
A Rule-based Approach to Long-term Routing for Autonomous Sailboats
Johannes Langbein and Thom Frühwirth

Faculty of Engineering and Computer Science, Ulm University, Germany
firstname.lastname@uni-ulm.de

Jon Sneyers
Department of Computer Science,

K.U.Leuven, Belgium
firstname.lastname@cs.kuleuven.be

Roland Stelzer
INNOC - Austrian Society for Innovative

Computer Sciences, Vienna, Austria
firstname.lastname@innoc.at

Abstract
We present an algorithm for long-term routing of au-
tonomous sailboats with an application to the ASV
Roboat. It is based on the A*-algorithm and incor-
porates changing weather conditions by dynamically
adapting the underlying routing graph. We implemented
our algorithm in the declarative rule-based programing
language Constraint Handling Rules (CHR) (Frühwirth
2009). A comparison with existing commercial appli-
cations yields considerably shorter computation times
for our implementation. It works with real-life wind and
sea current forecasts, takes individual parameters of the
sailboat into account, and provides a graphical user in-
terface.

1 Introduction
Autonomous sailboats perform the complex maneuvers of
sailing fully automatically and without human assistance.
Starting off by calculating the best route based on weather
data and going on to independent tacking and jibing, au-
tonomous sailboats are able to sail through to any destina-
tion. Humans merely have to enter the destination coordi-
nates.

The approach described here is planned to be imple-
mented in the control system of the ASV Roboat, an au-
tonomous sailing boat which has been in development by a
research team of the Austrian Society for Innovative Com-
puter Sciences (INNOC) since 2006.

So far, weather routing on the ASV Roboat relies on lo-
cally measured weather data only. This is proven to be suit-
able for short distances, respectively short durations, such as
regattas over a few miles (Stelzer and Pröll 2008). In con-
trast, for long-term missions like ocean crossings, weather
conditions cannot be assumed to remain stable until the boat
reaches its target. Therefore, a global view with considera-
tion of weather forecasts is necessary.

In this paper, we introduce a long-term weather routing al-
gorithm for autonomous sailboats and show how rule-based
programming facilitates a declarative and efficient imple-
mentation. In Section 2 we present how we modeled the
sailboat routing problem and introduce our routing algo-
rithm. Its implementation is then discussed in Section 3. In

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Section 3.1, we compare our algorithm to existing commer-
cial solutions and discuss related work. We conclude in Sec-
tion 4, which also gives an outlook on future work.

2 The routing algorithm
Routing for sailboats, no matter whether they are au-
tonomous or not, can be defined as the “procedure, where
an optimum track is determined for a particular vessel on
a particular run, based on expected weather, sea state and
ocean currents” (Spaans 1985). In this section, we will take
a closer look at the parameters required to find an optimum
track and present our routing algorithm.

2.1 Modeling long-term sailboat routes
For this work, we distinguish between long-term and short-
term routing in the following way: Long-term routing is the
task of finding a sequence of waypoints ~x0 . . . ~xn (longitude
and latitude coordinates) for a given starting point ~xstart
and time tstart and a given destination point ~xdest, where
~xstart = ~x0, ~xdest = ~xn and ~xk is reachable from ~xk−1

at sea while taking global weather forecasts into account.
Short-term routing, in contrary, is the task of finding suitable
boat headings to reach the next waypoint, given the current
local weather conditions (Stelzer and Pröll 2008).

Several definitions for the term “optimum track” in the
quote above are possible (see (Stelzer and Pröll 2008)), yet
we want to focus on minimizing the arrival time tdest at the
point ~xdest. In order to calculate the arrival time tk at any
waypoint ~xk, we need to take weather data as well as the
individual behavior of the sailboat into account.

Weather data As long-term routing is typically con-
cerned with distances taking several days or weeks to travel,
weather forecasts are required to calculate an optimal route.
Weather forecasts are usually made available in the form of
GRIB (Gridded Binary) files, a standardized format to store
weather data (WMO94 1994). In a GRIB file, wind condi-
tions are represented as a grid of wind vectors ~w, containing
the wind-speed in north and east direction. A GRIB file can
contain multiple forecasts, which are made available for up
to 16 days in intervals as small as three hours. The resolu-
tion of the wind data typically ranges between 0.5 and 2.5
degrees.



