict Resolution in CHR

Exercise 1 (Step 1: Translation). The definition for CHR rules is extended to generalized CHR
simpagation rules (with a property P) which is given as follows:

Head1 \ Head2 <=> Guard | Body : P.

Hence the extended rule can be represented using a chrl/5 constraint, where Head1, Head2,

Guard, Body are lists:

chrl(Head1, Head2, Guard, Body, P)

In the lecture, a translation scheme was discussed which translates the rule into two oth-
er conflict resolution rules by introducing a conflictset/1 constraint to gather rule bodies
and then execute the chosen rule from the conflict set. Rule bodies can be represented as
rule(P,Head1,Head2,Body). Write a rule for a translate/2 constraint that performs this
transformation. Test with the examples from the lecture.

Exercise 2 (Step 2: Additional Conflict Resolution Rules). Enhance your program such that
the additional conflict resolution rules (collect, choose) are added to an output file. Consider
the case when the conflict set does not contain any more rules, how would the previous two
rules be modified? Then consider the case when the choose/3 cannot find any applicable rule
from the list, how would this change the required additional rules?

Exercise 3 (Step 3: Additional Choice Rules). For the rule choice, the choose/3 constraint
selects a particular rule from the conflict set of rules depending on the property P stated in the
initial translated CHR rule.

(1) P = random: randomly selects a rule from the conflict set
(2) P = bfs: selects a rule from the set to ensure the breadth first traversal of rules
(3) P = N,number(N): selects the rule with the highest priority (P)
(4) neg(C,G): negation as absence; the rule is applied if there are no CHR constraints C for

which the guard G holds

Add three rules for cases 1 to 3 to the output file, simplifying the choose/3 constraint such that
the first argument contains the list of rule terms (whose first term specifies the choice criterion),
the second argument is bound to the selected rule, and the third argument is bound to the
remaining list. (Please note that case 4 will be covered next week).

Exercise 4 (Example: Dijkstra). Dijkstra’s shortest path algorithm can be expressed by giving
priority to the application of the CHR rules. A lower weight is given to shorter paths, while
constructing a longer path has more weight and hence its rule would have lower priority. This
can be encoded using the following rules:

d2 @ dist(X,N) \ dist(X,M) <=> N<M | true : 1.

dn @ dist(X,N), edge(X,Y,M) ==> P is N+2 | Z is N+M, dist(Y,Z) : P.

A typical test query would be:

?- edge(a,b,10),edge(a,c,2),edge(b,c,1),

edge(b,a,10),edge(c,a,2),edge(c,b,1),dist(a,0),fire.

Perform step 1, by encoding the rules into chrl/5 constraints. Then run the translator from
step 1 to obtain the output CHR rules, augment them to the rules from steps 2 and 3. Test
your code with appropriate queries and show the results.

Next exercise is to be submitted by e-mail to: amira.zaki@uni-ulm.de by 25.06.13 at 10:00.

Exercise 5 (Example: Random Dice). A dice is thrown and the result can be a 1, 2, 3, 4, 5 or
6. The result is required to be random, thus the random execution of the rules can be encoded
using the following set of CHR rules:

dice <=> write(1) : random.

dice <=> write(2) : random.

dice <=> write(3) : random.

dice <=> write(4) : random.

dice <=> write(5) : random.

dice <=> write(6) : random.

A typical test query and its results would be:

?- dice,fire.

5

?- dice,fire.

2

Perform step 1, by encoding the rules into chrl/5 constraints. Then run the translator from
step 1 to obtain the 12 output CHR rules. Create a new file, add the output 12 rules in addition
to the rules from steps 2 and 3. Test your code with appropriate queries, and show the multiple
random results.

Exercise 6 (Example: Multiple Count-ups). The following CHR program which when given a
count/1 constraint, can either display it on the console or calculate the next count. It is required
to perform a breadth-first-traversal of the rules. The CHR code is given as following:

count(X) ==> write(X) : bfs.

count(X) <=> Y is X+1, count(Y) : bfs.

A typical test query and its results would be (but with the output numbers on separate lines):

?- count(0),count(100),fire.

0 100 1 101 2 102 3 103 4 104 5 105 6 106 ...

Perform step 1, by encoding the rules into chrl/5 constraints. Then run the translator from
step 1 to obtain the output CHR rules, augment them to the rules from steps 2 and 3. Test
your code with appropriate queries, and show the multiple random results.

mailto:amira.zaki@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frühwirth, Amira Zaki

Summer Term 2013

Assignment #9

Negation as Absence

Exercise 1 (Case 4 of Step 3: Negation Choice Rule). As a continuation of Exercise#3 in
Assignment#8, it remains to handle negation as absence. In CHR, a rule which checks for the
absence of particular constraints is expressed as follows:

Heads1 \ Heads2 <=> Guard | Body : neg(NH,NG).

Write a rule for the 4th case such that the choose/3 constraint when given an input list where
the rule has P = neg(NH,NG) then: if the constraints NH are present and NG holds, then it should
remove the rule with this negation and continue resolving the conflict, otherwise the rule with
negation is chosen as the rule to apply. Hence, the translation itself should be changed. Add a
rule to perform this modified translation.

Exercise 2 (Example: Martial Status). A person is single or married, where single is to be the
default. This can be expressed by a negated CHR rule as follows:

person(X) ==> single(X) : neg(married(X),true).

A typical test query and its results would be:

?- married(a), person(b).

married(a) person(b) single(b)

Encode the rule into an equivalent chr/5 constraint, translate it then test the resultant program.

Exercise 3 (Example: Minimum as Negation). The minimum number amongst a multi-set of
numbers can be expressed using the rule:

num(X) ==> min(X) : neg(num(Y), Y<X).