Figure 1: The normalized polar diagram of the ASV Roboat

Sailboat behavior To calculate the time required to travel
between two waypoints, we need to know the speed of the
sailboat for given wind conditions. This speed can be de-
scribed as a function of the wind-speed and the angle be-
tween the wind and the boats heading, that is to say, the boats
velocity v = v(~w, α), if α denotes the true wind angle of the
boat. This function is usually shown in a plot known as po-
lar diagram. Figure 1 shows the normalized polar diagram
of the ASV Roboat (Stelzer and Pröll 2008), which describes
the relation between wind-speed and boat-speed for a given
true wind angle. Another factor to take into consideration
is the so-called hull-speed, which we treat as the approxi-
mative maximum speed of the boat. In our algorithm, this
maximum speed is configurable by the user.

We approximate the travel time tij between two loca-
tions ~xi and ~xj on a great circle path by taking the wind
conditions ~wi and true wind angle αi at ~xi for the first
half of the leg and the wind conditions ~wj and true wind
angle αj at ~xj for the second half. The distance dij be-
tween ~xi and ~xj is calculated using the laws of spherical
geometry (Donnay 2007). Together, we get the travel time
tij = 1

2 · dij · (v (~wi, αi) + v (~wj , αj)). As sailing directly
upwind is not possible, sometimes it is required to beat in or-
der to sail from ~xi to ~xj . We incorporate this into the travel
time calculation by approximating the boats velocity made
good along the great circle path between ~xi and ~xj in the
following way: As described in (Philpott and Mason 2000),
we neglect the time for tacking and compute the velocity
made good by using the convex hull of the polar diagram
for speed calculations when sailing upwind. The true wind
angle at which the boat is required to beat can be configured
by the user.

Routing graph Oceans constitute a continuous search
space with an infinite number of possible waypoints. To re-
duce the search space and make classical shortest-path meth-
ods applicable to the routing problem, we chose to discretize
the search space into a grid graph with equidistant nodes,
representing points on the sea. Each node is connected to

Figure 2: An exemplary part of the routing graph. Wind vec-
tors for each node are shown as bold arrows, edges to and
from the center node as solid lines. Edges connecting the
surrounding nodes are denoted as dashed lines.

its eight nearest neighbors by directed edges. Nodes located
on a land mass, which are detected using a binarized world
map, are not included in the graph. Nodes at locations with
hazardous wind conditions, that is to say, locations, at which
the wind-speed is above a user-configurable limit, are omit-
ted as well. Figure 2 illustrates a portion of such a routing
graph.

Each node in the graph is annotated with wind vectors,
shown as bold arrows in the figure. In most cases, we have
multiple forecasts at hand, therefore each node is annotated
with one wind vector per forecast. As the location of a node
usually does not coincide with a grid point in the GRIB file,
bi-linear interpolation is used to calculate the wind vectors
for each node. The directed edges of the graph are anno-
tated with the travel time, calculated as shown in Section 2.1.
Again, when multiple forecasts are present, each edge is an-
notated with one travel time per forecast.

The described discretization of the search space means,
that the optimal route in the grid model is calculated, which
is only an approximation to the true optimal route. Thus, we
made the quality of the approximation configurable to the
user in that the distance of the nodes in the routing graph
can be arbitrarily chosen.

2.2 Calculating the optimal route
We chose the A*-algorithm as basis for our long-term rout-
ing as it allows the use of a heuristics for performance
gain (Hart, Nilsson, and Raphael 1968). Much like Dijkstra’s
algorithm, the A*-algorithm assigns each node ~xi a cost-
value c(~xi), which is the time required to travel to this node
from the starting point. The algorithm retains an open list
from which the currently best node is chosen for expansion.
In contrary to Dijkstra’s algorithm, the best node is not the
node having the lowest cost but the node having the lowest
value c(~xi)+h(~xi), where h(~xi) is the value of the heuristics
for the node ~xi. This heuristics gives an estimate for the cost
to reach the node ~xdest from ~xi. We use the distance from ~xi
to ~xdest divided by the boats hull-speed as heuristic function
h(~xi). It is consistent as it satisfies the triangle inequality



h(~xi) ≤ tij + h(~xj) for two adjacent nodes ~xi and ~xj and
also the condition h(~xdest) = 0. We choose this heuristics
as it is cheap to compute and its consistency guarantees the
optimality of the A*-algorithm (Hart, Nilsson, and Raphael
1968).

To find an optimal route, the A*-algorithm is run on the
routing graph described in Section 2.1. As the number of
nodes and edges in the routing graph can get very high, we
tried to optimize the graph construction to save memory and
computation time in the following way:

Some nodes in the open list do not need to be expanded,
if the destination node is reached before they are considered.
Also, the fact that our heuristics is consistent guarantees that
a node will never be expanded more than once by the A*-
algorithm (Hart, Nilsson, and Raphael 1968). This allows
to dynamically construct and deconstruct the routing graph
during the execution of the algorithm:
• A node ~xj is not created until one of the eight direct neigh-

bors ~xi in the grid is chosen for expansion.
• Edges are not created until two adjacent nodes are present.
• If a node is added to the closed list, every incoming and

outgoing edge to and from this node can be removed from
the graph, as nodes in the closed list will not be considered
again.
The dynamic construction of the graph also facilitates an-

other optimization: When a node ~xi is expanded, the time
tstart + c(~xi), at which this node will be reached by the
boat, is known. Consequently, the forecast in the GRIB file
valid at this point in time is known and the calculation of the
travel time for outgoing edges of ~xi has to be done only for
this forecast and not for all forecasts in the GRIB file.

3 Implementation in CHR
We implemented our algorithm mainly in Constraint Han-
dling Rules (CHR), combined with SWI-Prolog. For an in-
troduction to CHR, we refer to (Frühwirth 2009). Our im-
plementation is based on an existing implementation of Di-
jkstra’s algorithm with a Fibonacci heap in CHR (Sneyers,
Schrijvers, and Demoen 2006), which is used as open list to
achieve optimal time complexity and was extended to incor-
porated the use of the heuristic function. Our implementa-
tion uses CHR rules for the following tasks:
• Expanding a node: Every time a node is extracted from

the open list, a rule is triggering the creation of the neigh-
boring nodes, if they are not yet present.

• Creating edges: If there are two neighboring nodes, a rule
creates an edge between the two nodes with the according
travel time.

• Labeling neighbor nodes: As soon as edges are present, a
rule labels the neighbors of the node expanded last with
the according cost and inserts them into the open list.

• Adding node to closed list: If there are no more neighbors
to be labeled, a node is added to the closed list.

• Removing edges: A node in the closed list triggers a rule
removing all the incoming and outgoing edges of this
node.

Figure 3: The GUI showing wind conditions and the calcu-
lated route

• Path reconstruction: Once the goal node is reached, a
CHR rule reconstructs the shortest path found.

We chose CHR for its declarativity, which allowed us
to implement the routing algorithm in a compact and clear
fashion: The implementation in CHR consists of only 17
rules with a little under 1000 lines of code. In addition, CHR
allows the routing graph to be constructed and deconstructed
dynamically by simply stating the conditions, under which
nodes and edges are created or removed, as rules. We fur-
thermore believe, that the implementation in CHR facilitates
future adaption and extensions in an easy way, which will
help to incorporate changes that might be necessary on the
ground of evaluations to come in real-life settings and con-
ditions.

Our implementation can be used from the Prolog com-
mand line or via a Java application providing a graphical
user interface. The GUI visualizes the wind conditions and
allows to define starting and destination points on a world
map. It also provides configuration options for the routing
and displays the calculated route on the map. Figure 3 shows
the GUI application.