A typical test query and its results would be:

?- num(2), num(1), num(10).

num(10) num(1) num(2) min(1)

Encode the rule into an equivalent chr/5 constraint, translate it then test the resultant program.

Exercise 4 (Example: Graphs Closure). When finding the transitive closure of a graph, then
a negated CHR program can be given as:

e(X,Y) ==> p(X,Y) : neg(p(X,Y),true).

e(X,Y), p(Y,Z) ==> p(X,Z) : neg(p(X,Z),true).

A typical test query and its results would be:

?- e(a,b), e(b,c), e(c,d).

e(c,d) e(b,c) e(a,b) p(a,d) p(b,d) p(a,c) p(c,d) p(b,c) p(a,b)

Encode the rule into an equivalent chr/5 constraint, translate it then test the resultant program.

Ensuring Set-based Semantics

Exercise 5 (Rule Variants). Given any CHR simplification rule (ignoring priorities):

H, H1, H2 <=> G | B[,H1,H2].

it is possible to generate new rule variants by systemically unifying head constraints in all
possible ways:

H, H1 <=> H1 = H2, G | B[,H1].

The same unify and merge technique can be applied to simpagation and propagation rules; if
any of the heads merged was originally to be kept, then it remains kept in the variant rule even
if it was unified with a head that would be removed.

Write a rule that transforms a CHR rule written as chrl/4 constraints into all possible variants,
by trying to unify and merge all head constraints. Hint: Use disjunction in the CHR rule body
to enforce possible rule firings to obtain the various unify possibilities. You might find it useful
to encapsulate rule head constraints into head/2 constraints, where the first argument is the
actual head and the second is 1 for kept and 0 for removed constraints. A typical test query
would include a rule: chrl([p(a,X), p(Y,b)],[p(Z,W)],[],[p(X,Z)]). Test your code with
similar such appropriate queries, and show the multiple results.

Next exercise is to be submitted by e-mail to: amira.zaki@uni-ulm.de by 02.07.13 at 10:00.

Exercise 6 (Examples). For the following list of CHR programs, encode the rule into an equiv-
alent chrl/4 constraint, then produce all possible rule variants. Examine the produced rules
and justify if they are necessary, redundant, non-terminating or incorrect.

(1) minimum @ min(Y) \ min(X)<=> Y=<X | true.

(2) gcd @ gcd(N) \ gcd(M) <=> (0<N,N=<M) | X is M-N, gcd(X).

(3) xor1 @ xor(X), xor(X) <=> xor(0).

xor2 @ xor(0), xor(1) <=> true.

(4) primes @ prime(A) \ prime(B) <=> B mod A=:=0 | true.

(5) transitive_closure @ p(A,B), p(B,C) ==> true | p(A,C).

(6) summing @ accu(X), accu(Y) <=> Z is X+Y, accu(Z).

(7) sort @ X <<< A \ X <<< B <=> A<B | A <<< B.

merge @ merge(N,A), merge(N,B) <=> A<B | M is N+1, merge(M,A), A <<< B.

(8) antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.

idempotence @ leq(X,Y) \ leq(X,Y) <=> true.

transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

(9) le @ X le Y, X::A:_, Y::_:D ==> Y::A:D, X::A:D.

eq @ X eq Y, X::A:B, Y::C:D ==> Y::A:B, X::C:D.

ne @ X ne Y, X::A:A, Y::A:A <=> fail.

(10) mult_z @ mult(X,Y,Z), X::A:B, Y::C:D ==>

M1 is A*C, M2 is A*D, M3 is B*C, M4 is B*D,

Z::min(min(M1,M2),min(M3,M4)):max(max(M1,M2),max(M3,M4)).

mailto:amira.zaki@uni-ulm.de

Rule-based Programming
Prof. Dr. Thom Frühwirth, Amira Zaki

Summer Term 2013

Assignment #10

Exercise 1. Constraint Logic Programming (CLP)

Pure Prolog and CLP (without cut and negation-as-failure) can be translated to CHR. A CLP
predicate p/n is considered as CHR constraint, and for each predicate p/n Clark’s completion
of p/n is added as CHR∨ simplification rule. Write a rule for a translate/2 constraint that
transforms a CLP program into CHR. Then translate the following two examples into CHR:

(1) Append:

append([],L,L).

append([H|L1],L2,[H|L3]):- append(L1,L2,L3).

(2) Member:

mem(X,[X|T]).

mem(X,[H|T]):- mem(X,T).

Exercise 2. Concurrent Constraint Programming (CC)

To embed in CHR, the following transformations take place:

• CC predicates → CHR constraints
• CC constraints → CHR built-in constraints
• CC declaration → CHR simplification rule
• CC agent → CHR goal
• CC ask expression → CHR simplification rules for auxiliary unary CHR constraint ask
• Ask constraint → built-in in guard of CHR rule
• Tell constraint → built-in in body of CHR rule

Write a rule for a translate/2 constraint that transforms a CC program into CHR. Then
translate the following two examples into CHR:

(1) Maximum:

max(X,Y,Z) <- (X=<Y -> Y=Z) + (Y=<X -> X=Z)

(2) The Hamming sequence:

hamming(S) <- S1=[1|S],

mults(S1,2,S2), mults(S1,3,S3), mults(S1,5,S5)),

merge(S2,S3,S23), merge(S5,S23,S)

mults([X|Xs],N,L) <- L = [X*N|XsN], mults(Xs,N,XsN)

merge([X|Xs], [Y|Ys], XYOut) <-

(X=Y -> (XYOut = [X|Out], merge(Xs,Ys,Out))

+ (X<Y -> (XYOut = [X|Out], merge(Xs,[Y|Ys],Out))

+ (X>Y -> (XYOut = [Y|Out], merge([X|Xs],Ys,Out))