3.1 Evaluation and Related Work
There are various commercial applications for long-term
weather routing of sailboats like the BonVoyage System,
MaxSea, Sailplanner (Sailport AB 2011), or SailFast (Sail-
Fast LLC 2011). The latter two are available as demo ver-
sion, thus we picked them to compare our routing algorithm
to. Both applications offer a GUI similar to ours. While
Sailplanner automatically downloads its own wind data and
is restricted to one provider (WeatherTech), SailFast allows
the usage of arbitrary GRIB files. Sailplanner offers the user
to pick from five different resolutions for the routing graph
it uses, while SailFast uses an isochron method with an un-



Table 1: Comparison of wall clock computation time re-
quired for routing in seconds

SailFast Sailplanner Sailplanner Roboat router Roboat router
6 hours “med. high” “ultra high” 20 km 30 km

Route 1 109 40 254 10 6
Route 2 79 37 224 9 5

known resolution but with configurable time steps. However,
they are both closed source applications, not revealing de-
tails about the algorithm they use for the routing.

We picked two routes of equal distance between starting
point and destination (about 1440 km on a great circle path),
one along the east-coast of the U.S. and one in open water to
compare the running time of the two commercial solutions to
our algorithm. The tests were carried out on a 2.0 GHz Intel
Dual Core with 4 GB of RAM while no other applications
where running and the wall clock time taken for the com-
putation was measured. The output of Sailplanner indicates
a grid width of about 30 km and 20 km for the resolutions
“Medium High” and “Ultra High”, respectively. Hence, we
chose 30 km and 20 km as the grid resolution for the runs
of our algorithm. SailFast is fixed to a 6 hour resolution for
the isochron lines in the demo version. The results of the
comparison are given in Table 1.

The results show, that our algorithm is considerably faster
when calculating routes. A reason for this the could be the
use of a heuristic function in our algorithm or the fact, that
SailFast and Sailplanner seem to consider points on land in
the routing as well, while our algorithm avoids them. How-
ever, the most likely reason is the fact, that more than eight
different bearings for each point are considered by SailFast
and Sailplanner in contrary to our algorithm. The results in
Table 1 also indicate the expected trade-off between compu-
tation time and quality of the approximation to the optimal
route, stemming from the complexity of the A*-algorithm
which is exponential in the number of way points in the so-
lution and thus the resolution of the grid (Hart, Nilsson, and
Raphael 1968).

The routes computed by our algorithm and SailFast are
almost identical, while the route computed by Sailplanner
is somewhat different. There are two reasons this difference
might stem from: Firstly, Sailplanner uses a different polar
diagram, which could not be changed in the demo version
available to us. Secondly, Sailplanner was run with wind
data from WeatherTech, as it does not allow the import of
GRIB files. Our algorithm and SailFast were both run with
the same GRIB file from saildocs.com since the data
from WeatherTech is not freely available.

In academic research, several methods have been pro-
posed for sailboat routing (see (Stelzer and Pröll 2008) for
an overview). A stochastic method for long-term routing
based on dynamic programming was presented by Philpott
and Allsopp (Philpott and Mason 2000), while methods from
operations research were used by Papadakis and Perakis (Pa-
padakis and Perakis 1990). Recent work by the AVALON
team (Erckens et al. 2010) uses a routing algorithm similar
to ours, however, they do not include weather forecasts in

their calculations. To our knowledge, none of the aforemen-
tioned approaches have been implemented in a rule-based
language like our algorithm and there has not been a pub-
lished implementation of a long-term weather routing algo-
rithm for sailboats in a declarative language.

A popular algorithm for path planning in continuous
search spaces is the Theta*-algorithm (Daniel et al. 2010)
which also works on a grid of nodes. It allows for any-angle
path planning, creating edges to all nodes in sight of the
node currently expanded. An implementation of this algo-
rithm would provide for a more accurate routing as more
angles are considered. However, this would require many
more nodes to be held in memory, lead to a higher calcu-
lation time, and would raise difficulties at choosing the ap-
propriate forecasts for calculating the travel time of an edge.
Hence, we chose the A*-algorithm with dynamic construc-
tion of the routing graph over Theta*.

The D*-algorithm (Stentz 1993) and its variants are de-
signed for searching in dynamically changing graphs. Their
advantage is the fast replanning when costs of edges are
modified during the execution of the path, which is partic-
ularly interesting if a robot continuously collects new in-
formation about its environment along the route. In robotic
sailing however, costs are only updated when new forecasts
are available, which usually happens only every couple of
hours. Furthermore, the D*-algorithm reconsiders nodes in
the closed list, which would infer with the dynamic con-
struction and deconstruction of the our routing graph (cf.
Section 2.2). For those reasons, we opted against the D*-
algorithm in favor of a much simpler implementation and
less memory consumption, while accepting the necessity of
a full re-routing once new forecasts are available.

4 Conclusion and Future Work
We proposed a long-term routing algorithm which finds an
arbitrarily accurate approximation to the optimal route for
a sailboat for real-life wind conditions. Our approach takes
changing weather conditions into account by dynamically
adapting the underlying graph used as input to the A*-
algorithm. It is is implemented in Constraint Handling Rules
and compares very well to existing solutions. To our knowl-
edge, it is the first published implementation of an long-term
weather routing algorithm for sailboats in a declarative or
rule-based programming language.

4.1 Future Work
We use deterministic weather forecasts which are only avail-
able for a certain time ahead (see Section 2.1). So-called
ensemble forecasts consist of different scenarios that can
happen with given probabilities and are usually available
for a longer time ahead. Research for sailing yacht races
has shown how ensemble forecasts can be used to find op-
timal routes which perform well under all possible scenar-
ios (Philpott and Mason 2000). An extension of the routing
algorithm to handle ensemble forecasts could make the rout-
ing more realistic and would allow for accurate planning of
even longer routes.

Besides wind conditions, the travel time of the sailboat
can be affected by currents as well. Incorporating ocean



current data into the calculation of the travel time could
also make the routing more accurate and may lead to bet-
ter routes.

Using a graph where nodes are connected only to their
eight direct neighbors puts a considerable restriction on pos-
sible paths and can lead to noticeable differences between
projected and actual arrival time. This restriction could be
lowered, while improving the quality of the calculated route,
by using a graph where nodes are connected to 24 neigh-
bors, as presented in (Erckens et al. 2010). We believe that
this could be achieved with a reasonable increase in calcu-
lation time by replacing the CHR rules for node and edge
generation.

References
Daniel, K.; Nash, A.; Koenig, S.; and Felner, A. 2010.
Theta*: Any-angle path planning on grids. Journal of Ar-
tificial Intelligence Research 39:533–579.
Donnay, J. D. H. 2007. Spherical Trigonometry. Inter-
science Publishers.
Erckens, H.; Büsser, G.-A.; Pradalier, C.; and Siegwart, R. Y.
2010. Avalon: Navigation strategy and trajectory following
controller for an autonomous sailing vessel. IEEE Robotics
& Automation magazine 17(1):45–54.
Frühwirth, T. 2009. Constraint Handling Rules. Cambridge
University Press.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):100
– 107.
Papadakis, N. A., and Perakis, A. N. 1990. Determin-
istic minimal time vessel routing. Operations Research
38(3):426–438.
Philpott, A., and Mason, A. 2000. Optimising yacht routes
under uncertainty. In Proceedings of the 15th Chesapeake
Sailing Yacht Symposium (CSYS 2000).
SailFast LLC. 2011. SailFast Version 5.1.
http://www.sailfastllc.com/.
Sailport AB. 2011. Sailplanner.
http://sailplanner.net/.
Sneyers, J.; Schrijvers, T.; and Demoen, B. 2006. Dijkstra’s
algorithm with Fibonacci heaps: An executable description
in CHR. In Proceedings of the 20th Workshop on Logic Pro-
gramming (WLP 2006).
Spaans, J. A. 1985. Windship routeing. Journal of Wind
Engineering and Industrial Aerodynamics 19:215 – 250.
Stelzer, R., and Pröll, T. 2008. Autonomous sailboat nav-
igation for short course racing. Robotics and Autonomous
Systems 56(7):604 – 614.
Stentz, A. 1993. Optimal and efficient path planning for
unknown and dynamic environments. International Journal
of Robotics and Automation 10(3):89–100.
World Meteorological Organization (WMO). 1994. A guide
to the code form FM 92-IX Ext. GRIB edition 1. Tech-
nical Report Technical Report No.17 (WMO TD-No.611),

WMO Commission for Basic Systems, Geneva. Accessed
11/28/2010.


